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We investigate the dynamics of a neutral and a charged particle around a black hole in modified gravity
immersed in a magnetic field. Our focus is on the scalar-tensor-vector theory as modified gravity. We are
interested in exploring the conditions on the energy of the particle under which it can escape to infinity after
collision with another neutral particle in the vicinity of the black hole. We calculate the escape velocity of
particle orbiting in the innermost stable circular orbit (ISCO) after the collision. We study the effects of
modified gravity on the dynamics of particles. Further, we discuss how the presence of a magnetic field in
the vicinity of a black hole affects the motion of the orbiting particle. We show that the stability of ISCO
increases due to the presence of a magnetic field. It is observed that a particle can go arbitrarily close to the
black hole due to the presence of a magnetic field. Furthermore, ISCO for a black hole is more stable as
compared with a Schwarzschild black hole. We also discuss the Lyapunov exponent and the effective force
acting on the particle in the presence of a magnetic field.
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I. INTRODUCTION

Theories of modified gravity [such as the fðRÞ theory,
Lovelock gravity, and Gauss-Bonnet theory] are con-
structed by adding curvature correction terms in the usual
Einstein-Hilbert action through which the cosmic accel-
erated expansion might be explained [1] (see also [2] for
reviews on modified gravity). Such correction terms give
rise to solutions of the field equations without invoking the
concept of dark energy. To find the dynamical equations,
one can vary the action according to the metric. There is no
restriction on the gravitational Lagrangian to be a linear
function of Ricci scalar R [3]. Recently some authors have
taken into serious consideration the Lagrangians that are“-
stochastic” functions with the requirement that it should be
local gauge invariant [4]. This mechanism was adopted in
order to treat the quantization on curved spacetime. The
result was that the corrective term in the Einstein-Hilbert
Lagrangian arises due to either background geometry and
interactions among quantum fields or gravitational self-
interaction [5]. Furthermore, it is also realized that such
corrective terms should be incorporated if one wants to
obtain the effective action of quantum gravity on the Planck
scale [6]. Besides fundamental physical motivation, these
theories have acquired a huge interest in cosmology as they
exhibit inflationary behaviors and as the corresponding
cosmologicalmodel seems very realistic [7,8]. In this article,
our focus will be on the scalar-tensor-vector theory (will be

referred to asMOG) and the Schwarschild-MOG black hole
(MOG) [9].
Black holes can accelerate particles to arbitrarily high

energy if the angular momentum of the particle is fine-
tuned to some critical value (see [10] and references
therein). This phenomenon is robust as it is founded on
the basic properties of geodesics around a black hole [11].
Studying the dynamics of a particle (either massive or
massless) around the gravitational source such as a black
hole (BH) is important because it is responsible for
understanding the geometrical structure of spacetime near
the BH. Geodesics may display a rich structure and convey
very reliable information to understand the geometry of
the BH. There are many types of geodesic motion, but the
circular geodesics are especially important. The exponen-
tial fade-out of a collapsing star’s luminosity can be
explained by the circular geodesics as given in [12,13].
The motion of test particles helps to study the gravitational
fields of objects experimentally and to compare the
observations with the predictions about observable effects
(light deflection, gravitational time delay, and perihelion
shift).
In the surrounding of the BH, a magnetic field is

generally present [14], due to the presence of plasma in
the vicinity of the BH. The accretion disk or a charged gas
cloud is primarily responsible for the magnetic field
[15,16]. The magnetic field is stronger in the vicinity of
BH’s event horizon; however, it does not affect the
geometry of the BH, but the motion of the charged particle
moving around a BH is affected [17,18]. The magnetic
coupling process is likely responsible for the stability of the
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black hole with its accretion disk [19]. According to this
process, angular momentum and energy are transferred
from the black hole to its surrounding disk. The magnetic
field plays an important role in transferring sufficient
energy to the surrounding particles for escaping to spatial
infinity [20,21]. Other interesting processes around BHs
include evaporation and phantom energy accretion onto
BHs [22]. In this article, we revisit the model of Zahrani
et al. [23] for a MOG black hole and explore the effects of
modified gravity. It involves the collision of a bounded
particle with an unbounded particle in the vicinity of the
black hole. The main interest lies in finding the conditions
of escape of a bounded particle after the collision.
The outline of the paper is as follows: In Sec. II we

develop the basic equations and then derive an expression
for the escape velocity of a neutral particle. In Sec. III we
discuss the strength of the magnetic field, and the equations
of motion of the charged particle moving around weakly
magnetized MOG and the escape velocity for the particle
are also calculated. The force acting on the particle is
studied in Sec. IV, and geodesics of the particles moving
around the MOG are discussed in Sec. V. The Lyapunov
exponent is explained in Sec. VI. In Secs. VII and VIII,
trajectories for the effective potential and escape velocity of
the particle are presented, respectively. The conclusion is
given in the last section. We will study the motion of the
particle in the equatorial plane to simplify the calculations.
Throughout this work we use the following metric sig-
nature ðþ;−;−;−Þ and assume c ¼ 1.

II. NEUTRAL PARTICLE DYNAMICS
AROUND MOG BLACK HOLE

Motion of particles around a central massive object
under the effect of a central force is a well-studied problem
of classical mechanics (or rather Newtonian mechanics). In
particular, we can think of the following problem in the
present context: consider a particle of mass m moving in a
circular orbit around another object of mass M such that
M ≫ m. Now for the particle to escape from the gravita-
tional field ofM, the particle’s initial velocity must be more
than the escape velocity. The particle can gain the escape
velocity either from an external force acting on it or by
hitting (or colliding) a test particle with the particle in a
circular orbit. Since the collision leads to the transfer of
energy as well, the particle will escape from the circular
orbit if its energy after collision is more than a critical
energy or escape energy. If, however, the energy of the
particle after collision is smaller than the critical energy, the
particle falls toward M.
The relativistic version of the above scenario was

investigated by Zahrani et al. [23]. They studied the motion
of a charged particle in the vicinity of a weakly magnetized
Schwarzschild black hole and focused on the bounded
trajectory lying in the black hole equatorial plane. For the
charged particle to escape from the innermost circular orbit,

another particle (which is neutral and coming from a
sufficiently far distance) hits the charged particle. The
authors obtained the corresponding conditions of escape
velocity and escape energy in the resulting process. They
also predicted that the motion of the charged particle after
collision will be chaotic due to the presence of the magnetic
field and strong gravitational field. The chances of collision
between two particles around the black hole, in general, are
feeble. However, the process itself is important to describe
the ejection of particles from the vicinity of black holes.
Later on Hussain et al. [24] investigated a similar scenario
for a slowly rotating Kerr black hole and discussed the
conditions of escape for the particle. Jamil et al. [25]
investigated a similar scenario for a Schwarzschild black
hole surrounded by quintessence.
Recently, Moffat [9] obtained both static and nonstatic

black hole solutions in the scalar-tensor-vector modified
gravity, the theory which he himself proposed [26]. The
theory fairly describes several astronomical and cosmo-
logical observations such as galaxy rotation curves [27] and
gravitational lensing [28]. The modified gravitational field
equations are given by [9,26]

Rμν −
1

2
gμνR ¼ −8πGTφ

μν; ð1Þ

where

Tφ
μν ¼ −

1

4π

�
Bσ
μBνσ −

1

4
gμνBσβBσβ

�
;

and Bμν ¼ φν;μ − φμ;ν, where φμ is a vector field with
the source charge Q ¼ ffiffiffiffiffiffiffiffiffi

αGN
p

M (see details below).
The role of this vector field is to produce a large scale
repulsive gravity that can cause accelerated cosmic expan-
sion. Further, the vacuum field equations are

Bμν
;ν ¼ 0; B½μν;σ� ¼ 0; ð2Þ

where “;” denotes the covariant derivative operation.
To solve the above system of equations, an ansatz for the

static and spherically symmetric solution is assumed to be
of the form

ds2 ¼ gðrÞdt2 − gðrÞ−1dr2 − r2ðdθ2 þ sin2θdϕ2Þ: ð3Þ

The calculation yields [9]

gðrÞ ¼ 1–2
GM
r

þ α
GNGM2

r2
;

G ¼ GNð1þ αÞ; Q ¼ κM;

κ ¼ �
ffiffiffiffiffiffiffiffiffi
αGN

p
; α ¼ G

GN
− 1; ð4Þ

and therefore we have
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Q ¼ �
ffiffiffiffiffiffiffiffiffi
αGN

p
M: ð5Þ

Note that α is a free parameter of the theory; hence, it yields
a variable gravitational constant. Here M and Q are,
respectively, the mass and electric charge of the black
hole, and GN is Newton’s gravitational constant. In metric
(3), the positive value of Q is chosen to maintain repulsive
gravitational force, as it is necessary to describe the
stable star. (For a stable star, the gravitational attraction
should be balanced by the repulsive gravity.) This is a
static, spherically symmetric, point particle solution of an
electrically charged body like the Reissner-Nordstrom
black hole [29,30]. For α ¼ 0, metric (3) reduces to the
Schwarzschild metric (which is also the general relativistic
limit). Like the Kerr [31] and Reissner-Nordström (RN)
metrics it has two horizons:

r� ¼ GNMð1þ α�
�
1þ αÞ12

�
: ð6Þ

Equation (6) corresponds to gðrÞ ¼ 0 and will reduce to the
Schwarzschild event horizon for α ¼ 0. The metric (3) is
invariant under time translation and rotation around the
symmetry axis. Thus the Killing vectors equations are [32]

ξμðtÞ∂μ ¼ ∂t; ξμðϕÞ∂μ ¼ ∂ϕ; ð7Þ

which will give the constants of motion, where ξμðtÞ ¼ð1; 0; 0; 0Þ and ξμðϕÞ ¼ ð0; 0; 0; 1Þ. The conserved quantities

corresponding to these Killing vectors are the total energy
(per unit mass) E and azimuthal angular momentum Lz (per
unit mass) of the moving particle at infinity. The motion of
a neutral particle moving in the MOG background is
described by the Lagrangian density [33],

L ¼ 1

2
gμν _xμ _xν: ð8Þ

From (4) and (8) we can say that t and ϕ are the cyclic
coordinates. There exist constants of motion corresponding
to these cyclic coordinates, i.e., total energy and azimuthal
angular momentum. We have calculated these integrals of
motion by using the Euler-Lagrange equation

d
dτ

�∂L
∂ _xμ

�
−

∂L
∂xμ ¼ 0: ð9Þ

Therefore, using Eq. (9) for t and ϕ we have

dt
dτ

¼ _t ¼ E
gðrÞ ; ð10Þ

dϕ
dτ

¼ _ϕ ¼ −
Lz

r2
: ð11Þ

The overdot denotes the differentiation with respect to
proper time τ throughout the calculations. Considering
the planar motion of the particle, i.e., for θ ¼ π=2, the
normalization condition uμuμ ¼ 1 gives

_r2 ¼ E2 −Ueff ;

Ueff ¼
�
1 − 2

GM
r

þ α
GNGM2

r2

��
1þ L2

z

r2

�
: ð12Þ

The extreme values of the effective potential correspond to
dUeff
dr ¼ 0. It occurs at r ¼ 6M for a Schwarzschild black
hole [23]. The point where the innermost stable circular
orbit (ISCO) exists is the convolution point of the effective
potential [34]. In the present case, the ISCO occurs at

ro ¼
αGM2GN þ L2

3GM
− ð

ffiffiffi
2

3
p

ðLðL − 3GMÞ þ αGM2GNÞðLð3GM þ LÞ þ αGM2GNÞÞ
× ½3GMð−2α3G3M6G3

N þ 3GL4M2ð9G − 2αGNÞ − 2L6 − 3αG2L2M4GNð2αGN þ 9GÞ
þ 3

ffiffiffi
3

p
ðG3L2M4ð−9GL6 þ 108G3L4M2 þ αGNð8L6 − 126G2L4M2

þ αGM2GNð24L4 − 9G2L2M2 þ 8αGM2GNðαGM2GN þ 3L2ÞÞÞÞÞ12Þ13�−1

−
1

3
ffiffiffi
23

p
GM

ð−2α3G3M6G3
N þ 3GL4M2ð9G − 2αGNÞ − 2L6 − 3αG2L2M4Gnð2αGN þ 9GÞ

þ 3
ffiffiffi
3

p
ðG3L2M4ð−9GL6 þ 108G3L4M2 þ αGNð8L6 − 126G2L4M2

þ αGM2GNð24L4 − 9G2L2M2 þ 8αGM2GNðαGM2GN þ 3L2ÞÞÞÞÞ12Þ13: ð13Þ

The critical energy and the azimuthal angular momentum
of the particle corresponding to ISCO are

Eo ¼
ðαGM2GN þ rðr − 2GMÞÞ2
r2ð2αGM2GN þ rðr − 3GMÞÞ ; ð14Þ

Lzo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMr3 − αGM2r2GN

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αGM2GN − 3GMrþ r2

p : ð15Þ

We consider the case that an incoming particle collides with
the orbiting particle at the ISCO, so that after collision it
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will move within a new plane tilted with respect to the
previous equatorial plane. However, to study the dynamics
of a particle, it is convenient to use the fact that if the initial
position and the tangent vector of the trajectory of the
particle lies on a plane that contains the center of the body,
then the entire trajectory lies on this plane. After collision,
there are three possible cases depending on the collision
mechanism: (i) bound motion, (ii) capture by BH, and
(iii) escape to infinity. For a small change in energy and
angular momentum, the orbit of the particle alters very
slightly. While for large changes it may escape to infinity or
capture by BH depending upon the nature of change in the
path. After collision, the particle will no longer remain in
the same equatorial plane, so further discussion would be
dealt with respect to the new plane. But note that due to
spherical symmetry all equatorial planes are equivalent.
Because of the collision, the particle should have new
constants of motion E, L2, and Lz. For simplification of our
problem we consider the case of collision when (i) the
azimuthal angular momentum is invariant during collision
and (ii) the initial radial velocity does not change. These
conditions imply that only energy of the particle will
change; hence, its motion would be determined by con-
sidering only the change in the energy. After collision the
particle acquires an escape velocity v, in an orthogonal
direction of the equatorial plane as explained in [14]. The
angular momentum and energy of the particle after colli-
sion becomes (at the equatorial plan θ ¼ π

2
)

L2 ¼ r2ov2 þ
L2
zo

sin2θ
; L2 ¼ r2ov2 þ L2

zo: ð16Þ

Here v≡ −ro _θo and _θo is the initial polar angular velocity
of the particle and ro is the radius of ISCO. This velocity
should be in an orthogonal direction to the equatorial plane
[35]. Further,

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

2GM
r

þ αGNGM2

r2

�
v2 þ E2

o

s
; ð17Þ

where Eo is defined in Eq. (14). It is clear that these values
of angular momentum (16) and energy (17) are larger than
their values (14) and (15) before collision. Also Eq. (17)
shows that as r → ∞, E → Eo → 1. So for E ≡ E ≥ 1
the particle will have unbound motion. In other words,
the particle cannot escape to infinity if E < 1. Hence, the
necessary condition for a particle to escape to infinity after
collision is E ≥ 1 or

v ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð2GMðL2 þ r2Þ − L2rÞ − αGM2GNðL2 þ r2Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ðαGM2GN þ rðr − 2GMÞÞ

p :

ð18Þ

The last expression for velocity v is obtained by solving
Eq. (17) at Enew ¼ 1.

III. MOTION OF A CHARGED PARTICLE
AROUND A WEAKLY MAGNETIZED SMOG

BLACK HOLE

A. Magnetic field in the vicinity of BH

The magnetic coupling (MC) process is responsible for
the attraction of a black hole with its accretion disk
[17,19,36–38]. According to this process, angular momen-
tum and energy are transferred from a black hole to its
surrounding disk. The process of MC provides the relation
between the strength of the magnetic field at the black hole
horizon and its mass M and the rate of accretion _M [39].
This relation is as follows:

Bh ¼
1

rh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mp

_Mc
q

: ð19Þ

Here the black hole horizon rh is given by (6) andmp is the
magnetization parameter that indicates the relative power of
the process of MC with respect to disk accretion. If disk
accretion is dominant over the MC process, then mp < 1,
and if the MC process is dominant over disk accretion, then
mp > 1 while mp ¼ 1 correspond to the equipartition of
these two processes. The magnetic field expression is given
by [39]

Bh ¼ ðvbf2ðα; mpÞÞ12 × 107.35þ0.45θ: ð20Þ

The magnetic field strength at the horizon of MOG-BH is
4.93 × 108 G for mp ¼ 1, α ¼ 0.1, θ ¼ 0.5, and vb ¼ 300.
Similar effects of particle collision with a high center of

mass energy in the vicinity of the black hole can also be
possible if the black hole is nonrotating, provided there
exists a magnetic field in its surrounding. There exists
theoretical and experimental evidence that such a magnetic
field should exist in the surrounding black hole [21–28,40].
We assume that this magnetic field is weak and its energy
and angular momentum do not affect the background
geometry of the black hole. The above-mentioned con-
dition satisfies for a black hole of mass M if the magnetic
field strength holds the condition [41]

B ≪ Bmax ¼
1

G
3
2M⨀

�
M⨀

M

�
∼ 1019

M⨀

M
: ð21Þ

These kinds of black holes are called weakly magnetized.

B. Magnetic field calculation

In this section we explore how the presence of a
magnetic field in the BH exterior stimulates the motion
of a charged particle. First, we calculate the magnetic field
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in the vicinity of the black hole by following the procedure
as given by [23,24].
The Killing vector equation is [42]

□ξμ ¼ 0; ð22Þ
where ξμ is a Killing vector. Equation (22) corresponds to
the Maxwell equation for 4-potential Aμ in the Lorentz
gauge Aμ

;μ ¼ 0. Define Aμ as [43,44]

Aμ ¼
�
αGM
r

; 0; 0;
B
2

�
: ð23Þ

Here the magnetic field is defined as [23]

Bμ ¼ −
1

2
eμνλσFλσuν; ð24Þ

where

eμνλσ ¼ ϵμνλσffiffiffiffiffiffi−gp ; ϵ0123 ¼ 1; g ¼ detðgμνÞ: ð25Þ

Here ϵμνλσ is the Levi-Cività symbol, and Fμν is the
Maxwell tensor, defined as

Fμν ¼ Aν;μ − Aμ;ν ¼ Aν;μ − Aμ;ν: ð26Þ

For a local observer at rest, the component of four velocity
is

uμ ¼ ðut; 0; 0; 0Þ ¼ ðgðrÞ−12 ; 0; 0; 0Þ: ð27Þ
Here we assume ut > 0, to signify the “forward-in-time”
condition. By Eqs. (23)–(27) the magnetic field 4-vector
becomes

Bμ ¼
�
0;BgðrÞ12 cos θ;−BgðrÞ12

r
sin θ; 0

�
: ð28Þ

The magnetic field is along with the z axis at spatial
infinity, and we assume that it is directed upward [45]. At
the equatorial plane only the Bθ component will survive. In
Fig. 1 we have plotted Bθ as a function of r. It decreases
initially and then becomes almost constant for large r (away
from the black hole). So, it is homogeneous at r → ∞.

C. Dynamical equations

The Lagrangian of the moving particle of rest mass m
and electric charge q in the vicinity of MOG-BH is

L ¼ 1

2
gμν _xμ _xν þ

q
m
Aμ _xμ: ð29Þ

Using the Euler-Lagrange equation (27) for t and ϕ, we get

gðrÞ
�
_tþ ϵαGM

r

�
¼ E: ð30Þ

Here, ϵ ¼ q
m is the specific charge of a particle and

_ϕ ¼ −
Lz

r2sin2θ
þ B; ð31Þ

where

B≡ ϵB
2
: ð32Þ

Using the normalization condition uμuμ ¼ 1, we obtain

1 ¼ gðrÞ_t2 − 1

gðrÞ _r
2 − r2 _θ2 − r2sin2θ _ϕ2: ð33Þ

By using Eqs. (30) and (31) in (33) and choosing θ ¼ π
2
, we

have

_r2 þ Ueff ¼ E2; ð34Þ
and then the effective potential is

E� ¼ Ueff� ¼ ϵGM
r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðrÞ

�
1þ r2

�
Lz

r2
− B

�
2
�s
:

ð35Þ
According to Eq. (16), after collision Lz → L. Hence, the
effective potential reduces to

E� ¼ Ueff� ¼ ϵαGM
r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðrÞ

�
1þ r2

�
L
r2

− B

�
2
�s
:

ð36Þ
Putting the value of L from Eq. (16) and E� ¼ 1 in Eq. (36)
and then solving for v, we get

5 10 15 20 25 30 35 40

0.02

0.04

0.06

0.08

0.10

r

B

FIG. 1 (color online). The magnetic field Bθ vs r for α ¼ 0.2.
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v ¼ 1

r4ðαGM2GN þ rðr − 2GMÞÞ ½GMr2ðBr2 − LÞðαMGN − 2rÞ þ Br6 − Lr4

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMr6ðαGM2GN þ rðr − 2GMÞÞðα2GMϵ2 − αMGN þ rð2 − 2αϵÞÞ

q
�: ð37Þ

For a particle to escape from the black hole’s vicinity, its
velocity should be greater than or equal to v.
A charged particle moving in an external electromag-

netic field Fμν obeys the equation of motion:

ẍμ þ Γμ
νσ _xν _xσ ¼ q

m
Fμ
α _xα: ð38Þ

The dynamical equations for θ and r, respectively, are

θ̈ ¼ −2
r

_r _θþL2
z cos θ
r4sin3θ

− B2 sin θ cos θ; ð39Þ

̈r ¼ γ − _θ2ðγr2 − rgðrÞÞ − L2

r2sin2θ

�
γ −

gðrÞ
r

�

− B2sin2θð−3rgðrÞ þ r2γÞ þ BL

�
2γ −

4gðrÞ
r

�
; ð40Þ

where γ ¼ M
r2 −

αGM2

r3 . For θ ¼ π
2

Eq. (39) is satisfied
obviously and Eq. (40) becomes

̈r ¼ γ −
L2

r2

�
γ −

gðrÞ
r

�
− B2ð−3rgðrÞ þ r2γÞ

þ BL

�
2γ −

4gðrÞ
r

�
: ð41Þ

We have solved Eq. (41) numerically by using the built-in
command of Mathematica NDSolve for α ¼ 0.2, B ¼ 0.3,
and Lz ¼ 2 and plotted the solution in Fig. 2. In Fig. 2 the

upper curve represents rðτÞ, the middle curve is for _r (radial
velocity), and the lower one is for ̈r. _r is the radial velocity
that represents the escape behavior as it is increasing with
the increase of r, and ̈r is the radial acceleration that is
analogous to the force exerted on the particle in the radial
direction after the collision.

IV. FORCE ON A CHARGED PARTICLE
IN THE VICINITY OF MOG-BH

As we have already calculated the effective potential for
MOG-BH, we can also compute the effective force on a
neutral and a charged particle by [46]

F ¼ −
1

2

dUeff

dr
; ð42Þ

F ¼ −GNMð3L2 þ r2Þ þ L2r
r4

þ αGNMððαþ 1ÞGNMð2L2 þ r2Þ − rð3L2 þ r2ÞÞ
r5

:

ð43Þ

It can be seen fromEq. (43) that the force due to scalar tensor-
vector gravity is repulsive if ðαþ1ÞGNMð2L2þr2Þ>
−rð3L2þr2Þ,

F ¼ L2r −GMð3L2 þ r2Þ
r4

þQ2ð2L2 þ r2Þ
r5

: ð44Þ

0 1 2 3 4 5 6 7

0

5

10

15

r r r

FIG. 2 (color online). Interpolating function rðτÞ as the solution
of Eq. (41) for Lz ¼ 2, B ¼ 0.3, and α ¼ 0.2. Here the large bold
dashed curve represents rτ, the solid curve is for _rðτÞ, and the
short dashed curve corresponds to ̈rðτÞ.

FIG. 3 (color online). Effective force as a function of r for
different values of α.
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Equation (44) represents the effective force for RN-BH, and
the force due to the charge of BH is repulsive without any
condition.
We are studying the dynamics of a neutral and a charged

particle in the surrounding of MOG-BH where the scalar
tensor-vector field produces a repulsive gravitational force
that prevents a particle from falling into singularity [26]. In
Fig. 3 we are comparing the effective force on a particle in
the vicinity of MOG-BH with a Schwarzschild black hole.
We deduce from Fig. 3 that the repulsion to reach the
singularity is more for α ¼ 0.2 as compared to α ¼ 0.
To study the behavior of force against magnetic field B,

we have plotted the force F as a function of r for different
values of B in Fig. 4. It can be seen from Fig. 4, due to large
magnetic field strength B, that force on the particle is more
attractive as compared to small B.

V. COMPARISON OF GEODESICS IN THE
VICINITY OF MOG-BH VS SBH

A. Geodesics of a neutral particle moving
around a Schwarzschild BH

Geodesics of a particle moving toward or away from BH
could be obtained by using Eqs. (10) and (12) together. We
have

dt
dr

¼ � E
gðrÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −Ueff

p : ð45Þ

Here Ueff corresponds to a neutral particle given by (12),
where a positive root gives the path of the outgoing particle
from the BH, and a negative root gives the path of an
ingoing particle. Let us consider the particle that is coming
from infinity, initially at rest, and approaches the BH.
Setting E ¼ 1, B ¼ 0, α ¼ 0, and Lz ¼ 2 in Eq. (45), we
plot the geodesics in ðr; tÞ coordinates; see Fig. 5.

B. Geodesics of a charged particle moving
around a MOG-BH

Geodesics of the particles approaching the MOG-BH
could be obtained by using Eqs. (30) and (34); together we
obtain

dt
dr

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EgðrÞ−1 − ϵαGM

r

E2 −Ueff

s
: ð46Þ

Here Ueff corresponds to a charged particle given by
Eq. (36) where positive and negative signs give the path
of the outgoing and the ingoing particles, respectively.
Setting E ¼ 1, Lz ¼ 2, M ¼ 1, in Eq. (46) we get the
geodesics that are bounded by the boundaries r ¼ rc and
the outer horizon of the BH, plotted in Fig. 6. In Fig. 6, for
the thick curve we consider parameter α ¼ 0.1, magnetic
field strength B ¼ 0.1, and charge of a particle ϵ ¼ 0.5, and
the thin curve corresponds to ϵ ¼ 1, B ¼ 0.5, and α ¼ 0.5.
Figure 6 shows that if the strength of magnetic field B is
higher, then the charged particle can reach arbitrarily close
to the black hole as compared to a smaller value of B.

FIG. 4 (color online). Effective force against r for different
values of magnetic field B.
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FIG. 5 (color online). Geodesic equations dt
dr (45) against r for

E ¼ 1, Lz ¼ 2, M ¼ 1.
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FIG. 6 (color online). Geodesic equations dt
dr (46) against r for

E ¼ 1, Lz ¼ 2, M ¼ 1.
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VI. STABILITY OF ORBITS

Lyapunov exponents are the measurements of the rate of
convergence or divergence of the nearby trajectories in the
phase space. It is highly sensitive to the initial conditions.
Its positive value is the indication of divergence among the
nearby trajectories. Therefore we can check the stability of
orbits by the Lyapunov exponent λ [47]. It is given by

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−U00

effðroÞ
2_tðroÞ2

s
; ð47Þ

where ro is the ISCO of the particle moving around BH. In
[47] a critical component for the instability is defined as

γ ¼ Tλ

T
; Tλ ¼

1

λ
: ð48Þ

Here Tλ is the instability time scale. The time period for a
circular orbit can be obtained from Eq. (11) in the absence
of a magnetic field as

T ¼
���� 2πr2oLz

����; ð49Þ

and in the presence of a magnetic field, from Eq. (31) we
have

T ¼
���� 2πr2o
−Lz þ Br2o

����: ð50Þ

Here ro is the radius of the circular orbit. We have plotted
the Lyapunov exponent as a function of the magnetic field
B in Fig. 7. It shows that the greater the magnetic field
strength, the less λwill be. From Fig. 7 and Eq. (50) one can
say that the instability of circular orbits is more for a

Schwarzschild black hole in comparison with the black
hole immersed in a magnetic field. In Fig. 8 we have also
plotted λ against α, and it decreases by the increase of α.
Hence, the stability of circular orbits is less for the
Schwarzschild black hole as compared to the black hole
with nonzero α.

VII. BEHAVIOR OF EFFECTIVE POTENTIAL

The effective potential largely depends on the g00
component of the metric. Therefore, before discussing
the behavior of the effective potential we will compare
the g00 component of the MOG-BHmetric with the RN-BH
metric as it looks similar. For the RN-BH metric,

g00 ¼
�
1 −

2M
r

þQ2

r2

�
; ð51Þ

for MOG-BH from Eq. (4) we have

g00 ¼
�
1 −

2M
r

− 2
ffiffiffi
α

p Q
r
þ ffiffiffi

α
p ð1þ αÞQ

2

r2

�
: ð52Þ

One can see that Eq. (51) contains only the Q2 term while
Eq. (52) containsQ andQ2. This difference leads to a large
change between the behavior of the effective potentials of
these two black holes. The g00 component of the MOG-BH
metric also contains a parameter α that will create a main
difference between the behavior of the potentials.
In this section we plot the effective potential and

graphically explain the conditions on the energy of the
particle required for an escape to infinity or for a bound
motion aroundMOG-BH. In Figs. 9 and 10 we have plotted
U−eff and Uþeff, respectively, corresponding to Eq. (36).
Here we will discuss the long distance and short distance
behavior of Eq. (36). One can see that for a small value of r
the square root term will dominate, but for large r the term

FIG. 7 (color online). The Lyapunov exponent as a function of
magnetic field B for L ¼ 6, α ¼ 0.5, E ¼ 1, and ϵ ¼ 1.

FIG. 8 (color online). The Lyapunov exponent as a function of
parameter α.
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that is proportional to 1
r will dominate. For Uþ we get some

maximum value that we have mentioned in Fig. 10 asUmax.
For a particle to fall into the black hole its energy should be
greater then Umax; otherwise, it will bounce back to infinity
or to some stable orbit. In the case of U−, the particle can
never cross the barrier as shown in Fig. 9. Hence it cannot
fall into the singularity.
In Fig. 11 different regions of effective potential that

correspond to the escape and the bound motion of the
particle are shown. In Fig. 11, β corresponds to a region of
stable orbits. If the particle has energy equal to or greater
than δ, then it will fall into the black hole. Umax and Umin
correspond to unstable and ISCO orbits, respectively. If the
energy of the particle is equal to or less than β, then it will
reside in one of the stable orbits. The particle having energy
greater than β but less than or equal to δ can have two
possibilities: either it will escape to infinity or it will be
captured by the black hole. The local minima might be

related to the change in behavior of the effective potential
corresponding to BH (black brane transition) as observed
in [48].
In Fig. 12 we compare the effective potential of

Schwarzschild-BH, RN-BH, and MOG-BH. It can be seen
from Fig. 12 that for large r all the potentials approach 1.
Hence, it can be concluded that the minimum energy
required for a particle to escape from the black hole vicinity
is E ¼ 1 as we have mentioned before. Further, the maxima
for the effective potential of RN-BH are greater in com-
parison with the maxima of effective potential of
Schwarzschild-BH and MOG-BH. The particle will be
captured if it has energy greater than these maxima;
otherwise, it will move back to infinity or may reside in
some stable orbit. Therefore, we can say that the possibility
for a particle to escape from the vicinity of a black hole or to
reside in some stable orbit is high in the case of MOG-BH

FIG. 9 (color online). Effective potential Uþ against radial
coordinate r.

FIG. 10 (color online). Effective potentialUþ as a function of r.

FIG. 11 (color online). Different regions of effective potential
that correspond to escape and bound motion of the particle. Here
β correspond to stable orbits for b ¼ 0.5.

FIG. 12 (color online). Comparison of effective potential Ueff
as a function of r. Comparison of the effective potential of RN-
BH and MOG-BH.
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with α ¼ 1.8 in comparison to RN-BH and MOG-BH with
α ¼ 0.8. The particle can reach to the singularity depending
upon its energy, but it cannot reach the singularity for α ¼
1.8 as shown by the curve in Fig. 12. Note that α > 1,
corresponding to a naked singularity.
In Fig. 13 we compare the effective potentials in the

presence with the absence of the magnetic field. In Fig. 13
umax 1 and umax 2 correspond to unstable orbits while umin 1
and umin 2 refer to ISCOs. One can notice that in the
presence of the magnetic field, the minima of the effective
potential are shifted toward the horizon, and the width of
the stable region is also increased in comparison with the
case when the magnetic field is absent. This is in agreement
with [24,44]. Therefore we can say that the magnetic field
acts to increase the stability of the orbits.
In Fig. 14 we have plotted the effective potential as a

function of r for different values of angular momentum Lz.

One can see that for large values of Lz, the effective
potential has local minima and maxima that correspond to
stable and unstable circular orbits, respectively. Hence, we
can say that the particle with a greater value of Lz would
have a greater possibility to reside in the stable orbits in
comparison with smaller values of Lz.
To study the behavior of the effective potential against ϵ,

we have plotted the effective potential as a function of
radial coordinate r for different values of ϵ in Fig. 15. It can
be seen that the larger the value of ϵ, the greater will be the
maxima of potential. Therefore, a large value of ϵ would
correspond to easy escape and vice versa. It can be seen
from the detailed analysis of the effective potential and the
black hole physics that the scalar tensor-vector modified
gravity differs from Einstein’s theory of gravity a lot at a
shorter distance, and it becomes similar at a long distance.

VIII. TRAJECTORIES OF ESCAPE VELOCITY

For the angular variable we have

dϕ
dτ

¼ −
L
r2

þ B: ð53Þ

If the left hand side of Eq. (53) is negative, then the Lorentz
force on the particle is attractive [49]. The motion of the
charged particle is in clockwise direction. The Lorentz
force is repulsive if the left hand side of (53) is positive. We
are not going into detail here because it is already discussed
in [34,49]. Our concern is only about the action of the
magnetic field on the charged particle. Therefore, the
magnetic field may deform the oscillatory motion; so
the greater the strength of magnetic field, the larger will
be the deformation of the orbit. Hence, we can conclude
that the larger the strength of the magnetic field, the easier it
is for a particle to escape from the ISCO.

s

FIG. 13 (color online). Behavior of effective potentials with and
without magnetic field vs r (a comparison).

s

FIG. 14 (color online). Comparison of effective potentials with
respect to Lz as a function of r.

FIG. 15 (color online). Effective potential as a function of r for
different values of ϵ.
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We have also plotted in Fig. 16 the escape velocity as a
function of the radial coordinate for different values of
magnetic field parameter b. It can be seen that the escape
velocity of the particle increases as the magnetic field
strength increases, but it becomes almost constant just like
the magnetic field, away from the BH. As the magnetic
field is strong near the BH, therefore, we can conclude
that the presence of a magnetic field will provide more
energy to the particle, so that it might easily escape from
the vicinity of BH. These conclusions are consistent
with [15,16].
Figure 17 represents the escape velocity against radius r

for different values of angular momentum Lz. From Fig. 17
we can say that the possibility for a particle to escape
having a large angular momentum is small. We have plotted
escape velocities for different values of α in Fig. 18, α ¼ 0

corresponding to S-BH (Schwarzschild Black Hole) and
α ¼ 1 corresponding to RN-BH.
In Fig. 18 we compare the escape velocity of a particle

moving around the S-BH, RN-BH, and MOG-BH. Note
that the difference between the velocities is larger near the
black hole (initially) and it becomes almost the same away
from the black hole. Therefore, we can conclude that the
effect of the charge of the black hole on the motion of the
particle is large while it reduces as a particle moves away
from it. One can see that for large r the escape velocity is
the same for all values of α but for small r a lesser value of
α corresponds to agreater value of the escape velocity and
vice versa.

IX. SUMMARY AND CONCLUSION

We have investigated and compared the dynamics of a
charged and a neutral particle in the vicinity of S-BH, RN-
BH, and MOG-BH. Geodesics of a neutral and a charged
particle in the vicinity of a MOG-BH are shown in Figs. 5
and 6. We see that for a charged particle there are two
boundaries on the geodesics, r ¼ rh and r ¼ rc, unlike the
formal case in which a neutral particle comes from infinity
and goes back to infinity before reaching the horizon,
r ¼ rh, of the BH. We discussed the effective potential
behavior in details regarding the stability of the orbits of the
particle. We further discussed the energy condition for the
particle, when it will escape or its motion remains bound.
Expressions for the escape velocity of the particle moving
around MOG-BH and for the magnetic field, present in the
vicinity of BH due to plasma, are derived in this work.
More important, a comparison is done for effective poten-
tials, obtained in the presence and the absence of a
magnetic field. It is found that the presence of a magnetic
field enhances the stability of the orbits of the moving
particles, due to the presence of its width of the stable

FIG. 16 (color online). Escape velocity (v) as a function of r for
different values of magnetic field B.

FIG. 18 (color online). Escape velocity (v) against r for
different values of parameter α.

s

FIG. 17 (color online). Escape velocity (v) against r for
different values of angular momentum l.
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region in contrast to that we obtained in the case when
the magnetic field is absent. We have also done the
comparison of the effective potentials among the RN-
BH, S-BH, and MOG-BH. Further we studied the stability
by the Lyapunov exponent against a magnetic field and a
parameter α. We conclude that the stability of orbits would
increase due to the presence of the vector field considered
in MOG. We deduce that the particle has to face more
repulsion to reach the singularity due to the presence of a
vector field as considered in MOG. But the presence of a
magnetic field might increase the attractive force. It is
found that a particle with a large value of angular
momentum Lz would have a greater possibility to reside

in the stable orbits in comparison with a particle with a
lesser value of it. Therefore, escape velocity corresponds
less to a particle with a large value of Lz. Effects of
magnetic field and parameter α on escape velocity are also
investigated graphically. It is concluded that the presence of
a magnetic field might provide sufficient energy to a
particle to escape easily from the surrounding of BH.
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