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The possibility that dark matter, whose existence is inferred from the study of galactic rotation curves,
and from the mass deficit in galaxy clusters, can be in the form of a Bose-Einstein condensate has been
extensively investigated lately. In the present work, we consider a detailed analysis of the astrophysical
properties of the Bose-Einstein condensate dark matter halos that could provide clear observational
signatures that help discriminate between different dark matter models. In the Bose-Einstein condensation
model, dark matter can be described as a nonrelativistic, gravitationally confined Newtonian gas, whose
density and pressure are related by a polytropic equation of state with index n ¼ 1. The mass and
gravitational properties of the condensate halos are obtained in a systematic form, including the mean
logarithmic slopes of the density and of the tangential velocity. The lensing properties of the condensate
dark matter are investigated in detail. In particular, a general analytical formula for the surface density, an
important quantity that defines the lensing properties of a dark matter halos, is obtained in the form of series
expansions. This enables arbitrary-precision calculations of the surface mass density, deflection angle,
deflection potential, and of the magnification factor, thus giving the possibility of the comparison of the
predicted lensing properties of the condensate dark matter halos with observations. The stability properties
of the condensate halos are also investigated by using the scalar and the tensor virial theorems, respectively,
and the virial perturbation equation for condensate dark matter halos is derived. As an application of the
scalar virial theorem, we consider the problem of the stability of a slowly rotating and slightly disturbed
galactic dark matter halo. For such a halo, the oscillation frequencies and the stability conditions are
obtained in the linear approximation.
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I. INTRODUCTION

The polytropic gas model, in which the pressure P has a
simple power law dependence of the matter energy density
ρ, given by P ¼ Kργ, plays an important role in the
modeling of self-gravitating systems of compact astro-
physical objects, such as white dwarfs and neutron stars, as
well as in the study of the equation of state of nuclear
matter. Usually the polytropic equation of state is repre-
sented as P ¼ Kρ1þ1=n, where n is called the polytropic
index. The Poisson and the hydrostatic equilibrium equa-
tions for a self-gravitating, spherically symmetric poly-
tropic fluid can be combined to provide the basic equation
describing the equilibrium properties of the system as

1

ζ2
d
dζ

�
ζ2

dθ
dζ

�
þ θn ¼ 0; ð1Þ

where the dimensionless quantities θ and ξ are defined as
ρ ¼ ρcθ

n and ζ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρ2c=ðnþ 1ÞPc

p
r, with ρc andPc the

central energy density and pressure, respectively.
Equation (1) is known as the Lane-Emden equation, and
its physical, astrophysical andmathematical properties have
been intensively studied by using both analytical and
numerical methods. It admits only three exact solutions,
corresponding to n ¼ 0, n ¼ 1 and n ¼ 3, respectively [1].
From these three solutions, the unusual solution corre-

sponding to n ¼ 1, having the form θ ¼ sin ζ=ζ, does not
seem at first sight to have many realistic physical proper-
ties, and consequently it has been less investigated, as
compared to the other solutions. However, somehow
unexpectedly, the n ¼ 1 polytropic equation of state
appears in a fundamental field of research apparently
unrelated to astrophysics, namely, the theory of the con-
densed Bose-Einstein cold atomic gases. A basic result in
quantum statistical mechanics is that at very low temper-
atures, in a dilute Bosonic system (Bose gas), all particles
condense to the same quantum ground state, forming a so-
called Bose-Einstein condensate (BEC). From a physical
point of view, a BEC is characterized by a sharp peak in
both coordinate and momentum space distribution. The
BEC phase transition takes place when the particles are
correlated with each other quantum mechanically. This
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happens when their wavelengths overlap; that is, the
thermal de Broglie wavelength λT becomes greater than
the mean interparticles distance l. Hence, the BEC tran-
sition occurs at a temperature

T <

�
2πℏ2

mkB

�
n2=3; ð2Þ

where m is the mass of the particle in the condensate, n is
the number density, and kB is Boltzmann’s constant [2–9].
A coherent quantum condensate state develops in two
physical situations: a) when the particle density is high
enough, or b) the system temperature is sufficiently low.
The Bose-Einstein condensation has been observed in
laboratory experiments [10–12]. A large number of quan-
tum degenerate gases have been created by a combination
of laser, magnetic and evaporative cooling techniques. The
experimental investigations have opened several new
directions of research, involving atomic, statistical and
condensed matter physics [2–12].
The purpose of this paper will be applications of the BEC

to the dark matter problem. Indeed, the existence of dark
matter is primarily supported by the rotation curve of
galaxies [13–15], and also by the difference between the
masses derived from luminosity and from the virial theorem
in clusters of galaxies [16]. Furthermore, gravitational
lensing data also indicates that light deflection is more
accentuated than would be to visible matter alone [17].
Thus, by introducing a new matter component, denoted
dark matter, it is possible to explain all of these observa-
tional phenomena. However, the nature of dark matter, and
its constituent particle(s), still remain essentially unknown,
despite several decades of intensive research. For reviews
on the dark matter problem, see [17,18].
In this context, the possibility that dark matter could be

in the form of a Bose-Einstein condensate was analyzed in
detail in [19] (for earlier work in this field, see [20–23]). In
particular, the equation of state of the condensate dark
matter was obtained as a polytropic equation of state of
index n ¼ 1, and the corresponding density profile was
discussed. The theoretical rotation curves were fitted with
the observational data from a sample of Low Surface
Brightness (LSB) galaxies, and it was pointed out that
the lensing properties may discriminate between the stan-
dard pressureless and the condensate dark matter models.
The physical and astrophysical properties of Bose-Einstein
condensate dark matter halos were investigated in [24].
Recently, the rotation curves in the Bose-Einstein con-

densate dark matter model were analyzed in [25], and a
good agreement with observations was found. A compari-
son of the predicted rotation curves with the observational
data for eight dwarf galaxies was performed in [26], and it
was shown that the presence of the condensate dark matter
can solve the core/cusp problem faced by the standard
ΛCDM (Λcold dark matter) model. The effects of the

angular momentum and on the vortices on the equilibrium
of self-gravitating, rotating BEC haloes which satisfy the
Gross-Pitaevskii-Poisson equations were considered in
[27–31]. In a Bose-Einstein condensate vortices form as
long as the self-interaction is strong enough, which is not
the case for axionic dark matter. The galactic masses in the
framework of the condensate model were discussed in
[32,33], and the effects of the finite temperature of the
condensate on the density profiles were studied in [34]. The
equilibrium properties of Newtonian self-gravitating Bose-
Einstein condensates with short-range interactions were
investigated in detail in [35,36]. The study of the cosmo-
logical implications of the Bose-Einstein condensation has
also become an active field of research [37–46]. In
particular, in [44] it was shown that condensate dark matter
effects can be seen in the CMB matter power spectrum if
the mass mχ of the condensate particle lies in the range
15 meV < mχ < 700 meV, leading to a small, but percep-
tible, excess of power at large scales. The possibility of the
existence of the BEC stars was also considered [47], while
BEC string models were investigated in [48].
One of the central issue in the study of Bose-Einstein

condensate dark matter halos is the nature, and properties,
of the dark matter particle. One of the most interesting dark
matter particle candidate is the axion, a (still) hypothetical
elementary particle postulated by the Peccei-Quinn theory
[49] to resolve the strong CP problem in quantum
chromodynamics. It was shown in [50] that dark matter
axions do form a BEC, as a result either of their self-
interactions, or as a result of their gravitational interactions.
It was also proven, from the study of the cosmological
perturbations, that axion Bose-Einstein condensate dark
matter halos differ from standard cold dark matter ones on
small scales only. Unlike vortices in superfluid He4 and
dilute gases, the vortices in the axion Bose-Einstein
condensate dark matter are attractive [51]. Therefore, a
large fraction of the vortices in the axion BEC may form a
single big vortex along the rotation axis of the galaxy. The
resulting enhancement of caustic rings could explain the
rises in the Milky Way rotation curve, usually attributed to
caustic rings. The properties of the axionic dark matter have
been extensively investigated in [52].
It is the purpose of the present paper to extend the

previous investigations of the n ¼ 1 polytropic Bose-
Einstein dark matter halos, by considering in detail and
in a systematic way the observationally relevant physical
parameters. As a first step in this study we consider the
mass and gravitational properties of the dark matter halos in
the condensate model. The gravitational potential and
energy of the halo, its kinetic energy, as well as the
observationally extremely important logarithmic slopes
of the density and velocity profiles are obtained. One of
the most important method which could discriminate
between the condensate model and other dark matter
models is gravitational lensing. We obtain and present in
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detail, in an analytical form, the physical parameters
(surface mass density, deflection angle and magnification
etc.) necessary for the analysis and comparison of the
observational data with the predictions of the model.
Finally, the formulations of the virial theorem are obtained
for rotating and nonrotating dark matter halos, the virial
perturbation equation is derived, and some general stability
conditions are formulated. As an application of the scalar
virial theorem we consider in detail the problem of the
stability of a slowly rotating and slightly disturbed galactic
dark matter halo. By introducing a mathematical descrip-
tion based on the Lagrangian displacements, from the
scalar virial theorem we obtain the equation describing
the time evolution of the perturbations. The oscillations
frequencies and the stability conditions of the Bose-
Einstein condensate dark matter galactic halo are obtained
in the linear approximation.
The present paper is organized as follows. In Sec. II, the

basic equations describing the Bose-Einstein condensate
dark matter halos are presented. In Sec. III, the general
gravitational properties of the condensate halos are inves-
tigated. The gravitational lensing by dark matter halos is
considered in Sec. IV. The virial theorem for Bose-Einstein
condensate dark matter halos and their stability properties
are presented in Sec. V. As an application of the scalar virial
theorem we consider the problem of the stability of a slowly
rotating and slightly disturbed galactic dark matter halo is
considered in Sec. VI. We discuss and conclude our results
in Sec. VII.

II. BOSE-EINSTEIN CONDENSATE DARK
MATTER HALOS

The transition of the dark bosonic component to Bose-
Einstein condensed state is assumed to have taken place
during the cosmological expansion of the Universe at a
redshift of around z ≈ 1400–1500 [43]. At that moment the
temperature and the matter density of the Universe did
satisfy the condition given by Eq. (2). Due to the expansion
of the Universe, its temperature and density further
decreased. In the following we make the fundamental
assumption that the dark matter halos are composed of a
strongly coupled cold dilute Bose-Einstein condensate, at
absolute zero temperature. Hence, this assumption implies
that almost all of the dark matter particles are in the
condensate. Since the dark matter halo is dilute and cold,
only binary collisions at low energy between dark matter
particles are relevant. Therefore, independently of the
details of the two-body potential, it follows that the
collisions can be characterized by a single physical param-
eter, the s-wave scattering length la [2,8]. Therefore, with
an excellent approximation, one can substitute the inter-
action potential with an effective interaction term of the
form VIð~r0 − ~rÞ ¼ U0δð~r0 − ~rÞ, where the coupling con-
stant U0 is related to the scattering length la through the
relationU0 ¼ 4πℏ2la=mχ , wheremχ is the mass of the dark

matter particle [2,8]. In this approach the ground state
properties of the dark matter are described by the mean-
field Gross-Pitaevskii (GP) equation [2,8,9]. The GP
equation for the dark matter halos can be derived from
the GP energy functional [2,8,9,53],

E½ψ � ¼
Z �

ℏ2

2mχ
j∇ψð~rÞj2 þ U0

2
jψð~rÞj4

−mχψ
�ð~rÞ ~Ω · ð~r × ~pÞψð~rÞ

�
d3~r

−
1

2
Gm2

χ

Z Z jψð~rÞj2jψð~r0Þj2
j~r − ~r0j d3~rd3~r0

¼ EK þ Eint þ Erot þ Egrav; ð3Þ

where ψð~rÞ is the wave function of the condensate [2,5–9].
The first term in the energy functional is the quantum
pressure (kinetic energy EK), the second is the interaction
energy Eint, the third term is the rotational energy Erot, with
~Ω the angular velocity, and ~p the condensate momentum,
and the fourth term is the gravitational potential
energy, respectively. The mass density of the condensate
is defined as

ρð~rÞ ¼ mχ jψð~rÞj2; ð4Þ

and the normalization condition is N ¼ R jψð~rÞj2d3~r,
where N is the total number of dark matter particles.
The variational procedure,

δE½ψ � − μδ

Z
jψð~rÞj2d3~r ¼ 0; ð5Þ

provides the GP equation as [2,5–9]

−
ℏ2

2m
∇2ψð~rÞ þmχVgravð~rÞψð~rÞ

þ U0jψð~rÞj2ψð~rÞ −ΩLzψð~rÞ ¼ μψð~rÞ; ð6Þ

where the Lagrangian multiplier μ is the chemical potential,
and the confining gravitational potential Vgrav satisfies the
Poisson equation

∇2Vgrav ¼ 4πGρ: ð7Þ

The term ΩLz ¼ iℏðx∂yy∂xÞ is due to the rotation of the
system about the z axis with an angular frequency Ω. For a
rotating Bose-Einstein condensate dark matter halo, its
rotational energy may be approximated as [9]

Erot ¼
1

2
mχ

Z
V
ω2ðΩÞðx2 þ y2Þjψð~rÞj2d3~r; ð8Þ
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where ω is some function of the angular velocity of the
rotation Ω.
In the physically important case when the number of

particles in the condensate becomes large enough, the
quantum pressure term makes a significant contribution to
the thermodynamical parameters only near the boundary,
and it is much smaller than the interaction energy term.
Thus, for this case the quantum pressure term can be
neglected (the Thomas-Fermi approximation). When
N → ∞, it can be proven explicitly that the Thomas-
Fermi approximation becomes exact [2,5–9]. Therefore,
we obtain

ρð~rÞ ¼ mχ

U0

�
μ −mχVgravð~rÞ −

1

2
mχω

2ðx2 þ y2Þ
�
: ð9Þ

In the nonrotating case, besides the conservation of the
total energy E ¼ E0 þ

R
mχVgravjψ j2d3~r, where

E0 ¼
Z �

ℏ2

2mχ
j∇ψð~rÞj2 þ U0

2
jψð~rÞj4

�
d3~r; ð10Þ

the GP energy functional provides two more conservation
laws, the continuity equation

∂ρ
∂t þ∇ · ~j ¼ 0; ð11Þ

where the momentum ~j is given by

~j ¼ iℏ
2
ðψ∇ψ� − ψ�∇ψÞ; ð12Þ

and the momentum conservation equation [54,55],

∂ji
∂t þ

∂Πik

∂xk ¼ −ρ
∂Vgrav

∂xi ; i; k ¼ 1; 2; 3; ð13Þ

with

Πik ¼
ℏ2

4mχ

�∂ψ
∂xi

∂ψ�

∂xk − ψ
∂2ψ�

∂xi∂xk þ c:c:

�
þ pδik; ð14Þ

where c.c. denotes complex conjugation, and the quantum
pressure p is given by

p ¼ U0

2mχ
ρ2 ¼ 2πℏ2la

m2
χ

ρ2: ð15Þ

By representing the wave function as ψð~r; tÞ ¼
ρð~r; tÞ exp ½iφð~r; tÞ�, the velocity of the condensate can
be defined as vð~r; tÞ ¼ ðℏ=mχÞ∇φð~r; tÞ. Then Eq. (11)
leads to the mass conservation equation

∂ρ
∂t þ∇ · ðρ~vÞ ¼ 0; ð16Þ

and taking into account the Thomas-Fermi approximation,
Eq. (13) gives the basic evolution equation of the Bose-
Einstein condensate dark matter halos,

∂
∂t ρvi þ

∂
∂xk ðρvivk þ pδikÞ ¼ −ρ

∂Vgrav

∂xi : ð17Þ

Formally, Eq. (17) is identical to the Euler equation in
standard hydrodynamics, however, the distinctive feature of
the Bose-Einstein condensate is that its flow is, in general,
irrotational, ∇ × ~v ¼ 0 [9,55]. After applying the ∇2

operator on both sides of Eq. (9), the Poisson equation
becomes

∇2ρþ k2ρ ¼ 0; ð18Þ

where for simplicity we have denoted

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGm2

χ

U0

s
: ð19Þ

Note that if the condensate is rotating at an angular

velocity ~Ω that is greater than the critical one ~Ωcr, its energy
is minimized via a creation of vortices. Hence, it follows
that the phase of the condensate order parameter changes
by 2π around a path that includes vortex lines,

∇ × ~v ¼ ℏ
mχ

∇ ×∇φð~rÞ ¼ 2πℏ
mχ

~n
X
j

δð2Þð~r − ~rjÞ; ð20Þ

where ~n is a unitary vector along a vortex line, ~rj is the
radius vector of a vortex line in the plane orthogonal to the
unit vector ~n, and δð2Þ is a two-dimensional delta function in
the corresponding plane [9,55].
In order to write the Euler equation Eq. (17) in a frame

rotating uniformly with the angular velocity ~Ω; we need to
add to the right-hand side of the Euler equation the

centrifugal potential j ~Ω × ~rj=2, and the Coriolis acceler-

ation 2~u × ~Ω, respectively, where ~u is the condensate
velocity in the rotating frame. Therefore, the equations
of motion of an inviscid Bose-Einstein condensate, rotating

at a constant angular velocity ~Ω in the presence of a
confining gravitational field, are given, in Cartesian coor-
dinates, by [9,55]

ρ
duj
dt

− 2ρεjklΩkul ¼ −
∂p
∂xj − ρ

∂
∂xj

�
Vgrav −

1

2
j ~Ω × ~rj2

�
;

ð21Þ
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where εjkl is the completely antisymmetric unit tensor of
rank three.

III. MASS AND GRAVITATIONAL PROPERTIES
OF STATIC CONDENSED DARK MATTER HALOS

For static (nonrotating) condensates ω ¼ 0, the general
solution of Eq. (18), describing the density distribution ρ of
the static gravitationally bounded single component dark
matter Bose-Einstein condensate is given by [19]

ρðrÞ ¼ ρc
sin kr
kr

; ð22Þ

where ρc is the central density of the condensate,
ρc ¼ ρð0Þ. Therefore, the Bose-Einstein condensate dark
matter profile is given by the n ¼ 1 polytropic density
profile.
The n ¼ 1 polytropic Bose-Einstein condensate dark

matter density profile has a well defined boundary radius R,
at which the dark matter density vanishes, so that ρðRÞ ¼ 0.
From this condition we obtain R in the form kR ¼ π, which
fixes the radius of the condensate dark matter halo as

R ¼ π

k
¼ π

ffiffiffiffiffiffiffiffiffiffi
ℏ2la
Gm3

χ

s
: ð23Þ

For r > R the density is smaller than zero, so that the
n ¼ 1 polytropic density profile cannot be extended to
infinity, that is, beyond its sharp boundary. For small values
of r the condensate dark matter profile can be written as

ρ ¼ ρc

�
1 −

π2

6R2
r2 þ π4

120R4
r4 þ � � �

�
: ð24Þ

The logarithmic slope αBE of the Bose-Einstein profile is
given by [56]

αDMðrÞ ¼ −
d ln ρ
d ln r

¼ 1 − kr cot ðkrÞ: ð25Þ

Note that Eq. (25) is not of the power law form
αDMðrÞ ∼ rn, where n is a positive number defining the
steepness of the power law, as are most of the density
profiles used in the current astrophysical research. For
r → 0, αDMð0Þ ¼ 0, while at the surface of the dark halo,
where kR ¼ π, αDM diverges, so that limkr→παDM ¼ −∞.
For small values of r the logarithmic slope can be written
as αDMðrÞ ≈ k2r2=3þ k4r4=45þOðrÞ6.
The mass profile mðrÞ ¼ 4π

R
r
0 ρðrÞr2dr of the Bose-

Einstein condensate galactic halo is

mðrÞ ¼ 4πρc
k2

r

�
sin ðkrÞ

kr
− cos ðkrÞ

�

¼ 4

π
R2rρðrÞαDMðrÞ: ð26Þ

The total mass M of the condensate is

MðRÞ ¼ 4π2ρc
k3

¼ 4

π
ρcR3; ð27Þ

which represents a simple cubic proportionality between
mass and radius. The mass of the condensate is around
three times smaller than the mass of a constant ρc density
sphere. The central density of the condensate is determined
by the total mass MðRÞ and the radius of the condensate as

ρc ¼
πMðRÞ
4R3

: ð28Þ

The mean density hρi ¼ 3M=4πR3 of the condensate can
be obtained as

hρi ¼ 3ρc
k2R2

¼ 3ρc
π2

: ð29Þ

Alternatively, we can define the mean density of the dark
matter halo as

ρ̄ ¼ 1

R

Z
R

0

ρðrÞdr ¼ SiðπÞ
π

ρc ¼ 0.5895ρc; ð30Þ

where SiðxÞ ¼ R
x
0 sinðxÞdx=x, and SiðπÞ ¼ 1.8519.

The gravitational potential VgravðrÞ of the condensed
dark matter distribution is determined by the equation

VgravðrÞ ¼ G
Z

R

r

mðr0Þdr0
r02

¼ 4GρcR3

π2r
sin

�
πr
R

�
; r ≤ R: ð31Þ

At small radii the potential behaves as

VgravðrÞ ≈
4GρcR2

π
−
2πGρc

3
r2 þ π3Gρc

30R2
r4 þOðrÞ6; ð32Þ

for r ≤ R.
The gravitational potential energy UðrÞ per unit mass

and inside radius r of the condensed dark matter halo is
given by

UðrÞ ¼ −4πG
Z

r

0

ρðrÞmðrÞ
r

r2dr ¼ −
2GR4ρ2c

π3

×

�
2πr

�
2þ cos

�
2πr
R

��
− 3R sin

�
2πr
R

��
: ð33Þ
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The total potential energy of the halo is given by

UðRÞ ¼ −
12π3G
k5

ρ2c ¼ −
12Gρ2c
π2

R5: ð34Þ

The intrinsic velocity dispersion for an isotropic model
can be obtained from the definition

hv2rðrÞi ¼
1

ρðrÞ
Z

R

r

GMðr0Þρðr0Þdr0
r02

ð35Þ

and is given by

hv2rðrÞi ¼
2GR3ρc
π2r

sin

�
πr
R

�
¼ 2GR2

π
ρðrÞ: ð36Þ

One can define a kinetic energy K of the halo in terms of
the average velocity dispersion σV as

KðrÞ ¼ 3

2

Z
ρðrÞσ2VðrÞdV: ð37Þ

If the velocity dispersion is a constant, we obtain

KðrÞ ¼ 6πρc
k2

σ2Vr

�
sin ðkrÞ

kr
− cos ðkrÞ

�
; ð38Þ

and

KðRÞ ¼ 6π2ρc
k3

σ2V ¼ 6ρc
π

σ2VR
3: ð39Þ

For the ratio of the kinetic and potential energy, we obtain

KðRÞ
jUðRÞj ¼

k2

2πGρc
σ2V ¼ π

2GρcR2
σ2V: ð40Þ

The tangential velocity of a test particle moving in the
condensed dark halo can be represented as [19]

V2ðrÞ ¼ GmðrÞ
r

¼ 4πGρc
k2

�
sin ðkrÞ

kr
− cos ðkrÞ

�

¼ 4GR2

π
ρðrÞαDMðrÞ: ð41Þ

The velocity at the vacuum boundary of the halo has the
maximum value

V2ðRÞ ¼ 4πGρc
k2

¼ 4GρcR2

π
¼ GMðRÞ

R
: ð42Þ

Therefore,

KðRÞ
jUðRÞj ¼ 2

σ2V
V2ðRÞ ¼

2R
GMðRÞ σ

2
V: ð43Þ

Similarly to the case of the density we can define a mean
value of the tangential velocity as V̄2 ¼ ð1=RÞ R R

0 V2ðrÞdr,
and which is given by

V̄2 ¼ 4G
π2

SiðπÞρcR2: ð44Þ

The logarithmic slope of the tangential velocity is defined
as βV ¼ −d lnV=d ln r, and is given by

βV ¼ 1

2

�
1þ 1

R
π2r2

πr cotðπr=RÞ − R

�

¼ 1

2

�
1 −

π2

αDMðrÞ
�
r
R

�
2
�
: ð45Þ

When r ¼ 0, βV ¼ −1, while βV ¼ 1=2 at the vacuum
boundary of the dark matter halo.
One can define the core (inner) radius Rcore of the Bose-

Einstein condensate dark matter halos as the radius which
satisfies the condition αDMðRcoreÞ ¼ 1 [25]. By taking into
account the definition of the logarithmic density slope, we
obtain for the core radius the relation kRcore ¼ π=2, or

Rcore ¼
R
2
: ð46Þ

The mean value of the logarithmic density slope within
the radius 0 ≤ r ≤ Rcore can be defined as [56]

hαDMi ¼
1

Rcore

Z
Rcore

0

αDMðrÞ

¼ 1 −
2

π

Z
π=2

0

x cot xdx; ð47Þ

and it has the universal value

hαDMi ¼ 0.3068: ð48Þ

For the mean of the logarithmic slope of the tangential
velocity, we obtain

hβVi ¼
1

Rcore

Z
Rcore

0

βVðrÞdr

¼ 1

R

Z
R=2

0

�
1 − π2

�
r
R

�
2
�
dr

¼ 1

2

�
1 −

π2

12

�
¼ 0.088: ð49Þ

The density corresponding to the inner radius of the
condensed dark matter halo is

TIBERIU HARKO AND FRANCISCO S. N. LOBO PHYSICAL REVIEW D 92, 043011 (2015)

043011-6



ρðRcoreÞ ¼
2

π
ρc: ð50Þ

Since the radius R (and consequently also the inner core
boundary Rcore) of the dark matter halo is a universal
constant, depending only on the fundamental physical
constants and the mass and scattering length of the dark
matter particles, it follows that for a given central density
the product ρcRcore is a universal constant,

ρcRcore ¼
π

8

MðRÞ
R2

¼ constant: ð51Þ

IV. LENSING PROPERTIES OF CONDENSED
DARK MATTER HALOS

One of the important ways one could test the Bose-
Einstein condensate galactic dark matter model is by
studying the light deflection by galaxies, and in particular
by studying the deflection of photons passing through the
region where the rotation curves are flat. In the present
section, we consider the basic lensing properties of the
condensate dark matter halos. For a discussion of the
gravitational lens properties of scalar field dark matter
haloes, see [57].

A. Surface mass density

The surface mass density of a spherically symmetric lens
is obtained by integrating along the line of sight of the
three-dimensional density profile, ΣðξÞ ¼ Rþ∞

−∞ ρðξ; rÞdz,
where ξ is the radius measured from the center of the lens
and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ z2

p
. The surface mass density can be written

as an Abel transform [15], so that

ΣðξÞ ¼ 2

Z þ∞

ξ

ρðrÞrdrffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − ξ2

p : ð52Þ

By inserting the density profile of the Bose-Einstein
condensate dark matter halos, we find

ΣðξÞ ¼ 2ρc
R
π

Z
R

ξ

sin ðkrÞdrffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − ξ2

p : ð53Þ

Now, introducing a new variable ϑ by means of the
transformation r ¼ ξ coshϑ, we obtain

ΣðξÞ ¼ 2ρc
R
π

Z
arccoshðR=ξÞ

0

sin ½kξ coshϑ�dϑ: ð54Þ

By taking into account the expansion

sin ðkξ coshϑÞ ¼
X∞
s¼0

ð−1Þs2−ð2sþ1Þ

ð2sþ 1Þ! k2sþ1ξ2sþ1

×
X2sþ1

l¼0

C2sþ1
l eð2s−2lþ1Þϑ; ð55Þ

where Cs
l ¼ s!=l!ðs − lÞ!, we obtain

ΣðξÞ
2ρc

¼ R
π

X∞
s¼0

X2sþ1

l¼0

ð−1Þs2−ð2sþ1ÞC2sþ1
l

ð2sþ 1Þ!ð2s − 2lþ 1Þ k
2sþ1ξ2sþ1

×

��
R
ξ

�
2s−2lþ1

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ξ2

R2

r �2s−2lþ1

− 1

�
:

ð56Þ

In the following, for the sake of clarity and simplicity,
instead of showing the general results that can be derived
from Eq. (56), we will present only the results obtained for
some particular values of s. More exactly, we will restrict
our study of lensing to the specific case s ¼ 7. The
expansion of the sin x function for s ¼ 7 gives a very
good approximation of the function for x in the range
0 ≤ x ≤ π. The series expansions can be easily generalized
and obtained for larger values of s, thus giving the
possibility of obtaining the lensing parameters of Bose-
Einstein condensate dark matter halos at any prescribed
level of precision. In fact, since the condition x ≤ π can be
formulated as πξ coshϑ ≤ π, it follows that the adopted
approximation gives a very good description of the con-
densate dark matter halos for all r ≤ R.
For s ¼ 7 the surface mass density of the dark matter

halo is given by

ΣðξÞ
2ρc

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ξ2

p ��
1 −

π2

18
þ π4

600
−

π6

35280

�

−
π2

9

�
1 −

π2

50
þ 3π4

9800

��
ξ

R

�
2

þ π4

225

�
1 −

π2

98

��
ξ

R

�
4

−
π6

11025

�
ξ

R

�
6
�
; ð57Þ

or, in numerical form,

ΣðξÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ξ2

p �
1.17357 − 1.82572

�
ξ

R

�
2

þ 0.778658

�
ξ

R

�
4

− 0.174402

�
ξ

R

�
6
�
ρc: ð58Þ

In this approximation the central surface mass density can
be evaluated as

Σð0Þ
2ρc

≈ R

�
1 −

π2

18
þ π4

600
−

π6

35280

�
¼ 0.5867R: ð59Þ

The total mass of the Bose-Einstein condensate model
can be calculated by integrating the surface mass density
over the plane of the sky, MξðRÞ ¼ 2π

R
R
0 ΣðξÞξdξ, and is

given by
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MξðRÞ ≈
4π

3

�
1 −

π2

10
þ π4

280
−

π6

15120

�
ρcR3

¼ 1.2455ρcR3; ð60Þ

which gives an excellent approximation for the exact mass
formula MðRÞ ¼ ð4=πÞρcR3 ¼ 1.2739ρcR3.
An important quantity for gravitational lensing studies is

the cumulative surface mass density, i.e., the total mass
contained in a infinite cylinder with radius ξ, MðξÞ ¼
2π

R ξ
0 Σðξ0Þξ0dξ0 [58–60], which for the Bose-Einstein

condensate dark halo is given by

MξðξÞ ¼ ρcπξ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ξ2

p ��
2 −

π2

9
þ π4

300
−

π6

17640

�

− π2
�
2

9
−

π2

225
þ π4

14700

��
ξ

R

�
2

þ π4
�

2

225
−

π2

11025

��
ξ

R

�
4

−
2π6

11025

�
ξ

R

�
6
�
;

ð61Þ

or, equivalently,

MξðξÞ ¼ 3.68689ξ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ξ2

p �
1 − 1.5557

�
ξ

R

�
2

þ 0.66349

�
ξ

R

�
4

− 0.14861

�
ξ

R

�
6
�
ρc: ð62Þ

B. The lens equation and the deflection of light

In the following, we consider a simplified gravitational
lens scenario involving a point source and a circular
symmetrical lens. The three basic “planes” in thin lens
approximation are the source S, the lens L, and the observer
O. Light rays emitted from the source are detected by the
lens. For a pointlike lens, there will always be (at least) two
images S1 and S2 of the source. With external shear (due to
the tidal field of objects outside but near the light bundles)
there can be more images. The observer sees the images
in directions corresponding to the tangents to the real
incoming light paths [58–60].
In the thin lens approximation, the lens equation for

axially symmetric lens is [58–60]

η ¼ DS

DL
ξ −DLS ~α; ð63Þ

where the quantities η and ξ are the physical positions of the
source in the source plane and an image in the image plane,
respectively, ~α is the deflection angle, and DL, DS and DLS
are the angular distances from observer to lens, from

observer to source, and from lens to source, respectively.
By introducing the dimensionless position β ¼ η=DS,
θ ¼ ξ=DL and the dimensionless angle α ¼ ðDLS=DSÞ ~α,
the thin lens equation can be written as

β ¼ θ − αðθÞ: ð64Þ

In the circular-symmetric case the deflection angle is
given as

DLαðξÞ ¼
2

ξ

Z
ξ

0

Σðξ0Þ
Σcrit

dξ0 ¼ 2

ξ

Z
ξ

0

ξ0κðξ0Þdξ0

¼ 1

πΣcrit

MξðξÞ
ξ

; ð65Þ

where the convergence κ is defined as κðξÞ ¼ ΣðξÞ=Σcrit,
where Σcrit is the critical surface density defined as
Σcrit ¼ c2DS=4πGDLDLS. The central convergence, κc ¼
κð0Þ [58–60], a parameter that determines the lensing
properties of the Bose-Einstein condensate dark matter
halo profiles, is given by the relation

κc ¼
1.17357ρcR

Σcrit
¼ 1.17357πMðRÞ

4R2Σcrit
: ð66Þ

The dimensionless surface mass density can be given by

κðDLθÞ ¼ κc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 −D2

l θ
2

q
1.17357R

�
1.17357 − 1.82572

�
DLθ

R

�
2

þ 0.778658

�
DLθ

R

�
4

− 0.174402

�
DLθ

R

�
6
�
:

ð67Þ

For a spherically symmetric lens that is capable of
forming multiple images of the source, one sufficient
condition is κc > 1. In the case κc < 1, only one image
of the source is formed. Similarly to the case of other
nonsingular profiles, such as the Einasto profile [60], the
Bose-Einstein condensate dark matter density profiles are
not capable of forming multiple images for any mass.
Instead, the condition κc > 1 sets a minimum value for lens
mass required to form multiple images.
The deflection potential ψðξÞ for a spherically symmetric

lens is given by [58–60]

ψðξÞ ¼ 2

Z
ξ

0

ξ0κðξ0Þ ln
�
ξ

ξ0

�
dξ0; ð68Þ

and can be computed to give
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ψðξÞ ¼ ρc

��
16

9
−
4π2

25
þ 4π4

735
−

π6

10206

�
R3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ξ2

p �
−
�
16

9
−
4π2

25
þ 4π4

735
−

π6

10206

�
R2

þ
�
4

9
−
2π2

25
þ π4

7350
−

π6

714420

�
ξ2 −

π2

225
ξ2
�
4 −

2π2

49
þ π4

2646

��
ξ

R

�
2

þ 4π4

11025
ξ2
�
1 −

π2

162

��
ξ

R

�
4

−
4π6

893025
ξ2
�
ξ

R

�
6
�
−
1

3

�
4 −

2π2

5
þ π4

70
−

π6

3780

�
R3 ln

2R

Rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ξ2

p �
: ð69Þ

In a numerical form we have

ψðξÞ ¼ ρc

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ξ2

p
R2

�
−0.63456þ 0.368622

�
ξ

R

�
2

− 0.159404

�
ξ

R

�
4

þ 0.0331881

�
ξ

R

�
6

− 0.00430621

�
ξ

R

�
8
�
þ 0.63456R3

�
1 − 0.62478 ln

2.R

Rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − ξ2

p ��
: ð70Þ

C. The magnification factor

Gravitational lensing effect preserves the surface bright-
ness but it causes variations in shape and solid angle of the
source. Therefore, the source luminosity is amplified by a
magnification factor μ, given by [58–60]

μ ¼ 1

ð1 − κÞ2 − γ2
; ð71Þ

where γ ¼ γðξÞ is the shear. For a spherically symmetric
lens the shear is given by

γðξÞ ¼ κ̄ − κ ¼ Σ̄ðξÞ − ΣðξÞ
Σcrit

; ð72Þ

where κ̄ ¼ Σ̄ðξÞ=Σcrit, and Σ̄ðξÞ is the average surface mass
density within ξ given by

Σ̄ðξÞ ¼ 2

ξ2

Z
ξ

0

ξ0Σðξ0Þdξ0: ð73Þ

By using Eq. (57) we obtain for Σ̄ðξÞ the expression

Σ̄ðξÞ ¼ 2Rρc

�
ξ

R

�
−2
�
0.198228þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ξ

R

�
2

s

×

�
0.487671

�
ξ

R

�
2

− 0.384069

�
ξ

R

�
4

þ 0.114005

�
ξ

R

�
6

−
0.019378ξ8

R8
− 0.198228

��
:

ð74Þ
Therefore, for the shear γðξÞ of a BEC dark matter halo,

we obtain the expression

γðξÞ ¼ Rρc
Σcrit

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ξ

R

�
2

s �
−0.68590

− 0.198228

�
ξ

R

�
−2

þ 0.155028

�
ξ

R

�
6

− 0.66465

�
ξ

R

�
4

þ 1.4417

�
ξ

R

�
2

þ 0.198228

ðξ=RÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðξ=RÞ2

p �
: ð75Þ

The magnification by a spherically symmetric lens can
be written as [58–60]

μ ¼ 1

ð1 − κ̄Þð1þ κ̄ − 2κÞ
¼ 1

ð1 − Σ̄ðξÞ=ΣcritÞð1þ Σ̄ðξÞ=Σcrit − 2ΣðξÞ=ΣcritÞ
:

ð76Þ
The magnification may be divergent for some image

positions. The loci of the diverging magnification in the
image plane are called the critical curves. From Eq. (76) we
see that the lensing profile has two critical curves. The
first curve, 1 − κ̄ ¼ 0 is the tangential critical curve,
which corresponds to an Einstein ring with a given
Einstein radius. The second curve, 1þ κ̄ − 2κ ¼ 0 is the
radial critical curve, which also defines a ring, and its
corresponding radius [58–60].

V. THE VIRIAL THEOREM AND THE
PERTURBATION EQUATION FOR
BOSE-EINSTEIN CONDENSATES

One of the basic relations in theoretical physics, the virial
theorem, represents a very powerful method for the study of
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the equilibrium and perturbation properties of fluids,
including the quantum ones. The virial theorem was
originally proved, and used for the study of the equilibrium
and of the stability of rotating fluid bodies, bound by self-
gravitation [61–63]. One of the important forms of the
virial theorem, the tensor-virial theorem, reduces the local
hydrodynamical Euler equations into global virial equa-
tions, which give the essential information on the structure
and stability of the whole gravitating system. An important
application of the virial theorem is for the study of the small
perturbations of incompressible uniform ellipsoids when
perturbed from an initial equilibrium state. In this case, in
the absence of viscous dissipation, each perturbed virial
equation provides a different set of normal modes [55].
Moreover, in the physically very interesting case when the
equilibrium of the considered system is sustained by an
external confining potential, the perturbations of the fluid
obviously do not modify the confining potential itself.
Therefore, it follows that the tensor virial methods, and the
virial theorems, can be extended to nonuniform compress-
ible flows. The virial theorem represent an extremely
powerful method for the study of gases with polytropic
equations of state [61–66]. It has also been extensively used
in the study of Bose-Einstein condensates [53–55].

A. The scalar virial theorem

In order to derive the scalar virial theorem we consider
the behavior of the physical parameters of the dark matter
halos under the scaling transformation ~r → α~r, where α is a
constant. Then the normalization condition giving the total
number of particles, N ¼ R jψð~rÞj2d3~r requires that
ψð~rÞ → α−3=2ψð~rÞ [2,8]. Thus the total energy scales as

E½α� ¼ α−2EK þ α2Erot þ α−3Eint þ α−1Egrav: ð77Þ

Since the energy is stationary for any variation of the wave
function ψ around the exact solution of the Gross-Pitaevskii
equation, by requiring the energy variation to vanish at first
order in α, that is, ðδE½α�=δαÞjα¼1 ¼ 0, we obtain the virial
theorem in the form [2,8]

2EK − 2Erot þ 3Eint þ Egrav ¼ 0: ð78Þ

By multiplying both sides of Eq. (9) with ρð~rÞ and
integrating over ~r we obtain

μN ¼ Erot þ 2Eint þ 2Egrav; ð79Þ

where the interaction energy Eint and the gravitational
energy Egrav are defined as Eint ¼ ðU0=2Þ

R
V ρ

2ð~rÞd3~r, and
Vgrav ¼ ðm2

χ=2Þ
R
V Vgravð~rÞρð~rÞd3~r, respectively. On the

other hand from Eq. (9) we obtain

μ ¼ U0

mχ
ρc þmχVgravð0Þ: ð80Þ

By using Eqs. (79) and (80), we obtain for the total energy
of the dark matter halo the expression

E ¼ 1

2

�
U0

mχ
ρc þmχVgravð0Þ

�
þ 1

2
Erot: ð81Þ

By using the virial theorem we can easily find the
condition for the validity of the Thomas-Fermi approxi-
mation. By using the density for the static condensate given
by Eq. (22), it is easy to estimate EK ≈ 2̄MðRÞk2=m2

χ and
Eint ≈U0MðRÞ2k3=m2

χ , respectively. The Thomas-Fermi
approximation requires EK ≪ Eint, giving

N ¼ M
mχ

≫
1

kla
¼ R

πla
; R ≫

ffiffiffiffiffiffiffiffiffiffiffi
mχ

4laρc

r
: ð82Þ

Hence, for systems with enough high particle numbers the
Thomas-Fermi approximation is always valid.

B. The tensor virial theorem

In the following we assume that the dark matter
gravitational condensate rotates like a rigid body, and its
rotation is supported by an array of vortices. Moreover, it is
confined by a gravitational field with potential Vgrav,
assumed to satisfy the Poisson equation Eq. (7). To obtain
the tensor virial equation for the BEC halo we multiply both
sides of Eq. (21) by xi and we integrates over the volume V
of the dark matter halo. Thus we first obtain [55,61–63]

d
dt

Z
V
ρxiujd3~r ¼

Z
V
ρxi

duj
dt

d3~rþ
Z
V
ρuiujd3~r: ð83Þ

The last term on the right-hand of Eq. (21) can be rewritten
as

1

2

Z
V
ρxi

∂
∂xj j

~Ω × ~rj2d3~r ¼ ~Ω2Iij −ΩjIikΩk; ð84Þ

where

Iij ¼ Iji ¼
Z
V
ρxixjd3~r; ð85Þ

is the moment of inertia tensor of the dark matter con-
densate. Assuming that the pressure becomes a constant p0

outside the dark matter distribution, one can write

−
Z
V
xi

∂p
∂xj d

3~r ¼ −
Z
S
xip0dΣj þ

Z
V
δijpd3~r

¼ δij

Z
V
ðp − p0Þd3~r ¼ δijΠ̄; ð86Þ
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where δij is the Kronecker delta symbol. By taking into
account the explicit formof the condensate self-gravitational
potential, ϕð~r; tÞ ¼ −G

R
V d

3~r0ρð~r0; tÞ=j~r − ~r0j, one can
show that

Z
V
ρxi

∂ϕ
∂xj d

3~r ¼ −
1

2

Z
V
ρBijd3~r ¼ −Φij; ð87Þ

where

Bijð~r; tÞ ¼ −G
Z
V
ρð~r0; tÞ ðxi − x0iÞðxj − x0jÞ

j~r − ~r0j3 d3~r0; ð88Þ

is the potential tensor of Chandrasekhar [61–63]. By
defining the kinetic energy tensor as

Tij ¼
1

2

Z
V
ρuiujd3~r; ð89Þ

the tensor virial theorem for a rotating Bose-Einstein
condensate dark matter halo in a gravitational field can
be written as [61–64]

d
dt

Z
V
ρxiujd3~r ¼ 2Tij þ δijΠ̄þ Φij þ ~Ω2Iij

− ΩjIikΩk þ 2εjklΩk

Z
V
ρxiuld3~r: ð90Þ

For a dark matter halo in hydrostatic equilibrium ui ¼ 0,
and from Eq. (90) we find

Φij þ δijΠ̄þ ~Ω2Iij −ΩjIikΩk ¼ 0: ð91Þ

For i ≠ j we have Φij þ ~Ω2Iij −ΩjIikΩk, while con-
tracting over i and j gives

Φþ 3Π̄þ ~Ω2I − ΩiIijΩj ¼ 0; ð92Þ

where Φ represents the gravitational potential energy.

1. Gravitational energy of a rotating dark matter halo

As an application of the tensor virial theorem we
determine in the following the gravitational energy of a
rotating dark matter halo. If the z-axis is chosen as axis of
rotation, Eq. (92) takes the form

Φþ 3Π̄þ ~Ω2IΩ ¼ 0; ð93Þ

where IΩ ¼ R
V ρðx2 þ y2Þd3~r. For the case of the rotating

Bose-Einstein condensate dark matter halo the equation of
the hydrostatic equilibrium takes the form

2∇p
ρ
¼ ∇

�
Vgrav þ

1

2
j ~Ω × ~rj2

�
; ð94Þ

and can be integrated to give

2p ¼ ρ

�
Vgrav þ

1

2
j ~Ω × ~rj2 − Vð0Þ

grav

�
; ð95Þ

where Vð0Þ
grav is the gravitational potential at the pole of the

dark matter halo. Integrating Eq. (95) over the dark matter
halo volume, we obtain

2Π̄ ¼ −2Φþ 1

2
~Ω2IΩ − Vð0Þ

gravM; ð96Þ

where Φ ¼ −ð1=2Þ R ρVgravd3~r. Hence, from Eq. (93) we
obtain [65]

Φ ¼ 1

4

�
7

2
~Ω2IΩ − 3Vð0Þ

gravM

�
: ð97Þ

For a static halo ~Ω ¼ 0, Vð0Þ
grav ¼ GM=R, and we reobtain

the well-known result Φ ¼ −ð3=4ÞGM2=R.

C. The perturbation equation

We consider now the small oscillations about equilib-
rium of a Bose-Einstein condensate dark matter halo. We
assume that in the stationary state there are no fluid
motions. In order to obtain the perturbation equation we
use the tensor virial theorem. Considering only periodic
oscillations with frequency ω, representing the most inter-
esting case from a physical point of view, the Lagrangian
displacement of a mass element dm can be written as
~ξð~r; tÞ ¼ ~ξð~rÞ exp ðiσtÞ [55,61–65]. Due to the equation of
continuity for such Lagrangian displacements dm is a

constant, and δρ=ρþ∇ · ~ξ ¼ 0. By taking the Eulerian
variation of the tensor virial equation for the condensate
dark matter halo we obtain

δ
d
dt

Z
V
ρxiujd3~r ¼ 2δTij þ δijδΠ̄þ δΦij þ ~Ω2Vij

−ΩjΩkVkj þ 2εjklΩkδ

Z
V
ρxiuld3~r;

ð98Þ
where

Vij ¼ δIij ¼
Z
V
ρðξixj þ ξjxiÞd3~r; ð99Þ

is a tensor symmetric in its indices. By defining its
nonsymmetric part as Vi;j ¼

R
V ρξixjd

3~r, we have
Vij ¼ Vi;j þ Vj;i. For the variation of Φij we find the
equation
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δΦij ¼ −G
Z
V

Z
V
dmdm0ξk

∂
∂xk

ðxi − x0iÞðxj − x0jÞ
j~r − ~r0j3

¼ −G
Z
V
d3~rρð~rÞξk

∂
∂xk

Z
V
d3~r0ρð~r0Þ

× ξk
∂
∂xk

ðxi − x0iÞðxj − x0jÞ
j~r − ~r0j3 −

Z
V
d3~rρð~rÞξk

∂Bij

∂xk ;

ð100Þ

which gives the important first order change in the
gravitational potential energy, due to a small perturbation
of the matter in the condensate dark matter system.
Therefore, when there are no condensate dark matter
motions in the unperturbed frame, the second order virial
equation takes the form [55,61–63]

d2Vi;j

dt2
¼ 2εiklΩl

dVk;j

dt
þ δΦij − ΩiΩkVkj þ δijδΠ̄: ð101Þ

For small periodic perturbations we obtain [55]

σ2Vi;j ¼ 2εiklΩlσVk;j þ δΦij −ΩiΩkVkj þ δijδΠ̄: ð102Þ

Equation (102) contains all the second-harmonic modes
of the rotating condensate dark matter halo confined by its
own gravitational field [55,61–63].

VI. APPLICATIONS OF THE VIRIAL THEOREM
TO BEC DARK MATTER HALOS

As a simple example of the application of the virial
theorem for the study of the stability of the Bose-Einstein
condensate dark matter structures we consider the case of
the slowly rotating and slightly distorted galactic halos. By
employing the Lagrangian variables and the scalar virial
theorem, and by using the linear approximation, we obtain
the angular frequency σ of the lowest radial mode, as well
as the condition for dynamical instability, depending on the
numerical value of the adiabatic exponent γ ¼ 1þ 1=n,
where n is the polytropic index.

A. The scalar virial theorem for axisymmetric BEC
dark matter halos

We consider the BEC dark matter halo as a uniformly
rotating, homogeneous and compressible spheroid. The
galactic halo rotates at t ¼ 0 with an angular velocity
Ωðt0Þ ¼ Ω0. We restrict our analysis to axisymmetric
pulsations, and work in a Cartesian coordinate system
ðx1; x2; x3Þ, which rotates at any instant t with the instanta-
neous angular velocity ΩðtÞ of the galactic halo. Moreover,
we assume thatΩ is oriented along the x3 axis. We will also
ignore dissipative and electromagnetic effects. Under such
assumptions, the equation of motion of the galactic halo,
Eq. (21), can be written as [61–66]

dui
dt

þ 2ϵik3Ωuk þ ϵik3
dΩ
dt

xk

¼ −
1

ρ

∂p
∂xi −

∂Vgrav

∂xi þ ð1 − δi3ÞΩ2xi; ð103Þ

where i ¼ 1; 2; 3 and we have taken into account that the
angular velocity Ω explicitly depends on time. For axisym-
metric motions, all terms in Eq. (103) describe motions in
meridional planes, except the last two terms on the left-
hand side of the equation [64,65]. Therefore, Eq. (103) can
be split as

dui
dt

¼ −
1

ρ

∂p
∂xi −

∂Vgrav

∂xi þ ð1 − δi3ÞΩ2xi; ð104Þ

where i ¼ 1; 2; 3 and

ϵik3

�
2Ωuk þ

dΩ
dt

xk

�
¼ 0; ð105Þ

respectively. Equation (105) can be immediately integrated
to give

d
dt

½Ωðx21 þ x22Þ� ¼ 0: ð106Þ

Equation (106) is the equation of conservation of the
angular momentum for each fluid element, a property
which is true for axisymmetric motions only. Now we
multiply Eq. (104) by xi, we integrate over the total massM
of the galactic halo, and add the resulting equations. Hence,
we obtain the scalar virial theorem for the BEC halo in the
form [64,65]

1

2

d2

dt2

Z
M
xkxkdm ¼

Z
M

dxk
dt

dxk
dt

dmþ Φ

þ 3

Z
M

p
ρ
dmþ

Z
M
Ωðx21 þ x22Þdm;

ð107Þ

where

Φ ¼ −
1

2
G
Z
M

Z
M

dmdm0

j~r − ~r0j ð108Þ

is the gravitational potential energy of the dark matter halo.
At time t ¼ 0 the dark matter halo is in relative equilibrium,
and the virial theorem Eq. (107) gives

Φ0 þ 3

Z
M

p0

ρ0
dmþ

Z
M
Ω0ða21 þ a22Þdm ¼ 0; ð109Þ

where the subscript zero indicates the initial values, and a1
and a2 represents the t ¼ 0 values of the coordinates x1 and
x2, respectively.
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B. The equations of motion in Lagrangian coordinates

It is more convenient to study the axisymmetric motion
of the galactic dark matter halos in Lagrangian coordinates,
in which all variables characterizing the BEC system, xi, ρ,
p, and V are expressed as functions of the independent
quantities ai and t [65,66]. Therefore, the Eulerian coor-
dinates xi can be expressed as xi ¼ xiðai; tÞ. Hence, when
axisymmetry is preserved, there are expanding and con-
tracting solutions for which the coordinates of a particle are
functions of their initial values and of the time only.
In Lagrangian coordinates the equations of motion of the

BEC dark matter halo Eqs. (104) can be reformulated
as [66]

∂xi
∂ai

∂2xi
∂t2 ¼ −

1

ρ

∂p
∂ai −

∂Vgrav

∂ai þ ð1 − δi3ÞΩ2xi
∂xi
∂ai ; ð110Þ

where i ¼ 1; 2; 3.
The conservation of mass imposes the condition

ρJ ¼ ρ0; ð111Þ

where J is the Jacobian of the coordinate transformation
[66],

J ¼ ∂x1
∂a1

∂x2
∂a2

∂x3
∂a3 : ð112Þ

As for the pressure of dark matter halo, we will assume that
it is given by Eq. (15), that is, by a polytropic equation of
state with polytropic index n ¼ 1. We assume that the
pressure vanishes on the moving surface, at the vacuum
boundary of the dark matter halo. Moreover, the gravita-
tional potential must be continuous across the galactic
boundary. Once these conditions are satisfied, axisymmet-
ric motions are then entirely determined once an initial
velocity distribution is prescribed at every point [65].

C. Pseudoradial oscillations of BEC dark matter halos

In the following we restrict our analysis to the case of
pseudoradial pulsations of slowly rotating and slightly
distorted galactic polytropic dark matter halos. For slowly
rotating spheroids in the first approximation one can adopt
for the evolution of the coordinates a linear expression, so
that [66]

xi ¼ aiζðtÞ; i ¼ 1; 2; 3: ð113Þ

The equation governing the time evolution of wðtÞ can be
obtained from the scalar virial theorem Eq. (107) in
Lagrange coordinates. First of all, by using the adopted
representations of xi we obtain immediately the identity

1

2

d2

dt2

Z
M
xkxkdm −

Z
M

dxk
dt

dxk
dt

dm ¼ ζ
d2ζ
dt2

I0; ð114Þ

where I0 denotes the initial moment of inertia of the
rotating galaxy, and we have used the constancy of the
mass element dm as we follow the motion of the particles.
In order to obtain the time variation of the gravitational
potential energy, given by Eq. (108), we take into account
that j~r − ~r0j ¼ ζðtÞj~a − ~a0j, in which ~a ¼ ~rð0Þ and ~a0 ¼
~r0ð0Þ [66]. Then we obtain for the gravitational potential
energy the expression

Φ ¼ Φ0

ζ2
: ð115Þ

With the use of Eq. (111) and of the equation of state of the
BEC dark matter we obtain

p
ρ
¼ 1

ζ3
p0

ρ0
: ð116Þ

By integrating the above equation, we obtain

3

Z
M

p
ρ
dm ¼ 1

ζ3
ðjΦ0j − 2K0Þ; ð117Þ

where K0 represents the initial rotational kinetic energy,
and in order to eliminate the integral over pressure in
Eq. (117) we have used the equilibrium condition given by
Eq. (109) [66]. The conservation of the angular momentum
immediately gives the equation

Ω ¼ Ω0

ζ2
; ð118Þ

and, consequently,

Z
M
Ω2ðx21 þ x22Þdm ¼ 2K0

ζ2
: ð119Þ

Therefore, with the use of the above results and of the
scalar virial theorem Eq. (107) we obtain the time evolution
of ζ as [66]

d2ζ
dt2

¼ 1

ζ2

�
1

ζ2
− 1

� jΦ0j
I0

þ 1

ζ3

�
1 −

1

ζ

�
2K0

I0
: ð120Þ

Equation (120) must be solved with the appropriate
boundary conditions. It is also important to mention that
the quantities Φ0, K0 and I0 refer to the rotating galactic
halo. Moreover, in obtaining Eq. (120) we have assumed
that the halo rotates as a solid body.
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D. Oscillation frequency of BEC dark matter halos
in the linear approximation

In the following we consider the small amplitude
pseudoradial oscillations of the n ¼ 1 polytropic dark
matter halos. We can see from Eq. (120) that the point
ζ ¼ 1 defines an equilibrium state of the galaxy. In order to
describe linear and quasilinear oscillations about this
equilibrium point, we Taylor expand ζ near ζ ¼ 1. In the
first approximation we obtain

ζðtÞ ¼ 1þ ϵðtÞ; ð121Þ
where ϵðtÞ ≪ 1. In this approximation Eq. (120) becomes
[66]

d2ϵ
dt2

þ σ2ϵ ¼ λϵ2 þOðϵ3Þ; ð122Þ

where [65,66]

σ2 ¼ 2
jΦ0j
I0

−
2K0

I0
; ð123Þ

and

λ ¼ 1

2

�
7σ2 −

2K0

I0

�
: ð124Þ

If we neglect the second and third order powers of ϵ, the
solution of Eq. (122) is obtained as

ϵðtÞ ¼ ϵ0 sin ðσtÞ: ð125Þ

In terms of the Eulerian variables we obtain
ξi ¼ ϵ0xi sinðωtÞ.
Equation (123) gives the stability condition for BEC dark

matter halos in the linear approximation. If the halo is
initially nonrotating, we have K0 ¼ 0, and the stability
condition reduces to

σ2 ¼ 2
jΦ0j
I0

> 0; ð126Þ

a condition which is always satisfied by BEC dark matter
halos described by a polytropic equation of state with n ¼ 1
and γ ¼ 2, respectively. With the use of Eq. (97) we can
estimate the initial gravitational energy of the dark matter
halo as jΦ0j ¼ ð3=4ÞGM2=R, while for the moment of
inertia we use the expression I0 ¼ 2MR2=5 [65]. Then the
oscillation frequency of the halo is given by

σ2 ¼ 15GM
8R3

¼ 15G
2π

ρc; ð127Þ

where we have taken into account Eq. (27) giving the mass-
radius relation of the static BEC dark matter halo. For the
period of the oscillations we obtain

T ¼ 2π

σ
¼

ffiffiffiffiffi
8

15

r
π3=2

1ffiffiffiffiffiffiffiffi
Gρc

p ¼ 1.5745 × 1016

×

�
ρc

10−24 g=cm3

�
s: ð128Þ

In the case of perturbed BEC dark matter halos with an
initial rotation, the stability condition reduces to

jΦ0j > K0; ð129Þ

or, equivalently, with the use of Eq. (97),

GM2

R
> 2IΩ0

Ω2
0; ð130Þ

where Ω0 is the initial angular velocity, and IΩ0
the initial

moment of inertia of the galactic halo. The period of
oscillations of a slowly rotating slightly disturbed BEC
dark matter halo is found as

T ¼
ffiffiffi
2

p
π

ffiffiffiffiffiffiffi
IΩ0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijΦ0j − K0

p ≈

ffiffiffi
2

p
π

ffiffiffiffiffiffiffi
IΩ0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijΦ0j − K0

p
¼

ffiffiffiffiffi
32

p
π

ffiffiffiffiffiffiffi
IΩ0

p
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ω2

0IΩ0
þ GM2=R

q : ð131Þ

By using again the mass-radius relation for BEC dark
matter halos given by Eq. (27), we obtain

T ≈
ffiffiffiffiffi
8

15

r
π3=2

1ffiffiffiffiffiffiffiffi
Gρc

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 15GρcΩ2

0=π
p : ð132Þ

This equation gives the corrections to the oscillations
period of the halo due to the presence of an initial
rotation.

VII. DISCUSSIONS AND FINAL REMARKS

The n ¼ 1 polytropic Bose-Einstein condensate dark
matter model is the simplest existing dark matter model. All
the properties of the dark matter distributions are deter-
mined by two parameters only: the mass and the radius of
the dark matter halo. The central density of the dark matter
is determined uniquely by MðRÞ and R. For halos not
contaminated with baryonic matter both quantities must
have the same universal value. However, the presence of the
baryonic matter may increase the size of the galactic halo,
thus leading to some variations in the total mass and radius
of the galactic structures.
Since all the properties of the Bose-Einstein condensates

are determined by two observational parameters only, once
these parameters are known, the physical properties of the
galactic halos can be predicted by the model. Thus, for
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example, the tangential velocity of the test particles in
circular orbits around galaxies is determined by the
universal equation

V2ðrÞ ¼ GM
R

�
sinðπr=RÞ
πr=R

− cos
πR
R

�
: ð133Þ

Once the mass of the galaxy and its radius is known, the
rotation curves can be obtained immediately. For example,
in the case of the dwarf galaxy IC 2574, by assuming for
the condensate component a mass of M ¼ 1.64 × 1010M⊙
and a radius of R ¼ 12.6 kpc, the rotation curve is given by

V2ðrÞ ¼ 5.6374 × 103
�
sinðπr=RÞ
πr=R

− cos
πR
R

�
km2=s2:

ð134Þ
The comparison of the rotation curve predicted by the
Bose-Einstein condensate dark matter model for the galaxy
IC 2574 with the observational data obtained in [56] is
represented in Fig. 1. The comparison of the predicted
rotation curve for the dwarf galaxy M81 dwB with the
observational data of [56] is represented in Fig. 2.
The condensate dark matter model predicts a mean

logarithmic density slope of the inner core hαDMi ¼
0.3068, while the observed value obtained from the study
of brown galaxies is hαDMi ¼ −0.29� 0.07 [56] (the
minus sign appears due to the opposite sign convention
adopted in the present paper). In [67] it was shown, by
using the mass decomposition of rotation curves using
cored haloes, that the product of the central density ρc and
the core radius Rcore is a universal constant, independent of
the galaxy mass. In the case of condensate dark matter
halos the product of the central density and core can be
written as

ρcRcore ¼ 0.00827

�
MðRÞ
1010M⊙

��
R

10 kpc

�
−2

g=cm2;

ð135Þ

and for pure condensate dark matter halos this product must
be a universal constant. However, the condensate dark
matter model predicts a dependence on both mass and
radius of the constant. The presence of baryonic matter
may determine some modifications and variations in its
numerical value (for a comparison of the theoretical
predictions with the observational data see [25]). The
condensate dark matter model also predicts a relation
between ρcRcore and the central convergence κc of the halo
of the form

ρcRcore ¼
1

7.372
ΣcritRκc: ð136Þ

Therefore, the condensate dark matter model is the only
existing model that makes easily testable predictions,
without any need for fitting, and hence it can be easily
falsified by comparing the theoretical predictions with the
observations. However, despite its remarkable successes at
the galactic scale, the Bose-Einstein condensate dark matter
model needs further testing. One of the best possibilities in
confirming/ruling out the model is through gravitational
lensing. In the present paper we have obtained for the first
time all the relevant quantities necessary for an in depth
comparison of the theoretical predictions with the obser-
vational data in an analytical, easy to handle form. These
general analytical formulae enable arbitrary precision
calculation, as well as the study of the asymptotic behavior
near the vacuum boundary of the condensate. These
formulae can be used in strong and weak lensing studies
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s

IC 2574

FIG. 1 (color online). Comparison of the predicted rotation
curve of the dwarf galaxy IC 2574 (solid curve) with the
observational data presented in [56]. The assumed mass of the
galaxy is M ¼ 1.64 × 1010M⊙ (the observationally determined
value M ¼ 1.462 × 1010M⊙), and the radius of the galaxy is
R ¼ 12.6 kpc.
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FIG. 2 (color online). Comparison of the rotation curve of the
dwarf galaxy M81 dwB predicted by the condensate dark matter
model (solid curve) with the observational data presented in [56].
The assumed mass of the galaxy is M ¼ 0.33 × 109M⊙ (the
observationally determined value M ¼ 0.3 × 109M⊙), and the
radius of the galaxy is R ¼ 1 kpc.
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of galaxies and clusters of galaxies, where dark matter is
assumed to be the dominant component. Moreover, a
comparison between lensing and rotation curve predictions
can be done easily.
The virial theorem is a very useful tool to investigate the

general properties of the astrophysical systems. The scalar
virial theorem gives a very powerful constraint for the
validity of the Thomas-Fermi approximation, which can be
formulated as

R ≫ 1.581 × 103
�

mχ

10−37 g

�
1=2

�
la

10−20 cm

�
−1=2

×

�
ρc

10−24 g=cm3

�
−1=2

cm: ð137Þ

The above constrain shows that the Thomas-Fermi approxi-
mation gives an excellent description of the properties of
condensate dark matter halos. By using the tensor virial
theorem we have derived the perturbation equation of the
dark matter halos, which can be efficiently used to study the
stability of dark matter halos under small perturbations.
Finally, we consider the problem of the mass of the dark

matter particle. The use of Eq. (23) allows us to make a first
estimate of the physical properties of the dark matter
particle. As a function of the mass and scattering length
of the particle the radius R of the condensate dark matter

halo is given by R ¼ π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2la=Gm3

χ

q
, the total mass of the

condensate dark matter halo MðRÞ can be obtained as

MðRÞ ¼ 4π2
�
ℏ2la
Gm3

χ

�
3=2

ρc ¼
4

π
ρcR3; ð138Þ

while the mean value hρi of the condensate density is given
by the expression hρi ¼ 3ρc=π2 [19]. Therefore, the dark
matter particle mass in the condensate is given by [19]

mχ ¼
�
π2ℏ2la
GR2

�
1=3

≈ 6.73 × 10−2½laðfmÞ�1=3½R ðkpcÞ�−2=3 eV: ð139Þ

For la ≈ 1 fm and R ≈ 10 kpc, the typical mass of the
condensate particle is of the order of mχ ≈ 14 meV. For
la ≈ 106 fm, corresponding to the values of la observed in
terrestrial laboratory experiments, mχ ≈ 1.44 eV.
An important method of observationally obtaining the

properties of dark matter is the study of the collisions
between clusters of galaxies, like the bullet cluster (1E 0657-
56) and the baby bullet (MACSJ0025-12). From these
studies one can obtain constraints on the physical properties
of dark matter, such as its interaction cross section with
baryonic matter, and the dark matter-dark matter self-
interaction cross section. If the ratio σm ¼ σ=mχ of the
self-interaction cross sectionσ ¼ 4πl2a andof the darkmatter

particlemassmχ is known fromobservations, with the use of
Eq. (139) the mass of the dark matter particle in the Bose-
Einstein condensate can be obtained as [43]

mχ ¼
�
π3=2ℏ2

2G

ffiffiffiffiffiffi
σm

p
R2

�
2=5

: ð140Þ

By comparing results from x-ray, strong lensing, weak
lensing, and optical observations with numerical simula-
tions of the merging galaxy cluster 1E 0657-56 (the bullet
cluster), an upper limit (68% confidence) for σm of the order
of σm < 1.25 cm2=g was obtained in [68]. By adopting for
σm a value of σm ¼ 1.25 cm2=g, we obtain for the mass of
the dark matter particle an upper limit of the order

mχ < 3.1933 × 10−37
�

R
10 kpc

�
−4=5

�
σm

1.25 cm2=g

�
1=5

g

¼ 0.1791 ×

�
R

10 kpc

�
−4=5

�
σm

1.25 cm2=g

�
1=5

meV:

ð141Þ

This mass limit is consistent with the limit obtained from
cosmological considerations in [69]. By using this value of
the particle mass we can estimate the scattering length la as

la <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σm ×mχ

4π

r
¼ 1.7827 × 10−6 fm: ð142Þ

A stronger constraint for σm was proposed in [70], so that
σm ∈ ð0.00335 cm2=g; 0.0559 cm2=gÞ, giving a dark mat-
ter particle mass of the order

mχ ≈ ð9.516 × 10−38 − 1.670 × 10−37Þ
�

R
10 kpc

�
−4=5

g

¼ ð0.053 − 0.093Þ ×
�

R
10 kpc

�
−4=5

meV ð143Þ

and a scattering length of the order of

la ≈ ð5.038 − 27.255Þ × 10−8 fm: ð144Þ

Therefore, the galactic radii data and the bullet cluster
constraints predict a condensate dark particle mass of the
order of mχ ≈ 0.1 meV. Recent results on the self-
interacting dark matter cross section have been presented
in [71,72]. By using collisions between galaxy clusters as
tests of the nongravitational forces acting on dark matter,
from the dark matter’s lack of deceleration in the bullet
cluster collision one obtains a self-interaction cross section
of the order of σDM=m < 1.25 cm2=g (68% C.L.) for long-
ranged forces [71]. From the observation of 72 collisions,
a self-interaction cross section σDM=m < 0.47 cm2=g
(95% C.L.) was inferred.
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