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Chang Feng,l’* Asantha Cooray,1 Joseph Smidt,” Jon O’Bryan,1 Brian Keating,3 and Donough Regan4
1Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
2XTD-IDA, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
3Department of Physics, University of California, San Diego, California 92093-0424, USA
4Asl‘mnomy Centre, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom
(Received 2 February 2015; published 6 August 2015)

Non-Gaussianity of the primordial density perturbations provides an important measure to constrain
models of inflation. At cubic order the non-Gaussianity is captured by two parameters 7y and gy that
determine the amplitude of the density perturbation trispectrum. Here we report measurements of the
kurtosis power spectra of the cosmic microwave background temperature as mapped by Planck by making
use of correlations between square temperature-square temperature and cubic temperature-temperature
anisotropies. In combination with noise simulations, we find the best joint estimates to be 7y, =
0.4+£09 x 10* and gy, = —1.2 £ 2.8 x 10°. If 7y, = 0, we find gy = —1.4 £ 1.8 x 10°.
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I. INTRODUCTION

Existing cosmological data from cosmic microwave
background (CMB) and large-scale structure are fully
consistent with a simple cosmological model involving
six basic parameters describing the energy density compo-
nents of the Universe, age, and the amplitude and spectral
index of initial perturbations. The perturbations depart from
a scale-free power spectrum and are Gaussian. These facts
support inflation as the leading paradigm related to the
origin of density perturbations [1-3]. Under inflation a
nearly exponential expansion stretched space in the first
moments of the early Universe and promoted microscopic
quantum fluctuations to perturbations on cosmological
scales today [4,5]. Moving beyond simple inflationary
models with a single scalar field, models of inflation now
involve multiple fields and exotic objects such as branes that
have nontrivial interactions. Such inflationary models pro-
duce a departure from Gaussianity in a model-dependent
manner [6-9]. The amplitude of non-Gaussianity therefore
is an important cosmological parameter that can distinguish
between the plethora of inflationary models [10].

The value of the first-order non-Gaussian parameter,
Jn1» has been obtained with increasing success using the
bispectrum—the Fourier analog of the three-point corre-
lation function of the CMB temperature. Such studies have
found fy; to be consistent with zero [11-14], with the
strongest constraint coming from Planck given by fy, =
2.7+£5.8 [15]. The single-field, slow-roll inflationary
model expectation is that fy; <1 and a constraint at
such a low-amplitude level may be feasible in the future
with large-scale structure data and with 21-cm intensity
fluctuations. Alternatively, with the trispectrum or four-point
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correlation function of CMB anisotropies [16], we can
measure the second- and third-order non-Gaussian param-
eters 7yy, and gnp. While these higher-order parameters
generally lead to a trispectrum that has a lower signal-to-
noise ratio than the bispectrum, there may be models in
which the situation is reversed with the trispectrum domi-
nating over the bispectrum contribution. An example of such
a model is an inhomogeneous end to thermal inflation
discussed in Ref. [17].

A previous analysis using Wilkinson Microwave
Anisotropy Probe (WMAP) data out to multipole £ <
600 using the kurtosis power spectra involving two-to-two
and three-to-one temperature correlations [18,19], found
—7.4 < gy /10° < 8.2 and —0.6 < 7y /10* < 3.3 at the
95% C.L. Other measures of the WMAP trispectrum have
been presented in Refs. [20-23]. While the Planck data
have been used to constrain 7y, < 2800 at the 95% C.L.
such a constraint ignored the signal associated with gy,
[15]. Using all of the Planck data, the expectation is that
gn, can be constrained with a 68% C.L. uncertainty of
6.7 x 10* [21] with 7y = 0, while 7y, can be constrained
down to 560 if gn;, = 0 [24]. Here we present an analysis of
the Planck temperature anisotropy maps by making use of
kurtosis power spectra to constrain 7y, and gy, jointly.

II. THEORY

We begin the discussion with the temperature trispec-
trum defined as [25]
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where we have introduced the Wigner 3-j symbol. The
angular trispectrum, Tll 2(L), can be further expressed in
terms of sums of the products of Wigner 3-j or 6-j symbols
times the so-called reduced trispectrum, ’ng (L). The full

trispectrum contains permutations of the reduced trispec-
trum which are associated with Wigner 6-j symbols [16]

I Il
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To derive the angular trispectrum given by 7). il (L) we

assume that the curvature perturbations ¢ of the Universe
generated by inflation follow as

P(x) (PE(x))) + gn PG (x)

4)

= g (x) + fau(PE(x) —

where the curvature perturbation ¢ and the initial gravita-
tional potential are related by ® = (3/5)¢ and 7y =
(6/x/5)

We refer the reader to Ref. [24] for intermediate steps in
our derivation. Using the above form the full trispectrum
can be reduced to two forms involving the two amplitudes
o (associated with the ®Z(x) — (®%(x)) term in the
above) and gy coming from @2 (x).

Defining Tl 12( (L) = hlllthl3l4Lt2§j,(i)<L>, i=1.2
[26], where

CL+1D)2L+1)2L+1) (L L L
Pt = 4n 00 0)

(5)
we find that the reduced trispectrum is
Il
71314(L) =

o T (L) + o TP EP(L)] (6)

The two terms are
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tl';lj (L)—TNL<3> /rldrlrzdrzFL(rl,rz)
x ay, (r)p, (r1)ay, (r2) B, (1r2), (7)

and

BER(L) = gy / Rdr,, (1)1, (P, (NP (1)
+a, (B (7). (8)

Here a;(r) = (2/x) [K*dkATT(k)j;(kr) and  p(r) =
(2/x) [ kK*dkP(k)ATT(k)j,(kr). The primordial curvature
power spectrum is k3P(k)/(27%) = (3/5)*A,(k/ko)™~!
with no “running” [27]. Here k, is the pivot scale set at
0.05 Mpc~!. We use the public code [28] to compute a;(r),
p,(r) and the temperature transfer function AT (k).

In the 7y, part, we define the function F; as

Fulion) = [ RakP®j(kr)ji k). (9)

Following the efficient algorithm in Ref. [29], we define
E=ry/r, x=kr, and compress r; and r, into one
dimension such that

RO =272 [ e @ided. (10

Here 4 = (3/5)2(27%/k3)Asky ™. The integration is per-
formed in the range x € [0, 10°]. We validate that this fast
algorithm gives the same results as Eq. (9).

The first part of the trispectrum associated with 7y
approximates to (5/3)*C;"/C;, C,,C,,C,, at L < 100. This
is due to the fact that the integrand peaks at r = r, and
C; = [r*dray(r)p,(r) [30]. Here r, is the comoving
distance at last scattering surface and C;' = Fy(r,,r.).
For the comparison with the data, however, we perform an
exact calculation defined in Egs. (7) and (8). The adaptive r
egrid is used for the integration.

The estimators of the connected trispectrum are
constructed in Refs. [19,31] and they are given by

11 gl L
RCTI T - L TRLTE)
L (TNL, ONL 2L+1, 44 2L+1 C,C,CLCp, ~
(1)
and
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K(s,l)(r gNL) = G K
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(12)
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In Egs. (11) and (12), the reduced trispectrum 7 22 (L) is

evaluated at 7y, = 1 and gy = 1. The estimators K(L2’2>

and K(L3'1) are parametrized by these two parameters. The

T% (L) denotes the full trispectrum from data or
simulation.

In our analysis, [, <1y,0, I3, L <l Imin = 2 and
Inax = 1000. The trispectrum computing time is propor-
tional to O(I4,) at a single L. In order to make these
calculations more efficient, we use Monte Carlo integration

22) . . Lo I i I
for K7, i.e., replacing 3/ 5 B S

1=!min 3=lmin

by V/Ngmplesy - The vector I(= 1y, 15,13, 1,) is uniformly
sampled from [/in, Imax]* and V = (L0 — Lin)*. For K(L3‘1),
we restrict the diagonal elements within 2 < L <20 and
validate that a bigger upper bound negligibly modifies the
trispectrum. The Wigner 3-j symbols’ intrinsic selection
rule also helps reduce the computation time. With all these
efficient algorithms, we can achieve an hour-level compu-
tation time, which is about 3 orders of magnitude faster
than the brute-force calculation. We show the theoretical
predictions of these estimators for the case in Fig. 1 for a
fixed set of 7y, and gy, values for which non-Gaussian
simulated maps are available.

From simulated and real data, spherical harmonic coef-

ficients agf,im and agiam) are computed by inverse spherical
harmonic transformation. Then the two weighted

maps are generated from the definitions A(r,n) =
Zlmal(r)gllelm(n)’ B(I", l'l) = Zlmﬁl(r)almylm(n) and
an, = ap,/C; where the angular power spectrum C; is

inclusive of noise. agiam) is calculated by anafast of Healpix

which removes the monopole and dipole. To correct the
(sim)

m and

masking effect, we scale the masked modes a
(data

a, ) by 1/4/f«y to match the underlying temperature
power spectrum. These masked modes are also beam- and
pixel-window-deconvolved. In the following text, we
neglect “n” for brevity.

10°-7F — K,(JQ'Q) connected (sim) — Kf"z) connected (theory)]

— K% connected (theory)

— K™ connected (sim)
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FIG. 1 (color online). The estimator validation using WMAP
simulations with 7y = 3600.
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From A and B maps, we construct C(r,r,) =
A(r1)B(ry). Then we make C),, = F;(ry,ry)Cy,(r1,r2)
and D(rl,rz) = C'(rl,rz)A(rz). Here Clm(’"l’ r2) =
JdnY;, (n)C(ry,rp,n). We can calculate four types of
power spectra:

J?B’AB(’W J1) = zllﬁzFl(h,rz)[AB]zm(’"l)[AB]Zn(rZ)’
(14)

1

LFBBU>=5;;T§:MBmmxﬁBa0% (15)

and

L) = 3y S IABLL (BB (16

When all the power spectra are integrated along the line
of sight, they become

JPBAB :/r%drlr%drszBA’B(rl,”z), (17)
O
JNBAB :/r%drlr%der?B'AB(rlvrz)’ (19)
and
LyBBE = / r2drLyP P (r). (20)

The trispectrum estimators

3\ 2
K(Lz,z) _ <§> J?B.AB +2L?B,BB, (21)
and
K(3‘1)— 5 2JABA,B ] ABB.B
L =\3 L +2L; (22)

are then constructed from the correlations associated with A
and B maps that are either from data or simulations.
These estimators are applied to 143 and 217 GHz
temperature data sets, as well as the cross correlation
143 x 217 GHz. For the cross correlation, the estimators are
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5 2
K22 (143 % 217) = <§) JAIBERIT AGHBEL)

i 2LL(143) (217),13(143)13(217)’ (23)

and

5 2
K3 (143 x 217) = (g) JAIBBRITA43).B217)

A(143)B(217)B(143).B(217)

+2L) (24)

III. SIMULATION VALIDATION

To validate our estimates of the connected trispectra, we
make non-Gaussian CMB signal simulations. The non-
Gaussian maps for WMAP are publicly available [32] so
we simulate maps with ngy, = 512 and [, = 600, and all
the WMAP experimental settings, consistent with 5-year
observations, are adopted. For the signal part, a;, =
a$ + fnLalS and we choose fyp = 50, i.e., 7yp = 3600
given the expected relation between fy; and 7y, indepen-
dent of the exact value of gy;. Note that the non-Gaussian
simulations we use assume gy;, = 0 and in a joint model fit to
data we test this expectation. The WMAP 5-year noises are
then added in the signal simulations The WMAP simulation
is T(n> = Zlmblplalmylm + oo/ \/ white Here
oy is the noise per observation and N(n ) is the number of
observations per pixel. Both ¢, and N(n) are provided by
WMAP. The estimator of the connected trispectrum is
K, = 1/4/(K, — K$®a") In Fig. 1 we show that the
average connected parts from 100 full-sky realizations are
consistent with the theoretical calculations.

IV. DATA ANALYSIS AND RESULTS

We use 2013 Planck 143 and 217 GHz temperature maps
for the present analysis. We use the foreground mask to
remove the point sources and Galactic emissions for both
frequencies. The 217 GHz map cleaned after the 70%
foreground mask still contains visible emission around the
Galactic plane, so we use an extended mask to further cut
the 217 GHz data around it. The resulting sky fractions for
both maps become 73% and 58%. At 143 GHz, the map is
convolved with a 7" Gaussian beam and has 45 uK arcmin
noise. At 217 GHz, it is 5’ and 60 uK arcmin. Following
Ref. [33], point sources (PS) and cosmic infrared
background (CIB) are also included in simulated
data. The power spectra for these two sources are CPS =
27/3000% and CEB =2z/(I(1+ 1))(1/3000)°3, respec-
tively. The foreground power at these frequencies are

CB = ABS . CPS +A§IXBBCCIB with the parameters
Ali43x143 64uK?, A ]43><217 =43uK>, A2Pl7><217 57 pK2,

AT =4uK>, AT 517 = 14 uK?, AS(D 515 = 54 uK>.
In addition, a 10 uK arcmin white noise is added into the
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simulations. The data structure is expressed as 7(n) =
> m@imbipiY,(m) +n(n) where n is a direction on
the sky, b; is the beam transfer function, p; is the pixel
transfer function at nge, = 2048, and n(n) is the
noise simulation. We use 100 signal and noise realizations
from the FFP6 simulation set of the Planck Collaboration
[34]. We wuse the best-fit cosmological parameters
from “Planck + WP + highL” [27]. Specifically, Q,h> =
0.022069, Q.h* =0.12025, 7 =0.0927, n, = 0.9582,
A, =221071 x 107 at pivot scale k, = 0.05 Mpc™',
and Hy=67.15kms~'Mpc~! [27].

We calculate both trispectra Kfl) and K; B0 from
Gaussian simulations and data for Planck. The Gaussian
term in the trispectra K44 is averaged from 100 Planck
simulations for the frequency combinations 143 x 143,
143 x 217 and 217 x 217 GHz, and is removed from the
raw signal, which is defined as the combination of the
connected part and the disconnected part. All the trispectra
are shown in Fig. 2. It is seen that the disconnected
components dominate the raw signal and our simulations
can precisely recover these significant biases. Also, all the
trispectra show consistent shapes. From 100 simulations,
the full covariance matrix M is obtained for each frequency

107
—_ Kf‘Q) simulation — K(LQ’Q) raw data
100fF — Kf”l) simulation — K(LB‘U raw data |
~
X
o102 | -
=
s
1074} 1
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L
107
—_ Kf‘Q) simulation — Kf‘m raw data
100F — K(L3‘1) simulation — Kf‘l) raw data |
<
=
: 1072 H
=
o
10 1
~
1076 : : : :
200 400 600 800 1000

L

FIG. 2 (color online). The raw trispectra calculated from Planck
data and simulations for 143 x 143 (top) and 143 x 217 GHz
(bottom). In both plots Gaussian bias dominates the raw signal.
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FIG. 3 (color online). The 68%, 95% and 99% confidence
levels for different combinations are indicated by the trans-
parency of the contours. The frequency combinations 143 x 143,
143 x 217 and 143 x 143 4 143 x 217 GHz are shown in blue,
red and black colors.

combination and the vector V, = (Vf’z) Vf'l)). Here b
is the index of the trispectrum band. We choose five bands
for each spectrum: L = [2,152], [152,302], [302,452],
[452,602], [602,800]. Here we use AL =150 and
L., = 800. We want to both avoid systematic issues with
the high L trispectra and get enough signal to noise, so we
choose this conservative cut here.

We choose a binning function to maximize the sensitivity

ZWbLSL =

Leb

ZLebSLSL/NL
ZLebS /N2

where S; = (2L + 1)K is the fiducial model with 7y =
onu=1, N, = (2L 4+ 1)KG=ssin and §, = (2L + 1)K,
which is the connected trispectrum from the simulation
or data.

The likelihood function of the data is given as

(25)

X (oxes on) = Z Z ;;/’M(VE;) - VE:)),
v bb
(26)

TABLE 1. The constraints of 7y, gn, With AL = 150 and
L, = 800 from different frequency combinations. The 68% C.L.
is given by Ay? = 2.3 except for the last row.

Frequency combination TnL [x10%] gnL[x10°]
143 x 143 -0.7+1.1 —-1.8+£3.8
143 x 217 21+1.5 —-1.2+4.0
143 x 143 + 143 x 217 044+0.9 -12+28
143 x 143 4143 x 217 0 -14+138

PHYSICAL REVIEW D 92, 043509 (2015)

where the two free parameters are 7y, gnr, P 1S the index of
the band, and v is the index of the frequency combination.

We draw O(10°) samples for two parameters from
Monte Carlo Markov chains with flat priors —10° < 7 <
10° and —107 < gy < 107. The 217 GHz map is still
significantly contaminated by CIB although we use a very
conservative cut which removes 40% of the sky, so we do
not include 217 x 217 GHz in our parameter estimation.
The constraints for 7y, and gy are listed in Table I. In the
last row of Table I, we show the one-parameter constraint
on gnp, With 7, = 0. For all the combinations, we find that
71, and gyp, are consistent with zero (Fig. 3). We check the
consistency between different frequency combinations in
Fig. 4. From Fig. 4, it is seen that different bin sizes do not

gNL[X 106]

-1.0

7~

-1.0

-4 2 0 2 4
TNL[X 104]

FIG. 4 (color online). The 68%, 95% and 99% confidence
levels for the combination 143 x 143 + 143 x 217 with different
bin sizes (top) and L, (bottom) are indicated by the transparency
of the contours. In the top panel, for AL = 150, the contour is
shown in black and green for AL = 200. For both cases,
L., = 800. In the bottom panel, L., = 800 is shown in black,
L. = 850 in red, L, = 900 in blue. In these cases AL = 150.
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TABLE II. The constraints of 7y, gn;, With different AL and
L, for the combination 143 x 143 + 143 x 217. The 68% C.L.
is given by Ay> =2.3.

143 x 143 + 143 x 217 o [x107] gni[x10°]
[AL = 150, Ly = 800 04409 —12+28
[AL = 150, Ly = 850] 03409 03414
[AL = 150, Loy = 900] 04409 1.8+ 1.4
[AL = 200, Lo, = 800] 0.6+0.9 —0.8+£2.9

change the results. We also check the impact of the effective
L range on the parameters. From Fig. 4, we find that adding
more L range can result in a higher value of gy and the
possible interpretation is that the small-scale non-Gaussian
structures of unresolved point sources and CIB beyond the
foreground mask could result in a non-negligible trispec-
trum at high L. All the results shown in Fig. 4 are
summarized in Table II.

PHYSICAL REVIEW D 92, 043509 (2015)
V. SUMMARY

We presented the first joint constraints on 7y, g
using Planck kurtosis power spectra that trace square
temperature-square temperature and cubic temperature-
temperature power spectra. The Gaussian biases in these
statistics were corrected for with simulations and we made
use of non-Gaussian simulations to test our pipeline. We
found the best joint estimate of the two parameters to be
one = (0.4 £ 0.9) x 10* and gy, = (=1.2 £2.8) x 10°. If
NL — 0, gNL — (—14 + 18) X 105
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