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We study the oscillations of neutron and strange stars in R2 gravity. More precisely, the nonradial f
modes are examined and the differences with pure general relativity are investigated. Using these results,
we build several gravitational wave asteroseismology relations. Our goal is to determine up to what extent
these relations are equation of state independent and whether they deviate enough from general relativity in
order to produce an observable effect. The results show that the differences coming from R2 gravity are up
to 10%, which will be difficult to observe in the near future. On the other hand, the small deviations in some
of the asteroseismology relations show that they are not only equation of state independent, but they are
also quite insensitive to the gravitational theory. That is why solving the inverse problem can give us quite
robust estimates of the neutron star parameters.
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I. INTRODUCTION

In the last few years, the accelerated expansion of the
Universe has been confirmed, leading to the investigations
of different cosmological models capable of explaining it.
A new type of matter should be introduced when consid-
ering this problem in the context of general relativity
(GR)—the so-called dark energy which constitutes about
73% of the total energy content of the Universe and exhibits
some exotic properties, like a negative pressure-to-density
ratio. A way of overcoming this is to explore the gener-
alized theories of gravity as a possible alternative explan-
ation for the accelerated expansion. One of the most
popular representatives are the fðRÞ theories which allow
us to exclude the dark energy hypothesis. These theories of
gravity are a natural generalization of GR, derived by
replacing the Lagrangian in the Einstein-Hilbert action with
a more general one [1–4].
The viability of any theory of gravity should be tested

against the astrophysical observations too. In this paper, we
are investigating one such astrophysical application for a
specific type of fðRÞ theory, namely, the so-called R—
squared gravity, where the form of the Lagrangian we adopt
is fðRÞ ¼ Rþ aR2. Differences between general relativity
and alternative theories are natural to occur for strong
gravitational fields, such as the ones created by different
compact objects like neutron stars (NS), strange stars (SS),
and black holes (BH). The scope of our studies is limited to
the first two of them.

The motivations for the particular choice of the
Lagrangian is the following. By construction, the fðRÞ
theories inevitably contain dimensionful parameters which,
at present, should be found or constrained by the experi-
ments and the observations. In general, these parameters
could determine rather different scales (e.g., from scales
typical for the compact objects to cosmological scales), and
they are responsible for the strong and weak field regime of
the theory. When we study the neutron and strange stars
within the framework of fðRÞ theories of gravity, only the
terms responsible for the strong field regime will be
significant. Among themost natural and simplest extensions
of GR in the strong field regime is namely the R-squared
theory given by fðRÞ ¼ Rþ aR2. This theory is the leading
correction to GR in the strong field regime predicted by the
quantum field theory in curved spacetime [5]. As a very well
motivated theory, R2 gravity will be considered in the
present paper as the base gravitational theory.
The new generation of gravitational wave (GW) detec-

tors will start operating in the next few years, and it is
expected that in near feature the first events will be
detected. Undoubtedly, this detections will be followed
by a rapid progress in gravitational waves astronomy and
the first steps towards the Einstein Telescope (ET), which is
supposed to have much better sensitivity and to be able to
observe a wide range of astrophysical phenomena, are
undertaken. With this motivation in hand, we extend the
studies of compact stars in fðRÞ gravity to gravitational
wave asteroseismology. The neutron star perturbations can
lead to nonradial oscillations, which are a source of
gravitational waves. The information we can obtain from
the observed oscillation frequencies will reveal a new
spectrum of research possibilities for astrophysics. The
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full development of gravitational wave asteroseimology
will let us optimally use the gained information. The
relations and the methodology that would allow us to
obtain the neutron star parameters via the gravitational
wave observations have been developed in the last two
decades in many papers for GR [6–11] and for some
alternative models [12–21], and in the last few years, even
for rapidly rotating neutron stars [22,23].
More detailed comments on some of the above-

mentioned papers, which our work is based on, should
be made. In [7,11], the authors investigated the fundamen-
tal and the pressure mode oscillation frequencies and
damping times as functions of the average densityffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
of the stars or as functions of the compactness

M=R for equations of state (EOS) with different stiffness.
They also introduced some empirical relations between
these quantities that can be used to infer the neutron star
mass and the radius, i.e., solve the inverse problem. Later
those relations were reexamined for a set of newer EOS by
Benhar et al. [8]. Lau et al. [9] suggested a different
normalization, namely, to use the so-called “effective
compactness” η≡ ffiffiffiffiffiffiffiffiffiffiffi

M3=I
p

, with I being the moment of
inertia, instead of the compactness M=R, motivated by the
studies in [24]. Using that parameter, they introduced an
empirical relation valid for both NS and SS, which turned
out to be quite EOS independent. In a recent paper, Chirenti
et al. [10] investigated oscillations of neutron stars in GR
with all of the above mentioned relations. They commented
on the EOS independence of these empirical relations.
Other EOS independent relations connecting the neutron
star moment of inertia, quadrupole moment, and the tidal
Love numbers were considered, for example, in [25–32].
For the first time, the oscillation frequencies of neutron

stars in alternative theories of gravity, and more specifi-
cally, in the case of a scalar-tensor theory, were investigated
in [18,19]. There one can also find a detailed derivation of
the perturbation equations for scalar-tensor theory in the so-
called Cowling approximation (the background metric and
the scalar field are fixed).
The relations presented in the above-mentioned papers

are EOS independent to a large extent. Such relations are a
useful tool for overcoming the uncertainty naturally caused
by the EOS and can be used to explore generalized theories
of gravity. This will be our main goal in the present paper,
namely, to explore the various asteroseismology relations in
R2 gravity and to quantify the deviations from general
relativity. Such results can be potentially used when solving
the inverse problem, i.e., obtaining the stellar parameters
from the observed oscillation frequencies, in order to
impose constraints on the gravitational theory. In the
current paper, we will concentrate on the nonradial oscil-
lations for which the pressure is the restoring force. The
scope of our study is limited to the fundamental modes (f
modes) that are the major object of investigation in the
literature cited above. The reason is that the pressure modes

(p modes) are a much less efficient source of gravitational
waves, so it is expected that the main contribution to
observational data will be from f-mode oscillations.
It is important to point out that in some of the

above-mentioned papers, and more precisely, in the more
complicated cases concerning rapid rotation and alternative
theories of gravity, the Cowling approximation is used
[18,22,23]. It is known that there are differences between
the results obtained via the Cowling approximation and the
full general relativistic results, and the deviation decreases
with the increase of the compactness. However, this
approximation is accurate enough for qualitative investiga-
tions [22,23]. That is why we will employ it in our studies.
The structure of our paper is as follows: In Sec. II, the

reduced field equations describing neutron stars in R2

gravity are presented, in Sec. III, the equations for the
perturbations are examined, in Sec. IV, the results are
presented and discussed. The paper ends with conclusions.

II. BASIC EQUATIONS

In this section, we briefly present the basic equations
describing equilibrium neutron and strange star solutions in
R2 gravity. More details on this problem can be found in
[33–35].
The fðRÞ theories are described by the following action:

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ þ Smatterðgμν; χÞ; ð1Þ

where R is the scalar curvature with respect to the
spacetime metric gμν. The action for the matter fields,
denoted by χ, is separated in the term Smatter. The following
inequalities have to be satisfied for the fðRÞ theory to be
free of ghosts and tachyonic instabilities:

d2f
dR2

≥ 0;
df
dR

> 0: ð2Þ

In the case of R2 gravity, which we are considering, the
above inequalities give a ≥ 0 and 1þ 2aR ≥ 0.
A useful fact, which we will employ in our studies, is the

mathematical equivalence between fðRÞ theories and
Brans-Dicke theory (with ωBD ¼ 0 and nonzero scalar
field potential) given by the action

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ½ΦR − UðΦÞ� þ Smatterðgμν; χÞ; ð3Þ

where Φ and the potential UðΦÞ are defined as follow: Φ ¼
dfðRÞ
dR and UðΦÞ ¼ R df

dR − fðRÞ. In the case of R2 gravity,
Φ ¼ 1þ 2aR and the Brans-Dicke potential
is UðΦÞ ¼ 1

4a ðΦ − 1Þ2.
While the above action is in the so-called Jordan, or

physical frame, for mathematical simplicity it is useful to
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study the scalar-tensor theories in the so-called Einstein
frame. The metric in this frame g�μν is defined by the
conformal transformation g�μν ¼ Φgμν, and the action can be
written in the form

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffiffiffi
−g�

p
½R� − 2g�μν∂μφ∂νφ − VðφÞ�

þ Smatter

�
e−

2ffiffi
3

p φg�μνχ
�
; ð4Þ

where R� is the scalar curvature with respect to the Einstein
frame metric g�μν. The new scalar field is defined by

φ ¼
ffiffi
3

p
2
lnΦ, the potential in the Einstein frame is given

by VðφÞ ¼ A4ðφÞU(ΦðφÞ), and A2ðφÞ ¼ Φ−1ðφÞ. The
field equations in this frame are much simpler and that
is why we will use it. Since the physical quantities are
measured in the Jordan frame, we will make the transition
between the two frames where necessary.
In our studies, we will consider oscillations of static

neutron stars. But in some of the asteroseismology rela-
tions, the moment of inertia is used. A natural and
straightforward way to define this quantity is via the slow
rotation approximation. For this reason, we will briefly
examine here the more general framework of slowly
rotating neutron stars in R2 gravity.
The line element in a stationary and axisymmetric

spacetime, keeping only first-order terms in the angular
velocity Ω, can be written in the form:

ds2� ¼ −e2ϕðrÞdt2 þ e2ΛðrÞdr2 þ r2ðdθ2 þ sin2θdϑ2Þ
− 2ωðr; θÞr2sin2θdϑdt: ð5Þ

The explicit form of the dimensionally reduced field
equations in the Einstein frame is

1

r2
d
dr

½rð1 − e−2ΛÞ�

¼ 8πGA4ðφÞρþ e−2Λ
�
dφ
dr

�
2

þ 1

2
VðφÞ; ð6Þ

2

r
e−2Λ

dϕ
dr

−
1

r2
ð1 − e−2ΛÞ

¼ 8πGA4ðφÞpþ e−2Λ
�
dφ
dr

�
2

−
1

2
VðφÞ; ð7Þ

d2φ
dr2

þ
�
dϕ
dr

−
dΛ
dr

þ 2

r

�
dφ
dr

¼ 4πGαðφÞA4ðφÞðρ − 3pÞe2Λ þ 1

4

dVðφÞ
dφ

e2Λ; ð8Þ

dp
dr

¼ −ðρþ pÞ
�
dϕ
dr

þ αðφÞ dφ
dr

�
; ð9Þ

eϕ−Λ

r4
d
dr

�
e−ðϕþΛÞr4

dω̄ðrÞ
dr

�
¼ 16πGA4ðφÞðρþ pÞω̄ðrÞ;

ð10Þ

where we have defined

αðφÞ ¼ d lnAðφÞ
dφ

and ω̄ ¼ Ω − ω: ð11Þ

Here, ρ and p are the energy and pressure density in the
Jordan frame, and they are connected to the Einstein frame
ones via ρ� ¼ A4ðφÞρ and p� ¼ A4ðφÞp.
The above system of equations, combined with the

equation of state for the matter and appropriate boundary
conditions, describes the interior and the exterior of a
compact star. The boundary conditions are the natural ones.
At the center of the star, we have ρð0Þ ¼ ρc, Λð0Þ ¼ 0,
dφ
dr ð0Þ ¼ 0, dω̄

dr ð0Þ ¼ 0, where ρc is a free parameter
denoting the central value of the density. The condition
for dω̄

dr ð0Þ ¼ 0 ensures the regularity of the metric function

ω̄ at the center of the star, the condition dφ
dr ð0Þ ¼ 0 ensures

the regularity of the scalar field φ, and in turn, the regularity
of the Jordan frame scalar Φ at the center of the star. The
regularity of the metric functions at r ¼ 0 requires Λð0Þ ¼
0 and since the Einstein and the Jordan frame metrics are
conformally equivalent, this condition ensures also the
regularity of the Jordan frame geometry at r ¼ 0. The
boundary conditions at infinity are related to the fact that
we consider asymptotically flat spacetime. At infinity, we
have limr→∞ϕðrÞ ¼ 0, limr→∞ ω̄ ¼ Ω, and limr→∞φðrÞ ¼
0 with Vð0Þ ¼ 0. These conditions ensure the asymptotic
flatness for both frames.
Although the above equations are in the Einstein frame,

the final results we present in this work are in the Jordan
frame (the physical one). The coordinate radius rS of the
star is determined by pðrSÞ ¼ 0, while the physical radius
in the Jordan frame is given by RS ¼ A½φðrSÞ�rS.
The explicit form of the conformal factor AðφÞ and the

potential VðφÞ for R2 gravity is

A2ðφÞ ¼ e−
2ffiffi
3

p φ; α ¼ −
1ffiffiffi
3

p ;

VðφÞ ¼ 1

4a
ð1 − e−

2φffiffi
3

p Þ2: ð12Þ

The moment of inertia I of the compact star is defined in
the standard way

I ¼ J
Ω
; ð13Þ

where J is the angular momentum of the star. More
convenient for numerical calculations is to use an integral
expression for the moment of inertia,
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I ¼ 8πG
3

Z
rS

0

A4ðφÞðρþ pÞeΛ−Φr4
�
ω̄

Ω

�
dr: ð14Þ

From now on, we shall use the dimensionless parameter
a → a=R2

0, and R0 is one half the solar gravitational
radius R0 ¼ 1.47664 km.

III. PERTURBATION EQUATIONS IN COWLING
APPROXIMATION

In this section, we will present the equations governing
the nonradial oscillations of static spherically symmetric
compact stars in the Cowling approximation for R2 gravity.
In this case, we are investigating fluid perturbations on a
fixed Jordan frame metric which is equivalent to fixed
scalar field and metric in the Einstein frame. Despite these
simplifications, the approximation turns out to be accurate
enough for qualitative investigation. The results differ from
GR in the range of 10% to 30%, and the deviation decreases
with the increase of the compactness [36,37].
The Jordan frame equations describing the perturbations

in the Cowling formalism are obtained by varying the
equation for the conservation of the energy-momentum
tensor in the Jordan frame, namely,∇μδT

μ
ν ¼ 0. The Jordan

frame Lagrangian fluid displacement vector ~ζ can be
parameterize by two functions W and V in the standard
form [18]

~ζ ¼
�
e− ~ΛW;−V

∂
∂θ ;−

V
sin2θ

∂
∂ϑ

�
eiωt

~r2
Ylmðθ; ϑÞ; ð15Þ

where the Jordan frame metric function e ~Λ, and the Jordan

frame radial coordinate ~r are given by e ~Λ ¼ AðφÞeΛ and

~r ¼ AðφÞr. Equivalently, ~ζ can be written in the form

~ζ ¼ A−2ðφÞ
�
AðφÞe−ΛW;−V

∂
∂θ ;−

V
sin2θ

∂
∂ϑ

�

×
eiωt

r2
Ylmðθ; ϑÞ: ð16Þ

Then the system of ordinary differential equations describ-
ing the star oscillations in Cowling approximation is the
following:

dW
dr

¼ dρ
dp

ðω2AðφÞeΛ−2ϕVr2 þ ϕ0W þ αðφÞψWÞ

− lðlþ 1ÞAðφÞeΛV;
dV
dr

¼
�
2ðϕ0 þ αðφÞψÞ − l

r

�
V −

eΛWA−1ðφÞ
r2

; ð17Þ

where we have defined ψ ¼ dφ=dr.
The boundary condition at the star surface is that the

Lagrangian perturbation of the pressure vanishes, which is
equivalent to

ω2e−2ϕV þ ðϕ0 þ αðφÞψÞe−ΛWA−1ðφÞ
r

¼ 0

����
r¼R

: ð18Þ

From a numerical point of view, it is convenient to
introduce new variables W1 and V1 and express the
boundary condition at the center of the star in terms of them

W ¼ W1rlþ1; V ¼ V1rl: ð19Þ

The system of equations (17) in terms of W1 and V1 is

dW1

dr
¼ dρ

dp
½ω2AðφÞeΛ−2ϕV1rþ ϕ0W1 þ αðφÞψW1�

−
lðlþ 1ÞAðφÞeΛV1

r
;

dV1

dr
¼

�
2ðϕ0 þ αðφÞψÞ − l

r

�
V1 −

eΛW1A−1ðφÞ
r

; ð20Þ

with the boundary condition at the surface of the star

ω2e−2ϕrV1 þ ðϕ0 þ αðφÞψÞe−ΛW1A−1ðφÞ ¼ 0jr¼R ð21Þ

and at the center

W1 ¼ −lAðφÞV1jr¼0: ð22Þ

The above system (20), combined with the boundary
conditions, forms an eigenvalue problem with the frequen-
cies ω being the eigenvalues of the system. The general
relativistic limit of the system is restored if we set AðφÞ ¼ 1
[and thus, αðφÞ ¼ 0] in Eqs. (20)–(22). In the next section,
we present the results from the numerical solution of the
eigenvalue problem.

IV. RESULTS

We investigate numerically the fundamental mode
(f-mode) frequencies obtained from the system of
Eqs. (20) supplied with six realistic hadronic equations of
state and two quark ones. The eigenvalue problem is solved
using a shooting method where the oscillation frequency
plays the role of the shooting parameter. The two classes of
equations of state cover a verywide range ofmasses and radii
as shown in Fig. 1. EOS FPS and BBB2 are the softest ones
with masses below the observational limit of 2M⊙ [38].
Nevertheless, we use them in order to check the EOS
independence of the relations we derive.1 On the other hand,
EOSSLy,APR4andWFF2havemasses above2M⊙ and fall
into the preferred range of radii [39]. EOSMS1 is the stiffest
onewithmaximummass over 2.7M⊙ andmuch bigger radii.

1It should be mentioned that in fðRÞ theories of gravity, some
soft EOS could be reconciled with the observations because the
maximum mass can be larger compared to the pure GR case, as
demonstrated in [33].
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For the hadronic EOS, we use piecewise polytropic
approximations [40]. The quark ones, on the other hand,
have the analytical form

p ¼ bðρ − ρ0Þ; ð23Þ

where the constants b and ρ0 are taken from [41] for EOS
SQS B60 and SQS B40. The first one gives masses slightly
below two solar masses, and the second one is stiffer and
has higher masses and radii.
We will examine a wide range of relations between the

f-mode oscillation frequencies and the stellar parameters
such as mass, radius, and moment of inertia. The particular
choice is motivated by the most commonly used relations in
the literature on gravitational wave asteroseismology. First,
we will investigate the neutron and strange star oscillation
frequencies and the differences between GR and R2 gravity.

We thoroughly investigated the f modes for all EOS, but
here we present results for one hadronic and one strange
matter EOS, namely, EOS SLy and SQS B60, which can be
considered as representative examples. The sequences of
models range from one solar mass up to the maximum one
in accordance with the observations. In Fig. 2, we present
and compare the results for GR and R2 gravity for neutron
and strange stars. In the left panel, the normalized fre-
quency ωðR3=MÞ1=2 as a function of the mass of the star,
measured in solar masses, is presented for EOS SLy and
SBS B60. Such a relation was used in other studies of
alternative neutron star models [13–15,18]. For clarity, the
SQS B60 results are marked with additional symbols. The
GR case is presented by a continuous black line, and
different values of a are in different colors and patterns. It
can be seen that for both GR and fðRÞ gravity the results
for neutron stars are much steeper than those for strange
stars, and the normalized frequency decreases with the
increase of the mass. The maximum deviation from GR is
below 10%, and the behavior is qualitatively different for
the different mass ranges. For smaller masses, the deviation
increases with the increase of a for a ≤ 10 but it starts to
decrease for larger a. For bigger masses though, the
deviation increases monotonically with the increase of a.
In the right panel of Fig. 2, we present the dimensional

frequency f ¼ ω=ð2πÞ, measured in kHz as a function of
the average density of the star ðM=R3Þ1=2 in km−1. This is
one of the most standard asteroseismology relations used in
the literature, originating from [7]. A qualitative difference
between the results for neutron stars in GR and in fðRÞ
theory can be seen on the graph. Namely, a stronger
deviation from linear dependences can be observed in
fðRÞ theories for large values of a. For strange stars, the
graphs have similar shapes for both theories. For small
values of a, the mode frequencies in R2 gravity are always
higher than GR, and a significant decrease with respect to

FIG. 1 (color online). The mass-of-radius relations for all EOS
in pure GR. It could be seen that they cover a wide range of
stiffnesses.

FIG. 2 (color online). Results for one hadronic EOS, namely, SLy, and one quark EOS, namely, SQS B60. Both have maximum mass
around two solar masses. In the left panel, the normalized frequency as a function of the neutron star mass is presented, while in the right
panel—the oscillation frequency in kHz as a function of the average density of the star in km−1.
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GR is observed for larger average densities and large values
of the parameter a. For a visual representation of these
changes, in Fig. 3, we plot the change of the frequency with
respect to the full GR case, defined as Δf ¼ ðfGR − fR2Þ=
fGR, as a function of the parameter a, for EOS SLy and
three different values of the average density.
In the left panel of Fig. 4, a graph similar to the one in the

right panel of Fig. 2 is presented but in this one all EOS are
included for GR and R2 gravity with a ¼ 104. This value of
a is chosen because our investigations show that it gives
almost the maximum possible deviation from the pure
Einstein’s theory. Different EOS are marked with different
symbols, the GR case is in black and a ¼ 104 is in color.
Two groups can be distinguished in the graph—one for the
softer and the typical EOS (with maximum mass around
and below 2M⊙), and one for the stiffer EOS (contains
EOS MS1 and SQS B40). We will concentrate on the
former group which could be separated into two bands, one
formed by the results for GR and the other for a ¼ 104.
These two bands fully overlap for small values of the
average density, and partially for higher densities. We
should note that strange stars do not fit very well in the
band formed by neutron star solutions in Fig. 4 [8,9]. Let us
comment on the deviations coming from the modification
of GR. Although the difference between GR and R2 gravity
is non-negligible, i.e., up to 10%, it is comparable with the
uncertainty of the EOS. Constraining further the EOS by
different observations will reduce the spread of the data due
to the EOS uncertainty. This will make the difference
between the two theories of gravity clearer and that can be
potentially used to set constraints on the fðRÞ theories
using future gravitational wave observations.
The empirical relations describing these dependences

have been widely investigated in the literature starting from
[7]. They have used linear fitting for the frequency-average
density relation, and we will employ the same.2 We have
excluded from the relation the very stiff nuclear EOS MS1

and the quark ones SQS B60 and SQS B40 since they
clearly lead to significantly different dependences, and they
are not favored by observations. The results for GR and for
R2 gravity with a ¼ 104 are fitted separately using a linear
fit of the form

f ¼ C1 þ C2

ffiffiffiffiffiffi
M
R3

r
: ð24Þ

The dimensions of the constants for this fit, C1 and C2, are
as follows: C1 is in kHz and C2 is in kHz km. For the case
of GR, we have C1 ¼ 1.59, C2 ¼ 24.23, and for R2 gravity
with a ¼ 104 we have C1 ¼ 1.95, C2 ¼ 14.25. From the
values of the coefficients, it is obvious that the results in GR
are much steeper than the fðRÞ case.
Let us proceed to the next asteroseismology relation we

plan to consider, where different normalization of the
quantities is used. In the right panel of Fig. 4, we present
the scaled frequency Mω as a function of the compactness
of the star M=R, as proposed in [7]. The graph contains all
EOS, the GR solutions are marked with black squares and
the ones for a ¼ 104 with circles. As one can see, normal-
izing the frequency seriously decreases the spread of the
data due to the EOS and therefore, it leads to significant
EOS independence [7,8,42]. The difference between GR
and R2 gravity is below 5% which most probably is not
large enough to be observed.
For small values ofM=R, the relation is almost linear, but

close to the maximum values of the compactness, this
changes. That is why we use a cubical polynomial fit in this
case,

Mω ¼ C1 þ C2

M
R
þ C3

�
M
R

�
2

þ C4

�
M
R

�
3

: ð25Þ

We excluded both quark EOS and fitted the rest of our data
for three different cases. For the pure GR case, C1 ¼
4.950×10−3;C2¼ 2.821×10−1;C3¼ 2.372;C4¼−4.482,
and for the R2 gravity, C1 ¼ −5.230 × 10−3; C2 ¼ 5.020×
10−1; C3 ¼ 1.175; C4 ¼ −2.586. If one uses the data for
both theories, we have C1 ¼ −7.687 × 10−5; C2 ¼
0.3868; C3 ¼ 1.810; C4 ¼ −3.602.
As one can see, the results for strange stars are also quite

EOS independent but they differ from the neutron star ones.
More precisely, they are shifted with some constant value
of the normalized frequency. Lau et al. [9] suggested that this
is due to the difference in the density profiles of strange and

FIG. 3 (color online). The change of the frequency with respect
to the full GR case as a function of the parameter a. The results
are for three different values of the average density.

2The dependences in the fðRÞ gravity case can deviate from
linear, as commented above, especially, for large values of a.
Therefore, a linear fit to the data might be a little bit rough. But,
on the other hand, the deviations coming from the EOS
uncertainties are much stronger. That is why fitting the data
with a higher order polynomial would not lead to an increase of
the approximation accuracy.
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neutron stars. That is why they used a new parameter for
constructing theuniversal asteroseismology relations. Instead
of the compactness, they employ the parameter η≡ ffiffiffiffiffiffiffiffiffiffiffi

M3=I
p

,
where I is the moment of inertia of the star. Therefore, we
have also investigated the relationMωðηÞ. In the left panel of
Fig. 5, we present results for EOS SLy for GR and a few
different values of the parameter a. The biggest deviation is
around 10%, and it is relatively the same for all values of
a ≥ 10. In the right panel, we present our results for all EOS
for GR and for a ¼ 104. Aswe pointed out in Fig. 4, if we use
the compactness M=R as a dimensionless parameter and
normalize ω, the deviation between the two theories is under
5%. Using η as a parameter preserves the EOS independence

but the results for GR and R2 gravity get further apart.
However, the deviation between GR and R2 gravity is still
small, up to roughly 10% as we commented. In this case, the
dependences for both theories are more or less shifted with
some constant value ofMω. As far as the difference between
neutron and strange stars is concerned, it decreases a lot if we
use η as a dimensionless parameter instead of M=R, but the
results in the two cases do not fully coincide as opposed to the
ones in [9]. This is most probably due to the fact that we are
using the Cowling approximation in our calculations.
In order to obtain asteroseismology dependences for

these normalizations, we are using a quadratic fit similar
to [9],

FIG. 4 (color online). In the left panel, we present the frequency as a function of the average density for all examined EOS for the case
of GR and for R2 gravity with parameter a ¼ 104, which induces a deviation close to the maximum possible. It could be seen that the
results for the stiffest EOS, namely, MS1 and SQS B40, seriously differ from all the other results. However, the two groups of results
form two narrow bands. In the right panel, we plot the relationMωðM=RÞ. The presented results are again for all EOS for GR and fðRÞ
theory with a ¼ 104. As one can see, the results for hadronic and quark EOS are only shifted from each other, but there is quite good
universality for both cases independently. The separation between the GR and fðRÞ dependencies is negligible.

FIG. 5 (color online). The relation MωðηÞ is presented in the graphs. In the right panel, we investigate the deviations of this relation
from GR for EOS SLy and several different values of the parameter a. In the left panel, results for all EOS are presented.The relation for
both the neutron and the strange stars are quite EOS independent, and a visible difference between the GR and the a ¼ 104 cases exists.
The maximum observed deviation is close to 10%.
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Mω ¼ C1 þ C2ηþ C3η
2: ð26Þ

For GR, we obtain C1 ¼ −3.28 × 10−2; C2 ¼ 0.426;
C3 ¼ 0.157, and for R2 gravity with a ¼ 104, we have
C1 ¼ −4.29 × 10−2; C2 ¼ 0.544; C3 ¼ −2.57 × 10−2.
Let us comment in more details on the deviations coming

from the Cowling approximation. The difference in the
oscillation frequencies is roughly 30% for very low masses
and decrease monotonically to 10% for models close to the
maximum mass [10,36,37]. Since the y axis is a linear
function of the frequency f (or ω) in the relations we
employed, the deviations in these relations are of the same
order [10,42]. We should note that until now, stellar
oscillations in alternative theories of gravity were always
examined in the Cowling approximations [13,14,16,18,21]
(with the only exception of [18]). The reason is that the full
system of equations, including the metric perturbations, is
much more involved compared to the general relativistic
case. On the other hand, from various tests, it is well known
that even though the Cowling approximation can lead to
large deviations, it does not distort qualitatively the
oscillation spectrum and only shifts the oscillation frequen-
cies (see, for example, [10,22,23,43]). That is why it gives
good qualitative picture for the differences from GR. A
study of the full system of the perturbation equations in
certain classes of alternative theories of gravity is
underway.

V. CONCLUSIONS

In this paper, we investigated neutron and strange stars
oscillations in GR and R2 gravity. More precisely, we
concentrated on the f-mode oscillations since they are
expected to be very efficient gravitational wave emitters.
We employed a big range of hadronic and strange matter
EOS with different stiffnesses, and the calculations were
performed in the Cowling approximation. The observed
maximum deviation between the f-mode frequencies in
GR and R2 gravity is up to 10% and depends on the value of
the R2 gravity parameter a.

We investigated multiple gravitational wave asteroseis-
mology relations available in the literature and obtained the
corresponding analytical fits. In most cases, the depend-
ences in GR and R2 gravity are qualitatively the same—
they are only shifted with respect to one another. The only
exception is the relation connecting the f-mode oscillation
frequencies to the average density of the star where some
qualitative differences between the two theories exist. As
mentioned above, these differences do not exceed 10%.
Such deviations are big enough to make a clear distinction
between GR and R2 gravity, but as far as the real
gravitational wave observations are concerned, they will
most probably be below the accuracy of the observed
gravitational wave frequencies.
On the other hand, this result can be considered as a

strong point of the asteroseismology relations examined in
the present paper. The reason is that one can make the
conclusion that the relations we consider turned out to be
not only EOS independent, but up to a large extent, theory
independent too. Therefore, solving the inverse problem
will supply us with unique values for the parameters of a
star, like mass and radius, insensitive to both the EOS and
the particular theory of gravity. In order to prove this
conjecture more rigorously, one of course has to examine
these relations in other alternative theories of gravity, but
the present results give a hint in this direction.
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