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I. INTRODUCTION

Gravitational-wave (GW) astronomy opens a new
window to study the physical processes in the very early
Universe: relic GWs propagate almost freely throughout
the Universe’s expansion, and thus they retain the
information about the physical conditions and physical
processes at the moment of their generation (see for
reviews, Refs. [1–3] and references therein). There are
various mechanisms that might generate such GWs. In
the present paper we focus on the generation of GWs
during cosmological electroweak (EW) and quantum
chromodynamic (QCD) phase transitions (PTs) through
the turbulent helical sources which can arise and
follow the PT bubble collisions. The GW generation
mechanism associated with bubble collisions during the
first-order PTs has been widely discussed in the liter-
ature, starting from the pioneering works [4–7] and
readdressed later [8–25].
For a cosmological phase transition to produce strong

enough turbulent motions and magnetic fields, which
will result in the detectable signal of GWs, they must be
first-order PTs, with bubble formation and bubble colli-
sions. For the EWPT, with the standard EW Lagrangian
plus a top squark, the supersymmetric partner of the top
quark, called the minimal supersymmetric standard model
EW Lagrangian, the EWPT is a first-order PT [26]. The
QCDPT has been shown to be a first-order PT by lattice
gauge calculations [27,28].
Both turbulent motions and magnetic fields can produce

relic GWs through their anisotropic stresses; see
Refs. [29–39]. It has been pointed that the GWs generated
by magnetic fields can be detected through the Laser
Interferometer Space Antenna (LISA) [40–44]. As opposed
to the GWs sourced solely by PT bubble collisions, the
presence of turbulent (kinetic and magnetic) sources
increases the detection prospects [45] not only from

EWPT but from QCDPT too [46].1 One of the main goals
of European Space Agency (ESA)-NASA planned joint
mission LISA [48], was the detection of low-frequency
GWs (sub-Hz region). The new development of this
program is the European-only ESA mission, the so-called
New Gravitational wave Observatory (NGO)—aka eLISA
(evolved LISA) [49]. One of the major parts of its science
program consists of the direct detection of GWs from
cosmological PTs; see Refs. [50–53] for details.
In the present paper we extend our previous study [38],

and we investigate the degree of polarization of GWs
generated via cosmological PTs through helical hydro and
magnetized turbulent sources using the formalism given in
Ref. [32]. We adjust the previous formalism to determine
the polarization degree of GWs from helical kinetic
turbulence to a more complex scenario of magnetohydro-
dynamics (MHD) turbulence present during the cosmo-
logical PTs. More precisely, we use the recent results
of numerical simulations [54–56] to set the statistical
properties of helical MHD turbulence. Another difference
from the formalism of Ref. [32] consists in computing the
energy density and peak frequency of GWs using the
analogy with acoustic-wave production by hydrodynamical
turbulence [34] (which we can call the aeroacoustic
approach [57–59]).
Charge-conjugation-parity (CP) violation is necessary

for the production of magnetic helicity via bubble colli-
sions, [60]. EWPT and QCDPT bubble collisions result in
the development of helical (kinetic or/and magnetic)
turbulence, due in part to CP violation, which will lead
to a circularly polarized GW background. In the case of
strong enough helical sources [35,36], the degree of
polarization is potentially detectable [61–67].2
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1GWs from QCDPT are potentially detectable through pulsar
timing; see Ref. [47] and references therein.

2The indirect tool to detect circularly polarized GWs consists
of searching parity-violating signals on cosmic microwave back-
ground maps; see Refs [68–71] for original studies and Ref. [72]
for a review.
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In our present study we follow the helical (chiral)
magnetic field generation scenarios (during PTs through
bubble collisions) presented in Refs. [73,74] (EWPT) and
Refs. [60,75] (QCDPT) (see also Ref. [38] for a brief
review of these models). Upon generation the magnetic
field starts to interact with primordial plasma that leads to
the development of magnetically dominant MHD and
secondary kinetic turbulence; for pioneering studies see
Refs. [76–79]. In what follows we adopt the results of
numerical simulations of Refs. [54–56],3 and their phe-
nomenological interpretation given in Refs. [80,81].
The structure of the paper is as follows. In Sec. II we

review the GW generation formalism and define the
circular polarization degree of GWs. We discuss the hydro
and MHD helical turbulence modeling in Sec. III and
compute the GW signal and its polarization in Sec. IV. We
give our results for both EWPT- and QCDPT-generated
GWs in Sec. IV, and we conclude in Sec. V. We use natural
(ℏ ¼ 1 ¼ c) Lorentz-Heaviside units.

II. GRAVITATIONAL-WAVE GENERATION
OVERVIEW

We assume that GWs are generated through kinetic and
MHD turbulence which follow the PT bubble collisions
[7,29–31,82]. To be as general as possible we present the
common description for EWPTs and QCDPTs, defining the
PT temperature as T⋆ (T⋆ ¼ 100 GeV for EWPTand T⋆ ¼
0.15 Gev for QCDPT), and the typical proper length scale
through l0 which can be associated with the PT bubble size
lb (the assumption l0 ≃ lb is well justified because in our
theory bubble collisions during PT generate a magnetic
field at bubble walls, and this initial field starts to interact
with primordial plasma resulting in the development of
kinetic and MHD turbulence with a typical length scale that
corresponds to the magnetic field injection scale) [83].
We also define g⋆ as a number of relativistic degrees of
freedom: for the standard model we have g� ¼ 106.75 as
T → ∞. (g⋆ ¼ 100 for EWPTand g⋆ ¼ 15 for QCDPT). In
our further consideration we assume that the duration of the
turbulent sources, τT are short compared to the Universe
expansion time scale at PTs, i.e. τT ≤ H−1⋆ whereH−1⋆ is the
Hubble radius at the PT. This assumption makes it possible
to neglect the expansion of the Universe, although it limits
our consideration of the GW background generation only
from PT, and completely neglects GWs arising from
decaying turbulence (which might last log-enough after
the end of PTs).
GWs (the tensor metric perturbations above the standard

Friedmann-Lemaître-Robertson-Walker homogeneous and

isotropic background) are generated from turbulence
(including kinetic and magnetic fluctuations) through the
presence of anisotropic stresses as

∇2hijðx; tÞ −
∂2

∂t2 hijðx; tÞ ¼ −16πGΠðTÞ
ij ðx; tÞ; ð1Þ

where hijðx; tÞ is the tensor metric perturbation, t is
physical time, i and j are spatial indices (repeated indices
are summed), and G is the gravitational constant. We have
neglected the term ∝ ∂hijðx; tÞ=∂t due to our assumption

of the short duration of turbulence. PðTÞ
ij (the script “T”

indicates that we are interested in the tensor part of the
turbulent source) is the traceless part of the stress-energy
tensor Tijðx; tÞ, which is constructed from kinetic (K) or
magnetic (M) turbulence normalized vector fields4 (as we
will show below the equipartition is established between
kinetic and magnetic turbulent motions which simply

doubles the source term, i.e. ΠðKÞ
ij þ ΠðMÞ

ij ≃ 2ΠðTÞ
ij ) given

by [84]

ΠðTÞ
ij ðx; tÞ ¼ Tijðx; tÞ −

1

3
δijTðx; tÞ; ð4Þ

where T ≡ ½T�kk is the trace of the Tij tensor.
As we can expect the kinetic and magnetic turbulent

fluctuations generate stochastic GWs, which can be char-
acterized by the wave-number space two-point function as,

hh⋆ijðk; tÞhlmðk0; tþ τÞi ¼ ð2πÞ3δð3Þðk − k0Þ
× ½Mijlmðk̂ÞHðk; τÞ
þ iAijlmðk̂ÞHðk; τÞ�: ð5Þ

Here we use the Fourier transform pair of the tensor
perturbation as hijðk;tÞ¼

R
d3xeik·xhijðx;tÞ and hijðx;tÞ¼R

d3ke−ik·xhijðk;tÞ=ð2πÞ3. The brackets h…i denote an
ensemble average over the realization of the stochastic
source. The spectral functionsHðk; tÞ andHðk; tÞ determine

3We underline the nature of the secondary character of fluid
motions, because the bubble collision itself might lead to the
development of purely hydrodynamical turbulence during PTs
(see Ref. [31]), while here we note that bubble collisions result in
the generation of magnetic fields [60,73–75].

4The kinetic and magnetic perturbation stress-energy tensors are

TðKÞ
ij ðx; tÞ ¼ wuiðx; tÞujðx; tÞ; ð2Þ

TðMÞ
ij ðx; tÞ ¼ wbiðx; tÞbjðx; tÞ; ð3Þ

where w ¼ ρþ p is the enthalpy of the fluid with density energy,
ρ, and pressure p, uðx; tÞ is the kinetic motion velocity field and
bðx; tÞ is the normalized magnetic field, b ¼ B=

ffiffiffiffiffiffiffiffiffi
4πw

p
, that

represents the Alfvén velocity, vA of the magnetic field. The
normalized energy of the magnetic field is then EMðηÞ ¼
hb2ðtÞi=2, while the normalized kinetic energy density is given
through EKðtÞ ¼ hu2ðtÞi=2. The advantage of such a representa-
tion consists in eliminating the expansion of the Universe, since
physical and comoving values of the normalized magnetic field
amplitude are the same.
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the GW amplitude and polarization, 4Mijlmðk̂Þ≡
Pilðk̂ÞPjmðk̂Þ þ Pimðk̂ÞPjlðk̂Þ − Pijðk̂ÞPlmðk̂Þ, and
8Aijlmðk̂Þ ≡ k̂q½Pjmðk̂Þϵilq þ Pilðk̂Þϵjmq þ Pimðk̂Þϵjlq þ
Pjlðk̂Þϵimq� are tensors, with the projection tensor Pijðk̂Þ ¼
δij − k̂ik̂j (with the Kronecker delta δij, k̂i ¼ ki=k and
k ¼ jkj), and ϵijl is the totally antisymmetric symbol. We
choose a GW propagation direction pointing alon the unit
vector ê3, and we use the usual circular polarization basis
tensors e�ij ¼ −ðe1 � ie2Þi × ðe1 � ie2Þj=

ffiffiffi
2

p
. We define

two states hþ and h− corresponding to right- and left-handed
circularly polarized GWs, hij ¼ hþeþij þ h−e−ij. Through the
above notations the circular polarization degree was derived
for GWs from gamma-ray bursts in Ref. [85] and in the
context of cosmological GWs it is reproduced as [32],

PGWðkÞ ¼ hhþ⋆ðkÞhþðk0Þ − h−⋆ðk; Þh−ðk0Þi
hhþ⋆ðkÞhþðk0Þ þ h−⋆ðkÞh−ðk0Þi ¼ HðkÞ

HðkÞ :

ð6Þ

Here we omit the time dependence of the polarization
degree PGWðkÞ.
As we already underlined we are interested in GW

generation only from short-duration sources acting during
PTs. After generation the GWs propagate almost freely, and
we account for the expansion of the Universe by a simple
rescaling of the frequency and the amplitude by a factor
equal to

a⋆
a0

≃ 8 × 10−16
�
100 GeV

T⋆

��
100

g⋆

�
1=3

: ð7Þ

This factor is safely canceled when computing PGWðkÞ,
although the more complex consideration of decaying
turbulence (long-lasting sources) will make PGWðkÞ a
time-dependent function.
To estimate the polarization degree of GWs from PT-

generated helical fields we need to compute two spectral
functions HðkÞ and HðkÞ at the moment of PT, which are

determined by the helical anisotropic sourcesΠðKÞ
ij andΠðMÞ

ij .
In our previous work we have computed the typical ampli-
tude and frequency of GWs generated during cosmological
PTs [38]. In Ref. [32] the polarization degree of GWs from
kinetic (hydro) turbulence has been estimated. It has been
shown that fully helical turbulence leads toPGWðkÞ → 1. In
the present work we follow the GW generation formalism
from helical magnetized sources presented in Refs. [35,36],
and apply it to the EWPT and QCDPT cases.

III. KINETIC AND MHD TURBULENCE
MODELING

The magnetic field amplitude (i.e. total magnetic field
energy density) is strongly limited by the big bang

nucleosynthesis bound requesting that the total magnetic
field energy density cannot exceed 10% of the radiation
density at the moment of the magnetic field generation.
In terms of the effective comoving magnetic field value,
Beff ≃ 8.4 × 10−7ð100=g⋆Þ1=6 G or in the terms of Alfveń
velocity vA ≡ jbj ≤ 0.4 [83].
As we noted above the magnetic field generated at one

scale [the magnetic field initial spectrum can be approxi-
mated as being peaked at the typical wave number
k0 ¼ 2π=l0, so in Fourier k space it is described by the
δð3Þðk − k0Þ function] after interactions with plasma leads
to the development of turbulence,5 and the sharply peaked
initial spectrum is redistributed respectively. For isotropic
stationary turbulence the normalized magnetic vector field
two-point correlation function is

hb�i ðkÞbjðk0Þi ¼ ð2πÞ3δð3Þðk − k0ÞFM
ij ðkÞ ð8Þ

where

FM
ij ðkÞ ¼ Pijðk̂ÞSMðkÞ þ iϵijlk̂lAMðkÞ: ð9Þ

The power-law spectral functions SMðkÞ ¼ S0knS and
AMðkÞ ¼ A0k

nS−nA
0 knA determine the energy density and

current helicity of the magnetic field6 and nS and nA are the
magnetic field and helicity spectral indices which deter-
mine the spatial distribution of the magnetic field and its
helicity. The establishment of stationary turbulence with the
stationary (time-independent) two-point correlation func-
tion given through Eqs. (8)–(9) requires the presence of
long-lasting sources. To account for the short-acting PT
turbulent source (the turbulence duration time τT is short
enough compared to the Universe expansion time scale
H−1⋆ ) we have to modify the spectra SMðkÞ and AMðkÞ
making them time dependent; see below.
Following the description of hydro and MHD turbulence

generated during PTs, we distinguish three spatial spectral
subregimes of turbulent fluctuations: (i) the large-scale
decay range kH⋆ < k < k0 (where physical wave numbers
kH⋆ ¼ 2π=H−1⋆ and k0 correspond to the PT Hubble length
scale and the largest PT length size); the minimal wave
number corresponds to the Hubble scaleH−1⋆ beyond which
the causally generated magnetic field is frozen in and any
interactions are forbidden due to the causality requirement;

5Primordial plasma is a perfect conductor with extremely high
values of kinetic and magnetic Reynolds numbers, and current
numerical simulations are still unable to approach necessary
resolutions and time scales to describe adequately physical
conditions and processes in the early Universe.

6The magnetic helicity defined as hAðxÞ ·BðxÞi is a gauge-
dependent quantity, while the normalized [or regular expressed
through BðxÞ] current helicity hbðxÞ · ½∇ × bðxÞ�i is gauge
independent (see Ref. [86] for details), and also it allows for a
direct analogy with the kinetic helicity huðxÞ · ½∇ × uðxÞ�i, and
thus to consider both helical sources in a common formalism.
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(ii) the turbulent (or so called inertial) range k0 < k < kD
(where kD is the damping scale of turbulence through
viscous dissipation and magnetic resistivity, which is
determined by plasma properties); (iii) the damping range
k > kD. All these typical wave numbers (kH⋆ , k0, and kD)
are time dependent due to interactions of the magnetic field
with plasma and the expansion of the Universe. The
presence of magnetic helicity plays here a crucial role
leading to the rearrangement of the helical structure at large
scales [87]. The expansion of the Universe leads to addi-
tional effects: namely, the length scale l0 determined by the
PT bubble size is strengthened by a factor aðtÞ=a⋆ (which is
∝ t1=2 during the radiation-dominated epoch and ∝ t2=3

during the matter-dominated epoch), while the Hubble
length scale H−1⋆ ∝ t. As a result a perturbation with kH0

<
k < kH⋆ (with kH0

¼ 2π=H0 and H0 is the current Hubble
radius) will enter the horizon at some point [88]. Since we
are focused on the short-duration sources, we will com-
pletely neglect the GW signal for the large-scale decay
range k < k0 (where the spectral shape of the field is given
through the causal Batchelor spectrum with nS ¼ 2 [89]).
Obviously the GW signal from the viscous damping range
k > kD is also negligibly small.
The realizability condition implies that jAMðkÞj ≤ SMðkÞ

(the modulus sign reflects a possibility of having positive or
negative helicity). The spectral indices values nS and nA
strongly depend on the turbulence model. In the inertial
range (k0 < k < kD), for nonhelical turbulence the
Kolmogoroff model implies nS ¼ −11=3. Some models
lead to different spectral shapes such as nS ¼ −7=2 (the
Iroshnikov-Kraichnan model for magnetized turbulence
[90,91]), and nS ¼ −4 (the weak turbulence model [92]
or magnetically dominant turbulence [93]). In the presence
of helicity the consideration is even more complex, and
requires careful investigation through numerical simula-
tions which is beyond the scope of the present paper. Based
on the phenomenological dimensionless description, if the
process is driven by the magnetic energy dissipation at
small scales, it is assumed that nS ¼ −11=3 and nA ¼
−14=3 (the so-called helical Kolmogoroff model) [94],
while if the process is determined by helicity transfer
(inverse cascade) and helicity dissipation at small scales
nS ¼ −13=3 ¼ nA is adopted [95].
To account for the short-duration turbulence (not enough

to establish the stationary turbulent motions) we have to
consider the time decorrelation of turbulent fluctuations
which can be accounted for via introducing the character-
istic function fðηðkÞ; τÞ [where ηðkÞ is the autocorrelation
function] [96]:

fðηðkÞ; τÞ ¼ exp

�
−
2π2

9

�
τ

τ0

�
K4=3

�
ð10Þ

where τ0 is the largest turbulent eddy turnover time,
K ≡ k=k0. In this case, to determine the magnetic field

two-point correlation function in real (x) space, we
have to account for magnetic field fluctuations at
different time moments and at different positions, i.e.
hbiðx; tÞbjðxþR; tþ τÞi. Accordingly, in Fourier space,
the two-point correlation function will be determined
by the F̄M

ij ðk; tÞ with the time-dependent spectral functions
SMðk; tÞ and AMðk; tÞ:

F̄M
ij ðk; tÞ ¼ ½Pijðk̂ÞSMðk; tÞ þ iϵijlk̂lAMðk; tÞ�

× fðηðkÞ; tÞ: ð11Þ

Comparing with the stationary spectrum [see Eq. (8)],
we see that formally we replace FM

ij ðkÞ≡ FM
ij ðk; tÞ,

by F̄M
ij ðk; tÞ ¼ FM

ij ðk; tÞfðηðkÞ; τÞ, To avoid a complex
description of accounting for the time dependence of
Sðk; tÞ and Aðk; tÞ, we use the Proudman argument for
kinetic turbulence [57], according to which the description
of decaying turbulence lasting for τT can be replaced by the
description of stationary turbulence with a time duration of
τT=2. Below we briefly discuss our approach.
Turbulence during PTs generated through magnetic

helicity can be described through two major stages [36].
During the first stage the main process is determined by the
magnetic energy direct cascade that last a few largest eddy
turnover times τ0 ¼ 2π=ðk0v0Þ, where v0 < 1 is the turbu-
lent eddy velocity (v0 ≃M for kinetic turbulence where M
is the Mach number and v0 ≃ vA for magnetic turbulence)
determined by the PT and magnetogenesis model param-
eters (see Refs. [31,97]), i.e. τT ¼ s0τ0 (with s0 ¼ 3 − 5).
The magnetic field induces vorticity fluctuations, and at the
end of the first (semi)equipartition between kinetic and
magnetic energies is reached, this results in doubling
the value of the source for GWs. The magnetic energy
density power spectra are then determined by the proper
dissipation rate per unit enthalpy εM as S0 ¼ π2CKε

2=3

where CK is a constant order of unity, and ε ¼ k0v30. Note
that the autocorrelation function ηðkÞ ¼ ε1=3k2=3=

ffiffiffiffiffiffi
2π

p
[98]. Although the Kolmogoroff model is valid only for
nonrelativistic turbulence, while during PTs we might deal
with v0 ≃ 1 (relativistic turbulence), our estimates for the
amplitude and polarization degrees of GW signals are
qualitatively justified; see Ref. [29]. The second stage
consists in helicity transfer (inverse cascade). The scaling
laws for this stage are still under debate. Based on our
previous consideration [36], we assume that (i) the details
of the scaling laws during this stage will not substantially
affect our estimates; (ii) instead of considering decay
turbulence we will again consider the stationary turbulence
with a scale-dependent duration time. Then we obtain for
the helical Kolmogoroff model, A0 ¼ π2CKσ=ðk0ε1=3Þ,
where σ is the magnetic helicity dissipation rate per unit
enthalpy, leading to A0=S0 ¼ σ=ðεk0Þ. The helical
Kolmogoroff model is mainly relevant for weakly helical
fields, jAðkÞj ≪ SðkÞ, which is a case of magnetic fields
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generated during PTs.7 According to results of recent
numerical simulations (see Ref. [56]), the weakly helical
turbulence even accounting for the free decay of turbu-
lence, shows an establishment of the spectra in good
agreement with the helical Kolmogoroff model, as well
as equipartition between magnetic and kinetic energy
densities. Thus we adopt nS ¼ −11=3 and nH ¼ −14=3
for the inertial range, with S0 ¼ π2k2=30 v20 and A0 ¼ hS0
where h determines the fraction of helicity dissipation,
h≡ σ=ðεk0Þ. The turbulence fluctuation velocity v0 ¼ vA
is determined by the magnetogenesis mechanism and for
the model of our interest is given by v0 ≃ 0.2
(Beff;in ≃ 5 × 10−7 G) [38] for the EWPT model of
Refs. [73,74] and v0 ≃ 0.01 (Beff;in ≃ 2 × 10−8 G) [54]
for the QCDPT model of Refs. [60,75].

IV. GRAVITATIONAL-WAVE SIGNAL
AMPLITUDE AND POLARIZATION

In this section we compute the GW signal (stain
amplitude) and polarization degree from the hydro and
MHD turbulence generated during the first-order cos-
mological PTs. To determine the amplitude of GWs we
proceed as described in Ref. [36]. We derive the energy
density spectrum of the GWs at the end of the PT
(in our approximation the end of turbulence). The
energy density of GWs is given through the ensemble
average as

ρGWðx; tÞ ¼
1

32πG
h∂thijðx; tÞ∂thijðx; tÞi: ð12Þ

As we noted the rescaling of the GW amplitude and
frequency given through Eq. (7) is irrelevant when
computing the polarization degree, while it is crucial
for the estimation of the GW energy density.

A. Gravitational-wave signal

Assuming the homogeneous and isotropic turbulent
source lasting for τT, and using the far-field approximation
(see Ref. [34]), the total energy density of GWs at a given
spatial point and a given time can be obtained by integrat-
ing over all sources within a spherical shell centered at
that observer, with a shell thickness corresponding to the
duration of the turbulent source (in our case the duration of
the PT), and a radius equal to the proper distance along any
light-like path from the observer to the source (causality
requirement), and then

ρGWðωÞ ¼
dρGW
d lnω

¼ 16π3ω3Gw2τTHijijðω;ωÞ; ð13Þ

where ω is the angular frequency measured at the moment
of generation of GWs, and Hijijðω;ωÞ is a complicated
function of ω (which is computed using the aeroacoustic
approximation and Millionshchikov quasinormality [94]),
given as

Hijijðk;ωÞ≃Hijijð0;ωÞ ¼
7C2

Kε

6π3=2

Z
kD

k0

dk
k6

× exp

�
−

ω2

ε2=3k4=3

�
erfc

�
−

ω

ε1=3k2=3

�
: ð14Þ

Here, erfcðxÞ is the complementary error function defined
as erfcðxÞ ¼ 1 − erfðxÞ, where erfðxÞ ¼ R

x
0 dy expð−y2Þ is

the error function [99]. The integral in Eq. (14) is
dominated by the large-scale (k≃ k0) contribution so,
for direct-cascade turbulence during the first stage (direct
cascade; see Sec. III), the peak frequency is

ωðIÞ
max ≃ k0M ð15Þ

where M is the Mach number. To compute the GW signal
arising from the inverse-cascade stage we have to consider
two models separately: Model A assumes that the corre-
lation length during the inverse cascade scales as ξM ∝ t1=2

and Model B corresponds to the correlation length scaling
as ξM ∝ t2=3. We obtain that in both models the peak
frequencies during the second stage are equal and are
determined by the Hubble frequency as [36]

ωðIIÞ
max ≃ 2πH⋆ ð16Þ

while the GWamplitudes are slightly different in Models A
and B

HðAÞ
ijijðk;ωÞ≃Hijijð0;ωÞ ¼

7C2
1M

3ζ3=2⋆
12π3=2k0

Z
k0

kS

dk
k4

× exp

�
−

ω2k20
ζ⋆M2k4

�
erfc

�
−

ωk0
ζ1=2⋆ Mk2

�
;

ð17Þ

and

Hijijðk;ωÞðAÞ ≃Hijijð0;ωÞ ¼
7C2

1M
3ζ3=2⋆

6π3=2k3=20

Z
k0

kS

dk

k7=2

× exp

�
−

ω2k0
ζ⋆M2k3

�
erfc

�
−

ωk1=20

ζ1=2⋆ Mk3=2

�
:

ð18Þ

Here ζ⋆ determines the amount of initial magnetic
helicity and is equal to ζ⋆ ¼ haðxÞ · bðxÞi=ðξMEMÞ [where
aðxÞ ¼ AðxÞ=w is the normalized vector potential], and

7Note that the substantially helical case is usually determined
by the helicity transfer (inverse cascade), S0 ¼ CSσ

2=3 and A0 ¼
CAσ

2=3 [95].
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kS ¼ 2π=lS is the typical scale at which the inverse cascade
stops—either because the cascade time τcas reaches the
expansion time scale H−1⋆ or because the characteristic
length scale lS ≃ ξM reaches the Hubble radius H−1⋆ . The
value of kS can be found by using the above conditions,
being equal to kS ¼ k0ζ

−1=4⋆ ðγ=MÞ1=2. Note that the inte-
grals in Eqs. (17)–(18) are dominated by the large scale

k≃ kS contributions and are maximal at ωðIIÞ
max.

B. Gravitational-wave polarization

To compute the polarization degree of GWs we need to
estimate the tensor perturbations source two-point corre-
lation function F ijlmðk; τÞ≡ hΠðTÞ⋆

ij ðk; tÞΠðTÞ
lm ðk0; t0 þ τÞi,

which can be expressed through the formsMijlm andAijlm

[which are defined below Eq. (5)], as

F ijlmðk; τÞ ¼ ð2πÞ3δð3Þðk − k0Þ
× ½MijlmSðk; τÞ þ iAijlmQðk; τÞ�: ð19Þ

As we discussed above for the nonstationary turbulence
Sðk; τÞ and Aðk; τÞ are complex functions of τ and k [see
Eqs. (10)–(11) for the time decorrelation function and the
magnetic field spectrum]. Following Ref. [32] we split the
spatial and temporal dependence as Sðk; τÞ ¼ SðkÞDSðτÞ
and Aðk; τÞ ¼ AðkÞDAðτÞ which is a valid approximation
for k≃ k0 (the range which mostly contributes to the GW
signal). Generalizing the stationary case [69] by accounting
for the time-dependent functions DSðτÞ and DAðτÞ the
forms for Sðk; τÞ and Qðk; τÞ are given as,

Sðk; τÞ ¼ w2

ð2πÞ6
Z

d3p1

Z
d3p2δ

ð3Þðk − p1 − p2Þ

× ½ð1þ α2Þð1þ β2ÞD2
SðτÞSðp1ÞSðp2Þ

þ 4αβD2
AðτÞAðp1ÞAðp2Þ�; ð20Þ

Qðk; τÞ ¼ w2DSðτÞDAðτÞ
128π6

Z
d3p1

Z
d3p2

× δð3Þðk − p1 − p2Þ½ð1þ α2ÞβSðp1ÞSðp2Þ
þ ð1þ β2ÞαAðp1ÞAðp2Þ�; ð21Þ

where α ¼ k̂ · p̂1 and β ¼ k̂ · p̂2 with p̂1 ¼ p1=p1

(p1 ¼ jp1) and p̂2 ¼ p2=p2 (p1 ¼ jp1). The helical source
termQðk; τÞ vanishes for turbulence without helicity. Since
in the helical Kolmogoroff model the time decorrelation is
mostly determined by the energy density dissipation, in the
first-order approximation we can assume that DSðτÞ≃
DAðτÞ (both functions are monotonically decreasing func-
tions). Next we should connect S and Q with the Hðk; tÞ
and Hðk; tÞ functions, which determine the GW polariza-
tion degree; see Ref. [32] for details.
Magnetic helicity generated via bubble wall collisions

during the first-order PTs is determined by the

corresponding energy scales ΛPT (ΛPT ≃ 100 and
0.15 GeV for EWPT and QCDPT respectively) and
the PT bubble lengths (lb). In addition, the bubble wall
velocity substantially affects the development of turbulent
motion [82].
In the present paper we focus on magnetic helicity

generation mechanisms following Refs. [60,75]. In the
framework of these magnetogenesis scenarios magnetic
helicity during PTs with the magnetic wall in the x − y
plane is given by

HM ¼ AzBz or HM ¼ ðBzÞ2
ΛPT

: ð22Þ

We note that the EWPT energy (mass) scale is approx-
imately equal to the Higgs mass, ΛEWPT ≃MHiggs. The
model parameters such as bubble and wall sizes and wall
velocity depend on PT modeling, and were determined in
Refs. [60,73,74]. We quote also the physical values of

magnetic field amplitudes as BðEWÞ⋆ ≃ 6.45 × 104 GeV2

[73,74] and BðQCDÞ⋆ ≃ 1.5 × 10−3 GeV2 [60].
The fraction of initial magnetic helicity (ζ⋆) can be

expressed in terms of the magnetic field correlation length
(which can be taken to be equal to lb) and the maximal
allowed length scale H−1⋆ , as ζ⋆ ≃ lb=H−1⋆ . Following
Refs. [73,74] the normalized magnetic field generated
during the first-order EWPT (at the time moment
≃10−11 sec) is equal to vA ≃ 0.2, and assuming around
100 bubbles within the Hubble length scale, the fractional

helicity is ζðEWÞ⋆ ≃ 0.01. The comoving magnetic helicity
itself is expressed as

HðEWÞ
M;⋆ ≃ ðBðEWÞÞ2

125 GeV
: ð23Þ

Assuming that the magnetic field (with vA ≃ 0.01) is
correlated over the wall thickness (the QCD momentum
is 0.15 GeV) [60], results in extremely small magnetic
helicity generated during the first-order QCDPT (at the
time moment ≃10−5 sec),

HðQCDÞ
M ðt⋆Þ≃ ðBðQCDÞÞ2

0.15 GeV
; ð24Þ

which corresponds to ζðQCDÞ⋆ ≪ 1. On the other hand,
making the field correlated over the bubble length scale,

leads to the fractional helicity ζðQCDÞ⋆ ≃ 0.2.
Using the approximation given above, the polarization

degree of GWs, PGWðkÞ, for the Kolmogoroff helical
turbulence model can be estimated through [in our sim-
plified description the time dependence is canceled because
of DSðτÞ≃DAðτÞ]

PGWðkÞ ¼ HðkÞ
HðkÞ ¼

IAðKÞ
ISðKÞ ð25Þ
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where K ≡ k=k0 is a normalized wave number, and

ISðKÞ≃
Z

dP1P1

Z
dP2P2Θ̄½ð1þ α2pÞð1þ β2pÞPnS

1 PnS
2

þ 4h2αpβpP
nA
1 PnA

2 �; ð26Þ

IAðKÞ≃ 2h
Z

dP1P1

Z
dP2P2Θ̄½ð1þ α2pÞβpPnS

1 PnA
2

þð1þ β2pÞαpPnA
1 PnS

2 �: ð27Þ

Here h is the model parameter (which is related to the
helicity fraction; see below), and we assume it to be
equal to 1, 0.5, 0.1. P1 ¼ p1=k0, P2 ¼ p2=k0, αp ¼
ðK2 þ P2

1 − P2
2Þ=ð2KP1Þ, βp ¼ ðP2 þ P2

2 − P2
1Þ=ð2KP2Þ,

Θ̄≡θðP1þP2−KÞθðP1þK−P2ÞθðP2þK−P1Þ, and θ
is the Heaviside step function which is zero (unity) for
negative (positive) argument. The integration limit ranges
from 1 (we discard the source existence for the wave
numbers below k0) to kD=k0.
We emphasize that the fractional helicity parameter ζ⋆

discussed above is defined through the normalized mag-
netic helicity (the integral quantity), while the parameter
h≡ σ=ðk0εÞ is defined through the normalized magnetic
energy density and normalized magnetic helicity (e.g. it is
determined by the power spectra for the magnetic energy
density and helicity at small length scales). Under the
model adopted here (the Kolmogoroff helical turbulence
with nS ¼ −11=3 and nA ¼ −14==3) both of these quan-
tities coincide ζ⋆ ≃ h.
To keep our description as general as possible we present

our results for the GW polarization degree PGWðkÞ in terms
of the normalized wave number K. As we discussed above
the typical wave number k0 is determined by the turbulent
eddy length scale l0 (k0 ¼ 2π=l0) and is significantly
different for EWPT and QCDPT. The model parameter

h, which determines the helicity fraction, varies depending
on the magnetogenesis model. The results for PGWðkÞ with
h ¼ 0.1, 0.5, and 1 are shown in Fig. 1.

V. CONCLUSIONS

We computed the GW signal produced during first-order
cosmological PTs through hydro and MHD turbulence. We
also derived the polarization degree of GWs assuming the
validity of the helical Kolmogoroff model, shown in Fig. 1.
The GW polarization is present at the background level,
and for maximally helical sources the polarization degree
approaches unity at its maximum, around k ∼ 2k0, and
decreases fast at small scales k ≫ k0. The formalism
presented in this paper might be used to estimate the
polarization degree of GWs from helical hydro and MHD
turbulence in differential rotating neutron stars [100] or
stellar convection [101]. Note from Fig. 1 that the detect-
ability of the polarization degree is determined by the
helicity fraction parameter h. We plan in our future research
to make estimates of h values depending on magneto-
genesis models during cosmological PTs.
Previously we have estimated the GW amplitude, hCðfÞ,

from the first-order EWPT and QCDPT [38], through
assumptions of nonhelical magnetic fields [60,73,74]. We
have shown that EWPT-generated GWs are potentially
detectable through LISA-like missions [48] in the case of
strong enough EWPT [44] (for QCDPT-generated GW
detection prospects see Ref. [46]). In the present paper
we expanded our previous results by considering GWs from
helical magnetic and hydro turbulence. Probing the circular
polarization of the GW background is a challenging task
[66], and it is quite difficult at the monopole mode. To detect
the circular polarization at the dipole and/or the octupole
mode requires at least a system of two unaligned detectors,
and LISAwas designed ideally to provide detection of these
anisotropic components whose magnitudes are as small as
1% of the detector noise [61–63]. Similar detection prospects
are expected from eLISA data. The planned eLISA mission
[49] was originally designed to detect unpolarized GW
backgrounds (including GWs from cosmological PTs) [102]
with the sensitivity given in Fig. 1 of Ref. [51] (see also the
comparison with LISA’s sensitivity). Although GW polari-
zation detection is beyond the currently discussed eLISA
science, our study should help further developments.
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terms of the model parameter h ¼ 1.0, 0.5, 0.1.
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