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The relationship between the cosmic microwave background radiation temperature and the redshift, i.e.,
the T − z relation, is examined in a phenomenological dissipative model. The model contains two constant
terms, as if a nonzero cosmological constant Λ and a dissipative process are operative in a homogeneous,
isotropic, and spatially flat universe. The T − z relation is derived from a general radiative temperature law,
as appropriate for describing nonequilibrium states in a creation of cold dark matter model. Using this
relation, the radiation temperature in the late Universe is calculated as a function of a dissipation rate
ranging from ~μ ¼ 0, corresponding to a nondissipative lambda cold dark matter model, to ~μ ¼ 1,
corresponding to a fully dissipative creation of cold dark matter model. The T − z relation for ~μ ¼ 0 is
linear for standard cosmology and is consistent with observations. However, with increasing dissipation
rate ~μ, the radiation temperature gradually deviates from a linear law because the effective equation-of-state
parameter varies with time. When the background evolution of the Universe agrees with a fine-tuned pure
lambda cold dark matter model, the T − z relation for low ~μ matches observations, whereas the T − z
relation for high ~μ does not. Previous work also found that a weakly dissipative model accords with
measurements of a growth rate for clustering related to structure formations. These results imply that low
dissipation is likely for the Universe. The weakly dissipative model should be further constrained by recent
observations.
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I. INTRODUCTION

The blackbody radiation temperature of the cosmic
microwave background is T0 ¼ 2.725� 0.002 K at the
present time [1]. This temperature is regarded as the
evidence for a hot big bang. That hypothesis is supported
by measurements of the radiation temperature–redshift
T − z relation [2–13]. The observations are consistent with
a linear law, T ¼ T0ð1þ zÞ, as can be derived from
standard cosmology, such as lambda cold dark matter
(ΛCDM) models. However, the ΛCDM model has several
theoretical difficulties [14–17], although it can elegantly
explain the accelerated expansion of the late Universe
[18–23]. To explain the acceleration, various models have
been suggested, such as ΛðtÞCDM which assumes a time-
varying cosmological term [24–28], bulk viscous models
which assume a bulk viscosity for the cosmological fluid
[29–32], and the creation of cold dark matter (CCDM)
model which assumes the creation of cold dark matter
[33–46].
The bulk viscous and CCDM models presume the

existence of irreversible entropy in a homogeneous
isotropic universe, unlike the ΛCDM and ΛðtÞCDM
models. For example, in the CCDM model, irreversible

entropy is generated from gravitationally induced particle
creation in nonequilibrium thermodynamic states [47,48].
A possible equivalence of the bulk viscosity and matter
creation dissipative mechanisms has been discussed in
Ref. [35]. In addition, the connections between warm
inflation [49], ΛðtÞCDM models, and CCDM models have
been debated in Ref. [50]. To examine the dissipative
processes, a general radiative temperature law for adiabatic
particle creation has been proposed by Lima et al. [33–36].
That law has been examined from various viewpoints
[36–38]. In particular, a simple T − z relation of the form
T ¼ T0ð1þ zÞ1−β is frequently compared with observa-
tions, where β is a constant parameter (cf. Refs. [11,33]).
The simple T − z relation is obtained from a general
radiative temperature law, if the effective equation-of-state
parameter we is constant [33,36]. However, in the CCDM
model, we varies during the evolution of the Universe.
Thus, a time-varying we needs to be considered when the
radiation temperature is discussed in the CCDM model.
However, the radiation temperature in the CCDM model
has not yet been quantitatively examined from this view-
point. It is important to do so in order to acquire a deeper
understanding of the CCDM model.
In the CCDM model, a negative sound speed [43] and

the existence of clustered matter [46] are necessary to
properly describe the growth rate for clustering related to*komatsu@se.kanazawa‑u.ac.jp
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structure formations. Alternatively, a phenomenological
dissipative model [51] has been proposed, in which the
entropic force [52–58] is modified. The model assumes
constant terms that are equivalent to a nonzero cosmologi-
cal constant Λ and a dissipative process. In previous work
[51], the dissipation rate was varied from ~μ ¼ 0, corre-
sponding to a nondissipative ΛCDM model, to ~μ ¼ 1,
corresponding to a fully dissipative CCDM model. Low
dissipation was found to correctly describe observations of
structure formation. The dissipation rate ~μ is expected to
affect the T − z relation, not only because the effective
equation-of-state parameter we depends on ~μ but also
because we varies during the evolution of the Universe.
This model makes it possible to examine a dissipative

universe systematically, ranging from a nondissipative
ΛCDM model to a fully dissipative CCDM model. To
clarify the properties of the radiation temperature in a
dissipative universe, the T − z relation can be examined.
A general radiative temperature law is applied to the
dissipative model, to formulate the T − z relation. Based
on this formulation, the radiation temperature in the late
Universe is calculated numerically as a function of the rate
of dissipation. The present study provides new insights and
a unique approach for examining a dissipative universe.
The remainder of the article is organized as follows. In

Sec. II, the general radiative temperature law for adiabatic
particle creation is briefly reviewed. In Sec. III, a phe-
nomenological modified dissipative model is proposed. In
Sec. IV, the temperature law is applied to the modified
model, and the T − z relation is formulated. In Sec. V, the
radiation temperature in a dissipative universe is examined.
Finally, in Sec. VI, the conclusions are presented. (The
modified dissipative model is different from dissipative
particle dark matter models examined in Ref. [59].)

II. GENERAL RADIATIVE TEMPERATURE LAW
FOR ADIABATIC PARTICLE CREATION

In this section, the general radiative temperature law for
adiabatic particle creation is reviewed, following the work
of Lima et al. [33–36]. A homogeneous, isotropic, and
spatially flat universe is initially considered. The line
element given by the Friedmann–Robertson–Walker
(FRW) metric [35,36] is

ds2 ¼ c2dt2 − a2ðtÞðdr2 þ r2dθ2 þ r2sin2θdϕ2Þ; ð1Þ

where c is the speed of light and aðtÞ is the scale factor at
time t. The Hubble parameter H is

H ≡ _aðtÞ
aðtÞ : ð2Þ

In what follows, nonequilibrium thermodynamic states
of the cosmological fluid in a FRW background are
considered. To this end, adiabatic particle creation is

assumed [34–36]. The balance equations for the number
of particles, entropy, and energy [36] can then be written as

_nþ 3Hn ¼ nΓ; ð3Þ

_sþ 3Hs ¼ sΓ; ð4Þ

and

_εþ 3Hðεþ pþ pcÞ ¼ 0; ð5Þ

where n, s, ε, and p are the particle number density, entropy
density, energy density, and pressure, respectively. Here, Γ
and pc are the particle production rate and the dynamic
creation pressure, respectively. When Γ ¼ 0 and pc ¼ 0,
the three balance equations reduce to the conservation
law for equilibrium states in a standard cosmology.
Equation (3) can be rewritten as _N=N ¼ Γ, using the total
number N ∝ na3 of particles in the comoving volume [36].
Keep in mind that the entropy per particle σ ¼ S=N is
assumed to be constant [34,36], i.e., _σ ¼ 0, where S ∝ sa3

is the entropy in the comoving volume. The constant value
of σ indicates _S=S ¼ _N=N ¼ Γ, which has been used for
calculating the right-hand side of Eq. (4). (Units are chosen
so that c ¼ kB ¼ 1, unless otherwise stated. Here, kB is the
Boltzmann constant.)
The local Gibbs relation should be valid even for the

nonequilibrium process considered here [36]. Accordingly,
the thermodynamic quantities are related to the temperature
T by

nkBTd

�
s
n

�
≡ nkBTdσ ¼ dε −

εþ p
n

dn: ð6Þ

Substituting _σ ¼ 0 into Eq. (6), using both this result and
Eq. (3), and rearranging Eq. (5), one obtains the dynamic
creation pressure

pc ¼ −ðεþ pÞ Γ
3H

: ð7Þ

The thermal evolution of matter creation can then be
written as

_T
T
¼

�∂p
∂ε

�
n

_n
n
¼

�∂p
∂ε

�
n
ðΓ − 3HÞ: ð8Þ

This equation has been derived by Lima et al. [33–36].
(More general formulations have been examined in
Ref. [33]. Harko has recently developed an equivalent
formulation for a modified gravity theory with geometry-
matter coupling [37].)
For the nonequilibrium thermodynamic states consid-

ered here, a radiation temperature relation can be obtained
from Eq. (8). Substituting p ¼ ε=3 into Eq. (8), one finds

NOBUYOSHI KOMATSU AND SHIGEO KIMURA PHYSICAL REVIEW D 92, 043507 (2015)

043507-2



_T
T
¼ −

_a
a
þ Γ

3
ðfor radiationÞ: ð9Þ

That can be rearranged as

1

aT
dðaTÞ
dt

¼ Γ
3

or
dðaTÞ
aT

¼ Γ
3
dt: ð10Þ

Integrating Eq. (10) from arbitrary time t to the present time
t0 gives

Z
a0T0

aT

dða0T 0Þ
a0T 0 ¼

Z
t0

t

Γðt0Þ
3

dt0; ð11Þ

and therefore

ln
�
a0T0

aT

�
¼ 1

3

Z
t0

t
Γðt0Þdt0; ð12Þ

where a0 and T0 are the present values of the scale
factor and of the radiation temperature, respectively. This
equation can be rearranged as

T ¼ T0

�
a0
a

�
exp

�
−
1

3

Z
t0

t
Γðt0Þdt0

�
; ð13Þ

so that

T ¼ T0

�
a0
a

�
exp

�
−
1

3

Z
1

~a
Γð ~a0Þ dt

0

d ~a0
d ~a0

�
; ð14Þ

or equivalently

T ¼ T0ð1þ zÞ exp
�
1

3

Z
z

0

Γðz0Þ dt
0

dz0
dz0

�
; ð15Þ

where the normalized scale factor ~a and the redshift z are

~a ¼ a
a0

and z ¼ a0
a
− 1: ð16Þ

Equations (13), (14), and (15) are the general radiative
temperature law for adiabatic particle creation [36]. In this
paper, that law is used to calculate the radiation temperature
T in a dissipative universe. When Γ ¼ 0, Eq. (15) reduces
to the linear law T ¼ T0ð1þ zÞ. However, Γ is not zero for
the nonequilibrium states considered here. Therefore, it is
necessary to compute

R
1
~a Γð ~a0Þðdt0=d ~a0Þd ~a0 in Eq. (14) andR

z
0 Γðz0Þðdt0=dz0Þdz0 in Eq. (15) to calculate T. These
integrals depend on the limits, the particle production rate,
and the background evolution of the Universe. In Sec. V,
the calculated T is compared with observations in the late
Universe. Accordingly, in the present study, the limits of
integration in Eqs. (13)–(15) correspond to the late
Universe.

A simple temperature relation is obtained from Eq. (9)
for specific cases [33,36]. For example, if Γ ¼ 3βH ¼
3βð _a=aÞ, integrating Eq. (9) gives

T ¼ T0

�
a0
a

�
1−β

¼ T0ð1þ zÞ1−β; ð17Þ

where β is taken to be constant. This simple temperature
relation has been studied in detail [33]. In contrast, here a
general radiative temperature law is considered for a
dissipative universe.

III. MODIFIED DISSIPATIVE MODEL WITH
CONSTANT TERMS

Entropic cosmology has been proposed to explain the
accelerated expansion of the Universe [52]. In the entropic-
force model, the horizon of the Universe is assumed to have
an associated entropy and an approximate temperature due
to information holographically stored there [52]. Recently,
various entropic-force models have been examined in detail
[51–58]. For example, in place of the Bekenstein entropy
[60], the Tsallis–Cirto entropy [61] based on nonextensive
statistics [62] has been applied to the horizon of the
Universe [57,58]. Basilakos et al. [54,55] have shown that
simple combinations of pure Hubble terms, such as H2, _H,
and H, are insufficient for a complete description of the
cosmological data [51]. Therefore, the constant term plays
an important role. Accordingly, a phenomenological
entropic-force model that includes constant terms, an
irreversible entropy Sirr, and a kind of reversible entropy
Srev has been proposed [51]. Using this model, a dissipative
universe can be analyzed systematically, over the entire
range from a nondissipative ΛCDM model to a fully
dissipative CCDM model. In the present work, it is called
the modified dissipative model. In what follows, it is briefly
reviewed according to Ref. [51]. Keep in mind that the
entropic-force considered here is different from the idea
that gravity itself is an entropic force [63,64].
The Friedmann, acceleration, and continuity equations

for the modified dissipative model become

H2 ¼ 8πG
3

ρþ αH2
0; ð18Þ

ä
a
¼ −

4πG
3

�
ρþ 3p

c2

�
þ αH2

0 þ γirrH2
0

¼ −
4πG
3

�
ρþ 3pe

c2

�
þ αH2

0; ð19Þ

and

_ρþ 3
_a
a

�
ρþ pe

c2

�
¼ 0; ð20Þ

with two dimensionless constants
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α ≥ 0 and γirr ≥ 0: ð21Þ

HereG,H0, and ρ are the gravitational constant, the Hubble
parameter at the present time, and the mass density of the
cosmological fluid, respectively [51]. The mass density is
ρ≡ ε=c2. The effective pressure pe in Eqs. (19) and (20) is

pe ¼ pþ pc; ð22Þ

where pc is a pressure derived from irreversible entropy
related to dissipative processes. In this study, pc is taken to
be equivalent to the dynamic creation pressure in the
CCDM model. (For ΛðtÞCDM models, nonzero terms
related to reversible entropy appear on the right-hand side
of the continuity equation [51]. That model involves the
transfer of energy between two fluids [65–68].)
The modified dissipative model is used to calculate a

radiation temperature T from the general radiative temper-
ature law in Eqs. (13)–(15). In Sec. V, the T − z relation in
the late Universe is examined to compare the calculated
value of T with observations. The pressure of the cosmo-
logical fluid in the present model is negligible, p ¼ 0. A
matter-dominated Universe is assumed. Consequently, the
effective pressure pe is

pe ¼ pþ pc ¼ pc ¼ −
c2H2

0

4πG
γirr: ð23Þ

On the other hand, substituting pc ¼ pe, p ¼ 0, and
ε ¼ ρc2 into Eq. (7), one obtains

pe ¼ −ρc2
Γ
3H

: ð24Þ

Accordingly, from Eqs. (23) and (24),

Γ ¼ 3H
4πG

γirrH2
0

ρ
: ð25Þ

Assume that the αH2
0 terms in Eqs. (18) and (19) are

equivalent to the cosmological constant Λ=3 in the standard
ΛCDM model. That is, dSrev ¼ 0 for homogeneous sys-
tems in CCDM models [37,47]. In contrast, pe is related to
the irreversible entropy in dissipative processes because
pe ¼ pc. In other words, the γirrH2

0 term in Eq. (19) is
related to the irreversible entropy. Accordingly, the preced-
ing cosmological equations are equivalent to those for an
extended ΛCDM model in a dissipative universe.
Therefore, the αH2

0 term is interpreted as a modification
of the Einstein tensor. In contrast, pe is a modification of
the energy–momentum tensor of the Einstein equation [51].
The properties of this model are equivalent to those of the
modified entropic-force model examined in Ref. [51].
Combining Eqs. (18) and (19) and using Eq. (23), one

finds

_H ¼ −CmH2 þ CagH2
0; ð26Þ

where Cm and Cag are dimensionless constants [51]

Cm ¼ 1.5 and Cag ¼
3αþ 2γirr

2
: ð27Þ

Here, Cm ¼ 1.5 corresponds to a matter-dominated
universe in standard cosmology [15,16]. Solving
Eq. (26), one obtains

�
H
H0

�
2

¼ ð1 − ~ΩΛÞ ~a−3 þ ~ΩΛ ¼ ~Ωm ~a−3 þ ~ΩΛ; ð28Þ

where ~a ¼ a=a0 in Eq. (16). The two constant parameters
are defined as

~ΩΛ ≡ Cag

Cm
and ~Ωm ≡ 1 − ~ΩΛ: ð29Þ

This solution is the same as that in the standard ΛCDM
model [51,58]. Accordingly, the constant term ~ΩΛ behaves
as if it were ΩΛ in the standard ΛCDM model. Similarly,
~Ωm behaves as if it were Ωm. Here, Ωm and ΩΛ are the
density parameters for matter and for Λ, respectively. The
density parameter Ωr for radiation is neglected in the late
Universe.
To study a dissipative universe quantitatively, define a

dissipation rate [51]

~μ≡ γirr
Cag

¼
~ΩD

~ΩΛ

; ð30Þ

where ~ΩD is a constant parameter related to dissipative
processes,

~ΩD ≡ γirr
Cm

: ð31Þ

As discussed in Ref. [51], when γirr ¼ 0, one obtains ~μ ¼ 0
from Eq. (30). In this case, the present model is equivalent
to the standard nondissipative ΛCDM model. In contrast,
when α ¼ 0, one obtains ~μ ¼ 1 from Eq. (30) because
Cag ¼ 3αþ2γirr

2
¼ γirr. In that case, the present model is

equivalent to the fully dissipative CCDM model proposed
by Lima et al. [41]. That is, ~μ ¼ 0 corresponds to the
nondissipative ΛCDM model, whereas ~μ ¼ 1 corresponds
to the fully dissipative CCDM model. In this way, the
extent of the dissipative universe is determined by the
dissipation rate ~μ.
Next, consider the effective equation-of-state parameter

in the modified dissipative model. From Eq. (24), we
becomes
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we ≡ pe

ρc2
¼ −

Γ
3H

: ð32Þ

After some algebra, one finds

we ¼ −
~ΩD ~a3

1 − ~ΩΛ þ ~ΩD ~a3
¼ −

~ΩD ~a3

~Ωm þ ~ΩD ~a3
; ð33Þ

where ~a is the normalized scale factor a=a0. For details, see
Ref. [51]. Note that we is not equal to the equation-of-state
parameter w for a generic component of matter because
w is zero in a matter-dominated universe, for which p ¼ 0.
(A more general inhomogeneous equation of state has been
examined in Ref. [69].)

IV. RADIATION TEMPERATURE IN THE
MODIFIED DISSIPATIVE MODEL

The general radiative temperature law in Eq. (14) is
rearranged as

T ¼ T0

�
a0
a

�
exp

�
−
1

3

Z
1

~a
Γð ~a0Þ dt

0

d ~a0
d ~a0

�

¼ T0ð1þ zÞ exp
�
−
1

3

Z
1

~a
Γð ~a0Þ dt

0

d ~a0
d ~a0

�
: ð34Þ

First, consider the calculation of dt=d ~a in Eq. (34). (For
simplicity, the prime is omitted.) As discussed in Sec. III,
the background evolution in the modified dissipative model
is the same as that in the standard ΛCDM model.
Accordingly, solutions of the standard ΛCDM model are
used for a spatially flat universe. The solution [25,70] is

~aðtÞ ¼
�
~Ωm

~ΩΛ

�1=3

sinh2=3

0
B@3H0

ffiffiffiffiffiffiffi
~ΩΛ

q
t

2

1
CA; ð35Þ

and equivalently

tð ~aÞ ¼ 2

3H0

ffiffiffiffiffiffiffi
~ΩΛ

q sinh−1

0
B@

ffiffiffiffiffiffiffi
~ΩΛ

~Ωm

s
~a3=2

1
CA: ð36Þ

The density parameter for radiation is negligible in this late
Universe. Differentiating Eq. (35) with respect to t, sub-
stituting Eq. (36) into the result, and rearranging, one
obtains

dt
d ~a

¼ sinh1=3gð ~aÞcosh−1gð ~aÞ
H0

~Ω1=6
Λ

~Ω1=3
m

; ð37Þ

where

gð ~aÞ ¼ sinh−1
� ffiffiffiffiffiffiffi

~ΩΛ

~Ωm

s
~a3=2

�
: ð38Þ

Next, rearrange Γ in Eq. (34). Using Eq. (32), it can be
written as

Γ ¼ −3Hwe ¼ −3
�
H
H0

�
H0we: ð39Þ

Substituting Eqs. (28) and (33) into Eq. (39) leads to

Γ ¼
3H0

~ΩD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Ωm ~a−3 þ ~ΩΛ

q
~Ωm ~a−3 þ ~ΩD

: ð40Þ

Substituting Eqs. (37) and (40) into Eq. (34), one finds

T ¼ T0ð1þ zÞ exp
�
−
1

3

Z
1

~a
Γð ~a0Þ dt

0

d ~a0
d ~a0

�

¼ T0ð1þ zÞ exp
�

− ~ΩD

~Ω1=6
Λ

~Ω1=3
m

Z
1

~a
Kð ~a0Þd ~a0

�
; ð41Þ

where

Kð ~aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Ωm ~a−3 þ ~ΩΛ

q
~Ωm ~a−3 þ ~ΩD

sinh1=3gð ~aÞcosh−1gð ~aÞ; ð42Þ

and gð ~aÞ is given by Eq. (38). Equation (41) is the radiation
temperature-redshift relation for the modified dissipative
model in the late Universe. The influence of dissipation is
included in ~ΩD. Using Eq. (41), the radiation temperature
can be determined as a function of the dissipation rate ~μ
where ~μ ¼ ~ΩD= ~ΩΛ from Eq. (30).
As a specific case, a simple temperature relation can be

obtained from Eq. (9). For example, if we ¼ −Γ=ð3HÞ from
Eq. (32) is assumed to be constant, then

T ¼ T0ð1þ zÞ1þwe : ð43Þ
This equation is equivalent to Eq. (17), replacing we by −β.
In general, we is not constant in a dissipative universe, as
examined in the next section. Accordingly, Eq. (41) plays
an important role in studying the dissipative universe.

V. EVOLUTION OF THE RADIATION
TEMPERATURE IN A DISSIPATIVE UNIVERSE

The dissipation rate ~μ from Eq. (30) is

~μ≡ γirr
Cag

¼
~ΩD

~ΩΛ

: ð44Þ

Zero dissipation corresponds to a nondissipative ΛCDM
model, whereas ~μ ¼ 1 corresponds to a fully dissipative
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CCDM model. As discussed in Ref. [51], ~ΩΛ can be
determined from the background evolution of the universe.
Accordingly, ~ΩΛ ¼ ΩΛ from a fine-tuned standard ΛCDM
model. Consider a spatially flat universe in which
ðΩm;ΩΛÞ ¼ ð0.315; 0.685Þ based on the Planck 2013
results [22]. That is, let ~ΩΛ ¼ ΩΛ ¼ 0.685 [51]. To confirm
the background evolution of the universe in the present
dissipative model, consider the luminosity distance dL [71]
given by �

H0

c

�
dL ¼ ð1þ zÞ

Z
1þz

1

dy
FðyÞ : ð45Þ

The integrating variable y and the function FðyÞ are given
by

y ¼ a0
a

¼ ~a−1 and FðyÞ ¼ H
H0

; ð46Þ

where H=H0 is from Eq. (28). As shown in Fig. 1, it is
found that dL for ~ΩΛ ¼ 0.685 agrees with the supernova
data. ( ~ΩΛ ¼ 0.685 used here is approximately equivalent to
ΩΛ ¼ 0.691 for the recent Planck 2015 results [23]. The
influence of ~ΩΛ is investigated later.)
To examine the influence of the dissipation rate, ~μ is set

to several typical values, 0, 0.05, 0.1, 0.5, and 1.0, in turn.
The background evolution of the universe in each case is
equivalent to that in the fine-tuned standard ΛCDM model.
As shown in Fig. 1, the background evolution agrees with
the observed supernova data because ~ΩΛ ¼ ΩΛ ¼ 0.685.

Before studying the radiation temperature, the evolution
of the effective equation-of-state parameter we is examined.
To this end, we for various values of ~μ is plotted in Fig. 2,
where we is calculated from Eqs. (33) and (16). In this
figure, ~μ ¼ 0 corresponds to a nondissipative ΛCDM
model, whereas ~μ ¼ 1 corresponds to a fully dissipative
CCDM model. As shown in Fig. 2, we for ~μ ¼ 0 is always
equal to 0 because pe ¼ 0. However, we decreases with
increasing ~μ. It is found that the dissipation rate ~μ affects we
even if the background evolution of the universe is not
altered. In addition, we for ~μ > 0 gradually decreases with
decreasing z and eventually approaches −1. That is, we is
not constant when ~μ > 0. The varying value of we indicates
that the simple T − z relation from Eq. (43) is not suited to
describe the radiation temperature in the present model.
Accordingly, Eq. (41) plays an important role.
Next, the radiation temperature in the modified dissipa-

tive model is examined for various values of ~μ. The
radiation temperature T in the late Universe is numerically
calculated from Eq. (41). For this calculation, the redshift is
varied from z ¼ −0.98 to 4; i.e., the normalized scale factor
is varied between ~a ¼ 50 and ~a ¼ 0.2. To compare with
observations, the data points are taken from Refs. [1,4–12].
(The values are summarized in Table I. For details, see, e.g.,
Ref. [11].) In Fig. 3, the vertical axis is T=ð1þ zÞ so that a
horizontal line can correspond to a linear law T ¼ T0ð1þ
zÞ in equilibrium. From this figure, it is found that the
radiation temperature T for ~μ ¼ 0 obeys the linear law and
is consistent with the observed data. However, with
increasing dissipation ~μ, T gradually deviates from both

FIG. 1 (color online). Dependence of the luminosity distance
dL on the redshift z. The three continuous curves represent the
modified dissipative model for ~ΩΛ ¼ 0, 0.685, and 1. They are
respectively equivalent to the standard ΛCDM model for
ðΩm;ΩΛÞ ¼ ð1; 0Þ; ð0.315; 0.685Þ, and (0,1) in a spatially flat
universe. The closed diamonds with error bars are supernova data
[20], for which H0 is 67.3 km=s=Mpc based on Planck 2013
results [22]. A similar dL − z relation has been discussed in
entropic cosmology [56–58].

FIG. 2 (color online). Dependence of the effective equation-of-
state parameter we on the redshift z for the indicated dissipation
rates ~μ. Zero dissipation corresponds to a nondissipative ΛCDM
model, whereas ~μ ¼ 1 corresponds to a fully dissipative CCDM
model. The background evolution of the universe in each case is
equivalent to that in the fine-tuned standard ΛCDM model
because ~ΩΛ ¼ ΩΛ ¼ 0.685. The dependence of we on ~a has
been discussed in Ref. [51].
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the linear law and the observations. In particular, T for
~μ ¼ 1 is far off the observed data points, due to the
nonequilibrium dissipative processes. Accordingly, a fully
dissipative universe is constrained even if the background
evolution of the universe is the same. On the other hand, T
for ~μ ¼ 0.05 agrees with the observed data points. This
agreement implies that a weakly dissipative universe fits the
observed T − z relation. The weakly dissipative universe is
discussed later.
In the preceding discussion, ~ΩΛ ¼ ΩΛ ¼ 0.685.

Accordingly, the background evolution of the universe is
the same. Consequently, a weakly dissipative model is
consistent with observations. Finally, to examine the
influence of both ~μ and ~ΩΛ, a likelihood analysis for the
radiation temperature is performed. (A similar analysis was
performed in Ref. [51], in which a growth rate for

clustering was examined.) For this purpose, ~μ and ~ΩΛ
are treated as free parameters. The chi-squared function for
the radiation temperature then becomes

χ2RTð ~ΩΛ; ~μÞ ¼
X29
i¼1

�
TobsðziÞ − Tcalðzi; ~ΩΛ; ~μÞ

σRTi

�2
; ð47Þ

where TobsðziÞ and Tcalðzi; ~ΩΛ; ~μÞ are the observed and
calculated radiation temperatures, respectively, and σRTi is
the uncertainty in the observed temperature. The observed
data points (numbered i ¼ 1 to 29) are summarized in
Table I. For the likelihood analysis, ~ΩΛ and ~μ are sampled
in the range 0 to 1 in steps of 0.005. Therefore, negative
dissipation rates are not considered. Using χ2RT from
Eq. (47), the likelihood function LRT is [41]

LRT ∝ expð−χ2RT=2Þ: ð48Þ

For simplicity, LRT is normalized. Note that ~ΩΛ ¼ 0 and
~ΩΛ ¼ 1 have not been sampled, in order to avoid a division
by zero when T is calculated from Eq. (41). Here, ~ΩΛ ¼ 1
corresponds to ~Ωm ¼ 0 because ~Ωm ¼ 1 − ~ΩΛ.
Figure 4 plots the contours of the normalized likelihood

LRT in the ð ~ΩΛ; ~μÞ plane. In this figure, ð ~ΩΛ; ~μÞ ¼ ðΩΛ; 0Þ

FIG. 3 (color online). The radiation temperature-redshift rela-
tion. The vertical axis is T=ð1þ zÞ. The continuous curves
represent the modified dissipative model for ~μ ¼ 0, 0.05, 0.1,
0.5, and 1. The background evolution of the universe for each
value of ~μ is the same because ~ΩΛ ¼ 0.685. The symbols with
error bars are observed data points [1,4–12]. The original data
represented by the green squares, blue triangles, and red circles
are from Refs. [4–8], and [9–11], respectively. The recent data
represented by the pink diamonds at low redshifts are from
Ref. [12]. The data point for z ¼ 0 is from Ref. [1]. For the
observed data points, see Table I and Ref. [11]. Note that several
error bars shown here are asymmetric because the corresponding
errors shown in Table I have been asymmetric.

TABLE I. The observed temperature-redshift relation. The
measured values are based on the analysis of a fine structure
of atomic carbon [4–7], the Sunyaev–Zel’dovich effect [8], the
rotational excitation of CO molecules [9–11], and a sample of x-
ray selected clusters [12]. The temperature at z ¼ 0 is taken from
Ref. [1].

z TðKÞ Refs.

0.000 2.725� 0.002 [1]

0.023 2.72� 0.10 [8]
0.152 2.90� 0.17 [8]
0.183 2.95� 0.27 [8]
0.200 2.74� 0.28 [8]
0.202 3.36� 0.20 [8]
0.216 3.85� 0.64 [8]
0.232 3.51� 0.25 [8]
0.252 3.39� 0.26 [8]
0.282 3.22� 0.26 [8]
0.291 4.05� 0.66 [8]
0.451 3.97� 0.19 [8]
0.546 3.69� 0.37 [8]
0.550 4.59� 0.36 [8]

0.042 2.857� 0.018 [12]
0.077 2.953� 0.021 [12]
0.123 3.072� 0.026 [12]
0.169 3.162� 0.020 [12]
0.222 3.326� 0.015 [12]
0.274 3.495� 0.016 [12]

1.729 7.5þ1.6
−1.2 [11]

1.774 7.8þ0.7
−0.6 [11]

2.038 8.6þ1.1
−1.0 [11]

2.418 9.15� 0.7 [9,11]
2.690 10:5þ0.8

−0.6 [10,11]

1.777 7.2� 0.8 [7]
1.973 7.9� 1.0 [4]
2.337 10� 4 [5]
3.025 12:1þ1.7

−3.2 [6]
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corresponds to a pure ΛCDM model for ΩΛ. Consider the
contours of LRT for ~ΩΛ ≈ 0.7. It might be seen that low
dissipation (0 ≤ ~μ⪅0.01) corresponds to high LRT regions
when ~ΩΛ ≈ 0.7. That implies that a weakly dissipative
Universe is compatible with the current data. A similar
result has been discussed previously [51], in which the
growth rate for clustering (related to structure formations)
was examined. Accordingly, a weakly dissipative universe
is likely proposed. This expectation may be confirmed by
the bottom panel of Fig. 5 which shows the contours of the
normalized likelihood L not only for the radiation temper-
ature but also for the growth rate. To confirm the expect-
ation in more detail, a joint likelihood analysis is
performed later.
In the bottom panel of Fig. 5, the normalized likelihood

LGR for the growth rate is taken from Ref. [51]. In that
reference, a likelihood analysis for the growth rate in a
modified entropic-force model was performed using the
same method. The modified entropic-force model is equiv-
alent to the modified dissipative model considered here.
Therefore, LGR for the growth rate in the present model is
the same as that in Ref. [51].
In addition, using the same method, the normalized

likelihood for the distance modulus (related to supernova
data points) is discussed. In the present study, we call this
the normalized likelihood LSN for the supernova. For the
supernova data points, the Union 2.1 set of 580 type
Ia supernovae (up to redshift z ¼ 1.414) is used [21]. The
chi-squared function is

χ2SNð ~ΩΛ; H0Þ ¼
X580
i¼1

�
μobsðziÞ − μcalðzi; ~ΩΛ; H0Þ

σSNi

�2
; ð49Þ

and the distance modulus μ is defined as

μ ¼ 5 log dL þ 25; ð50Þ

where the luminosity distance dL is from Eq. (45). Keep in
mind that the distance modulus μ is not the dissipation rate
~μ. In this analysis, ~ΩΛ andH0 are treated as free parameters
and sampled in steps of 0.001 and 0.02, respectively. That
is, the normalized likelihood LSN does not depend on the
dissipation rate ~μ. Consequently, LSN in the ð ~ΩΛ; H0Þ plane
is obtained. Using LSNð ~ΩΛ; H0Þ, the maximum value at
each ~ΩΛ can be determined. The value is plotted as a
function of ~ΩΛ in the top panel of Fig. 5. In this panel, the
maximum value is obtained at ~ΩΛ ¼ 0.722þ0.030

−0.031 (with
H0 ¼ 70.04þ0.40

−0.38 ). This result is consistent with that exam-
ined in Ref. [21].

FIG. 4 (color online). Contours of the normalized likelihood
LRT in the ð ~ΩΛ; ~μÞ plane for the radiation temperature. The
contours of LRT for 0.2, 0.4, 0.6, and 0.8 are plotted. The
likelihood function is normalized using the maximum value,
obtained for ð ~ΩΛ; ~μÞ ¼ ð ~ΩΛ; 0Þ. Note that the maximum value is
the same for all values of ~ΩΛ when ~μ ¼ 0.

FIG. 5 (color online). Top: The normalized likelihood LSN for
the supernova as a function of ~ΩΛ. Bottom: Contours of the
normalized likelihood L for both the radiation temperature and
the growth rate. To calculate LSN, the Union 2.1 set of 580 type Ia
supernovae is used [21]. (For details, see the text.) The likelihood
LGR for the growth rate is from Ref. [51], whereas LRT for the
radiation temperature is replotted from Fig. 4. For clarity, the
contours of L ¼ 0.2 and 0.8 are plotted in the bottom panel.
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A weakly dissipative universe likely describes the
observed data, as mentioned previously. To confirm this
expectation, a joint likelihood analysis is performed, using
the three normalized likelihood functions. For the joint
likelihood analysis, a combined likelihood function Ltotal is
defined by

Ltotal ¼ LRT × LGR × LSN: ð51Þ
In this analysis, ~ΩΛ and ~μ are sampled in steps of 0.005.
The obtained Ltotal is normalized. The contours of Ltotal,
corresponding to 1σ, 2σ, and 3σ confidence levels, are
plotted in Fig. 6. The region surrounded by the likelihood
contours is close to zero dissipation, i.e., ~μ ¼ 0, when
~ΩΛ ≈ 0.7. In fact, the maximum value of Ltotal is obtained
for ð ~ΩΛ; ~μÞ ¼ ð0.725; 0Þ, where an upper limit of the
dissipation rate is ~μ ≈ 0.01 at the 1σ confidence level. In
this sense, a weakly dissipative model proposed here is very
similar to the standard ΛCDM model.
As has been noted in Refs. [72,73], adiabatic photon

production does not affect a blackbody spectrum if radi-
ation fields are not thermalized. Also, Chluba has recently
examined the influence of a cosmic microwave background
(CMB) spectral distortion and adiabatic photon production
processes on the T − z relation in detail [73]. Consequently,
it is found that the photon production process does not
affect a blackbody spectrum except when the process has a
very special energy dependence. In contrast, the CMB

spectral distortion affects the CMB temperature. The CMB
distortion can be constrained using COBE (COsmic
Background Explorer)/FIRAS (Far-InfraRed Absolute
Spectrophotometer) limits. (For details, see Ref. [73].)
Accordingly, if adiabatic photon production for CCDM
models [33] is assumed, a weakly dissipative model
discussed here should be further constrained because the
CMB distortion is neglected in this study. That is, the
dissipation in the universe is expected to be smaller than the
above-mentioned one especially when the radiation temper-
ature is discussed. Similarly, the recent data [12,13,23]
imply a more weakly dissipative model. For example, the
simple T − z relation of the form T ¼ T0ð1þ zÞ1−β has
been investigated in the Planck 2015 results [23]. In that
reference, one finds β ¼ ð0.2� 1.4Þ × 10−3, where a
recombination redshift of z ¼ 1100 is adapted.
Substituting z ¼ 1100, β ¼ ð0.2� 1.4Þ × 10−3, and T0 ¼
2.725� 0.002 K (from Table I) into the simple T − z
relation, we have T ¼ 2965 ∼ 3028 K. Therefore, when
z ¼ 1100, upper limits of the dissipation rate can be
estimated from this result, using Eq. (41). The upper
limit is approximately ~μ ¼ 0.018 [74]. This constraint is
consistent with the confidence levels shown in Fig. 6.

VI. CONCLUSIONS

The radiation temperature-redshift relation has been
examined in a dissipative universe. A phenomenological
modified dissipative model has been developed that
includes two constant terms, assuming a homogeneous,
isotropic, and spatially flat universe. The model is equiv-
alent to an extended ΛCDM model in a dissipative
universe. Therefore, it behaves as if a nonzero cosmological
constant Λ and a dissipative process are operative. A
general radiative temperature law [33–36] has been used
in the model to deduce a T − z relation for a dissipative
universe. That relation has been computed in the late
Universe as a function of a dissipation rate ranging from
~μ ¼ 0, corresponding to a nondissipative ΛCDM model, to
~μ ¼ 1, corresponding to a fully dissipative CCDM model.
The results confirm that the T − z relation for ~μ ¼ 0

obeys a linear law in equilibrium. However, the calculated
radiation temperature T gradually deviates from the linear
law with increasing ~μ, even if the background evolution of
the universe is not altered. In particular, T for ~μ ¼ 1 is
nonlinear because the effective equation-of-state parameter
we varies with time in a dissipative universe. In contrast, T
for low ~μ agrees with observations when ~ΩΛ ¼ 0.685 (i.e.,
the background evolution is equivalent to that of a fine-
tuned pure ΛCDM model). This agreement indicates that
low dissipation describes the radiation temperature-redshift
relation. That is, the dissipation rate is constrained by the
observed T − z relation, even if density perturbations are
not treated. The present study thus provides new insights
into a dissipative universe.

FIG. 6 (color online). Contours of the normalized likelihood
Ltotal for the joint likelihood analysis in the ð ~ΩΛ; ~μÞ plane. The
likelihood function is normalized using the maximum value,
obtained for ð ~ΩΛ; ~μÞ ¼ ð0.725; 0Þ. The contours of 1σ, 2σ, and 3σ
confidence levels (corresponding to −2 lnLtotal equal to 2.30,
6.16, and 11.81, respectively [28]) are plotted. That is, the
contours correspond to Ltotal ¼ 3.17 × 10−1, 4.60 × 10−2, and
2.73 × 10−3, respectively.
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To examine the influence of ~ΩΛ, a likelihood analysis has
been performed. A low- ~μ high- ~ΩΛ universe and a high-~μ
low- ~ΩΛ universe have high likelihoods, consistent with
previous work [51] in which a growth rate for clustering
(related to structure formations) was examined. However,
higher and lower ~ΩΛ values are inconsistent with supernova
data. Accordingly, a weakly dissipative universe ( ~μ⪅0.01)
for ~ΩΛ ≈ 0.7 is a viable scenario. To examine this scenario
in more detail, a joint likelihood analysis has been
performed. Consequently, a weakly dissipative model
proposed here is found to be very similar to the standard
ΛCDM model because the expected dissipation rate is
small. Interestingly, recent works of the radiation

temperature [12,13,23,73] imply a more weakly dissipative
model. However, the properties of a weakly dissipative
model differ from those of a nondissipative ΛCDM model.
Therefore, further observations are necessary to determine
whether a low dissipation model is valid. It should be noted
that a fully dissipative CCDM model (for which ~μ ¼ 1)
agrees with observations of the growth rate if a negative
sound speed [43] and the existence of clustered matter [46]
are assumed.
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