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We discuss a new scenario for early cosmology when the inflationary de Sitter phase emerges
dynamically. This genuine quantum effect occurs as a result of dynamics of the topologically nontrivial
sectors in a strongly coupled QCD-like gauge theory in an expanding universe. We test these ideas by
explicit computations in hyperbolic space H3

κ × S1
κ−1

. We argue that the key element for this idea to work is
the presence of nontrivial holonomy computed along S1

κ−1
. The effect is nonlocal in nature, nonanalytical in

coupling constant and cannot be described in terms of any local propagating degree of freedom such as
scalar inflaton field ΦðxÞ. We discuss some profound phenomenological consequences of this scenario for
inflationary cosmology. We also suggest to test these ideas in a tabletop experiment by measuring some
specific corrections to the Casimir pressure in the Maxwell theory formulated on a topologically nontrivial
manifold.
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I. INTRODUCTION: MOTIVATION

Themainmotivation for the present studies is the proposal
that inflationary de Sitter phase [1–3] may be dynamically
generated as a result of presence of the topologically
nontrivial sectors in expanding universe. Inflaton in this
framework [4,5] is an auxiliary topological nonpropagating
field with no canonical kinetic term, similar to known
topologically ordered phases in condensed matter systems.
This auxiliary field effectively describes the dynamics of the
topological sectors jki in a gauge theory (coined as QCD in
[4,5]) in expanding Universe.
This picture should be contrasted with conventional

proposals reviewed in [2,3] when the de Sitter behavior
is achieved in quantum field theory (QFT) by assuming the
existence of a new scalar local field ΦðxÞ with a non-
vanishing potential energy density VðΦÞ. The shape of this
potential energy can be adjusted in a such a way that the
contribution to energy density ϵ and pressure p is in
agreement with observations. In different words, the scale
parameter aðtÞ and the equation of state during the inflation
take the following approximate form,

aðtÞ ∼ expðHtÞ; ϵ ≈ −p: ð1Þ

The key ingredient of the proposal [4,5] is a conjecture
that the vacuum energy in context of the Friedmann-
Lemaître-Robertson-Walker (FLRW) universe has the fol-
lowing expansion at small H ≪ ΛQCD

EFLRWðHÞ ∼
�
Λ4

QCD
þHΛ3

QCD
þOðH2Þ

�
; ð2Þ

when the first nonvanishing term is linear ∼H, rather
than (commonly accepted) quadratic ∼H2 in the Hubble

constant. If this conjecture turns out to be correct, than the
Friedman equation assumes the form

H2 ≃ 8πG
3

ΔE;⇒ H0 ≃ 8πG
3

Λ3

QCD

ΔE≡ ½EFLRWðHÞ − EMink� ∼H; ð3Þ

which automatically leads to a nontrivial solution with
constant H0, and as a consequence, to a desired de Sitter
behavior (1).
There are two critical elements in writing Eq. (3). The

first one, as we already mentioned, is related to the
expansion (2), see few comments on this conjecture below.
The second key element is a paradigm that the relevant
definition of the energy in an expanding background
which enters the Friedman equation is the difference
ΔEðHÞ≡ ½EðHÞ − EMink�, similar to the computation of
the Casimir pressure when the observable energy is the
difference similar to ΔE. This element in our analysis is not
a new proposal identifying ΔE with gravitating energy
from the Friedman equation. In fact, in the present context
such a definition for the vacuum energy was advocated long
ago in 1967 by Zeldovich [6] for the first time. Later on
such definition for the relevant energy ΔE≡ ðEFLRW −
EMinkÞ which enters the Friedman equations has been
advocated from different perspectives in a number of
papers, see, e.g., relatively recent works [7–11], see also
review article [12] with a large number of references on
original papers. Essentially, this prescription implies
that ΔE may only depend on properties of the external
gravitational background, while the conventional contri-
butions computed in Minkowski flat space-time (such as
the QCD vacuum energy or the Higgs potential in
electroweak theory) are automatically subtracted by this
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prescription.1 We shall not elaborate on a number of subtle
points related to this prescription in the present work
referring to the original papers and review article [12].
The main topic of the preset paper is the analysis of

another critical element, briefly mentioned above, and
leading to (3). There is a well-known, conventional, and
generally accepted argument which suggests that the
expansion (2) starts with a quadratic ∼H2, rather than
the liner ∼H term. The argument is based on fundamental
principles of locality and general covariance, see original
papers [15,16], recent review [12], and some comments [4]
with pros and cons of these arguments. Indeed, the
curvature scalar R for FLRW universe is quadratic in H,

jRj ¼ 6

�̈
a
a
þ _a2

a2

�
¼ 12H2 þ 6 _H; ð4Þ

when _H ∼OðH2Þ, see [12]. Therefore, if the infrared (IR)
behavior of the system is entirely determined by the local
characteristics, such as curvature scalar R and/or higher
order derivative terms R2; RμνRμν, then the corrections to
the energy (2) indeed must be proportional to even powers
H2n as correctly argued in [12,15,16].
However, the main essence of the proposal [4,5] is

precisely the observation that the conventional assumption
on locality might be badly violated in strongly coupled
gauge theories. The basic reason for such violation is well
known and well understood, at least in Minkowski space-
time. The energy (2) is generated due to the tunneling
events between jki topological sectors, which formulated in
terms of inherently nonlocal large gauge transformation
operator T . Furthermore, this energy has nondispersive
nature, i.e., it cannot be formulated in terms of any local
propagating degrees of freedom.2 Transition from
Minkowski space-time to time dependent background (2)
obviously will not modify the nature and origin of this type
of energy. Rather, a transition to FLWR universe introduces
some background- dependent corrections to the same type

of energy (2), which was coined as “strange energy” in
[4,5] due to its unconventional origin as mentioned above.
One should comment here that this feature of nonlocality

when the system is not completely characterized by a local
physics is very similar to the well-known property in
topologically ordered phases in condensed matter physics
wherein an expectation value of a local operator does not
fully characterize the ground state of the system. Instead,
one should use some nonlocal variables for proper char-
acterization of the system.
The main subject of the present work is to elaborate and

clarify a number of nontrivial questions related to the
nonlocality in QFT and generation of the linear ∼H term in
(2) in some simplified models.3 The basic point of our
discussions is that a gauge QFT (when one should sum over
all topological sectors jki in the definition of the partition
function) is not fully described by the local characteristics,
such as curvature (4). In particular, the linear dependence
on the background may enter (2) through other character-
istics of the system such as holonomy

UðxÞ ¼ P exp

�
i
Z

β

0

dx4A4ðx4;xÞ
�
; ð5Þ

which is gauge invariant but nonlocal object as it depends on
the boundary conditions.We shall argue below that precisely
the nontrivial holonomy in gauge theories plays a key role
in themechanismwhich could generate the “strange energy”
(2). It is very hard technical problem to compute the
nonperturbative energy (2) in a time- dependent background
characterized by parameter H, see footnote 3 for clarifica-
tion. However, one can simplify the problem by consid-
ering the sensitivity of a gauge system to some external
dimensional parameters characterizing the gravitational
background, such as κ, see definition below. This parameter
plays a role similar to the Hubble constant H in FLRW
universe (2). Our goal is to study the dependence of the
“strange energy” (2) as a function of κ in the limit of small
κ → 0 in some simple settings where such computations
can be performed.
The basic idea is as follows. We would like to consider

hyperbolic space H3
κ with the constant negative curvature

−κ2. As we discuss below, there is a conformal equivalence
between ðR4 −R2Þ and H3

κ × S1
κ−1

where S1
κ−1

denotes the
circle of radius κ−1. The holonomy (5) is computed
precisely along a closed loop S1

κ−1
. Our goal is to study

the first nontrivial correction ∼κ to the nonperturbative

1A somewhat similar, but not identically the same subtraction
procedure has been suggested recently in Refs. [13,14], the so-
called “vacuum energy sequestering” proposal. The prescription
[13,14] is also inherently nonlocal, similar to the crucial role of
nonlocality in our framework realized in terms of the holonomy
(5). In fact, our computation of the vacuum energy (2) as
discussed below, is based on evaluation of the holonomy (5)
along the entire history of the universe, which resembles in spirit
the computations of the so-called “historic averages” in
Refs. [13,14]. Furthermore, we have to keep the volume of the
system to be finite in the computations for the infrared regulari-
zation of the theory. It is akin to that from Refs. [13,14] where the
finite volume is also required property for the consistency of the
procedure.

2This energy can be expressed in terms of the contact term in
the topological susceptibility, determined by the IR physics and
boundary conditions. The corresponding physics has been well
understood using the lattice numerical simulations in strong
coupling regime, see [4] for references and details.

3Here and in what follows we use term “linear inH correction”
as a generic feature to distinguish a nontrivial background from
the trivial Euclidean space. This dimensional parameter should
not be literally identified with the Hubble constant. Rather, it
could be any other dimensional parameter which characterizes
the system, such as the size of torus related to the nontrivial
holonomy (5) with β ∼H−1.
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energy (2) in the limit of small κ → 0 corresponding to
smooth transition to Euclidean space R4. We should
recover the Euclidean results when κ identically vanishes.
The key observation is that the topological configura-

tions with nontrivial holonomy (5) produce a finite con-
tribution to the energy density (2) with corrections being
linearly proportional to κ. Such effects cannot be expressed
in terms of any local operators such as curvature (4).
Rather, it is generated due to topological vacuum configu-
rations with nontrivial holonomy (5), not expressible in
terms of local observables. This is precisely the reason why
the generic arguments [12,15,16] based on locality simply
do not apply here.
Therefore, our computations of the linear correction ∼κ

in the vacuum energy density using simplified model with
H3

κ × S1
κ−1

background can be thought of as a strong
argument supporting our conjecture on the liner correction
∼H in a generic FLRW universe (2)—in both cases the
linear correction is not associated with the local curvature
operator (4).
One may wonder how a bulk property (such as vacuum

energy density) in a gapped theory could be ever sensitive
to such global characteristics as radius of the circle of S1

κ−1
?

The answer lies not in the local, but global properties of the
space. Imagine that we study the Aharonov-Casher effect.
We insert an external charge into a superconductor in which
the electric field is exponentially suppressed ∼ expð−r=λÞ
with λ being the penetration depth. Nevertheless, a neutral
magnetic fluxon will be still sensitive to an inserted external
charge at arbitrary large distances in spite of the screening of
the physical field (which is equivalent to the presence of a
gap in our system). This genuine quantum effect is purely
topological and nonlocal in nature and can be explained in
terms of the dynamics of the gauge sectors which are
responsible for the long range dynamics. Imagine now that
we study the same effect but in a different background. The
corresponding topological sectors will be modified due to
the variation of the external background. However, this
modification cannot be described in terms of any local
dynamical fields, as there are not any propagating long range
fields in the system since the physical electric field is
screened. For this simplified example, the dynamics of
the “strange energy” as a function of κ is determined by the
modifications of topological sectors when the background
varies. The effect is obviously nonlocal in nature as the
Aharonov-Casher effect itself is a nonlocal phenomenon.
The readers interested in the cosmological conse-

quences, rather than in technical computational details
may directly jump to Sec. III D where we list the main
results of this framework. Section IV is our conclusion
where we suggest to test some of the ideas presented in
this work in a tabletop experiment by measuring some
specific corrections to the Casimir vacuum energy in the
Maxwell theory formulated on 4-torus with the nontrivial
holonomy.

II. THE NATURE OF “STRANGE” ENERGY (2)
IN EUCLIDEAN SPACE R4

The main goal of this section is to review a number
of crucial elements relevant for our studies. We start in
Sec. II A with explanation of a highly nontrivial nature of
the “strange energy” (2) in the Euclidean space time. We
continue in Sec. II B, by clarifying the crucial role of the
holonomy (5) in generating such type of energy. We present
few technical results in Secs. II C, II D. Finally, in Sec. II E
we elaborate on nonlocal features of relevant vacuum
configurations saturating the “strange energy” in cosmo-
logical context. The corresponding analysis will play an
important role in our main Sec. III when we study the
hyperbolic spaceH3

κ × S1
κ−1

and analyze the properties of the
“strange” energy as a function of κ at small κ → 0.

A. The topological susceptibility and contact term

We start our short overview on the “strange” nature of the
vacuum energy (2) by reviewing a naively unrelated topic—
the formulation and resolution of the so-called Uð1ÞA
problem in strongly coupled QCD [17–19]. We introduce
the topological susceptibility χ which is ultimately related to
the vacuum energy Evacðθ ¼ 0Þ as follows4

χ ¼ ∂2EvacðθÞ
∂θ2

����
θ¼0

¼ lim
k→0

Z
d4xeikxhTfqðxÞ; qð0Þgi; ð6Þ

where θ parameter enters the Lagrangian along with topo-
logical density operator qðxÞ¼ 1

16π2
tr½Fμν

~Fμν� and EvacðθÞ is
the “strange” vacuum energy density which represents the
first term in expansion (2) corresponding to the flat space-
time background. This θ-dependent portion of the vacuum
energy (computed at θ ¼ 0) has a number of unusual
properties as we review below. The corresponding properties
are easier to explain in terms of the correlation function
(6), rather than in terms of the vacuum energy Evacðθ ¼ 0Þ
itself. The relation between the two is given by Eq. (6).
First of all, the topological susceptibility χ does not

vanish in spite of the fact that q ¼ ∂μKμ is total divergence.
This feature is very different from any conventional
correlation functions which normally must vanish at zero
momentum if the corresponding operator can be repre-
sented as total divergence.
Second, any physical jni state gives a negative contri-

bution to this diagonal correlation function

χdispersive ∼ lim
k→0

Z
d4xeikxhTfqðxÞ; qð0Þgi

∼ lim
k→0

X
n

h0jqjnihnjqj0i
−k2 −m2

n
≃ −

X
n

jcnj2
m2

n
≤ 0; ð7Þ

4We use the Euclidean notations where path integral compu-
tations are normally performed.
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where mn is the mass of a physical jni state, k → 0 is its
momentum, and h0jqjni ¼ cn is its coupling to topological
density operator qðxÞ. At the same time the resolution of the
Uð1ÞA problem requires a positive sign for the topological
susceptibility (6), see the original reference [19] for a
thorough discussion,

χnondispersive ¼ lim
k→0

Z
d4xeikxhTfqðxÞ; qð0Þgi > 0. ð8Þ

Therefore, there must be a contact contribution to χ, which
is not related to any propagating physical degrees of
freedom, and it must have the “wrong” sign. The “wrong”
sign in this paper implies a sign which is opposite to any
contributions related to the physical propagating degrees of
freedom (7). The “strange energy” in this paper implies the
θ dependent portion of the energy (2), (6) which cannot be
formulated in terms of conventional propagating degrees of
freedom as it has pure nondispersive nature according to
Eqs. (7), (8).
In the framework [17] the contact term with “wrong”

sign has been simply postulated, while in Refs. [18,19]
the Veneziano ghost (with a “wrong” kinetic term) had
been introduced into the theory to saturate the required
property (8).
Third, the contact term (8) has the structure

χ ∼
R
d4xδ4ðxÞ. The significance of this structure is that

the gauge variant correlation function in momentum space

lim
k→0

Z
d4xeikxhKμðxÞ; Kνð0Þi ∼

kμkν
k4

ð9Þ

develops a topologically protected “unphysical” pole which
does not correspond to any propagating massless degrees of
freedom, but nevertheless must be present in the system.
Furthermore, the residue of this pole has the “wrong sign.”
This “wrong sign” is due to the Veneziano ghost contri-
bution saturating the nondispersive term in gauge invariant
correlation function (8),

hqðxÞqð0Þi ∼ h∂μKμðxÞ; ∂νKνð0Þi ∼ δ4ðxÞ: ð10Þ

We conclude this review-type subsection with the following
remark. The entire framework, including the singular
behavior of hqðxÞqð0Þi with the “wrong sign,” has been
well confirmed by numerous lattice simulations in a strong
coupling regime, and it is accepted by the community as a
standard resolution of the Uð1ÞA problem. Furthermore, it
has been argued long ago in Ref. [20] that the gauge
theories may exhibit the “secret long range forces”
expressed in terms of the correlation function (9) with
topologically protected pole at k ¼ 0.
Finally, in a weakly coupled gauge theory (the so-called

“deformed QCD” model [21]) where all computations can
be performed in theoretically controllable way one can

explicitly test every single element of this entire frame-
work, including the topologically protected pole (9), the
contact term with “wrong sign,”, etc., see Refs. [22,23] for
the details. In particular, one can explicitly see that the
Veneziano ghost is in fact an auxiliary topological field
which saturates the vacuum energy and the topological
susceptibility χ. What is more important for the present
studies is that one can explicitly see that the holonomy (5)
plays a crucial role in generating the “strange” vacuum
energy and contact term in topological susceptibility.
While all these unusual features of the vacuum energy

are well-known and well-supported by numerous lattice
simulations (see, e.g., [23] for a large number of references
on original lattice results) the analytical understanding of
these properties in strong coupling regime is still lacking. In
the next subsection we review some known results on this
matter specifically emphasizing the role of the holonomy
(5) in the analytical computations. Precisely a nontrivial
holonomy (5) may play a crucial role in generating the
linear correction ∼H in Eq. (2) as we argue in Sec. III D.
This is the key technical element which pinpoints the
source of linear corrections ∼H not expressible in terms of
any local operators such as curvature (4).
In conclusion we should comment that the vacuum

energy in the electroweak (EW) sector of the standard
model is not sensitive to the topological features of the EW
gauge fields of the standard model (W�

μ ; Zμ; Aμ) as these
topological properties play no role in dynamics of these
fields, in huge contrast with QCD. This is due to the fact
that the mass gap of the non-Abelian EW gauge bosons is
resulted from the Higgs mechanism, in contrast with QCD
where the mass gap and the vacuum energy are dynamically
generated by the topological fluctuations with nontrivial
holonomy (5). Therefore, the subtraction procedure, for-
mulated in Introduction, automatically removes all the
vacuum energy related to the EW sector of the standard
model without any corrections ∼H. The linear corrections
are specific to the strongly coupled QCD with its topo-
logical features formulated in terms of the nonlocal
operators, the holonomy (5), and large gauge transforma-
tions operator T as discussed above.

B. The holonomy (5) and generation of the
“strange” energy in Euclidean space

The key role in our discussions will play the behavior of
holonomy UðxÞ at spatial infinity, the Polyakov line,

L ¼ P exp

�
i
Z

β

0

dx4A4ðx4; jxj → ∞Þ
�
: ð11Þ

The operator TrL classifies the self-dual solutions which
may contribute to the path integral at finite temperature
T ≡ β−1, including the low temperature limit T → 0. There
is a well-known generalization of the standard self-dual
instantons to nonzero temperature, which corresponds to

ARIEL R. ZHITNITSKY PHYSICAL REVIEW D 92, 043512 (2015)

043512-4



the description on R3 × S1 geometry. These are the so-
called periodic instantons, or calorons [24] studied in detail
in [25]. These calorons have trivial holonomy, which
implies that the TrL assumes values belonging to the
group center ZN for the SUðNÞ gauge group.
A more general class of the self-dual solutions with

nontrivial holonomy (11), the so-called KvBLL calorons
were constructed more recently [26,27]. In this case the
holonomy (11) in general, is not reduced to the group centre
TrL∉ZN . The fascinating feature of the KvBLL calorons is
that they can be viewed as a set of N monopoles of N
different types. Normally, one expects that monopoles
come in N − 1 different varieties carrying a unit magnetic
charge from each of the Uð1Þ factors of the Uð1ÞN−1 gauge
group left unbroken by vacuum expectation value due to
nontrivial holonomy (11). There is an additional, so called
Kaluza- Klein (KK) monopole which carries magnetic
charges and instanton charge. All monopole’s charges
are such that when a complete set of different types of
monopoles is present, the magnetic charges exactly cancel,
and the configuration of N different monopoles carries a
unit instanton charge.
It has been known since [25] that the gauge configura-

tions with nontrivial holonomy are strongly suppressed in
the partition function. Therefore, naively KvBLL calorons
cannot produce a finite contribution to the partition
function. However, this naive argument is based on con-
sideration of the individual KvBLL caloron, or finite
number of them. If one considers a grand canonical
assemble of these objects than their density is determined
by the dynamics, and the old argument of Ref. [25] breaks
down. The corresponding objects in this case may in fact
produce a finite contribution to the partition function. A
self-consistent computations in a weak coupling regime
supporting this picture have been carried out in the so-called
“deformed QCD” model [21]. One can explicitly see how
N different types of monopoles with nontrivial holonomy
(11) which carry fractional topological charge �1=N
produce confinement, generate the “strange”vacuumenergy
(6) and associated with this energy the topological suscep-
tibility (10) with known, but highly unusual properties
reviewed above in Sec. II, see [22,23] for the technical
details on these computations.
In the strong coupling regime we are interested in, the

corresponding analytical computations have never been
completed. There is a limited number of partial analytical
and numerical results [28–32] on computations of moduli
space and one loop determinant, controlling the dynamics
and interaction properties of the constituents in a large
ensemble of KvBLL calorons. We review these basic
technical results next in Sec. II C, as they will play an
important role in our analysis below.
While a complete analytical solution in strong coupling

regime is still lacking, nevertheless there is a number of hints
supporting the basic picture that the KvBLL configurations

with nontrivial holonomy (11) and representing N different
types of monopoles with fractional topological charges
�1=N saturate the “strange” vacuum energy (6) and asso-
ciatedwith this energy the topological susceptibility (10) in a
very much the same way as it happens in “deformed QCD”
model where all computations are performed in a theoreti-
cally controllable regime [21–23].
In what follows we assume that the “strange” vacuum

energy (6) and associated with this energy the topological
susceptibility (10) is indeed saturated by fractionally
charged monopoles with Q ¼ �1=N which are constitu-
ents of KvBLL caloron with nontrivial holonomy (11).
With this assumption in hand the question which is
addressed in this work is as follows. How does the “strange
energy” vary in a hyperbolic space H3

κ × S1
κ−1

as a function
of dimensional parameter κ? The difference between the
original R3 × S1 and H3

κ × S1
κ−1

spaces is the curvature of
the hyperbolic space R½H3

κ � ∼ κ2 at κ → 0. If we find a
linear dependence on κ at small κ it would be a strong
argument supporting our conjecture (2) on linear depend-
ence of “strange” vacuum energy as a function of external
parameter. Such linear scaling obviously implies that this
background-dependent correction is not generated by any
local operators such as curvature (4), but rather is generated
by nonlocal operators (5), (11) which is sensitive to the
global characteristics of the background.

C. Nontrivial holonomy (11) in Euclidean space.
Few technical details

In this section we present few formulas derived in
Euclidean space in order to compare them with parallel
expressions obtained in the hyperbolic space H3

κ × S1
κ−1

from Sec. III. The corresponding comparison will allow us
to study the dependence of the “strange” energy as a
function of κ at small κ → 0.
We start from analysis of the KvBLL configurations with

nontrivial holonomy (11). We use SUð2Þ gauge group in
our discussions to simplify notations, though the generali-
zation for SUðNÞ is also known. The KvBLL caloron can
be represented as a combination of two monopoles. The
first monopole is a conventional Bogomolny-Prasad-
Sommerfeld (BPS) monopole, and at large separations
between the constituents in Hedgehog gauge can be
represented as follows

AM
4 ðriÞ ¼

�
v cothðvrÞ − 1

r

�
raτa

2r

AM
i ðriÞ ¼

�
1 −

vr
sinhðvrÞ

�
ϵijk

rjτk

2r2
; ð12Þ

where we adopted the notations from Refs. [28–34] to coin
this constituent as M-monopole. Parameter v in this
formula is an arbitrary number which is determined by
the holonomy (11). The classical moduli space is a circle,
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v ∈ S1∶ 0 ≤ v ≤
2π

β
; ð13Þ

such that v is an angular variable. For any v ≠ 0 the gauge
group is broken to Uð1Þ. In other words, parameter v
plays the role of the vacuum expectation value of the
Higgs field ΦðxÞ, which is represented in this system by
the AM

4 -component of the gauge field as expressed by
Eq. (12). One should emphasize that we study gluody-
namics, without a scalar Higgs field in the system.
Nevertheless, the A4-component of the gauge field with
nonvanishing expectation value v plays exactly the same
role as the Higgs field in adjoint representation in the
standard BPS equations. Therefore, it is not a mystery that
the r dependence of the A4ðriÞ- component in Eq. (12) is
identically the same as in conventional BPS construction
for the Higgs ΦðxÞ field.5

The most important property of solution (12) is the
behavior of AM

4 at large distances, which is convenient to
represent in the unitary gauge:

AM
4 ðr → ∞Þ →

�
v −

1

r

�
τ3

2
; ð14Þ

where we also keep the Coulomb-like correction 1=r along
with the leading term ∼v because this Coulomb long range
interaction will play an important role in our future
discussions. One can explicitly see that the holonomy
(11) is

1

2
TrL ¼ cos

�
βv
2

�
¼ cosðπνÞ; ð15Þ

where we introduced the dimensionless parameter ν≡ βv
2π.

The holonomy belongs to the group center 1
2
TrL ¼ �1

when v assumes its boundary points ðv ¼ 0; 2πβ Þ, in which
case it is called the trivial holonomy.
The second type of monopole is the so-called L

monopole which can be constructed from (12) as follows
[26,27]. First, one should replace v → 2π

β − v, which is
equivalent to replacement ν → ð1 − νÞ. Than, one should
make a “large” (improper) gauge transformation

Ulargeðx4Þ ¼ exp

�
i
τ3
2

2πx4
β

�
: ð16Þ

As it is known the “large” gauge transformation should
be treated differently from “small” (proper) gauge trans-
formations because any two field configurations related by
“large” gauge transformation do not belong to the same
gauge orbit. Nevertheless, the transformation (16) preserves

the periodic boundary conditions because Ulargeðx4¼0Þ¼
−Ulargeðx4¼βÞ. The final step is to perform the reflection
v → −v in order to restore the original vacuum expect-
ation value (13). It is implemented by the discrete
transformation Ureflection ¼ expðiτ2π=2Þ. The resulting
configuration is the L monopole (the Kaluza-Klein
monopole in the original terminology). Its asymptotic
behavior is

AL
4 ðr → ∞Þ →

�
vþ 1

r

�
τ3

2
; ð17Þ

which should be contrasted with (14) with an opposite
sign for a Coulomb term. It corresponds to the opposite
magnetic charges of the M and L monopoles. Therefore,
the action S, topological charge Q, and magnetic charge
q for M and L monopoles are

SM ¼ 8π2

g2
ν; QM ¼ ν; qM ¼þ1; ν≡βv

2π
;

SL ¼ 8π2

g2
ð1−νÞ; QL ¼ð1−νÞ; qL ¼−1; ð18Þ

while the monopole’s mass m is determined as S ¼ mβ
such that m ¼ 4π

g2 v when m is expressed in terms of v.

One can explicitly see from (18) that the classical action
S ¼ ðSM þ SLÞ for the KvBLL configuration consisting
L and M monopoles does not depend on v and coincides
with action of the conventional periodic instanton
[24,25] with QM þQL ¼ 1 and action S ¼ 8π2=g2. On
the quantum level the partition function, of course, will
depend on v. We review the relevant results from
Refs. [28–34] on this matter below in Sec. II D.
Specifically, we want to pinpoint few crucial elements
which differ between Euclidean expressions and corre-
sponding formulas written in hyperbolic space. Precisely
this difference as we shall argue in Sec. III is responsible
for the linear in κ correction in expression (2) describing
the “strange” energy.

D. The grand canonical ensemble of monopoles
with nontrivial holonomy (11)

In the semiclassical approximation the partition function
of the gluodynamics is represented by the statistical
ensemble of an arbitrary number of interacting monopoles
and antimonopoles of all kinds. The corresponding picture
is well tested in the weakly coupled gauge theory, the so-
called “deformed QCD” where all important elements such
as the generation of the strange energy, the topological
susceptibility, the contact term, etc., have been explicitly
computed [21–23]. The key lesson from those studies is the
crucial role of the holonomy (11) and nonlocality in
generation of all these effects. In fact one can argue [23]

5Our convention for normalization is jΦj2 ≡ 2TrðΦÞ2 ¼
2Tr½A4ðr → ∞Þ�2 ¼ v2.
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that the system belongs to a topologically ordered phase as
a result of these nonlocal effects.6

Similar computations in strongly coupled regime have
not been performed yet. Nevertheless, one should expect a
very similar behavior of the strongly coupled ensemble of
KvBLL calorons represented by a set of their monopole
constituents as discussed above in Sec. II C. In other words,
we assume that KvBLL calorons with nontrivial holonomy
are responsible for generation of the strange energy, the
topological susceptibility, the contact term, and many other
highly nontrivial features of the system. One should
emphasize that the corresponding contributions are finite
in the infrared (IR) in the large volume limit and small
temperature, ðV; βÞ → ∞, in contrast with conventional
instanton computations. We do not claim that the semi-
classical approximation adopted here is justified in the
strongly coupled regime. In fact, it is expected that the
fluctuations with typical scales ∼ΛQCD change some
numerical estimates. However, as we shall argue below
the corresponding fluctuations with scales ∼ΛQCD can not
modify the contributions from the far IR regions with
typical scales ∼κ, which is precisely the subject of the
present work.
Therefore, we follow [28–34] and represent the grand

partition function for the ensemble as follows

Z ¼
X

KLKMKL̄KM̄

YKL

iL¼1

YKM

iM¼1

YKL̄

iL̄¼1

YKM̄

iM̄¼1

×
Z

fd3xiL
KL!

fd3xiM
KM!

fd3yiL̄
KL̄!

fd3yiM̄
KM̄!

e−Vðx−yÞ

· detG½x� · detG½y�; ð19Þ

where f is the “fugacity” of the monopoles. The fugacity
has been computed in [28] in terms of the fundamental
parameters of the system such as ΛQCD; β, and holonomy v
defined by Eq. (13). One should emphasize that fugacity f
is dimensional parameter which is sensitive to all scales of
the problem as it is expressed in terms of zero as well as
nonzero modes, see below. The 3 dimensional coordinates
xiM ; xiL and yiL̄ ; yiM̄ describe the positions of M;L monop-
oles and L̄; M̄ antimonopoles correspondingly. The G½x� is
a ðKL þ KMÞ × ðKL þ KMÞ and G½y� is a ðKL̄ þ KM̄Þ ×
ðKL̄ þ KM̄Þ matrices describing the moduli space. Their
explicit forms are given in Refs. [28,29]. These matrices
represent the standard zero mode contributions, and highly

sensitive to the IR physics as they depend on the holonomy
and the long range Coulomb interactions between the
monopoles. The corresponding interactions can be traced
from the asymptotical behavior of the monopole’s solutions
(14) and (17). Finally, potential Vðx − yÞ describes the
interaction between monopoles and antimonopoles of the
entire ensemble. The corresponding interactions, along
with G½x� and G½y� are also long ranged. These elements
of the partition function are highly sensitive to the IR
behavior and to the boundary conditions.
There are many subtle points in writing (19) which shall

not be discussed here. We refer to the original works for the
discussions and references. For the moment we ignore the
interaction between the monopoles and antimonopoles,
Vðx − yÞ. As we argue below in Sec. III C, the correspond-
ing interaction may change the numerical results, but
cannot modify our main claim on the structure of the
correction ∼κ.
The only relevant element for our future studies is the

presence of the long range forces entering G½x�; G½y�. The
corresponding interactions are effectively canceled in
computation of the free energy due to the total neutrality
condition,7 as argued in [28,29]. As a result of neutrality the
number of different types of monopoles is the same in each
given configuration. In other words, the partition function
under these assumptions decouples for monopoles and
antimonopoles, Z ¼ Zþ · Z−, and takes the following
simple form [28,29]:

Z� ¼
X
KLKM

ð4πfVÞKLþKM

KL!KM!
νKMð1 − νÞKL; ð20Þ

where V is the 3-volume of the system. The combination
νKMð1 − νÞKL which enters the partition function (20)
comes from a zero mode determinant which itself is
expressed in terms of the classical actions of the constitu-
ents (18). In the large volume limit the sum is saturated by
very large K such that the partition function can be
evaluated using saddle point approximation.
To proceed with estimations we first represent k! using

the Stirling formula

1

K!
¼ e− lnK! ≃ 1ffiffiffiffiffiffiffiffiffi

2πK
p e−K lnKþK: ð21Þ

The next step is to replace the sum by the integrals
6Unfortunately we cannot use the “deformed QCD” model to

address the question formulated in the present work. This is
because we cannot implement κ parameter into this model
because the size of S1 in “deformed QCD” model [21] must
be small to keep the system in the weakly coupled regime, while
in hyperbolic space the radius of S1

1=κ must be large as it is
correlated with our large 3d volume H3

κ .

7The consequences on neutrality condition has been slightly
corrected recently in [32–34]. The correct statement is not that the
neutrality condition implies that the total charge is zero for each
given configuration. Rather, the correct statement is that the
corresponding expectation value of the charge vanishes while
charge number density itself may still fluctuate.

DYNAMICAL DE SITTER PHASE AND NONTRIVIAL … PHYSICAL REVIEW D 92, 043512 (2015)

043512-7



X
KLKM

→
Z

dK
Z

dQ;

K ≡ KL þ KM; Q≡ KM − KL; ð22Þ

where K describes the total number of monopoles in a
given configuration, whileQ describes the magnetic charge
of a given configuration as M and L monopoles have
opposite charges according to (18). Using saddle point
approximation one arrives to the following expression for
the partition function in terms of the saddle value K0 which
saturates (20)

Z�≃eK0 ·
Z

e−
Q2

2K0dQffiffiffiffiffiffiffiffiffiffiffi
2πK0

p ; K0¼ 8πfV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νð1−νÞ

p
: ð23Þ

Therefore the final expression for the partition function
and the free energy for the vacuum ground state in this
approximation assumes the form

Z� ≃ exp ½4πfV�; f ¼
4πΛ4

QCD

g4T

Fvac ¼ −T lnZ ¼ −
32π2

g4
Λ4

QCD
V; ð24Þ

where we substitute the “confining” value for the holonomy
ν ¼ 1=2 which minimizes the free energy.
Few comments are in order. The expectation value

hQi ¼ 0 obviously vanishes, such that system is neutral.
However, the fluctuations of the Q2 do not vanish, in
agreement with [32,33], but strongly suppressed for a large
volume system, as expected

ffiffiffiffiffiffiffiffiffiffi
hQ2i
K2

0

s
≃

ffiffiffiffiffiffi
1

K0

s
∼

1ffiffiffiffi
V

p → 0: ð25Þ

The free energy (24) is finite at zero temperature limit.
Furthermore, lnZ is proportional to the 4-volume ∼V=T of
the system demonstrating the expected extensive scaling at
low temperature. One should emphasize that these com-
putations (based on configurations with nontrivial holon-
omy) generate the IR finite and well-defined contributions
to different observables expressed in terms of fundamental
parameters of the theory, in contrast, for example, with
instanton computations. The dynamically generated “con-
fining” value for the holonomy ν ¼ 1=2 is also a highly
nontrivial phenomenon—it leads to a proper behavior for
the Polyakov’s loop, the Wilson loop and the string tension
[28,29], see also Appendix A with few historical and
terminological comments on fractionally charged constitu-
ents, previously emerged in the literature in different
contexts and different systems.
Furthermore, this “confining” value for the holonomy

ν ¼ 1=2 leads to a consistent resolution of the so-called

Uð1ÞA problem formulated in terms of the topological
susceptibility (8) and the θ dependence of the “strange”
vacuum energy (6). Indeed, the introduction of the θ term
into the Lagrangian changes the fugacity for the monopole
f → feiθ=2 and antimonopoles f → fe−iθ=2. This modifi-
cation follows from the fact that the topological charges
for monopoles and antimonopoles assume the magnitude
Q ¼ �1=2 for “confining” value of the holonomy ν ¼ 1=2
as it follows from quantum numbers for monopoles (18).
The antimonopoles assume the opposite sign for the
topological charge as they are antiself-dual solutions.
This modification leads to replacement of expression (24)
by the following formula which is valid for jθj ≤ π:

FvacðθÞ ¼ −
32π2

g4
Λ4

QCD
V · cos

�
θ

2

�
: ð26Þ

The topological susceptibility now can be easily com-
puted by differentiating (26) twice with respect to θ with
the result

χ ¼ 1

V
∂2FvacðθÞ

∂2θ

����
θ¼0

¼ 8π2

g4
Λ4

QCD
: ð27Þ

Finally the vacuum energy (26) per unit volume Fvac=V ∼
Λ4

QCD
is precisely the first term entering the expression

(2). It has all the features of the “strange energy” briefly
described in Sec. II A in a model-independent generic
way. The mechanism based on the KvBLL configurations
reviewed above precisely generates all these required
properties. Similar formulas can be easily generalized
for arbitrary number of colors N when FvacðθÞ ∼
N2 cosðθNÞ and χ ∼ 1, which is consistent with conven-
tional resolution of the Uð1ÞA problem in large N limit.
We do not claim to have derived any new results in the

present subsection. Rather, we just reproduced and
explained the known results [28,29,32,33] in a slightly
different and simplified manner in order to analyze the role
of similar vacuum configurations in the cosmological
context next in Sec. III. Furthermore, we do not claim
that the corresponding computations in strongly coupled
regime are exact. In fact, we expect the corrections to be
order of one to the fugacity f and all other numerical
coefficients such as (24), (27) discussed above. However,
we do not anticipate any drastic qualitative changes of this
framework as a result of these possible corrections. In
particular, we expect that the free energy generated by these
configurations remains finite in the IR and demonstrates the
extensive behavior at low temperature T → 0 as presented
above. Precisely these features will play a crucial role in our
arguments on small modification of this “strange” vacuum
energy with tiny variation of the background to be
considered in Sec. III D.
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E. Interpretation. Cosmological context

There are many important elements related to the
computations reviewed in previous sections. In what
follows we would like to make only a very few comments
which will be relevant for our studies in cosmological
context on IR sensitivity of the system.
(1) First of all, the positive sign in (27) unambiguously

implies that the corresponding configurations satu-
rating the topological susceptibility (and related the
θ- dependent portion of the vacuum energy) cannot
be identified with any propagating degrees of free-
dom in accordance with (7). Indeed, the computa-
tions reviewed above explicitly show that the
relevant configurations are the KvBLL calorons
with nontrivial holonomy describing the tunneling
events between topologically distinct but physically
identical winding states, rather than propagating
gluons. All effects are obviously nonanalytical in
coupling constant ∼ expð−1=g2Þ and cannot be seen
in perturbation theory.

(2) One can view the relevant topological configurations
as the 3d magnetic monopoles wrapping around time
direction. This leads to the nonvanishing holonomy
(11) and nonvanishing topological charge (18) of the
constituents defined in 4d space-time. In the limit of
T → 0 the “confining” value ν ¼ 1=2 for the hol-
onomy implies that the parametervwhich determines
the monopole’s mass in conventional 3d theory tends
to zero in this limit,v ¼ πT → 0. At the same time the
monopole generates a finite contribution (24) to the
path integral due to its finite 4d action (18) resulting
from very long path ∼T−1 in time direction. It would
be misleading to interpret the confinement and other
features (discussed above in Sec. II D) generated by
these configurations as the condensation of the
monopoles. It would be more appropriate to use term
“percolation” as the configurations described above
do correlate at arbitrary large distances, but they
obviously do not form a “condensate” in conven-
tional condensed matter terminology.

(3) In the cosmological context such configurations are
highly unusual objects: they obviously describe the
nonlocal physics as the holonomy (11) is a nonlocal
object. Indeed, the holonomy defines the dynamics
along the entire history of evolution of the system in
the given confined phase: from the very beginning to
the very end. There are no contradictions with
causality in the system as there are not any physical
degrees of freedom to propagate along this path at
β → ∞, see item (i). above. Indeed, this entire gauge
configuration is a mere saddle point in Euclidean
(imaginary time) path integral computation which
describes the instantaneous tunneling event, rather
than propagation of a physical degree of freedom
capable of carrying an information/signal.

(4) Further to this point, the extensive property of free
energy βFvac ∼ V=T at β → ∞ is a highly nontrivial
phenomenon in this framework as the 4-volume
V=T appears in this description due to few important
steps. First, one should regularize the moduli space
by cutting off each given configuration in the IR.
Second, one should sum over all configurations (20)
by using saddle point approximation in the large
volume limit, which eventually leads to (24). This
“emergent” extensive property is drastically differ-
ent from conventional approaches to cosmology
when the free energy is determined by the Lagran-
gian density L½Φ� integrated over the 4-volumeR
d4x. In this last case the extensive property is a

trivial manifestation of the system formulated from
the very beginning in terms of the local field ΦðxÞ. It
shows one more time that generation of the “strange”
energy (2) is a highly nonlocal nonperturbative
effect when the volume of the system could be very
large, but still finite to proceed with computations
(24) in this approach. Essentially, the finite local
energy density of the system (24) in this framework
is determined by the entire time evolution β → ∞ in
confined phase, which is obviously a nonlocal
procedure. Still, it does not contradict the causality,
see item (iii) above.

(5) Last but not least, all these highly nontrivial, non-
local features listed above emerge only at T < Tc
when the configurations with nontrivial holonomy
(11) start to play the dominant role in the dynamics.
At high temperatures the contribution of the con-
figurations with nontrivial holonomy can be com-
pletely ignored as they do not contribute to the
partition function in thermodynamical limit. This
property of drastic variation of “strange” energy (2)
with temperature around Tc may play an important
role in cosmological context as we discuss in the
next section.

III. NONTRIVIAL HOLONOMY AND
HYPERBOLIC SPACE H3

κ × S1
κ−1

The main goal of this section is to generalize the results
presented above in Secs. II C, II D to hyperbolic spaceH3

κ ×
S1
κ−1

to argue that the correction to the free energy (24) are
linearly proportional to κ at small κ → 0. In this limit it is
quite obvious that all features listed in Sec. II E on nature of
the “strange energy,” including its nonlocal nature, remain
the same in this limit κ → 0 as the system is almost 4d
Euclidean space, with very tiny deviations ∼κ which we
wish to recover. The corresponding linear dependence on κ
would strongly support our conjecture that the corrections
in Eq. (2) are linearly proportional to the Hubble constant,8

8See footnote 3 with some clarification on terminology.
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which dynamically drugs our Universe to the de Sitter state
as Friedman equation (3) suggests.
We discuss the relevant gauge configurations in hyper-

bolic space in Sec. III A, while the grand canonical
ensemble of such hyperbolic monopoles will be studied
in Sec. III B where we discuss the crucial distinctions
between hyperbolic and Euclidean monopoles. Precisely
this difference eventually leads to a tiny ∼κ variation from
the Euclidean results. The corresponding deviation is
expressed in terms of the fugacity in Sec. III C, which
ultimately leads to slight modification of the vacuum
energy. We list some profound cosmological consequences
of this modification of the vacuum energy with background
in Sec. III D.

A. Holonomy and monopoles in hyperbolic space

The construction of the monopoles on hyperbolic space
H3

κ has been known since [35–37]. Furthermore, many
other topological objects, including calorons, instantons,
vortices, skyrmions have been constructed on hyperbolic
space [38–43]. An important technical element which was
used in these constructions is the conformal equivalence of
R4 and H3

κ × S1
κ−1

. Indeed, this equivalence can be explic-
itly checked by the introduction of toroidal coordinates
ðρ; θ;ϕ; χÞ on R4 as follows:

xμ ¼ ðx1; x2; x3; x4Þ

x1 ¼
1

coshðκρÞ þ cos χ
sinhðκρÞ sin θ cosϕ;

x2 ¼
1

coshðκρÞ þ cos χ
sinhðκρÞ sin θ sinϕ;

x3 ¼
1

coshðκρÞ þ cos χ
sinhðκρÞ cos θ;

x4 ¼
1

coshðκρÞ þ cos χ
sin χ: ð28Þ

It is then easy to check that the metric on R4 becomes

ds2ðR4Þ≡ dxμdxμ ¼
ds2ðH3

κÞ þ κ−2dχ2

ðcoshðκρÞ þ cos χÞ2 ; ð29Þ

where ds2ðH3
κÞ is the metric on hyperbolic 3-space with

spherical coordinates ðρ; θ;ϕÞ:

ds2ðH3
κÞ ¼ dρ2 þ sinh2ðκρÞ

κ2
ðdθ2 þ sin2θdϕ2Þ: ð30Þ

The holonomy in terms of these variables is computed
along the circle S1

κ−1
parametrized by χ, that is

U ¼ P exp

�
i
κ

Z
2π

0

dχAχ

�
; ð31Þ

where Aχ is the component of the gauge potential asso-
ciated with coordinate χ, and it plays the same role as the
A4, similar to the construction in Euclidean space (12). In
both cases, the A4 and Aχ assume nonvanishing expectation
values, and play the same role as the Higgs field Φ in
adjoint representation, as explained after Eq. (13), see also
footnote 5 on our normalization. Formula (31) plays the
same role as Eqs. (5), (11), while dχ=κ in Eq. (31) plays the
role of dx4 in evaluation of the holonomy computed along
the circle S1 according to (13). At large ρ → ∞ the Aχ

approaches a nonvanishing constant value, similar to
parameter v in Euclidean space (12).
With these remarks in mind, the explicit form for the

BPS monopole in hyperbolic space H3
κ in the unitary gauge

can be written as follows [36,37]:

AM
χ ðρÞ ¼ ½Cκ cothðCκρÞ − κ cothðκρÞ� τ

3

2
; ð32Þ

where parameter C takes any value greater than 1. In
formula (32) we limited ourselves by writing down only the
AM
χ ðρÞ-component, which defines the boundary conditions

at large ρ. We coin this solution asM monopoles in order to
be consistent with the terminology introduced for the
Euclidean counterparts (12).
While many topological objects, including calorons with

trivial holonomy [41] have been constructed in hyperbolic
space, as we already mentioned, an explicit construction of
the calorons with nontrivial holonomy, which is analogous
to the KvBLL solutions [26,27], has not been constructed
yet. In what follows we shall assume that such solutions
do exist, though we do not need their explicit form in our
future discussions. An important point is that if such
configurations exist than theymust exhibit the same features
which the KvBLL solutions demonstrate. Namely they
could be viewed as a set of 2 different types of monopoles
for SUð2Þ gauge group. The first type is precisely the
M-monopole (32) discussed above, while the second one,
the Lmonopole can be constructed as described in Sec. II C
for the Euclidean counterpart. We shall return to this
construction later in the text, but first, wewant to understand
the physicalmeaning of the parameterC enteringEq. (32) by
analyzing the limit κ → 0 when the Euclidean monopole
(12) is recovered.
To recover the Euclidean monopole solution one should

take the limit C → ∞ along with κ → 0 with combination
Cκ being fixed to be equal v. In this limit AM

χ ðρÞ becomes

AM
χ ðρÞ ¼

�
v cothðvρÞ − 1

ρ

�
τ3

2
; Cκ ≡ v; ð33Þ

where ρ should be identified with r in the Euclidean space.
Expression (33) exactly coincides with (12) and its asymp-
totic behavior (14) in the unitary gauge.
We are now in a position to discuss the asymptotical

behavior of (32) and the holonomy (31) for finite κ. Taking
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ρ → ∞ one arrives to the following expressions for AM
χ ðρÞ

and holonomy

AM
χ ðρ → ∞Þ → ½κðC − 1Þ þOðe−ρÞ� τ

3

2
;

1

2
TrUðρ → ∞Þ ¼ cos πν; ν≡ ðC − 1Þ; ð34Þ

where we introduced parameter ν expressed in terms of
original parameter C. It plays the same role as parameter
ν discussed in the Euclidean construction (5), (18). The
crucial observation here is that the asymptotic formula for
AM
χ ðρÞ does not contain a long range Coulomb interaction

ρ−1 in contrast with its Euclidean counterpart (14). Instead,
there is an exponentially suppressed correction∼ exp ð−κρÞ
in formula (34). One can interpret such drastic changes
in the behavior of the solution as a result of screening of
the magnetic field by the curvature in the hyperbolic space.
In terms of the new parameter ν the solution (32) assumes
the form

AM
χ ðρÞ ¼ ððνþ 1Þ coth ½ðνþ 1Þκρ� − coth κρÞ κτ

3

2
: ð35Þ

Our next step is to recover the Lmonopole assuming that
KvBLL caloron with nontrivial holonomy in the hyperbolic
space exists, similar to construction [26,27] in the
Euclidean space. We follow the same steps to reconstruct
their properties presented in Sec. II C for the Euclidean
monopolies. The first step is to replace ν → ð1 − νÞ. The
second step is to make a “large” gauge transformation
which assumes the following form in hyperbolic variables

UlargeðχÞ ¼ exp

�
i
τ3
2
χ

�
: ð36Þ

As we already mentioned the “large” gauge transformations
should be treated differently from “small” (proper) gauge
transformations because any two field configurations related
by “large” gauge transformation do not belong to the same
gauge orbit. Nevertheless, the transformation (36) preserves
the periodic boundary conditions for the fields in the adjoint
representation because Ulargeðχ¼0Þ¼−Ulargeðχ¼2πÞ. The
final step is to perform the discrete transformation
Ureflection ¼ expðiτ2π=2Þ to restore the original boundary
conditions (34). The resulting configuration is the hyper-
bolic L- monopole:

AL
χ ðρÞ ¼ ð1 − ðν̄þ 1Þ coth ½ðν̄þ 1Þκρ� þ coth κρÞ κτ

3

2
;

ð37Þ

where we introduced ν̄≡ ð1 − νÞ for convenience. One
should emphasize that electric and magnetic fields of the
L -monopoles do depend on a χ variable as a result of χ

dependent “large” gauge transformation (36). This is analo-
gous to the L -monopole solution in Euclidean space (17)
which is a time dependent configuration, and ceases to exist
in static 3d space.
The classical action, topological and magnetic charges of

the M and L constituents are determined by the boundary
conditions (35) and (37) at large ρ → ∞, similar to the
Euclidean counterparts (18). The corresponding parameters
S;Q; q obviously assume the same values (18) when
expressed in terms of ν. These dimensionless parameters
obviously cannot depend on dimensional parameter κ,
including κ → 0 limit. In fact, the corresponding formula
relating Q and q for BPS M-type monopole (35), which
identically coincides with the Euclidean expression, was
derived in hyperbolic space in the original work [35], while
the relation between S and Q is a direct consequence of
self-duality of Yang-Mills equations. The monopole’s mass
(the total energy of the configuration), being a dimensional
parameter, does depend on κ. Mass m satisfies an obvious
relation S ¼ m 2π

κ , similar to its Euclidean counterpart, see
text after Eq. (18). Explicitly, in terms of the original
parameter C it is given by m ¼ 4π

g2 κðC − 1Þ, which reduces

to its Euclidean form m ¼ 4π
g2 v when one takes the

corresponding limit (33).

B. Grand partition function for monopoles
in the hyperbolic space

With our main assumption that the calorons with non-
trivial holonomy exist in hyperbolic space, similar to
Euclidean KvBLL construction [26,27], one should expect
that the corresponding grand partition function Z̄ has the
following form, which is analogous to expression (19)
discussed in a previous section:

Z̄ ¼
X

KLKMKL̄KM̄

YKL

iL¼1

YKM

iM¼1

YKL̄

iL̄¼1

YKM̄

iM̄¼1

×
Z
H3
κ

f̄
ffiffiffi
g

p
d3x̄iL

KL!

f̄
ffiffiffi
g

p
d3x̄iM

KM!

f̄
ffiffiffi
g

p
d3ȳiL̄

KL̄!

f̄
ffiffiffi
g

p
d3ȳiM̄

KM̄!

× e−Vðx̄−ȳÞ · detG½x̄� · detG½ȳ�; ð38Þ

where f̄ is the “fugacity” of the hyperbolic monopoles. The
corresponding dimensional parameter is highly sensitive to
many details of monopole’s structure and their interactions
with other monopoles. It is obviously different from its
cousin fugacity f computed in the Euclidean space as
discussed in Sec. II D. We shall estimate the corrections to
f̄ later in Sec. III C where we argue that the difference
ðf̄ − fÞ ∼ κ is linear in κ at small κ → 0 for configurations
with nontrivial holonomy.
The next item to discuss from formula (38) is the 3-

dimensional coordinates x̄iM ; x̄iL and ȳiL̄ ; ȳiM̄ . They describe
the positions of M;L monopoles and L̄; M̄ antimonopoles
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correspondingly. These coordinates play the same role as in
formula (19) where the only difference is that the distance
between constituents is computed using the metric (30).
The G½x̄� is a ðKL þ KMÞ × ðKL þ KMÞ and G½ȳ� is a
ðKL̄ þ KM̄Þ × ðKL̄ þ KM̄Þ matrices describing the moduli
space. The difference with corresponding Euclidean
expressions is that the behavior at large distances is not
the Coulomb like, but rather the exponentially suppressed
as we already mentioned (34). This is because the matrices
G½x̄� and G½ȳ� are computed from the corresponding zero
modes in the background of the monopoles. At the same
time, the zero modes, as usual, are fixed by the corre-
sponding classical solutions. Therefore, the asymptotical
behavior of classical solutions (35) and (37) dictates the
behavior of G½x̄� and G½ȳ�. In both cases the computations
of the free energy is reduced to expression (20) as a result of
the neutrality condition discussed in Sec. II D.
The final item to discuss is the factor

ffiffiffi
g

p
which accounts

for the curvature of the hyperbolic space H3
κ . It enters along

with the spatial volume of the system where computations
are being performed. We put the system into a large volume
of radius R such that the volume is

V¼ 4π

2κ3

�
sinh2κR

2
− κR

�
;

ffiffiffi
g

p ¼ sinθsinh2κρ
κ2

: ð39Þ

It reduces to the Euclidean expression V ¼ 4πR3

3
in the limit

of small κ with the corrections of order Oðκ2Þ which are
consistently neglected in the present work. Therefore, by
repeating all the steps leading to formula (24) we arrive to
the following expression for the partition function and the
free energy in hyperbolic space

Z̄� ≃ exp ½4πf̄V�; F̄vac ¼ −
κ

2π
ln Z̄; ð40Þ

where we identify S1 from R3 × S1 geometry (reviewed in
Sec. II) with circle S1

κ−1
from H3

κ × S1
κ−1

geometry presented
in Sec. III A. In other words, we identify

T ≡ 1

β
¼ κ

2π
; ð41Þ

such that the corresponding expressions for holonomy (5)
and (31) coincide. With this identification the correspond-
ing formulas (15) and (34) in terms of dimensionless
parameter ν also coincide. In formula (40) we substitute
the confining value for holonomy ν ¼ 1=2 as it has been
done in the Euclidean space. This is because the free energy
is minimized at ν ¼ 1=2 irrespectively to the value of the
fugacity, which is indeed different for two different
geometries. To conclude: the only difference between Z̄
and Z describing the system on H3

κ × S1
κ−1

and R3 × S1

geometries correspondingly is that the fugacities in these

two systems assume slightly different values at small
κ → 0, which is the subject of the next subsection.

C. Monopole’s fugacity

We start our analysis with explanations on how the basic
dimensional parameter, the fugacity, emerges in the system.
This x independent dimensional parameter f effectively
determines the dynamics of the system. This parameter
essentially represents the density of the monopoles in the
system. The classical action, the zero and nonzero mode
contributions lead to the following expression for the
monopole’s fugacity f in terms of the fundamental param-
eters of the theory [28,29]:

f2 ¼
�4πβΛ4

QCD

g4

�2
· c

c ¼
�½1þ 2πνν̄ r12

β �
ðΛQCDr12Þ2=3

�
1þ 2πν

r12
β

�8
3
ν−1

�
1þ 2πν̄

r12
β

�8
3
ν̄−1

	
;

ð42Þ

where brackets h:::i imply averaging over separation r12
betweenM and L monopoles in ensemble (19) such as f is
x-independent as it should.
A few comments are in order. Each KvBLL caloron is

represented by the L and M monopoles and accompanied
by 8 zero modes. It explains the major dimensional factor in
Eq. (42), including Λ8

QCD
. The remaining numerical dimen-

sionless factor “c” entering (42) is order of 1. It includes
factor ðΛQCDÞ−2=3 which can be easily restored from the
renormalization group analysis which requires that ΛQCD

enters (42) with power ðΛQCDÞ22=3. Subsequently, this

factor ðΛQCDÞ−2=3 must be accompanied by a dimensional
parameter, which at small temperatures could be nothing
else but the separation distance r−2=312 between the monop-
oles. In estimates of Refs. [29] the numerical coefficient c is
assumed to be one, which precisely corresponds to the
expression for f given in Eq. (24).
The next factor which can be easily explained is the first

term in the numerator, ½1þ 2πνν̄ r12
β �. This term has been

originally computed in [26] and reproduced in [28,29]. It is
originated from the zero mode determinant. The crucial
point here is that the algebraic dependence on r12 emerges
as a result of long range Coulomb terms in the classical
solutions (14) and (17). This is because the zero mode
structure is unambiguously fixed by the classical solutions
with the corresponding Coulomb terms. Another important
element is that this term is proportional to the holonomy νν̄.
It implies that this term will not be generated for the
configurations with trivial holonomy.
The nature of the next two terms in the numerator in

Eq. (42) is much harder to explain because they are
originated from the contributions of the nonzero modes.
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The only comment we would like to make here is that these
terms are also proportional to the holonomy, and cannot be
generated by the configurations with trivial holonomy.
Now we are in a position to estimate the difference

between the fugacity generated by monopoles in the
Euclidean space versus hyperbolic monopoles at small
κ → 0. The estimation is convenient to represent in the
following form

f

f̄
≃ ð1þ ΔzmÞ · ð1þ ΔnzmÞ; Δzm ≃ νν̄

2

κ

ΛQCD

; ð43Þ

where factors Δzm and Δnzm describe the corrections due to
the zero and nonzero modes correspondingly. The correc-
tion factor Δzm comes from the first term in the numerator
(42), where we estimate hr12i ∼ Λ−1

QCD
as the only dimen-

sional parameter in the system at small temperature. We
also expressed the result in terms of κ rather than β to be
consistent with identification (41). The crucial point in our
estimate Δzm is that a similar correction in hyperbolic space
is absent as the corresponding classical solutions (35) and
(37) have exponentially suppressed asymptotic at large
distances, in contrast with the Euclidean counterpart.
Therefore, a term ∼r12 cannot be generated in hyperbolic
space, in contrast with the Euclidean case (42).
Unfortunately, a similar unambiguous conclusion cannot

be reached regarding the nonzero mode contribution Δnzm.
This is because both the Euclidean as well as hyperbolic
monopoles may generate such contributions proportional to
κ · r12, which eventually produce a desired correction
∼κ=ΛQCD. While the Euclidean expression is known and
is represented by two factors in the numerator in Eq. (42), a
similar expression in hyperbolic space is not known simply
because an explicit construction of the hyperbolic calorons
with nontrivial holonomy, similar to KvBLL solution, is yet
unknown. Therefore, for the numerical estimates in what
follows we set Δnzm ¼ 0.
A few comment are in order. First, we want to argue that

an unknown Δnzm correction cannot exactly cancel the
computed Δzm term (43). Indeed, the Δzm structure is
precisely fixed by the structure of the SUðNÞ gauge group
with 4N zero modes, while Δnzm varies and depends, in
particular, on the presence of the matter fields, and other
details of the system. In other words, a possible cancella-
tion, if ever occurs, cannot be a universal phenomenon.
Therefore, we use Δzm and disregard Δnzm as our order of
magnitude estimate for ratio (43). It explicitly exhibits the
linear in κ correction to the fugacity, which is the main
result of the present work. This correction can be only
generated by the configurations with nontrivial holonomy.
In particular, conventional instantons and calorons with
trivial holonomy may only generate the higher order
corrections ∼Oðκ2Þ and do not contribute to the linear
term (43).

We should emphasize that estimate (43) was derived
under assumption that the interaction term Vðx̄ − ȳÞ in
formula (38) vanishes. It corresponds to the ensemble
containing exclusively the monopoles (or antimonopoles).
Only in this case the partition function is exactly reduced to
simple form (20) as a result of neutrality condition as
argued in [28,29]. In reality the interaction plays a crucial
numerical role at finite temperature as shown in [32–34].
However, our main claim is that the linear correction (43)
may receive large numerical corrections, but it cannot be
exactly canceled as a result of unaccounted interaction term
Vðx̄ − ȳÞ in formula (38). The basic argument behind this
claim is the same one as presented above and based on the
observation that the interaction Vðx̄ − ȳÞ is highly sensitive
to the matter content of the theory (the number of flavors
and its masses in the system), while a Δzm in formula (43)
is not sensitive to these modifications. The interaction
Vðx̄ − ȳÞ may change a numerical coefficient in the
estimate hr12i ∼ Λ−1

QCD
which enters (43), but cannot com-

pletely destroy this term. Therefore, our main claim [that
the linear correction (43) will be generated] holds irre-
spectively to any type of monopole-antimonopole inter-
actions Vðx̄ − ȳÞ.

D. Linear corrections ∼κ to the vacuum energy

The result (43) for monopole’s fugacity can be translated
into the statement on variation of the vacuum energy
density in the bulk of space-time with a tiny variation of
the background. Indeed, according to (24), (40), and (43)
the relevant ratio for the vacuum energies at κ → 0 for two
different geometries can be represented as follows

Evac½H3
κ × S1

κ−1
�

Evac½R3 × S1� ≃ f̄
f
≃

�
1 −

νν̄

2
·

κ

ΛQCD

�
: ð44Þ

The same result can be represented in a more conventional
form

Evac½H3
κ × S1

κ−1
�≃ −Λ4

QCD

�
1 −

νν̄

2
·

κ

ΛQCD

�

≃ −Λ4

QCD
þ κ · Λ3

QCD

νν̄

2
; ð45Þ

where we omitted all irrelevant numerical factors in the
expression for the vacuum energy in Euclidean space, but
kept the relevant sign minus ð−Þ in front, which is a well-
known feature of QCD. Our final formula (45) is a precise
analog (in a simplified model) for the vacuum energy (2)
conjectured for the de Sitter space. As we emphasized in
the Introduction, the significance of the linear correction in
Eq. (2) is that the Friedman equation (3) unambiguously
predicts a nontrivial solution with constant H0 if the
subtraction procedure is adopted as discussed in the
Introduction. The constant solution H0 automatically
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corresponds to a desired de Sitter behavior (1), which might
be relevant for the early Universe during the inflationary
epoch, and in the present epoch for a description of the dark
energy. A few comments are in order:
(1) The difference between two geometries, H3

κ × S1
κ−1

and R3 × S1 when the sizes of S1
κ−1

and S1 identi-
cally coincide according to (41) is the small curva-
ture ∼κ2 of the hyperbolic space. According to
conventional arguments on locality as discussed in
the Introduction it unambiguously suggests that all
corrections must be proportional to the even powers
κ2n. However, we obviously observe a liner correc-
tion (45) in explicit computations.

(2) This linear correction ∼κ is generated by the
configurations with nontrivial holonomy, which
itself is nonlocal, but gauge invariant operator.
Therefore, the standard arguments on locality, re-
viewed in the Introduction are badly violated by
such configurations. One can see from Eq. (45) that
the linear correction ∼κ is explicitly proportional to
the holonomy ν, which is the gauge invariant
observable, not reducible to the curvature. In other
words, this correction is generated by nonlocal
configurations, and cannot be expressed in terms
of local curvature ∼κ2.

(3) All effects discussed in the present work are non-
analytical in coupling constant ∼ expð−1=g2Þ and
cannot be seen in perturbation theory.

(4) The result (45) is consistent with the previous
analysis in s weakly coupled “deformed QCD”
model where one can study the sensitivity of the
vacuum energy to the very large distances by
putting the system into the box of size L. It turns
out [44] that the corrections to the vacuum energy
are linear in inverse size ∼L−1. This model is
very similar in all respects to the system studied
in the present work because the vacuum energy in
the “deformed QCD” model is also saturated by the
monopoles with nontrivial holonomy. At the same
time the conventional instantons with trivial hol-
onomy produce only quadratic corrections ∼L−2 as
noticed in [44].

(5) The generation of the linear correction ∼κ is also
consistent with computations of Ref. [4] in the
“deformed QCD” model where analysis was per-
formed in terms of auxiliary topological nonpropa-
gating field. In those computations the root of the
phenomenon is the presence of the nontrivial hol-
onomy and long range monopole’s field which
eventually is responsible for generation of the linear
correction.

(6) The linear correction observed in our work is also
consistent with the lattice simulations [45] when one
studies the dependence of the vacuum energy on the
size of the system.

(7) Our results are also consistent with the lattice
simulations [46] when the author studies the rate
of particle production in the de Sitter background.
The rate turns out to be linearly proportional to the
Hubble constant ∼H, rather than H2. Our comment
here is that the rate of the particle production in
quantum field theory in general is determined by the
imaginary part of the stress tensor, Im½Tν

μ�, while the
vacuum energy is related to the real part of the stress
tensor, Re½Tν

μ�. Analyticity suggests that both com-
ponents must have the same corrections on H at
small H. Therefore, the lattice measurements [46] of
the linear dependence onH strongly suggest that the
vacuum energy (which is determined by the real part
of the same stress tensor) must also exhibit the same
linear ∼H correction. The corresponding lattice
computations of the θ dependent portion of the
vacuum energy and topological susceptibility in a
time dependent background are possible in princi-
ple, but are technically much more involved than the
analysis performed in Ref. [46].

(8) Last but not least, the sign for the difference
ΔEvac ≡ E½H3

κ × S1
κ−1

� − E½gμν ¼ δμν� is positive as
one can see from Eq. (45). It corresponds to the
positive sign for the cosmological constant (dark
energy) in cosmological context.

There is a fundamental difference in signs with the
conventional Casimir effect when the corresponding sub-
traction procedure typically leads to the negative, rather
than positive, sign for the vacuum energy. This difference is
due to the fact that the conventional Casimir vacuum
energy is generated by the fluctuations of the physical
propagating photons. It is drastically different from the
vacuum energy computed in the present work when it is
generated by the tunneling transitions between different
topological sectors. As we explained in Sec. II A the
corresponding vacuum energy cannot be expressed in
terms of any propagating degrees of freedom as it has
pure nondispersive nature. This is precisely the origin for
the positive sign of the vacuum energy: ΔEvac > 0.

IV. CONCLUSION

The formal result of the present work can be expressed
by Eqs. (44), (45), and we shall not repeat the comments
listed in the last Sec III D explaining some important
consequences of this result. If the same effect persists in
a FLRW universe (2), which we expect to be the case, it
may have a number of profound consequences for under-
standing of the past, present, and future evolution of our
Universe.
First of all, the nontrivial holonomy (5) implies the

presence of S1 as a part of our space-time of our Universe.
It is an additional invariant characteristic of the manifold
which cannot be reduced to the local curvature. In
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construction discussed in the present work the correspond-
ing S1 is identified with Euclidean time direction. This is
because the original intention in early works on the subject
(where the corresponding topological vacuum configura-
tions were invented) was to analyze the temperature
dependence of the QCD phase transition. In principle,
similar S1 could also be a part of spatial coordinates. Such
an assumption is definitely consistent with all known
observations if the size of the S1 is sufficiently large
≳H−1 at present epoch, see [47] for the estimates in the
given context. Furthermore, the linear correction enters
formula (45) in the form of its absolute value jκj as it
essentially describes the linear (positively defined) size of
the corresponding manifold. In the context of the FLRW
universe, a similar statement implies that the linear correc-
tion inH enters formula (2) in the form of its absolute value
jHj, see footnote 3 for clarification. Therefore, it cannot
lead to any T-violating effects, which one could suspect as
H ¼ _a=a indeed is a T-odd parameter. Still, it generates the
de Sitter behavior (1) as a result of this linear scaling.
Another profound consequence of this framework is as

follows. The conventional scenarios of the eternal self-
producing inflationary universes are always formulated in
terms of a physical scalar dynamical inflaton field ΦðxÞ.
This problem with self-reproduction of the universe does
not even emerge in our framework as there are not any
fundamental scalar dynamical fields in the system respon-
sible for inflation. Instead, the de Sitter behavior (1) in our
framework is a pure quantum phenomenon, which is a
consequence of the dynamics of the long ranged topologi-
cal configurations with nontrivial holonomy, rather than a
result of a physical fluctuating dynamical field. A “strange
nature” of this type of energy manifests itself in terms of the
“wrong” sign in the correlation function which cannot be
formulated in terms of any local propagating degrees of
freedom as explained in Sec. II A. The corresponding
topological configurations which are responsible for this
behavior may generate, as argued in this work, the linear in
H correction in the Friedman equation (3) which eventually
leads to the de Sitter behavior. Other problems formulated
in terms of scalar inflaton field ΦðxÞ (such as large initial
value Φin ≫ MPL for the inflaton) do not emerge in this
framework, see [4,5] for the details.
Finally, we should mention that the energy described by

a formula similar to Eq. (2) [which eventually leads to the
de Sitter behavior (1)] has been previously postulated
[48,49] as the driving force for the dark energy. The model
has been (successfully) confronted with observations, see
recent review papers [50,51] and many original references
therein, where it has been claimed that this proposal is
consistent with all presently available data, see also
Ref. [52] for completeness. Our comment here is that
history of evolution of the universe may repeat itself by
realizing the de Sitter behavior twice in its history. The
QCD-dynamics was responsible for the inflation in the

early universe, while the QCD dynamics is responsible for
the dark energy in the present epoch.
We conclude this work (mainly devoted to the analysis

of the topological configurations with typical energy
scale ΛQCD) with the following comment related to a
fundamentally different problem with a drastically different
energy scale. Namely, as we discussed at length in this
paper, the heart of the proposal is a fundamentally new type
of energy (2), (24), (45) which cannot be expressed in terms
of any propagating degrees of freedom. Rather, this novel
contribution to the energy has nondispersive nature. The
effect is formulated in terms of the tunneling processes
between topologically different but physically identical
states. This novel type of energy, in fact, has been well
studied in the QCD lattice simulations in the flat back-
ground, see [4] for references on the original lattice results.
Our comment relevant for the present study is that this
fundamentally new type of energy can be, in principle,
studied in a tabletop experiment by measuring some
specific corrections to the Casimir vacuum energy in the
Maxwell theory as suggested in [53–56]. This fundamen-
tally new contribution to the Casimir pressure emerges as a
result of tunneling processes, rather than due to the
conventional fluctuations of the propagating photons with
two physical transverse polarizations. This effect does not
occur for the scalar field theory, in contrast with conven-
tional Casimir effect which is operational for both: scalar as
well as for Maxwell fields. The extra energy computed in
[53–56] is the direct analog of the nondispersive contri-
bution to the energy (2) which is the key player of the
present work. In fact, an extra contribution to the Casimir
pressure emerges in this system as a result of nontrivial
holonomy similar to (5) for the Maxwell field. The non-
trivial holonomy is enforced by the nontrivial boundary
conditions imposed in Refs. [53–56].
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APPENDIX: FEW COMMENTS ON
FRACTIONALLY CHARGED CONSTITUENTS

AND THE TERMINOLOGY

The constituents of the KvBLL configurations were
originally [26,27] called the BPS (Bogomolnyi-
Prasad-Sommerfeld) monopoles (14) and KK (Kaluza-
Klein)-monopoles (17) correspondingly. These configurations
were lateroncoinedasM-dyonsandL-dyons toemphasize that
they carry the electric charges along with the magnetic charges
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[28,29]. This (incorrect) interpretation is based on the observa-
tion that these configurations carry the topological charges (and
naively the electric charges) along with magnetic charges. One
should remember, however, that the monopoles in this con-
struction are pseudoparticles living in 4dEuclidean space-time,
rather than static 3d objects. The finite action and finite
topological charge for these objects results from wrapping
of the monopole’s path along the Euclidean time direction S1

with nontrivial holonomy (11). These objects do not carry a
conventional static electric charge; nevertheless, they do carry
the topological charges defined in 4d Euclidean space-time.
Furthermore, the second types of the monopoles, the L
monopoles are time dependent configurations, and do not
exist as static objects in 3dEuclidean space.Therefore,wekeep
notations for lettersM and L suggested in [28,29], but we use
term “monopoles” rather than “dyons” in the present work.
When the holonomy assumes its “confining” value ν ¼ 1=2
the topological charges of the constituents assumeQ ¼ �1=2.
In the more generic case of the SUðNÞ gauge group the

topological charge Q ¼ �1=N for “confining” holonomy
such that a single KvBLL configuration can be thought of
as a superposition of N different types of monopoles which
carry N different types of magnetic charges and fractional
1=N topological charge such that the superposition carries
an integer topological charge.
We believe a short historical detour on fractionalization

of the topological charge in QFT is warranted here. In the
given context fractional topological objects appear in 2
dimensional CPN−1 model [57] which were coined as
instanton quarks (other names: instanton partons, fractional
instantons). These quantum objects carry fractional topo-
logical charge Q ¼ �1=N, and they are very similar to the
L and M monopoles discussed in this work. These objects
do not appear individually in the path integral; instead, they
appear as configurations consisting of N different objects
with fractional charge 1=N such that the total topological
charge of each configuration is always an integer. In
this case 4Nk zero modes for k instanton solution is
interpreted as 4 translation zero modes accompanied by
every single instanton quark. The same counting holds, in
fact, for any gauge group G, not limited to the SUðNÞ case.
While the instanton quarks emerge in the path integral

coherently, these objects are highly delocalized: they may
emerge on opposite sides of the space-time or be close to
each other with alike probabilities. Similar objects have
been discussed in a number of papers in different contexts,
including the topic of the present work, [21,22,26–
29,58–63].
In particular, it has been argued that the well-established

θ=N dependence in strongly coupled QCD [expressed by
formula (26) for specific case N ¼ 2] unambiguously
implies that the relevant configurations in QCD must carry
fractional topological charges in the confinement phase, see
review preprint [59] and the references on earlier original
results therein. The weakly coupled deformed QCD model
[21–23] where computations are under complete theoretical
control is a precise dynamical realization of this idea when
the fractionally charged monopoles are responsible for
confinement, saturate the topological susceptibility with a
“wrong sign,” generate the “secrete long range forces,”
suspected long ago [20], and provide other crucial elements
which are known to exist in a strongly coupled regime as
reviewed in Sec. II A.
Furthermore, it has been argued in [60,63] that the

confinement deconfinement phase transition within this
framework can be interpreted as a Berezinskii-Kosterlitz-
Thouless (BKT)-like phase transition: at T > Tc the
constituents prefer to organize a single caloron of a finite
size. We coin this phase as a “molecular phase” which
corresponds to a deconfined phase in conventional termi-
nology. When one crosses the phase transition line at T <
Tc the constituents (which are called L;M monopoles in
the present work) prefer to stay far away from each other. It
corresponds to the dissociation of each caloron into N
constituents, and we call this state the “N component
plasma phase” in 4d Euclidean space. This regime corre-
sponds to the confined phase in conventional terminology
when all constituents are delocalized in 4d Euclidean space.
The gap in this confined phase is determined by the Debye
correlation length of this 4d plasma. The arguments [60,63]
are based on large N counting, but we believe that this
picture holds for any finite N. Recent numerical studies
[32–34] are capable, in principle, to bring these large N
qualitative arguments into a solid theoretical framework.
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