PHYSICAL REVIEW D 92, 043503 (2015)

£

Improved limits on sterile neutrino dark matter using full-sky Fermi
Gamma-ray Burst Monitor data

Kenny C.Y. Ng,l’z’* Shunsaku Horiuchi,3 47 Jennifer M. Gaskins.,S’f”]IE Miles Smith,7’§ and Robert Preece®!

1Centerfor Cosmology and AstroParticle Physics (CCAPP), Ohio State University,
Columbus, Ohio 43210, USA
2Department of Physics, Ohio State University, Columbus, Ohio 43210, USA
3Center for Cosmology, Department of Physics and Astronomy, University of California,
Irvine, California 92697, USA
*Center for Neutrino Physics, Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
>California Institute of Technology, Pasadena, California 91125, USA
SGRAPPA, University of Amsterdam, 1098 XH Amsterdam, Netherlands
7Pennsylvania State University, Pennsylvania 16802, USA
8Department of Space Science, University of Alabama in Huntsville,
Huntsville, Alabama 35899, USA
(Received 21 May 2015; published 4 August 2015)

A sterile neutrino of ~keV mass is a well-motivated dark matter candidate. Its decay generates an x-ray
line that offers a unique target for x-ray telescopes. For the first time, we use the Gamma-ray Burst Monitor
(GBM) onboard the Fermi Gamma-Ray Space Telescope to search for sterile neutrino decay lines; our
analysis covers the energy range 10-25 keV (sterile neutrino mass 20-50 keV), which is inaccessible to
x-ray and gamma-ray satellites such as Chandra, Suzaku, XMM-Newton, and INTEGRAL. The extremely
wide field of view of the GBM enables a large fraction of the Milky Way dark matter halo to be probed.
After implementing careful data cuts, we obtain ~53 days of full-sky observational data. We observe an
excess of photons towards the Galactic center, as expected from astrophysical emission. We search for
sterile neutrino decay lines in the energy spectrum, and find no significant signal. From this, we obtain
upper limits on the sterile neutrino mixing angle as a function of mass. In the sterile neutrino mass range
25-40 keV, we improve upon previous upper limits by approximately an order of magnitude. Better
understanding of detector and astrophysical backgrounds, as well as detector response, will further improve

the sensitivity of a search with the GBM.
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I. INTRODUCTION

Right-handed neutral fermions (henceforth sterile neu-
trinos) arise in many extensions of the Standard Model in
explaining the observed flavor oscillations of active neu-
trinos, and yield an extremely rich phenomenology (for
recent reviews, see, e.g., Ref. [1]). Sterile neutrinos may be
produced in core-collapse supernovae [2], providing a new
mechanism for explosion [3], and may explain the origin of
strong neutron star kicks [4—6]. The sterile neutrino can
modify big bang nucleosynthesis [7-9], assist reionization
[10-15], and affect neutrino oscillations [16].

Moreover, it has been noted that sterile neutrinos can
contribute the entirety of the observed dark matter density.
They could be produced in the early Universe via
oscillation mechanisms, including nonresonantly [17] or
resonantly with active neutrinos [18], or alternatively via
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nonoscillation mechanisms, such as decays of heavy
particles (see Refs. [19-24] for some of the scenarios).
Sterile neutrinos could be a warm or cold dark matter
candidate [25-29]. In addition, some sterile neutrino dark
matter models can explain the baryon asymmetry in the
Universe [30-33].

For sterile neutrinos produced via oscillations to be a
viable dark matter candidate, they typically have mass in the
1-100 keV range [17,18,25]. They can radiatively decay into
an active neutrino and a photon [34,35]. The photon carries
half of the total energy, and therefore lies in the x-ray energy
range. The photon line is strongly distinct from most
astrophysical and detector backgrounds, which have smooth
energy spectra. An exception is line emissions from hot
gases and activated detector materials. While the decay
lifetime must be comparable to the age of the Universe in
order to ensure that sterile neutrinos remain a viable dark
matter candidate, the decay in high concentrations of dark
matter, e.g., centers of galaxies, clusters of galaxies, and
dwarf spheroidal galaxies, can lead to an appreciable x-ray
flux. The large expected flux in many targets, coupled
with the spectral and morphological characteristics of
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the signal, make searches with x rays a very powerful
approach for testing sterile neutrino dark matter scenarios
(see Refs. [33,36,37] for a comprehensive discussion of
various searches).

The x-ray constraint on sterile neutrino dark matter was
first obtained using the cosmic x-ray background (CXB)
[38]. Subsequently a more detailed analysis was carried out
in Ref. [39], where the authors considered a set of galaxy
clusters, two spiral galaxies, and the CXB, and used
observations by Chandra and XMM-Newton. Since then,
a host of other sources have been explored (for a full
discussion, see, e.g., the review articles [33,36]), including
other galaxy clusters such as Coma [40,41], the distant A520
[42], and the Bullet [43]; nearby galaxies such as
Andromeda [44-47] and M33 [48]; additional analysis of
the CXB [49-52]; more recently the Milky Way satellites
including the Large Magellanic Cloud [50], Ursa Minor
[53,54], Draco [55], Willman I [56], and Segue I [57]; and,
finally, the nearest dark matter concentration, the Milky Way
galaxy [50,51,53,58-61].

Several possible line detections consistent with sterile
neutrino dark matter decay have been reported. A line
feature was observed in Willman I that could be interpreted
as the decay of a sterile neutrino of mass m,; ~ 5 keV and
sin?0 ~ 107, where 0 is the mixing angle between the
sterile and active neutrinos [56] (but, see Refs. [62,63]).
In another study, x-ray line ratios showed an excess that
could be interpreted as arising from the decays of 17 keV
sterile neutrinos with sin’6 ~ 1072 [61]. Most recently, an
anomalous x-ray line was detected from galaxy clusters and
Andromeda [64,65] (also see Refs. [66—73]), which can be
interpreted as the decay of 7 keV sterile neutrinos [74].

In this work, we use the Gamma-ray Burst Monitor
(GBM) onboard the Fermi Gamma-ray Space Telescope
to search for x-ray lines. Notable advantages of the GBM
include its all-sky coverage, which allows the entire
Milky Way dark matter halo to be explored, and large
effective area, yielding a very high statistics data set. The
energy range of the GBM extends from 8 keV up to 40 MeV,
conveniently filling a gap in energy above the range of
previously considered x-ray satellites and below the
range of INTEGRAL space telescope. Therefore, in this
work we focus on this unexplored photon energy range £, =
10-25 keV (m; = 20-50 keV). We consider the Milky Way
because of its proximity and well-studied dark matter
distribution, and because the GBM detectors are more
sensitive to large-scale diffuse emission such as from the
Galactic halo, due to GBM’s large field of view (FOV) and
poor angular resolution.

We describe the expected x-ray signal from sterile
neutrino dark matter decays in Sec. II. The GBM instru-
ment and the dark matter signal modeling in the context of
the GBM detectors are presented in Sec. III. The data
reduction procedures are described in Sec. IV. In Sec. V,
we describe the line search analysis and the procedure
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used to obtain limits on sterile neutrino decays.
We summarize in Sec. VI. Throughout this work, we adopt
cosmological parameters from Planck [75], where H, =
100k km/s/Mpc, h = 0.673, Q, = 0.685, ©,, = 0.315,
h(z) = /Qy +Qy(1 +z)%, the dark matter fraction
Qpy = 0.265, and p,. = 1.05 x 107h%> GeV cm ™.

II. EXPECTED SIGNAL FLUX

The primary decay channel of sterile neutrinos is into
three light active neutrinos. The radiative decay into an
active neutrino and a photon that we are interested in is
suppressed by a factor of 27a/8z ~ 1/128 relative to the
primary decay channel [35], and has a decay rate [34,39]

sin*26 m;
T, =136 x 10732 5! )
g x ° (10—10> (1 keV) (m

where we have assumed a Majorana sterile neutrino (for a
Dirac sterile neutrino the decay rate is halved). The energy
luminosity of decay photons arising from a sterile neutrino
dark matter clump of mass Mpy is given by L, =
E,(Mpy/m)Ts, where E, = m,/2 is the photon energy,
and equals

M sin’20 m 5

L,~12x10% ergs™" ( — I
/ © T e <10“M® 1019 ) \10 keV

(2)

for a typical galaxy-size dark matter halo mass. It can
be immediately appreciated that this is comparable to the
total luminosity of astrophysical x rays in the Milky Way
in the 2-10 keV range, ~10%° ergs™! [76], or the total
Milky Way diffuse emission in the same energy range,
~10% ergs™! [77].

The photon intensity (number flux per solid angle) of
sterile neutrino dark matter decay coming from an angle y
away from the Galactic center (GC) consists of both the
Galactic and the extragalactic components,

dN
Iy, E) = ———
W-E) = i drdadE
_ PoRo an | Qpup. ¢ / dz dN
o drmgt, j(W) dE + dzmgryHy ) h(z) dE

poRo AN / dz dN
= Polto. R [ 2 3
dzm,z, (j("’) i R [ aaE) ©

where 7, = 1/T; is the lifetime, po, = 0.3 GeV cm™ is the
local dark matter mass density, Ry = 8.5 kpc is the Sun’s
distance to the GC, and dN/dE = 5(E — m,/2) is the dark
matter decay spectrum. The first term in the bracket is the
Galactic component. The so-called J-factor, J (), is the
integral of the dark matter mass density p in the Milky Way
halo along the line of sight,
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where ¢, 1s the outer limit of the dark matter halo.
We assume the dark matter distribution is spherically
symmetric about the GC, and hence

Py €) = plrac(y. 2)) = p(\/RS = 2R, cosy + £2)).
(5)

The value of 7, differs depending on the adopted halo
model, but the contribution to 7 () from beyond ~30 kpc
is negligible. We adopt &, = 250 kpc in this work.

The second term in the bracket of Eq. (3) describes the
isotropic extragalactic component, where E' = E(1 + z).
The factor Rgg roughly compares the contribution of the
extragalactic component versus the Galactic component, up
to the shape of the energy spectrum

¢ Qppvp.

=— =2.
"7 Hy poRo ©
Normally, the extragalactic component can be ignored as
typically the analysis region is chosen to be a small patch of
the sky where the Galactic component is much larger (e.g.,
the GC, where 7 > 1). However, in our case, the large
FOV of the GBM makes the extragalactic component non-
negligible.

The dark matter density profile p(r) of the Milky Way is
not precisely known, in particular at small Galactic radius.
We consider several fitting functions that capture the results
of numerical simulations of dark matter halo profiles,
which can be parametrized by the following form:

r \77[1+ (Ry/R,)*| F-1)/a
p(lﬂy(r) = p® <—> [(763] , (7)
Ro) |1+ (/R)
where parameters for commonly used profiles are summa-
rized in Table I. Another profile favored by recent simu-
lations is the Einasto profile,

TABLE 1. Dark matter profile parameters for widely adopted
dark matter profiles in the literature. Our canonical profile is the
NFW profile.

Profile a p y R, [kpc]
NFW 1 3 1 20
cNFW 1 3 1.15 23.7
Cored isothermal (ISO) 2 2 0 3.5
Einasto (EIN) - - 20
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FIG. 1 (color online). The J-factor, J(y) [Eq. (4)], as a
function of half opening angle y relative to the GC, for four
Milky Way dark matter halo profiles.

with ag = 0.17 and the scale radius R, = 20 kpc. These
profiles differ mainly at small Galactic radius. The first
three profiles have constant logarithmic slopes at small
radii, which are described by the y factor. The Einasto
profile has the same slope as the Navarro-Frenk-White
(NFW) profile at the scale radius, but the slope decreases
as the radius decreases.

In Fig. 1, we show the J-factor 7 (w) for each dark matter
profile as a function of the angle y viewed away from the
GC. The differences between profiles are relatively small,
because the density p appears linearly in the decay flux
(as opposed to in the annihilation flux where the density
appears quadratically). We use the NFW profile as our
canonical profile in this work. As will be shown in Sec. I1I B,
the impact of varying the profile is minimal after taking into
account the detector response and the FOV. Thus the sterile
neutrino constraint obtained using GBM is robust against
dark matter profile uncertainties.

A crude estimate of the expected number of photons v,
per unit time 7 from Galactic dark matter decay is

dU}, A fo jGO
o0 — ) (£
dr ° (207t cm? sr) ( 2
sin%20 my \4
* (10—11) (20 kev> ’ ©)

where we use representative values for the effective area
and solid angle, the J-factor at y = 60°, 7 ¢, and a nominal
sterile neutrino mixing angle. It is immediately clear that
even a small fraction of the total Fermi-GBM live time can
yield a significant number of signal photons.
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FIG. 2 (color online). The effective area for the det-7 Nal
detector versus the detector zenith angle relative to the detector
normal, for three example energy bins. Points are data from GBM
calibration files, and the anomalous dips in the effective area
come from blockages from other satellite components. Solid lines
are fits to the data neglecting the dips.

III. INSTRUMENT AND SIGNAL
MODELING

A. GBM instrumentation

The GBM consists of 14 detectors: 12 Nal detectors,
each operating over energies from 8 keV to 1 MeV, and
two BGO detectors, each operating over energies from
200 keV to 40 MeV. The Nal detectors are located on the
corners and sides of the spacecraft, with different ori-
entations, and they together provide a nearly complete
coverage of the occulted sky. At any given time, typically
3—4 Nal detectors view the Earth within 60 degrees of
the detector zenith, i.e., their FOV is occulted by the
Earth.

Not all of the Nal detectors are best suited for dark matter
searches. At first consideration, det-0 and det-6 would seem
to be the best detectors to use since they are aligned close
to the LAT zenith (=20° offset). However, we find that
significant parts of the FOV of these two detectors are
actually blocked by the LAT itself. Also, half of the
detectors are pointed towards the Sun all the time, and
x-ray emissions from the Sun contaminate their low-energy
spectrum. Last, some detectors are pointed sideways, i.e.
=90° relative the LAT zenith, which suffer large FOV
blockage from the Earth. Ruling out these detectors, only
det-7 and det-9 seem to be suitable, which are =45° relative
the LAT zenith. Upon inspection, we observe an anomalous
spectral feature in the low-energy spectrum of det-9
compared to other detectors. As a result, we use det-7 as
our fiducial detector for analysis. As will be shown below,

PHYSICAL REVIEW D 92, 043503 (2015)

120 :
100 ;
g E
© .
= 80 :
& E
< E
2 60 E
3 E
s 6.4° fit E
m 40 22.1° fit 3
43.9 ° fit 3
! 6.4 ° data o E
20 b 22.1° data o E

43.9 ° data A
0.........I.........I.........:
10 20 30 40

Energy [ keV ]

FIG. 3 (color online). The effective area versus the incident
photon energy for three incident angles. The points are obtained
from GBM calibration files and the lines are linear interpolations
of the points.

this analysis is systematically limited, rather than sta-
tistically limited. Using only one detector for this analysis
also avoids introducing systematic uncertainties from
combining multiple sets of data from different detectors.

The Nal detectors have a wide FOV, as seen in Fig. 2,
which shows the effective area versus the detector zenith
angle, 0, for the det-7 detector. We obtain the GBM
effective area data from detector response matrix files
(GS-008). Each file contains the effective area as a
function of energy, for a specific detector zenith and
azimuthal angle. In Fig. 2, each point denotes the effective
area extracted versus the corresponding zenith angle from
the detector response file. Beyond about 40°, we observe
anomalous dips in certain azimuthal directions at all
energies, which is presumably caused by blockages from
satellite components in the FOV of the detector. We remove
these anomalous dips by requiring adjacent bins deviate no
more than ~10%. After this procedure, the angular
dependence of the effective area can be well described
by cosine functions, as shown by the solid lines.

In Fig. 3, we show the energy dependence of the
effective area for three representative zenith angles. The
points are obtained from the detector response matrix
files, and are chosen from a specific azimuthal angle at
which the detector FOV is not blocked. Using the cosine
fits described above, the energy dependence is obtained
by linear interpolation of the model in energy. Thus, we
obtain an azimuthally symmetric model of the effective
area (i.e., it depends only on zenith angle and energy).
Shown in solid lines in Fig. 3, are the model for the
given zenith angles. The FOV blockages slightly reduce the
detector sensitivity towards a particular azimuthal angle.
This effect, however, is not expected to introduce spurious
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spectral features in the energy spectrum, since the block-
ages affect all energies. We thus neglect these blockages
and use the smooth angular fits to model the expected
signal in the next section.

One important feature of the Nal detectors is that they
are limited in their photon-tracking capabilities, i.e.,
one cannot simply obtain the photon flux as a function
of the incidence direction for a specific position on the
sky. In other words, the tradeoff for the large FOV is poor
angular resolution. Earth occultation techniques can be
employed to obtain photon direction for point-source
studies [78,79], but this technique has not yet been
demonstrated for diffuse emissions. Fortunately, the lack
of photon tracking is not very problematic for sterile
neutrino dark matter decay searches due to the large
angular extent of the expected emission. However, this
does mean that one cannot accurately construct an
intensity sky map of the GBM data [Eq. (3)]. As a result,
one needs to properly model the signal taking into
account the detector response to match the observable.
In this case, the instrumental observable is the count rate
(number of photons per second), as a function of the Nal
detector pointing direction.

B. Expected signal modeling

Given the sterile neutrino decay photon intensity
Z(y,E), we compute the expected number of photons,
v; j, for energy bin i and detector sky-pointing direction j.
The expected number of photons per observing time, T,
from a particular detector pointing direction is then

d L E;nax
i / dE / dQ(0)
dT; min 2

i

x / dE{Z(y. E)G(E. E)Aq(E.0)}. (10)

where EM* and EM" are the boundaries of the energy bin i.
We integrate over the hemisphere the Nal detector points at,
i.e., over the detector zenith angle 6, and attribute all the
photons to pixel j. A position on the sky with an angle
relative to the GC, y, is related to the detector zenith
angle and the pixel that the detector points at through
w — (0, j). The pointing direction of the detector is
therefore defined by (0, j). The factor G(E, E) takes into
account the energy resolution of the Nal detector, which we
model as a Gaussian with width given by the prelaunch
calibrations [80,81]. The energy resolution is about 10% for
our analysis range. And last, A.(E, @) is our Nal detector
effective area model, which is a function of energy and the
detector zenith angle, as in Figs. 2 and 3.

Using the Dirac delta function for the energy spectrum,
the expected signal is
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FIG. 4 (color online). The convolved J-factor [Eq. (12)] versus
the opening angle with respect to the GC, w(0, j), defined by
where the detector normal is pointing. The difference between
different profiles is drastically reduced. A small energy depend-
ence is introduced from the effective area. The vertical dotted line
denotes the boundary of our ROI. Shown in grey are the
theoretical J-factors from Fig. 1.

dl/l" Y4 R
J(’ns)_ [OhC)

dT;  damg
£ mg\ = (m m
S (57 (3 0)e(=3)

5 . ®
+ Rig / dE / dQAG(E, E)

where J(E.j) is the “convolved J-factor,” N(E) is a
normalizing factor, h(E) = \/Q, + Qy(m,/(2E))?, and
0 is the Heaviside step function. We have suppressed the
argument of A for simplicity.

The convolved J-factor is defined as

_ [ I (w)Au(E. 6)dQ(6)
N(E) ’

which takes into account the effect of detector response; it
represents the J-factor defined by detector pointing direc-
tions. It depends on the detector pointing direction through
w(6,j). The normalization factor N (E) = 27A(E,0)
captures the energy behavior of the effective area. The
normalization of this factor is unimportant as it cancels
itself when obtaining dark matter decay fluxes/limits. In
Fig. 4, we compare the convolved J-factor with the normal
J-factor defined in Eq. (4). Once the detector response is
taken into account, the difference between different profiles
decreases drastically even for pointing directions very close

J(E.j)

(12)
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FIG. 5 (color online).
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(Left) Simulated dark matter counts rate maps in Galactic coordinates for several line energies, taking into

account detector response. For each map, the assumed line energy is contained in the energy bin shown and sin?26 (as labeled) are
chosen to approximately match the observed counts in the same bin. (Right) The final counts rate sample from 4 years of data from the
Nal detector, which corresponds to 4.6 million seconds (~53 days) of live time after data cuts. All of the sky maps are pixelated into 768
HEALPix pixels. The pixel position corresponds to the pointing direction of the detector normal. The grey pixels are where no observing

time is registered after the selection cuts.

to the GC. E.g., for the 10-11 keV bin, the difference in the
convolved J-factor between NFW versus EIN and ISO is
<1%. Therefore, systematic uncertainties due to the choice
of dark matter profile are minimal.

In the left column of Fig. 5, we show the modeled dark
matter maps for the Nal detector from the Milky Way halo
for several energies. We pixelate the sky into 768 pixels of
equal solid angle using the HEALPix scheme,' i.e., each
pixel corresponds to a solid angle of AQ = 1.6 x 1072 sr.

lhttp://healpix.jpl.nasa.gov [82].

We use the Milky Way contribution from Eq. (11), which
takes into account detector energy and angular response.
The extragalactic component only adds a constant value to
the signal map. We choose the line energy to be at the center
of the chosen energy bin. The decay rates for the sterile
neutrino scenarios are chosen to approximately match the
count rates of the corresponding data maps (right column,
described below). By construction, the Milky Way dark
matter contribution is spherically symmetric, and the large
angular extent of the signal is due to the large FOV and poor
angular resolution of the Nal detectors.
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IV. DATA SELECTION AND REDUCTION

In this section, we describe the data reduction procedures
to improve the data quality and the cuts designed to reduce
various backgrounds. At the end we obtain a data set that
can be compared to Eq. (11) to obtain limits for sterile
neutrino dark matter decay.

We use GBM daily data from 12 August, 2008 to 31
December, 2012, a total of 1601 days. We use the CSPEC
data (GS—-002) with nominal 4.096 s time resolution and
128 channels in energy from 5 to 1402 keV (the first and last
few energy bins are not usable). We then devise several cuts
to improve the data quality. The goal is to obtain a data set
that is representative of the diffuse sky emission as observed
by the GBM Nal detectors, while minimizing various types
of backgrounds. The most dominant source of background is
due to cosmic rays interacting with the satellite, directly
activating the detector or triggering the detector through
delayed radioactive decays of the satellite material.

To this end, we employ the following cuts.

(1) LAT cut

We first select data sets that are suitable for
analysis using data flags from Fermi-LAT weekly
photon files: LAT CONFIG=1, LAT MODE=5,
DATA QUAL=1, ROCK ANGLE<50, SAA=F.
The first three conditions ensure the detector con-
figuration and data quality are suitable for scientific
analysis. The fourth condition ensures that the Earth
is not in front of the LAT’s FOV, which is approx-
imately, but not exactly, the FOV of the Nal detector
(we address this in the Earth cut below). The last
condition excludes the times when the satellite is
inside the South Atlantic Anomaly (SAA), where
the high cosmic-ray activity significantly increases
the radioactivity of the satellite. The GBM detectors
are turned off during SAA passage, and hence the
observed counts are zero in these time periods.

The LAT cuts alone, however, are insufficient for
reducing background events, because of the different
physical locations of the detectors on the satellite, differ-
ent backgrounds, and the different technologies of the
LAT and the GBM. We therefore develop new cuts
specifically for the GBM.

(i1) Transient sources cut

This cut removes the epochs when the GBM
detectors detect transient sources, such as gamma-
ray bursts, direct cosmic-ray hits, solar flares, Galactic
x-ray transients, magnetospheric events, etc. Though
these transients only occupy a small fraction of the
observation time, some of them can be bright enough
to cause the data acquisition system to overflow.

(iii) Extended SAA cut

The LAT cut does not completely remove events
due to passages through the SAA. This is because
the satellite is intensively bombarded by cosmic rays
during each passage through the SAA, leaving the
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satellite in a highly radioactive state even after
leaving the SAA. This effect is even more pro-
nounced for consecutive passes through the SAA. In
this case, there is insufficient time for the satellite to
return to its normal radioactive state. As a result,
orbits passing through the SAA consecutively in-
duce anomalously high photon count rates even
when the satellite is outside the SAA. We therefore
apply cuts to remove the data collected between
consecutive passages of the SAA, in addition to the
times that the satellite is physically in the SAA,
which are eliminated in the LAT cut. Removing
these orbits is important to reduce events originating
from cosmic rays.

(iv) Earth cut

Last we apply two cuts on the orientation and the
position of the Nal detector relative to the Earth. We
first require that the angle between the Nal detector
normal and the vector directed from the Earth’s center
to the satellite is less than 50°. This is to reduce
contamination from the Earth limb and occultation
from the Earth itself. The next cut is on the geo-
magnetic coordinate. The high-altitude cosmic-ray
activity is directly correlated to the Earth’s magnetic
field structure. The number of observed background
events increases with geomagnetic latitude. To min-
imize this contamination, we select data only when
the geomagnetic latitude is less than |20|°.

In Fig. 6, we show an example of the data and the cuts
we adopt to improve the data quality. The data points are
the counts rates on 20 December, 2008 observed by det-7.
Each dot corresponds to count rates measured over ~4 s.
We select the energy range from 344 keV to 471 keV,
where the data is dominated by the cosmic-ray-induced
background.

The first feature that can be seen in Fig. 6 is the series of
epochs with no count rate. This is because the detector was
shut down when the satellite was in the SAA. These epochs
are removed in the LAT cut. It is also clear that
the count rates are anomalously high even after the satellite
leaves the SAA (i.e., right after the gap), due to the
increased radioactivity of the satellite. These epochs are
removed in the Extended SAA cut. These two SAA-related
cuts are represented by the red hashed regions.

The second feature is the oscillatory shape during the
middle of the day. Overlaying the data points we also
plot the location of the satellite in geomagnetic latitude
(blue line). One can see the count rates are correlated with
the geomagnetic latitude. We therefore remove all the data
recorded when the geomagnetic latitude is larger than [20|°.
This cut is represented by the grey shaded region, and the
removed data points are labeled in blue. The choice of a
uniform |20|° geomagnetic latitude cut is a balancing act
between maximizing sky coverage and reducing back-
ground. More sophisticated cuts may be possible.
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FIG. 6 (color online).
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A sample of the raw photon count rates for the GBM-Nal detector from 20 December, 2008, from 344 keV to

471 keV, where the count rate is dominated by the cosmic-ray-induced background. The blue line indicates the location of
the satellite in geomagnetic latitude (in absolute value). The epochs with no data are when the satellite was physically in the SAA. The
red hashed regions represent the cuts on orbits that passed through the SAA. The grey shaded regions illustrate the cuts on geomagnetic
latitude; the data removed by this cut is colored blue. In the end, only black data points in the white regions are used for analysis.

The importance of our cuts for improving the data quality
can be estimated in Fig. 6. The increased count rate right
after SAA can be a factor of a few higher. Even the variation
due to geomagnetic latitude can be up to a factor of 2. Our
Extended SAA cut and Earth cut are therefore necessary to
reveal the astrophysical component, which is comparable to
the detector background at low energies (shown below).
Transient sources do not contribute significantly to the total
counts, but they can dominate a particular sky pixel. Since
they only contribute a small fraction of the live time, the
Transient sources cut is very efficient.

The final data products obtained are observed counts and
exposure time over 128 energy bins and 768 sky pixels. The
total live time of the data product is ~4.6 x 10° seconds
(~53 days). Despite having a huge reduction from the raw
data, we are still far from statistically limited, as will be
shown below.

In the right panel of Fig. 5, we show the count-rate sky
map for the labeled energy bins. At low energies, we
observe a clear excess towards the GC. We interpret the
excess as astrophysical (i.e., non-instrumental-related)
emissions from the Milky Way. The astrophysical flux is
about ~107! cm~2 s~! if one extrapolates from the high-
energy observations [83—-85], which matches the observed
count rate of about ~10 s~!. The observed excess towards
the GC also shows a small north-south asymmetry, which
probably reflects the underlying distribution of diffuse and
discrete x-ray sources.

For the maps at high energies, the morphology is
significantly more isotropic than at low energies, with
small variations that trace orbital structure, as expected
from cosmic-ray-induced backgrounds. For example, the
two dark spots near the orbital pole at high energies are also
seen in the low-energy map.

As a result, we conclude that the low-energy data
set consists of a mixture of astrophysical diffuse and

point-source emissions, plus residual cosmic-ray-induced
background. The grey pixels in the maps represent posi-
tions on the sky that were not visited by the detector, and
are excluded from the analysis.

Using the data sky map and the convolved J-factor

J(E, j), we can determine the region of interest (ROI) for

our analysis. As J(E, j) flattens out at small angles due to
the poor detector angular resolution, as shown in Fig. 4,
there is little benefit in choosing a small ROI. We carry out
a signal-to-noise study to look for an optimal ROI angle.
The morphology of the GC excess seen at low energies
turns out to be comparable to the smoothed dark matter
distribution, and the signal-to-noise is fairly insensitive to
the choice of angle. This is a direct consequence of the poor
angular resolution of the Nal detector. We conservatively
choose a large ROI, which consists of pixels within 60°
from the GC, i.e., w < 60°. With this selection, we have
enough pixels to average out potentially spurious behavior
in some individual pixels, and have more than enough
statistics. Lastly, this ROI only minimally overlaps with the
dark spot positions near the orbital poles.

In Fig. 7, we show the binned counts spectrum for the
data sample in the GC ROI. As a comparison, we also show
the spectrum for the anti-GC ROI (y > 120°). The total
observed time for the two samples are 975 066 s and 911
451 s, respectively, and this difference is the main reason
that the normalization differs at high energies. In general,
the counts spectrum has a power-law behavior at
high energies, as expected from cosmic-ray-induced back-
ground. There are several prominent line features from
excited energy levels of 12T at 57.6 keV and 202.9 keV, as
well as the 511 keV line from positron annihilation from
the atmosphere and nearby materials [81]. At low energies,
the GC and anti-GC spectral shape starts to deviate, and the
difference in normalization increases compared to high
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FIG. 7 (color online). The counts spectrum for the final data
sample for both the GC ROI (y < 60°) and anti-GC ROI
(y > 120°) chosen to have the same solid angle. The dominant
component is a power law plus various background lines. The
overall difference in normalization is due to the higher exposure
towards the GC than the anti-GC direction. The additional excess
at low energies towards the GC region suggests the rise of the
astrophysical component. The vertical dotted line indicates the
energy bins used for the spectral analysis.

energies. This indicates that the astrophysical component
starts to appear in the GC sample.

V. LIMITS ON STERILE NEUTRINOS

We present two limits on sterile neutrino decay lines. The
first is a conservative limit based purely on flux compari-
son. The second uses the fact that the signal is a photon line,
while the background flux is approximately a power law
within the search energy window.

A. Flux analysis

The most robust constraint one can place on the
amplitude of a sterile neutrino dark matter decay signal
is to require that the expected signal counts do not exceed
the total measured counts. For a set of dark matter masses,
we compare, bin by bin, the predicted counts from sterile
neutrino decay to the total counts measured. This approach
therefore assumes the hypothesized signal dominates the
observed spectrum without any assumptions about the
detector and astrophysical background.

The expected signal counts are given by summing the
count rates in all the individual sky pixels within the ROI,
using Eq. (11), weighted by the actual observing time 7'; in
each pixel,

ROI
dv: -
=) T 13
Vi F / dTJ ( )
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The measured photon counts data from all pixels in the
ROI is

ROI

d; = ZNi,j7 (14)
J

where N; ; is the number of counts in energy bin i and pixel
Jj measured by the GBM detector.

We obtain the flux analysis limit on the decay rate, I';, by
requiring v; < d; for all energy bins for each m. The limit
obtained this way is very conservative. It is unlikely that
sterile neutrino decay, which has a sharp spectral shape,
would dominate a narrow energy range in the count
spectrum while other components conspire to vanish in
that particular energy range.

B. Spectral analysis

The sensitivity to sterile neutrino dark matter decay can
be improved dramatically using the observation that the
sterile neutrino decay signal and the dominant background
have different spectral shapes.

1. A simple background model

As shown above, our GC data sample contains an
astrophysical component as well as internal detector back-
grounds. The astrophysical contribution from the inner
galaxy is dominated by points sources (all unresolved by
GBM), and the energy spectrum was shown to be well
described by a power law above 20 keV [83-85]. The
internal detector background is a consequence of cosmic
rays interacting with the satellite components, which
retains the power-law behavior of the incoming cosmic
rays. We therefore expect the energy spectrum to have a
power-law distribution.

A power-law spectrum is an even better approximation
when we analyze the data in small energy windows. We
consider 15 of these search windows, one for each line
energy of interest. The line energies are the corresponding
energies of the energy bins numbered 6 to 20 in the GBM
numbering scheme (labeled by i,). For each search bin i,
the search window contains a number of energy bins
(labeled by i), where

Max(imin, i() - AW) < l < io + AW (15)

The window size is Aw = 5, which makes the window
width on each side about 3—4 ¢ of the energy resolution at
the line energy. For line energies near the low-energy
cutoff, we truncate the search window at the lowest usable
energy bin, i,,;, = 6, which corresponds to a central bin
energy of 9.3 keV. The signal line energy in such a case is
not located in the center bin of the search window.

With the power-law assumption for the non-dark-matter
components in each search window, the model photon
counts spectrum therefore contains the dark matter signal
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component (dv/dE) and a power-law background compo-
nent (db/dE),

W 1
b fs{é(E—Eo)N(E) TR S 3 5 )
< [ Al >d99(EET_f)}’ e

respectively, where E; is the energy of bin i,. The factor
N(E) takes into account the energy response of the
effective area. The model has only three free parameters,
fs.p, and y. The factor f, is the amplitude of the dark
matter signal, which is the only parameter that we are
interested in. The normalization and the spectral index of
the background power law are thus treated as nuisance
parameters, = = (f,7).

The total expected counts in energy bin i in the search
window are then obtained by convolving with the detector
energy resolution and integrating the model over the
energy bin,

Elnax - b -
Vi + b, _/ dE/dE(d_hi)G(E,E). (18)
dE dE

nin

Comparing the data model [Eq. (13)] with the expected
signal [Eq. (18)], the line amplitude f, is related to the
sterile neutrino parameters by

P
fi="1° QZTJEOJ

47rm1
5 1 (sin*20 m; \4
Ss™'sr
1010 10 keV

x Y " TJ(Ey. ). (19)

=86x 1072 cm™

To search for a line signal from the data, it is important
to understand the uncertainties associated with the meas-
urement. We first consider the systematic uncertainty in the
effective area of the detector, which is ~5% according to
the GBM collaboration [80,81]. Note that the quoted
uncertainty is the total uncertainty for the effective area,
which in principle can be two different kinds of uncertainty.
The first kind is the overall uncertainty on the effective area
across all energy bins, which affects the value of the flux
obtained from data. The second kind is the uncorrelated
errors between energy bins, which may introduce spurious
spectral features even if the true flux spectrum and the true
effective area are both smooth in energy. For a spectral
analysis, the uncorrelated error among energy bins is much
more important than simply a normalization shift. In this
work, we conservatively attribute all of the 5% uncertainty

PHYSICAL REVIEW D 92, 043503 (2015)

to the uncorrelated errors. As a result, the model uncertainty
for each energy bin is

O pAeff — 005(1/1 + bl) (20)

We then consider the statistical uncertainty. As shown in
Fig. 7, the number of photons is enormous in the energy
range that we are interested in. The statistical uncertainty in
each bin is small, /N /N < 1073, Therefore, we safely
ignore the statistical uncertainties in this work.

We adopt the method of maximum likelihood for fitting
the counts spectrum for each search window. For each
search bin iy, we assume a Gaussian probability distribu-
tion function for each energy bin in the search window,
giving the likelihood function:

_(vitbi—dy)?

2% , (2 1 )

, =i
f K | 0 H /_27T0'A3ff

where the product is taken over the energy bins i in the
search window. Best-fit parameters are obtained by maxi-
mizing the likelihood function, or equivalently minimizing
its negative logarithm.

We first find the best-fit background-only parameters,
=y, where f is set to zero. The implicitly defined = is
given by

A(fs = 0,Eplig) = Min{-2LogL(f, = 0, Zliy); E}.

(22)

We check whether the power-law-only background
model is a reasonable hypothesis by computing the
reduced y° (y* per degree of freedom) for each search
window. We find that the reduced y? ranges from 0.2 to
1.4 in our analysis range. We therefore conclude that the
power-law-only model plus the prescribed 5% systematic
error can reasonably describe the data for each search
window.

In Fig. 8, we show explicitly the 15 search windows for
this analysis. The blue data points are the GBM data, and
the assigned error bars are the 5% systematic uncertainty.
The statistical errors are too small to be shown. The blue
lines are the best-fit count spectrum from the power-law-
only model described above. The apparent peculiar spectral
features, such as those around 18 and 26 keV, are
successfully captured by the power-law model when the
effective area and nonuniform energy bins are taken into
account.

2. Limits on the dark matter decay rate

To search or constrain the line signal, we use the
so-called profile likelihood method [86]. We search for
the best-fit line amplitude by minimizing the negative log-
likelihood with respect to all the model parameters,
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FIG. 8 (color online).  The blue points are the measured data with error bars indicating the 5% systematic error. The blue line is the best
fit model to the data with only the power-law component. The red line shows the best fit model when including the line signal with 95%
upper limit amplitude. The red arrow indicates the central energy of the line signal.
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FIG. 9 (color online). The black solid line is the 95% C.L.
upper limit from the spectral analysis. The green (yellow) shaded
region shows the 68% (95%) intervals from the Monte Carlo
simulations.

/1(st7 E0|10) = Min{_ZLOgﬁ(fsv E|i0);fs7 E}’ (23)

where f, is constrained to be non-negative. We observe
no significant preference for the presence of the line signal.
We then proceed to find the 95% C.L. one-sided upper limits
on the dark matter signal amplitude, f3°, by increasing the
amplitude while continuously minimizing the log-likelihood
function over the nuisance parameters, until it is 2.71 larger
than the best-fit log-likelihood,

Min{—2LogL(f?.Z|iy): E} = A(fs0. Zolip) + 2.71.
(24)

The best-fit model when the line signal is at the 95% upper
limit is shown in Fig. 8 as red lines. The red arrow indicates
the energy of the inserted x-ray line. Using £3° and Eq. (19),
we then obtain the 95% C.L. upper limit of the dark matter
decay rate.

We perform a Monte Carlo study to check the robustness
of the limit. For each search window, we generate 100
mock data sets, according to the best-fit power-law-only
parameters and the 5% systematic error with a Gaussian
probability distribution function. We perform the profile
likelihood analysis to obtain the 95% upper limits for the
mock data sets. In Fig. 9, we show the obtained upper limit
from data and the 68% and 95% coverage of the limits from
our Monte Carlo simulations.

Overall, we find that the observed limit is consistent
with our Monte Carlo realizations at the 95% level. At a
sterile neutrino mass of about 28 keV, we find the actual
limit touches the 95% lower bound of the expected limit.
This is likely due to the fact that the data point at about
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FIG. 10 (color online). The conservative upper limit from the
flux analysis (Black) and the 95% C.L. upper limit from the
spectral analysis (Blue) for the decay rate of sterile neutrino dark
matter. The hashed regions are excluded by the corresponding
analyses.

14 keV falls below what one would expect from a smooth
power-law flux spectrum, as shown in the fits in Fig. 8.
There are no known detector defects at this energy [80,81],
and we thus consider this as a ~2¢ systematic downward
fluctuation in the effective area model. This downward shift
effectively means the data prefers a negative line, which
results in the improved limit at this energy. It is also
important to note that the limits are correlated due to the
largely overlapping data points in adjacent search windows.
As a result, limits from line energies close to 14 keV are
all slightly improved. The simulated limits from our
Monte Carlo realizations are not correlated with adjacent
line energies, since the mock data sets are generated
independently for each search window.

Finally, Fig. 10 shows the limits obtained on the decay
rate from both the flux analysis and the spectral analysis,
with the hashed region corresponding to the excluded
parameter space. As expected, the spectral analysis pro-
duces a much stronger limit than the flux analysis. Since the
presence of a line signal mostly only affects one energy bin,
one would expect that the spectral analysis limit is
approximately given by the size of the error bars of the
data points, and thus the spectral analysis limit is expected
to be about 5% of the flux analysis limit. This is indeed
the case in most of the mass range, except where the data
prefers a negative line, as discussed above. At low
energies, the spectral analysis limit deteriorates rapidly.
This is due to the imposed lower cutoff of the search energy
window. As the line energy approaches the boundary, the
number of bins used for the fit is reduced accordingly,
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FIG. 11 (color online). Constraints from x-ray missions on
sterile neutrino dark matter decays, which depends on the mixing
angle, sin2(29), and the mass, m,. In the shown mass range, the
best previous constraints are set by observations of cosmic x-ray
background (CXB) from HEAO-1 [50] and the Milky Way (MW)
halo from INTEGRAL [60]. The lower bound of the parameter
space (black-hashed region) is valid for the model tMSM [33].
The flux (spectral) analysis limit derived from this work is shown
in black-dashed (blue) line.

and the spectral shape becomes increasingly degenerate with
the power-law shape. Both factors cause the limit from the
spectral analysis to deteriorate.

C. Limits on sterile neutrino dark matter

Using the upper limits on the decay rate, we derive the
corresponding upper limit on the mixing angles for sterile
neutrino dark matter. In Fig. 11, we show the constraint on
the mixing angle—mass plane. For comparison, we also show
the only limit in this energy range, obtained with CXB
observations using HEAO-1 [50], and with Milky Way
observations using INTEGRAL [60]. Unsurprisingly, the
flux analysis does not yield competitive limits. However, in
the mass range m, ~25-50 keV, the spectral analysis
improves the limit on the mixing angles by about an order
of magnitude compared to the previously strongest limit.

Compared to the previous analysis [50], which used
HEAO-1 A4 Low Energy Detector data [87], our analysis
improves mainly in the following ways: the GBM data has
smaller error bars compared to the HEAO-1 data (~5%
versus ~10%); we have employed several cuts to reduce
cosmic-rays-induced backgrounds; the Milky Way halo
yields a larger signal flux than the CXB alone; and the
GBM Nal detector has a slightly better energy resolution.
These factors, each expected to give a factor of a few
improvement, all contribute to our improved limit.
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VI. DISCUSSION AND CONCLUSION

A. Future developments

In this work, we obtained competitive limits on sterile
neutrino dark matter decay by analyzing GBM data. This is
the first time the GBM data has ben used for a dark matter
search, and we have obtained the strongest constraint avail-
able in the mass range 25-50 keV (Fig. 11). Although we
focused on the implications for the sterile neutrino, our limits
can be applied to all dark matter candidates that produce a
monoenergetic photon in the keV range, such as moduli dark
matter, gravitino dark matter, and other candidates [88—90].
It is straightforward to constrain the parameter space for the
corresponding dark matter candidates using the limit on the
decay rate from Fig. 10, taking into account any normalization
or energy scaling.

Our analysis uses simple data reduction, minimal back-
ground assumptions, and straightforward analysis proce-
dures. Thus there are many ways our results can be improved
with further study.

First, the dominant uncertainty on the data currently
comes from the energy behavior of the effective area. In this
work, we used a constant 5% uncertainty as quoted by the
GBM collaboration, which we then validated against a
power-law assumption. The limit can be improved if this
uncertainty can be better quantified or calibrated, e.g.,
using known background lines.

Second, most of the observed counts come from cosmic-
ray-related events. In this work we did not attempt to model
such background in detail. In principle, this background
can be better understood with simulations of cosmic-ray
interactions with the satellite that take into account the
satellite geometry and composition. Additionally, one can
characterize the cosmic-ray-induced background by satel-
lite positioning, either by using high-energy observations
where the data is background dominated, or using the
Earth’s magnetic field information. One can possibly
construct a template for cosmic-ray-induced events, which
allows background reduction using spatial information.
A significant reduction of the cosmic-ray background can
further improve the dark matter limit for all energies.

The next sources of backgrounds for dark matter
searches are those arising from astrophysical origins, which
dominate at low energies. This background can be modeled
using high-resolution x-ray sky maps from other missions.
One can generate an astrophysical template for the GBM
detectors which can then be used to subtract the astro-
physical contribution from the data.

Importantly, if eventually the data are reduced to a
regime where statistical uncertainties become important,
it is important to treat systematic and statistical uncertainty
simultaneously [90].

In principle, the analysis can be extended to higher
energies. The GBM-Nal detectors are sensitive up to
1 MeV and the GBM-BGO detectors extend to 40 MeV,
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which is even higher than INTEGRAL and complementary
to COMPTEL. However, at higher energies, the Nal
detectors start to observe photons from backward directions
due to either rescattering or penetrating photons. The BGO
detectors are designed to be sensitive to both front and
back directions. A dedicated analysis taking into account this
detector response for signal modeling is therefore necessary.

B. Astrophysical implications

It is important to highlight that our novel use of the GBM
successfully detects the Galactic astrophysical component
at 10-20 keV energies, as shown in Figs. 5 and 7. Due to
the broad point spread function of the Nal detector, this
seemingly diffuse astrophysical component contains all
point-source emission near the GC, and possibly some
diffuse emission. GBM observations may be used to
impose interesting limits on the total Galactic astrophysical
emission, which would extend the results from INTEGRAL
[83—-85] down to ~10 keV.

To constrain the astrophysical component, it is necessary
to further reduce the detector background (see suggestions
in the previous section). The analysis procedures would
also need to be modified for a continuum spectrum. Such an
analysis and a detailed interpretation of the astrophysical
component are beyond the scope of this work.

C. Conclusion

We used data obtained by a GBM Nal detector (det-7),
on board Fermi to set limits on dark matter decaying into
monoenergetic photons. We first performed a conservative
flux analysis, based on comparing the total flux normali-
zation of the data and the model. We then performed a
spectral analysis that assumed the total of non-dark matter
contributions exhibits a power-law flux spectrum within the
search window. Our spectral analysis was able to improve
the limit by about an order of magnitude compared to
previous searches using CXB with HEAO-1 data for line
energies in the 10-25 keV energy range, or a 20-50 keV
sterile neutrino mass.

PHYSICAL REVIEW D 92, 043503 (2015)

Conventionally used to detect and locate transients such
as gamma-ray bursts, this is the first time that the GBM has
been used to construct an all-sky map and search for dark
matter emissions. After performing careful background
reduction procedures, we were able to detect the astro-
physical component centered on the GC.

Dark matter searches with GBM benefit from the large
sky coverage and good energy resolution. Although the
GBM does not have excellent angular resolution, this is
not a severe problem for decaying dark matter for which
the expected Milky Way signal is appreciably extended.
A unique advantage of the GBM-Nal detectors is that
they are sensitive to an energy range that is too high
for x-ray telescopes such as Chandra, Suzaku, and
XMM-Newton, but too low for INTEGRAL, therefore
filling an energy gap that was last probed by HEAO-1 in
the late 1970s.

The current search sensitivity is dominated by systematic
uncertainties in the effective area. A better understanding of
GBM detector response through simulation or calibration,
as well as a better understanding of detector and astro-
physical backgrounds, can substantially improve the data
quality and resulting limits.

ACKNOWLEDGMENTS

We especially thank John Beacom for many helpful
comments throughout the course of this work. We thank
Shirley Li for helpful comments and lending CPU power,
and Mark Finger (Universities Space Research Association
Huntsville) for providing transient cuts for the GBM
data. This work is supported by NASA Grant
No. NNX11AO46G. K.C.Y. N. was supported by NSF
Grant No. PHY-1101216 and PHY-1404311 to John
Beacom. S.H. was supported by a Research Fellowship
for Research Abroad by JSPS. J. G. acknowledges support
from NASA through Einstein Postdoctoral Fellowship Grant
No. PF1-120089 awarded by the Chandra x-ray Center,
which is operated by the Smithsonian Astrophysical
Observatory for NASA under Contract No. NAS8-03060.

[1] K. Abazajian et al., arXiv:1204.5379.

[2] A. Kusenko and G. Segre, Phys. Lett. B 396, 197
(1997).

[3] J. Hidaka and G. M. Fuller, Phys. Rev. D 74, 125015 (2006).

[4] G. M. Fuller, A. Kusenko, I. Mocioiu, and S. Pascoli, Phys.
Rev. D 68, 103002 (2003).

[5] M. Barkovich, J. D’Olivo, and R. Montemayor, Phys. Rev.
D 70, 043005 (2004).

[6] C.L. Fryer and A. Kusenko, Astrophys. J. Suppl. Ser. 163,
335 (2000).

[7]1 A. Dolgov, S. Hansen, G. Raffelt, and D. Semikoz, Nucl.
Phys. B590, 562 (2000).
[8] K. Abazajian, N.F. Bell, G. M. Fuller, and Y.Y. Wong,
Phys. Rev. D 72, 063004 (2005).
[9] C.J. Smith, G. M. Fuller, and M. S. Smith, Phys. Rev. D 79,
105001 (2009).
[10] R. Barkana, Z. Haiman, and J. P. Ostriker, Astrophys. J. 558,
482 (2001).
[11] S.H. Hansen and Z. Haiman, Astrophys. J. 600, 26
(2004).

043503-14


http://arXiv.org/abs/1204.5379
http://dx.doi.org/10.1016/S0370-2693(97)00121-4
http://dx.doi.org/10.1016/S0370-2693(97)00121-4
http://dx.doi.org/10.1103/PhysRevD.74.125015
http://dx.doi.org/10.1103/PhysRevD.68.103002
http://dx.doi.org/10.1103/PhysRevD.68.103002
http://dx.doi.org/10.1103/PhysRevD.70.043005
http://dx.doi.org/10.1103/PhysRevD.70.043005
http://dx.doi.org/10.1086/500933
http://dx.doi.org/10.1086/500933
http://dx.doi.org/10.1016/S0550-3213(00)00566-6
http://dx.doi.org/10.1016/S0550-3213(00)00566-6
http://dx.doi.org/10.1103/PhysRevD.72.063004
http://dx.doi.org/10.1103/PhysRevD.79.105001
http://dx.doi.org/10.1103/PhysRevD.79.105001
http://dx.doi.org/10.1086/322393
http://dx.doi.org/10.1086/322393
http://dx.doi.org/10.1086/379636
http://dx.doi.org/10.1086/379636

IMPROVED LIMITS ON STERILE NEUTRINO DM ...

[12] M. Mapelli and A. Ferrara, Mon. Not. R. Astron. Soc. 364, 2
(2005).

[13] P. L. Biermann and A. Kusenko, Phys. Rev. Lett. 96, 091301
(2000).

[14] M. Mapelli, A. Ferrara, and E. Pierpaoli, Mon. Not. R.
Astron. Soc. 369, 1719 (2006).

[15] S. Yeung, M. Chan, and M.-C. Chu, Astrophys. J. 755, 108
(2012).

[16] M. Cirelli, G. Marandella, A. Strumia, and F. Vissani, Nucl.
Phys. B708, 215 (2005).

[17] S. Dodelson and L.M. Widrow, Phys. Rev. Lett. 72, 17
(1994).

[18] X.-D. Shi and G.M. Fuller, Phys. Rev. Lett. 82, 2832
(1999).

[19] M. Shaposhnikov and I. Tkachev, Phys. Lett. B 639, 414
(2000).

[20] A. Kusenko, Phys. Rev. Lett. 97, 241301 (2006).

[21] A. Merle, V. Niro, and D. Schmidt, J. Cosmol. Astropart.
Phys. 03 (2014) 028.

[22] M. Frigerio and C. E. Yaguna, Eur. Phys. J. C 75, 31 (2015).

[23] L. Lello and D. Boyanovsky, Phys. Rev. D 91, 063502
(2015).

[24] A. Merle and M. Totzauer, J. Cosmol. Astropart. Phys. 06
(2015) 011.

[25] K. Abazajian, G. M. Fuller, and M. Patel, Phys. Rev. D 64,
023501 (2001).

[26] T. Asaka, M. Laine, and M. Shaposhnikov, J. High Energy
Phys. 01 (2007) 091.

[27] K. Petraki and A. Kusenko, Phys. Rev. D 77, 065014
(2008).

[28] A. Boyarsky, J. Lesgourgues, O. Ruchayskiy, and M. Viel,
J. Cosmol. Astropart. Phys. 05 (2009) 012.

[29] D. Boyanovsky and J. Wu, Phys. Rev. D 83, 043524 (2011).

[30] E. K. Akhmedov, V. Rubakov, and A.Y. Smirnov, Phys.
Rev. Lett. 81, 1359 (1998).

[31] T. Asaka, S. Blanchet, and M. Shaposhnikov, Phys. Lett. B
631, 151 (2005).

[32] T. Asaka and M. Shaposhnikov, Phys. Lett. B 620, 17
(2005).

[33] A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, Annu.
Rev. Nucl. Part. Sci. 59, 191 (2009).

[34] P.B. Pal and L. Wolfenstein, Phys. Rev. D 25, 766 (1982).

[35] V.D. Barger, R. Phillips, and S. Sarkar, Phys. Lett. B 352,
365 (1995).

[36] A. Kusenko, Phys. Rep. 481, 1 (2009).

[37] A. Kusenko and L.J. Rosenberg, arXiv:1310.8642.

[38] A. Dolgov and S. Hansen, Astropart. Phys. 16, 339
(2002).

[39] K. Abazajian, G. M. Fuller, and W. H. Tucker, Astrophys. J.
562, 593 (2001).

[40] A. Boyarsky, A. Neronov, O. Ruchayskiy, and M.
Shaposhnikov, Phys. Rev. D 74, 103506 (2006).

[41] K. Abazajian and S.M. Koushiappas, Phys. Rev. D 74,
023527 (2006).

[42] S. Riemer-Sorensen, K. Pedersen, S.H. Hansen, and H.
Dahle, Phys. Rev. D 76, 043524 (2007).

[43] A. Boyarsky, O. Ruchayskiy, and M. Markevitch,
Astrophys. J. 673, 752 (2008).

[44] C.R. Watson, J.F. Beacom, H. Yuksel, and T. P. Walker,
Phys. Rev. D 74, 033009 (2006).

PHYSICAL REVIEW D 92, 043503 (2015)

[45] A. Boyarsky, D. Iakubovskyi, O. Ruchayskiy, and V.
Savchenko, Mon. Not. R. Astron. Soc. 387, 1361 (2008).

[46] C.R. Watson, Z.-Y. Li, and N.K. Polley, J. Cosmol.
Astropart. Phys. 03 (2012) 018.

[47] S. Horiuchi, P.J. Humphrey, J. Ofiorbe, K. N. Abazajian, M.
Kaplinghat, and S. Garrison-Kimmel, Phys. Rev. D 89,
025017 (2014).

[48] E. Borriello, M. Paolillo, G. Miele, G. Longo, and R. Owen,
Mon. Not. R. Astron. Soc. 425, 1628 (2012).

[49] A. Boyarsky, A. Neronov, O. Ruchayskiy, and M.
Shaposhnikov, Mon. Not. R. Astron. Soc. 370, 213 (2006).

[50] A.Boyarsky, A. Neronov, O. Ruchayskiy, M. Shaposhnikov,
and I. Tkachev, Phys. Rev. Lett. 97, 261302 (2006).

[51] K. N. Abazajian, M. Markevitch, S. M. Koushiappas, and
R. C. Hickox, Phys. Rev. D 75, 063511 (2007).

[52] N. Sekiya, N.Y. Yamasaki, and K. Mitsuda,
arXiv:1504.02826.

[53] A. Boyarsky, J. Nevalainen, and O. Ruchayskiy, Astron.
Astrophys. 471, 51 (2007).

[54] M. Loewenstein, A. Kusenko, and P.L. Biermann,
Astrophys. J. 700, 426 (2009).

[55] S. Riemer-Sorensen and S. H. Hansen, arXiv:0901.2569.

[56] M. Loewenstein and A. Kusenko, Astrophys. J. 714, 652
(2010).

[57]1 N. Mirabal, Mon. Not. R. Astron. Soc. 409, L128
(2010).

[58] S. Riemer-Sorensen, S.H. Hansen, and K. Pedersen,
Astrophys. J. 644, L33 (2006).

[59] H. Yuksel, J. F. Beacom, and C. R. Watson, Phys. Rev. Lett.
101, 121301 (2008).

[60] A.Boyarsky, D. Malyshev, A. Neronov, and O. Ruchayskiy,
Mon. Not. R. Astron. Soc. 387, 1345 (2008).

[61] D. Prokhorov and J. Silk, Astrophys. J. Lett. 725, L131
(2010).

[62] A.Boyarsky, O. Ruchayskiy, D. lakubovskyi, M. G. Walker,
S. Riemer-Sgrensen, and S.H. Hansen, Mon. Not. R.
Astron. Soc. 407, 1188 (2010).

[63] M. Loewenstein and A. Kusenko, Astrophys. J. 751, 82
(2012).

[64] E. Bulbul, M. Markevitch, A. Foster, R. K. Smith, M.
Loewenstein, and S.W. Randall, Astrophys. J. 789, 13
(2014).

[65] A. Boyarsky, O. Ruchayskiy, D. lakubovskyi, and J. Franse,
Phys. Rev. Lett. 113, 251301 (2014).

[66] S. Riemer-Sorensen, arXiv:1405.7943 [Phys. Rev. D (to be
published)].

[67] T.E. Jeltema and S. Profumo, Mon. Not. R. Astron. Soc.
450, 2143 (2015).

[68] A. Boyarsky, J. Franse, D. lakubovskyi, and O. Ruchayskiy,
arXiv:1408.2503 [Phys. Rev. Lett. (to be published)].

[69] D. Malyshev, A. Neronov, and D. Eckert, Phys. Rev. D 90,
103506 (2014).

[70] M.E. Anderson, E. Churazov,
arXiv:1408.4115.

[71] E. Carlson, T. Jeltema, and S. Profumo, J. Cosmol.
Astropart. Phys. 02 (2015) 009.

[72] T. Tamura, R. lizuka, Y. Maeda, K. Mitsuda, and N.Y.
Yamasaki, Publ. Astron. Soc. Jpn. 67, 23 (2015).

[73] V. Bonnivard et al., arXiv:1504.02048.

[74] K.N. Abazajian, Phys. Rev. Lett. 112, 161303 (2014).

and J.N. Bregman,

043503-15


http://dx.doi.org/10.1111/j.1365-2966.2005.09507.x
http://dx.doi.org/10.1111/j.1365-2966.2005.09507.x
http://dx.doi.org/10.1103/PhysRevLett.96.091301
http://dx.doi.org/10.1103/PhysRevLett.96.091301
http://dx.doi.org/10.1111/j.1365-2966.2006.10408.x
http://dx.doi.org/10.1111/j.1365-2966.2006.10408.x
http://dx.doi.org/10.1088/0004-637X/755/2/108
http://dx.doi.org/10.1088/0004-637X/755/2/108
http://dx.doi.org/10.1016/j.nuclphysb.2004.11.056
http://dx.doi.org/10.1016/j.nuclphysb.2004.11.056
http://dx.doi.org/10.1103/PhysRevLett.72.17
http://dx.doi.org/10.1103/PhysRevLett.72.17
http://dx.doi.org/10.1103/PhysRevLett.82.2832
http://dx.doi.org/10.1103/PhysRevLett.82.2832
http://dx.doi.org/10.1016/j.physletb.2006.06.063
http://dx.doi.org/10.1016/j.physletb.2006.06.063
http://dx.doi.org/10.1103/PhysRevLett.97.241301
http://dx.doi.org/10.1088/1475-7516/2014/03/028
http://dx.doi.org/10.1088/1475-7516/2014/03/028
http://dx.doi.org/10.1140/epjc/s10052-014-3252-1
http://dx.doi.org/10.1103/PhysRevD.91.063502
http://dx.doi.org/10.1103/PhysRevD.91.063502
http://dx.doi.org/10.1088/1475-7516/2015/06/011
http://dx.doi.org/10.1088/1475-7516/2015/06/011
http://dx.doi.org/10.1103/PhysRevD.64.023501
http://dx.doi.org/10.1103/PhysRevD.64.023501
http://dx.doi.org/10.1088/1126-6708/2007/01/091
http://dx.doi.org/10.1088/1126-6708/2007/01/091
http://dx.doi.org/10.1103/PhysRevD.77.065014
http://dx.doi.org/10.1103/PhysRevD.77.065014
http://dx.doi.org/10.1088/1475-7516/2009/05/012
http://dx.doi.org/10.1103/PhysRevD.83.043524
http://dx.doi.org/10.1103/PhysRevLett.81.1359
http://dx.doi.org/10.1103/PhysRevLett.81.1359
http://dx.doi.org/10.1016/j.physletb.2005.09.070
http://dx.doi.org/10.1016/j.physletb.2005.09.070
http://dx.doi.org/10.1016/j.physletb.2005.06.020
http://dx.doi.org/10.1016/j.physletb.2005.06.020
http://dx.doi.org/10.1146/annurev.nucl.010909.083654
http://dx.doi.org/10.1146/annurev.nucl.010909.083654
http://dx.doi.org/10.1103/PhysRevD.25.766
http://dx.doi.org/10.1016/0370-2693(95)00486-5
http://dx.doi.org/10.1016/0370-2693(95)00486-5
http://dx.doi.org/10.1016/j.physrep.2009.07.004
http://arXiv.org/abs/1310.8642
http://dx.doi.org/10.1016/S0927-6505(01)00115-3
http://dx.doi.org/10.1016/S0927-6505(01)00115-3
http://dx.doi.org/10.1086/323867
http://dx.doi.org/10.1086/323867
http://dx.doi.org/10.1103/PhysRevD.74.103506
http://dx.doi.org/10.1103/PhysRevD.74.023527
http://dx.doi.org/10.1103/PhysRevD.74.023527
http://dx.doi.org/10.1103/PhysRevD.76.043524
http://dx.doi.org/10.1086/524397
http://dx.doi.org/10.1103/PhysRevD.74.033009
http://dx.doi.org/10.1111/j.1365-2966.2008.13266.x
http://dx.doi.org/10.1088/1475-7516/2012/03/018
http://dx.doi.org/10.1088/1475-7516/2012/03/018
http://dx.doi.org/10.1103/PhysRevD.89.025017
http://dx.doi.org/10.1103/PhysRevD.89.025017
http://dx.doi.org/10.1111/j.1365-2966.2012.21498.x
http://dx.doi.org/10.1111/j.1365-2966.2006.10458.x
http://dx.doi.org/10.1103/PhysRevLett.97.261302
http://dx.doi.org/10.1103/PhysRevD.75.063511
http://arXiv.org/abs/1504.02826
http://dx.doi.org/10.1051/0004-6361:20066774
http://dx.doi.org/10.1051/0004-6361:20066774
http://dx.doi.org/10.1088/0004-637X/700/1/426
http://arXiv.org/abs/0901.2569
http://dx.doi.org/10.1088/0004-637X/714/1/652
http://dx.doi.org/10.1088/0004-637X/714/1/652
http://dx.doi.org/10.1111/j.1745-3933.2010.00963.x
http://dx.doi.org/10.1111/j.1745-3933.2010.00963.x
http://dx.doi.org/10.1086/505330
http://dx.doi.org/10.1103/PhysRevLett.101.121301
http://dx.doi.org/10.1103/PhysRevLett.101.121301
http://dx.doi.org/10.1111/j.1365-2966.2008.13003.x
http://dx.doi.org/10.1088/2041-8205/725/2/L131
http://dx.doi.org/10.1088/2041-8205/725/2/L131
http://dx.doi.org/10.1111/j.1365-2966.2010.17004.x
http://dx.doi.org/10.1111/j.1365-2966.2010.17004.x
http://dx.doi.org/10.1088/0004-637X/751/2/82
http://dx.doi.org/10.1088/0004-637X/751/2/82
http://dx.doi.org/10.1088/0004-637X/789/1/13
http://dx.doi.org/10.1088/0004-637X/789/1/13
http://dx.doi.org/10.1103/PhysRevLett.113.251301
http://arXiv.org/abs/1405.7943
http://arXiv.org/abs/1405.7943
http://dx.doi.org/10.1093/mnras/stv768
http://dx.doi.org/10.1093/mnras/stv768
http://arXiv.org/abs/1408.2503
http://dx.doi.org/10.1103/PhysRevD.90.103506
http://dx.doi.org/10.1103/PhysRevD.90.103506
http://arXiv.org/abs/1408.4115
http://dx.doi.org/10.1088/1475-7516/2015/02/009
http://dx.doi.org/10.1088/1475-7516/2015/02/009
http://dx.doi.org/10.1093/pasj/psu156
http://arXiv.org/abs/1504.02048
http://dx.doi.org/10.1103/PhysRevLett.112.161303

NG et al.

[75] P. Ade et al. (Planck Collaboration), Astron. Astrophys.
571, Al16 (2014).

[76] H. Grimm, M. Gilfanov, and R. Sunyaev, Astron.
Astrophys. 391, 923 (2002).

[77] V. Dogiel, V. Schoenfelder, and A. Strong, Astron.
Astrophys. 382, 730 (2002).

[78] C. A. Wilson-Hodge et al., Astrophys. J. Suppl. Ser. 201, 33
(2012).

[79] J. Rodi, M. L. Cherry, G.L. Case, A. Camero-Arranz, V.
Chaplin, M. H. Finger, P. Jenke, and C. A. Wilson-Hodge,
Astron. Astrophys. 562, A7 (2014).

[80] E. Bissaldi et al., Exp. Astron. 24, 47 (2009).

[81] C. Meegan et al., Astrophys. J. 702, 791 (2009).

[82] K. Gorski, E. Hivon, A.J. Banday, B.D. Wandelt, F. K.
Hansen, M. Reinecke, and M. Bartelmann, Astrophys. J.
622, 759 (2005).

[83] L. Bouchet, J. P. Roques, P. Mandrou, A. Strong, R. Diehl,
F. Lebrun, and R. Terrier, Astrophys. J. 635, 1103 (2005).

PHYSICAL REVIEW D 92, 043503 (2015)

[84] L. Bouchet, E. Jourdain, J.-P. Roques, A. Strong, R. Diehl,
F. Lebrun, and R. Terrier, Astrophys. J. 679, 1315
(2008).

[85] L. Bouchet, A. W. Strong, T. A. Porter, 1. V. Moskalenko,
E. Jourdain, and J.-P. Roques, Astrophys. J. 739, 29
(2011).

[86] W. A. Rolke, A. M. Lopez, and J. Conrad, Nucl. Instrum.
Methods Phys. Res., Sect. A 551, 493 (2005).

[87] D. Gruber, J. Matteson, L. Peterson, and G. Jung,
Astrophys. J. 520, 124 (1999).

[88] A. Kusenko, M. Loewenstein, and T.T. Yanagida, Phys.
Rev. D 87, 043508 (2013).

[89] R. Essig, E. Kuflik, S.D. McDermott, T. Volansky, and
K. M. Zurek, J. High Energy Phys. 11 (2013) 193.

[90] A. Albert, G. A. G6émez-Vargas, M. Grefe, C. Muiioz,
C. Weniger, E.D. Bloom, E. Charles, M.N. Mazziotta,
and A. Morselli (Fermi-LAT Collaboration), J. Cosmol.
Astropart. Phys. 10 (2014) 023.

043503-16


http://dx.doi.org/10.1051/0004-6361/201321591
http://dx.doi.org/10.1051/0004-6361/201321591
http://dx.doi.org/10.1051/0004-6361:20020826
http://dx.doi.org/10.1051/0004-6361:20020826
http://dx.doi.org/10.1051/0004-6361:20011632
http://dx.doi.org/10.1051/0004-6361:20011632
http://dx.doi.org/10.1088/0067-0049/201/2/33
http://dx.doi.org/10.1088/0067-0049/201/2/33
http://dx.doi.org/10.1051/0004-6361/201321637
http://dx.doi.org/10.1007/s10686-008-9135-4
http://dx.doi.org/10.1088/0004-637X/702/1/791
http://dx.doi.org/10.1086/427976
http://dx.doi.org/10.1086/427976
http://dx.doi.org/10.1086/497419
http://dx.doi.org/10.1086/529489
http://dx.doi.org/10.1086/529489
http://dx.doi.org/10.1088/0004-637X/739/1/29
http://dx.doi.org/10.1088/0004-637X/739/1/29
http://dx.doi.org/10.1016/j.nima.2005.05.068
http://dx.doi.org/10.1016/j.nima.2005.05.068
http://dx.doi.org/10.1086/307450
http://dx.doi.org/10.1103/PhysRevD.87.043508
http://dx.doi.org/10.1103/PhysRevD.87.043508
http://dx.doi.org/10.1007/JHEP11(2013)193
http://dx.doi.org/10.1088/1475-7516/2014/10/023
http://dx.doi.org/10.1088/1475-7516/2014/10/023

