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We discuss the detection of gravitational-wave backgrounds in the context of Bayesian inference and
suggest a practical definition of what it means for a signal to be considered stochastic—namely, that the
Bayesian evidence favors a stochastic signal model over a deterministic signal model. A signal can further
be classified as Gaussian-stochastic if a Gaussian signal model is favored. In our analysis we use Bayesian
model selection to choose between several signal and noise models for simulated data consisting of
uncorrelated Gaussian detector noise plus a superposition of sinusoidal signals from an astrophysical
population of gravitational-wave sources. For simplicity, we consider colocated and coaligned detectors
with white detector noise, but the method can be extended to more realistic detector configurations and
power spectra. The general trend we observe is that a deterministic model is favored for small source
numbers, a non-Gaussian stochastic model is preferred for intermediate source numbers, and a Gaussian
stochastic model is preferred for large source numbers. However, there is very large variation between
individual signal realizations, leading to fuzzy boundaries between the three regimes. We find that a hybrid,
transdimensional model comprised of a deterministic signal model for individual bright sources and a
Gaussian-stochastic signal model for the remaining confusion background outperforms all other models
in most instances.
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I. INTRODUCTION

A stochastic background of gravitational radiation is
usually defined as a random gravitational-wave signal
produced by a large number of weak, independent, and
unresolved sources. It can be of either astrophysical or
cosmological origin. The signal is random in the sense that it
can be characterized only statistically, in terms of expectation
values of the Fourier components of a plane-wave expansion
of the metric perturbations. For a sufficiently large number
of independent sources, the background will be Gaussian
by the central limit theorem. Knowledge of the first two
moments of the distribution will then suffice to determine all
higher-ordermoments,meaningthat thequadraticexpectation
values (or covariance matrix) of the Fourier components
completely define a Gaussian background of gravitational
radiation. For non-Gaussian backgrounds, the only difference
is that the probability distribution of the Fourier components
is no longer Gaussian. Thus, third- and/or higher-order
moments of the distribution are now required.
Although there is general agreement with the above

definition, there has been some confusion and/or disagree-
ment about some of the defining properties of a stochastic
background, in particular, related to the resolvability of a
signal and its relationship to duty-cycle [1–4]. In order to
avoid such confusion in this paper, we give operational
definitions for these properties, framed in the context of

Bayesian inference. For instance, we define a signal to be
stochastic if it is more parsimonious (in a Bayesian model
selection sense) to search for that signal using a stochastic
signal model for the waveform than using a deterministic
signal model. We also define a signal to be resolvable if
it can be decomposed into separate (e.g. nonoverlapping
in either time or frequency) and individually detectable
signals, again in a Bayesian model selection sense. Signals
may be separable even when overlapping in time and
frequency if the detector has good sky resolution, or the
signals have additional complexities due to effects such as
orbital evolution and precession.
This definition of resolvability is more restrictive than

that of Rosado [1], who defines a signal to be resolvable if it
is separable, independent of detectability. With our defi-
nition, it is possible to have separable signals that are not
detectable (e.g., “subthreshold” low-duty cycle bursts [5] or
nonoverlapping low-SNR sinusoids), and signals that are
detectable but not resolvable (e.g., a Gaussian stochastic
background integrated over a large enough time or large
enough frequency band).
In addition, for non-Gaussian backgrounds associated

with the superposition of signals from many astrophysical
sources, there will sometimes be cases where a few bright
signals stand out above the lower-amplitude “confusion”
background. These resolvable deterministic signals
should be “subtracted” from the data, leaving a residual
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nondeterministic background whose statistical properties
we would like to determine. In the context of Bayesian
inference, this “subtraction” is done by allowing hybrid
signal models, which consist of both parametrized deter-
ministic signals and nondeterministic backgrounds. By
using such models we can investigate the statistical
properties of the residual background without the influ-
ence of the resolvable signals. This is ultimately the
property of the stochastic background that we would like
to determine.
The closely related question of whether a population of

astrophysical signals is more likely to be first detected via a
stochastic cross-correlation analysis or a template-based
search for individual signals has recently been considered
by Rosado et al. [6] in the context of pulsar timing
detection of the low-frequency, slowly evolving signals
from binary supermassive black holes, and by Mandel [7]
in the context of ground-based interferometer detections of
chirping neutron star binaries and continuous waves from
nonaxisymmetric spinning neutron stars. Rosado et al.
found that pulsar timing arrays are most likely to first detect
a stochastic background, though in some cases a bright and
nearby source may be detected first. Mandel concluded that
individual signals will always be detected first for non-
overlapping, evolving signals, while a stochastic back-
ground may be detected first for nonevolving, overlapping
signals, and gave conditions for when this might occur. Our
results are broadly in agreement with these studies, though
it is difficult to directly compare our results since we frame
the problem in different ways and have different definitions
for what it means for a signal to be considered deterministic
or stochastic.
In this paper, we apply Bayesian inference to non-

Gaussian gravitational-wave backgrounds, which are pro-
duced whenever the overlap of the gravitational-wave signals
in time-frequency space is sufficiently low that the central-
limit theorem does not apply. Previous analyses for non-
Gaussian backgrounds have typically been framed in the
context of frequentist statistics, involving modifications
[5,8–11] of the standard optimally filtered cross-correlation
statistic [12] used to search for Gaussian backgrounds. Here
we use Bayesian inference to address the same problem. We
apply Bayesian model selection to compare several signalþ
noise models for simulated data consisting of uncorrelated
Gaussian detector noise plus a superposition of sinusoidal
signals from an astrophysical population of gravitational-
wave sources. The analysis is done in the frequency domain
since the signals we consider are well localized in frequency
and spread out in time, but our results apply equally well to
signals that are localized in time and spread out in frequency,
such as a population of burst signals occurring with some
Poisson rate. For simplicity, we consider a pair of colocated
and coaligned detectors with white detector noise, but the
method can be extended to more realistic detector configu-
rations and power spectra.

The general trend we observe from our simulations is
that a deterministic signal model is favored whenever
the number of sources contributing to the background is
sufficiently small; a non-Gaussian stochastic model is
preferred for an intermediate number of sources; and a
Gaussian stochastic model is preferred for a large number
of sources. However, due to large variations between
individual signal realizations, the boundaries between the
three regimes are not sharply defined. We find that a hybrid,
transdimensional model comprised of a deterministic signal
model for individual bright sources and a Gaussian-
stochastic signal model for the remaining confusion back-
ground outperforms all other models in most instances.
The remainder of the paper is organized as follows: In

Sec. II we give a brief overview of Bayesian inference and
apply it to the specific case of non-Gaussian gravitational-
wave backgrounds in Sec. III. There we define the relevant
noise and signal probability distributions, likelihood func-
tions, prior and posterior probability distributions, etc.
needed for our analysis. In Sec. IV we define the various
signalþ noise models that we use for the Bayesian model
selection calculations, the results of which, for simulated
data, are described in detail in Sec. V. Finally, in Sec. VI,
we discuss the relevance of the results in the context of
current searches for gravitational-wave backgrounds.
Appendix A includes a discussion of different approaches
for calculating Bayes factors.

II. BAYESIAN INFERENCE—OVERVIEW

Bayesian inference is a powerful tool for assessing the
plausibility of hypotheses, given a set of observations and
prior information [13]. It allows you to update your degree
of belief in a particular hypothesis, based on how well
the hypothesis (or model) fits the observed data. It also
implements a quantitative version of Occam’s razor [13],
which says that given two models that fit the data equally
well, the simpler model should be preferred. This result
falls naturally out of a Bayesian model selection calcu-
lation, where one calculates the posterior odds ratio of one
model against another. If two models fit the data equally
well but have different parameter space volumes, then the
model with the larger parameter space volume is penalized
by the ratio of the larger parameter space volume to the
smaller volume.
Using Bayesian inference to analyze a particular prob-

lem is very simple in principle—one applies Bayes’s
theorem,

pð~θjsÞ ¼ pðsj~θÞπð~θÞR
d~θ0pðsj~θ0Þπð~θ0Þ

; ð1Þ

to calculate posterior probability distributions given a

likelihood function pðsj~θÞ (which specifies the probabilty
of the data given the model and the value of any parameters
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associated with it) and a prior probability distribution πð~θÞ
for the model and its parameters.
In practice, however, these calculations can be extremely

computationally-intensive, especially for models having a
large number of parameters. But in recent years, thanks
to advances in high-speed computing and the development
of efficient sampling algorithms [14,15], integrations over
model parameter spaces having hundreds or even thousands
of dimensions are now possible. Thus, the use of Bayesian
inference to solve diverse problems in the physical sciences
has increased dramatically, given the ability to do numerical
calculations, which, in the past, were not possible in practice.
In particular, in the field of gravitational-wave data

analysis, it is now common to see Bayesian inference used
for (i) detector noise estimation and modeling [16,17],
(ii) sky localization of signals from unmodeled gravita-
tional-wave bursts, and (iii) parameter estimation for
gravitational-wave signals associated with many different
sources—binary inspiral events, continuous-wave sources
(e.g., nonaxisymmetric rotating neutron stars), and stochas-
tic gravitational-wave backgrounds [18] of either astro-
physical or cosmological origin.
Although Bayesian inference and frequentist optimally

filtered statistic methods give equivalent results for suffi-
ciently simple signal and noise models and simple choices
for the priors, the Bayesian formalism allows one to more
easily handle problems involving more complicated models
and/or nontrivial priors. This is the case when the model
contains so-called “nuisance parameters” (such as non-
negligible correlated noise), which are not of direct astro-
physical interest, but nonetheless affect statistical statements
about the signal parameters. For example, in the presence of
correlated noise, the standard optimally filtered cross-
correlation statistic [12] for isotropic gravitational-wave
backgrounds no longer corresponds to the optimal combi-
nation of the data from the two detectors. Calculating the
maximum of the likelihood function is more complicated for
this case, with no analytic closed-form solution in general.
But a Bayesian approach to this problem, which numerically
explores the likelihood function using e.g., Markov chain
Monte Carlo (MCMC) methods, is a viable alternative.
For gravitational-wave backgrounds generated by a

superposition of signals from a population of astrophysical
sources, Bayesian inference is particularly convenient since
it allows one to compare several viable signalþ noise
models. Depending on the number of sources emitting
gravitational waves in a particular time-frequency volume,
the measured signal could be either (i) stochastic and
Gaussian distributed, (ii) stochastic but non-Gaussian, (iii) a
superposition of individually resolvable signals, or
(iv) some combination of both deterministic resolvable
signals and a nondeterministic (i.e., stochastic) back-
ground. Using Bayesian model selection, we can rank
these various models, and thus characterize the gravita-
tional-wave component of the data. The following sections

describe this procedure for the case of simulated data
consisting of Gaussian white detector noise plus a super-
position of sinusoidal signals from an astrophysical pop-
ulation of gravitational-wave sources.

III. BAYESIAN INFERENCE APPLIED TO
NON-GAUSSIAN BACKGROUNDS

In this section we specify the various probability dis-
tributions, likehood functions, prior and posterior distribu-
tions, etc. that we will need in order to apply Bayesian
inference to searches for non-Gaussian gravitational-wave
backgrounds. Readers interested in more details regarding
some of the calculations performed in this section should
consult e.g., [19].

A. Noise and signal probability distributions

For simplicity, consider the simple case of N samples of
data in a pair of colocated and coaligned detectors:

s1 ¼ n1 þ h; s2 ¼ n2 þ h; ð2Þ
where s1 ¼ ½s11; s12;…s1N �T , etc. We will assume that the
noise in each detector is Gaussian, white, and independent
of one another, with zero mean and variance σ21, σ

2
2:

pnðnj~θnÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð2πCnÞ
p e−

1
2
nTC−1

n n; ð3Þ

where

n ¼
�
n1

n2

�
; Cn ¼

"
σ211N×N 0N×N

0N×N σ221N×N

#
; ð4Þ

and ~θn ¼ fσ1; σ2g. The signal h, which is common to both
detectors, is assumed to come from a probability distribu-

tion phðhj~θhÞ, which need not be Gaussian. The probability
distribution phðhj~θhÞ is called a parametrized signal prior

and ~θh are called hyperparameters [20,21]. Examples of
parametrized signal priors include

(i) Gaussian, white signal prior:

phðhj~θhÞ ¼
YN
i¼1

1ffiffiffiffiffiffiffiffiffiffi
2πσ2h

p e−h
2
i =2σ

2
h ; ð5Þ

where ~θh ¼ fσhg.
(ii) Two-component Gaussian, white signal prior:

phðhj~θhÞ ¼
YN
i¼1

�
ξ

1ffiffiffiffiffiffiffiffiffiffi
2πα2

p e−h
2
i =2α

2

þ ð1 − ξÞ 1ffiffiffiffiffiffiffiffiffiffi
2πβ2

p e−h
2
i =2β

2

�
; ð6Þ
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where ~θh ¼ fξ;α; βg. The two-component Gaussian
signal prior reduces to the Gaussian signal prior in
the limit ξ → 1. It reduces to the Drasco and
Flanagan signal prior [8] in the limit β → 0. The
Drasco and Flanagan signal prior corresponds to
Gaussian bursts with root-mean-square (rms) am-
plitude α and probability 0 ≤ ξ ≤ 1.

(iii) Nonstandardized student’s t-distribution signal
prior:

phðhj~θhÞ¼
YN
i¼1

�
Γðνþ1

2
Þ

αΓðν
2
Þ ffiffiffiffiffi

πν
p

�
1þ1

ν

h2i
α2

�−νþ1
2

�
; ð7Þ

where

ΓðνÞ ¼
Z

∞

0

dxxν−1e−x ð8Þ

is the Gamma function and ~θh ¼ fν; αg. The above
distribution is an extension of the standard student’s
t-distribution, which includes a scaling parameter α
in addition to the number of degrees of freedom,
ν > 0 (real). (The t of student’s t-distribution is
given by hi=α.) The scaling parameter α is related to
the variance of each hi by

σ2h ¼ α2
ν

ν − 2
; for ν > 2: ð9Þ

For ν → ∞, the nonstandardized student’s
t-distribution becomes a Gaussian distribution with
the above variance.

(iv) Multisinusoid signal prior:

phðhj~θhÞ ¼ δðh − hð~θhÞÞ; ð10Þ

hið~θhÞ ¼
XM
I¼1

AI cosð2πfIti − φIÞ; ð11Þ

where i ¼ 1; 2;…; N and ~θh ¼ fAI; fI; φIjI ¼
1; 2;…; Mg. HereM can take on any value between
0 andMmax, whereMmax is the maximum number of
allowed sinusoids (e.g., Mmax ¼ 100). This is a
deterministic signal model corresponding to the
superposition of M individually resolvable sinusoids.

Although it is possible to write down more complicated
non-Gaussian signal priors (since there are an infinite
number of ways for a signal to be non-Gaussian), for
the analysis considered in this paper, we will restrict
ourselves to those given above.

B. Likelihood functions

To construct the likelihood function, we first adopt a
waveform template h and form the residuals r1 ¼ s1 − h
and r2 ¼ s2 − h. We demand that the residuals be

consistent with the probability distribution for the noise
[cf. (3)], which gives rise to a multivariate Gaussian
likelihood function for the data:

pðsj~θn;hÞ≡ pnðrj~θnÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð2πCnÞ
p e−

1
2
rTC−1

n r; ð12Þ

where

s ¼
�
s1
s2

�
; r ¼

�
s1 − h

s2 − h

�
: ð13Þ

But since h are random variables for stochastic signal
models or specified functions of the parameters ~θh for
deterministic signal models, we are not interested in the
particular values of h, but rather in the values of the
parameters ~θh that define the signal prior phðhj~θhÞ. We thus
marginalize over h by performing the integral:

pðsj~θÞ≡ pðsj~θn; ~θhÞ ¼
Z

dhpðsj~θn;hÞphðhj~θhÞ: ð14Þ

Here ~θ≡ f~θn; ~θhg denotes the combined set of noise and
signal parameters.

(i) For the Gaussian signal prior, we find

pðsj~θÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2πCsÞ

p e−
1
2
sTC−1

s s; ð15Þ

where

Cs ¼ Cn þ σ2h

�
1N×N 1N×N

1N×N 1N×N

�
: ð16Þ

The likelihood function given by (15) and (16) has
the standard form used as the starting point for cross-
correlation analyses for Gaussian stochastic back-
grounds [18,22].

(ii) For the two-component Gaussian signal prior, we
obtain a two-component Gaussian distribution for
the marginalized likelihood, with covariance matri-
ces similar to (16), but with σ2h replaced by α

2 and by
β2 for the two components, respectively,

pðsj~θÞ ¼ ξ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð2πCαÞ
p e−

1
2
sTC−1

α s

þ ð1 − ξÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2πCβÞ

p e−
1
2
sTC−1

β s; ð17Þ

where

Cα ¼ Cn þ α2
�
1N×N 1N×N

1N×N 1N×N

�
ð18Þ

and similarly for Cβ.
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(iii) For the nonstandardized student’s t-distribution, the
marginalization integrals are all of the form

Z
∞

−∞
dhie

−1
2

ðs1i−hiÞ
σ2
1 e

−1
2

ðs2i−hiÞ
σ2
2

�
1þ 1

ν

h2i
α2

�−νþ1
2

: ð19Þ

Unfortunately, we do not know how to analytically
evaluate such an integral. It is possible to consider
an Edgeworth expansion of the student t-distribution
in terms of its nonzero cumulants, c2; c4;…. But
then truncating the expansion after a finite number
of terms would produce a different non-Gaussian
distribution, that would behave differently in
model comparison tests from the full student’s t-
distribution. Thus, if we want to use this distribution
as one of our non-Gaussian signal models, we would
need to evaluate the above integrals numerically.

(iv) For the deterministic multisinusoid signal model, the
marginalized likelihood is simply

pðsj~θÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2πCnÞ

p e−
1
2
ðs−hð~θhÞÞTC−1

n ðs−hð~θhÞÞ:

ð20Þ

C. Posterior distributions and Bayesian
model selection

The posterior distribution for a subset of the noise and
signal parameters ~θ≡ f~θn; ~θhg is obtained by marginal-
izing over the other noise and signal parameters. For
example, for the Gaussian signal model, the posterior
distribution for the signal parameter σh is obtained by
evaluating the following integral:

pðσhjsÞ ¼
Z

dσ1

Z
dσ2pðσ1; σ2; σhjsÞ: ð21Þ

Similar integrals will give the posterior distributions for σ1
and σ2.
In a similar manner, we can calculate the posterior

probability distribution for a signalþ noise model M
using Bayes’s theorem in the form

pðMjsÞ ¼ pðsjMÞπðMÞP
IpðsjMIÞπðMIÞ

: ð22Þ

The quantity pðsjMÞ is called the evidence for model M.
It is just the likelihood function pðsj~θ;MÞ marginalized
over the parameter values

pðsjMÞ ¼
Z

d~θpðsj~θ;MÞπð~θjMÞ; ð23Þ

where we have explicitly indicated the model dependence
of both the prior and likelihood function.

To compare two models MI and MJ, we simply take
the ratio of the posterior probability distributions for these
two models:

pðMIjsÞ
pðMJjsÞ

¼ pðsjMIÞπðMIÞ
pðsjMJÞπðMJÞ

: ð24Þ

Note that the common factor
P

IpðsjMIÞπðMIÞ has
canceled out when forming the ratio. The left-hand side
of the above equation is the posterior odds ratio for model
MI relative toMJ; we see from this equation that it equals
the prior odds ratio times the ratio of the evidences. This
ratio of evidences is called the “Bayes factor” and is
denoted by

BIJðsÞ≡ pðsjMIÞ
pðsjMJÞ

: ð25Þ

In many circumstances there is no a priori reason to prefer
one model over another (i.e., the prior odds ratio is unity),
so for these cases the posterior odds ratio is just the Bayes
factor. If we fix some model, e.g., M0, and calculate the
Bayes factors of all the other models relative to M0, the
model with the largest Bayes factor is the preferred model
given the data.
Table I gives a list of possible Bayes factor values and

their interpretation in terms of the evidence in favor of one
model relative to another. The interpretation is based on
betting odds, and the precise level at which one considers
the evidence for a model to be strong or very strong is quiet
subjective.

D. Comparison to maximum-likelihood analyses

It is interesting to compare the Bayesian model selection
calculation discussed above to a maximum-likelihood
frequentist analysis, e.g., that presented in [8]. There they
construct a detection statistic by maximizing the likelihood
ratio for a signalþ noise model M1 to the noise-only
model M0:

ΛMLðsÞ≡
max~θnmax~θhpðsj~θn; ~θh;M1Þ

max~θn 0pðsj ~θ
0
n;M0Þ

: ð26Þ

TABLE I. Bayes factors and their interpretation in terms of the
evidence in favor of one model relative to the other.

BIJðsÞ 2 lnBIJðsÞ Evidence for model MI relative to MJ

<1 <0 Negative (supports model MJ)
1–3 0–2 Not worth more than a bare mention
3–12 2–5 Positive
12–150 5–10 Strong
>150 >10 Very strong
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The Bayes factor calculation also involves a ratio of two
quantities, but instead of maximizing over the parameters,
we marginalize over the parameters:

B10ðsÞ≡ pðsjM1Þ
pðsjM0Þ

ð27Þ

¼
R
d~θn

R
d~θhpðsj~θn; ~θh;M1Þπð~θn; ~θhjM1ÞR
d ~θ0npðsj ~θ0n;M0Þπð ~θ0njM0Þ

: ð28Þ

These two expressions can be related to one another by
using the Laplace approximation to individually approxi-
mate the evidences pðsjM1Þ and pðsjM0Þ. As shown in
Appendix A,

pðsjMÞ≃ pðsj~θMLÞ
ΔVM

VM
; ð29Þ

where ΔVM=VM is the fraction of the parameter space
volume for modelM needed to fit the data, and ~θML are the
particular values of the model parameters that maximize
the likelihood. Thus,

B10ðsÞ≃ ΛMLðsÞ
ΔV1=V1

ΔV0=V0

; ð30Þ

which shows that the Bayes factor is proportional to the
frequentist maximum-likelihood ratio. The proportionality
constant is the Occam’s factor mentioned in Sec. II, which
penalizes a model if its parameter space volume is larger
than necessary to fit the data.

E. Signal-to-noise ratios

One of the parameters that we will use to describe the
simulations in Sec. V is the ratio of the power in the injected
signals to that of the detector noise. For a stochastic
gravitational-wave background described by the one-sided
strain power spectral density ShðfÞ, the expected signal-to-
noise ratio of the optimally filtered cross-correlation
statistic in a pair of detectors I, J is given by [23]

SNR2jstoch ¼
ffiffiffiffiffiffi
2T

p �Z
∞

0

df
Γ2
IJðfÞS2hðfÞ

PnIðfÞPnJðfÞ
�
1=2

; ð31Þ

where ΓIJðfÞ is the overlap function between detectors I
and J (see, e.g., [24,25]). For a pair of identical, colocated
and coaligned detectors the above expression simplifies to

SNR2jstoch ¼
ffiffiffiffiffiffi
2T

p �Z
∞

0

df
P2
hðfÞ

P2
nðfÞ

�
1=2

; ð32Þ

where PhðfÞ≡ ΓIIðfÞShðfÞ is the gravitational-wave
power in a single detector. We are assuming here that
the signal power is weak relative to the noise, so that the

total power in detector I is given by PIðfÞ≡ PhðfÞ þ
PnIðfÞ ≈ PnI ðfÞ.
For a deterministic signal described by the strain

response ~hðfÞ, it is often more convenient to work with
the matched-filter signal-to-noise ratio, which has expected
value

SNR2jdet ¼ 4

Z
∞

0

df
j ~hðfÞj2
PnðfÞ

¼ 2T
Z

∞

0

df
PhðfÞ
PnðfÞ

: ð33Þ

For this case PhðfÞ ¼ 2
T j ~hðfÞj2 is the one-sided power

spectral density for the signal. Note that for deterministic
signals, the squared signal-to-noise ratio scales with the
number of frequency bins Nbins, while for stochastic signals
it scales like

ffiffiffiffiffiffiffiffiffiffi
Nbins

p
.

IV. SIGNALþ NOISE MODELS AND PRIORS

We consider the following five models for describing the
signal and noise:
M0—Noise-only model:

This is a noise-only model, which assumes uncorre-
lated, white Gaussian noise in the two detectors.
There are only two parameters for this model,
~θ ¼ fσ1; σ2g. For our simulations, the prior on the
noise variances are flat between 0 and 10.

M1—Noise plus Gaussian stochastic model:
White Gaussian detector noise plus a white Gaussian
gravitational-wave background. There is one addi-
tional parameter corresponding to the variance σ2h of
the background, so ~θ ¼ fσ1; σ2; σhg. The prior on σ2h
is also between 0 and 10, just like the detector noise
variances.

M2—Noise plus non-Gaussian (two-component) stochas-
tic model:

White Gaussian detector noise plus a white two-
component Gaussian model for the gravitational-
wave background. There are three parameters for
the two-component Gaussian model: the variances α2

and β2 for the two components, and the probability ξ
of one of the components. (The probability of the
other component necessarily equals 1 − ξ.) Thus,
~θ ¼ fσ1; σ2; α; β; ξg. The prior on ξ is flat from 0
to 1. The prior on the variances are 0 to 10 for the
wide component and 0 to 0.5 on the narrow, delta-
function-like component.

M3—Noise plus deterministic multisinusoid signal model:
White Gaussian detector noise plus up to 100
deterministic sinusoids. There are three parameters
fAI; fI;φIg corresponding to the amplitude, fre-
quency, and phase for each sinusoid. Thus, for M
sinusoids, there are 2þ 3M pameters for this par-
ticular model ~θ ¼ fσ1; σ2; AI; fI;φIjI ¼ 1; 2;…Mg.
The prior on the amplitudes is uniform in the range
A ∈ ½0; 1000�, and the prior on the frequencies is
uniform across the range spanned by the data. The
prior on the phases is uniform between 0 and 2π.
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M4—Noise plus deterministic multisinusoid plus Gaussian
background model:

White Gaussian detector noise plus a Gaussian
gravitational-wave background plus up to 100 sinus-
oids. As for M3, there are three parameters (ampli-
tude, frequency, and phase) for each sinusoid. Thus,
for M sinusoids, there are 2þ 1þ 3M parameters
for this model ~θ ¼ fσ1; σ2; σh; AI; fI;φIjI ¼
1; 2;…Mg. The priors on the parameters are the
same as in the previous models. This hybrid model
allows us to effectively “subtract out” any suffi-
ciently bright sinusoidal signals in the data.

Note that we do not consider a hybrid “noise plus deter-
ministic multisinusoid plus non-Gaussian background”
model in the above list, as we expect the subtraction of
the bright sinusoids to remove most of the non-Gaussianity
of the signal component. Also, as we shall discuss further
in Sec. V, we do not consider a signalþ noise model with
a nonstandardized student’s t-distribution for the non-
Gaussian stochastic gravitational-wave component. This is
because of the computational costs associated with the
marginalized likelihood evaluations (see Eq. (19)), which
are needed for the Bayesian model selection calculations.

V. SIMULATIONS

A. Astrophysical source populations

Simulated data are generated by coadding sinusoidal
signals with amplitudes drawn from one of three astro-
physical models. The frequencies and phases of the
sinusoids are drawn uniformly from the prior ranges
defined in the previous section. Gaussian-distributed noise
with a white power spectrum is then added to the signals.
The amplitude of the signals is scaled so as to produce a
pre-specified matched-filter signal-to-noise ratio (SNR) per
frequency bin, calculated as an average across all frequency
bins, using Eq. (33).
Figure 1 is a plot of the squared amplitude of the noise and

signal components for a typical simulation using two
detectors. For an SNR-per-bin of 1, the amplitudes of the
astrophysicals signals are of the same order-of-magnitude as
the noise in the two detectors, as can be seen in the figure.
We considered three astrophysical source models: Model

S0 uniformly distributes standard sirens (sources with the
same intrinsic amplitude) in space out to some cutoff radius
r ¼ R, after which the density falls-off exponential with an
e-folding scale of 0.25R. Model S1 distributes standard
sirens with a Gaussian distribution in distance with density
ρ ∝ e−r

2=2R2

. For model S0 the number of sources in a
spherical shell of radius r is proportional to r2 out to r ¼ R.
For model S1 the number of sources in a spherical shell of
radius r is proportional to the product r2e−r

2=2R2

, and thus
has a larger number of sources at smaller r, as compared to
the uniform distribution case. Model S2 is based on a
population synthesis model for supermassive black hole
binaries [26], where the amplitude of the sources depends

on both the mass of the system and the distance. The usual
frequency dependence of the amplitude was artificially
suppressed so as to produce a white spectrum.
The amplitude distributions for the three models are

shown in Fig. 2. Models S0 and S1 have similar amplitude
distributions that are fairly tightly peaked, while model S2

has a large tail extending to high amplitude.
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FIG. 1 (color online). The squared amplitude of the noise and
signal components for data in two coincident and coaligned
detectors consisting of white noise and a superposition of
sinusoids drawn from astrophysical source population S2, with
a source density of 0.1/bin in 128 frequency bins and an average
SNR-per-bin of 1. The SNR is dominated here by the four
brightest sources.
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FIG. 2 (color online). Amplitude distributions for the three
astrophysical source distributions considered in this study. The
amplitude scale is arbitrary since the signal-to-noise ratios are set
when producing simulated data sets drawn from these distribu-
tions. Models S0 and S1 are for “standard sirens” (equal intrinsic
amplitude sources) with different spatial distributions, while
model S2 is based on a population synthesis model where some
sources have much higher intrinsic amplitudes than others.
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B. Markov chain Monte Carlo methods

We performed two types of analyses, both of which
employed transdimensional reversible jump Markov chain
Monte Carlo (RJMCMC) algorithms. The first type of
analysis looked at the signal in a single detector with no
instrument noise. There the goal was to find which of three
statistical models best described the intrinsic properties of
the signal: a Gaussian distribution, a two-component
Gaussian distribution, or a nonstandardized student’s
t-distribution. A RJMCMC analysis extends the usual
MCMC exploration of the parameters of a single model
to the exploration of a range of models and their param-
eters, thus allowing us to produce marginalized posteriors
for both the model parameters and posterior distributions
for the relative probability that each model is consistent
with the data and our prior knowledge. In principle, a single
RJMCMC routine could explore all three probability
distributions at once, but we were able to achieve better
mixing by performing pairwise comparisons between the
Gaussian and two-component Gaussian models and the
Gaussian and the nonstandardized student’s t model.
The ratio of the number of iterations the Markov chain
spends in each model yields Bayes factors between the
Gaussian reference model and the two non-Gaussian
alternatives.
The second type of analysis considered the detection and

characterization of the astrophysical signals in the presence
of detector noise in a two-detector network. Here we
considered the five models described in Sec. IV. Once again,
a single RJMCMC routine could simultaneously explore all
five models, but achieving efficient mixing between models
with different parametrizations and dimensionality is noto-
riously difficult. Instead, we again opted for a pairwise
approach, comparing the noise-only model M0 to each of
the four signalþ noise models in turn. This yields a
collection of Bayes factors between the reference noise
model and the four signal models. It is important to note that
models M3 and M4 are both complicated composite
models that allow for a variable number of sinusoids to
be used in the model. ModelM4 further allows for, but does
not require, a Gaussian signal component. Thus M4 con-
tains models M3, M1 and M0 as subcases. If we had
included a two-component Gaussian in M4, then we would
have been able to explore all four signal models at once. We
did check that the relative probabilities for the submodels
included in M4 were consistent with the relative proba-
bilities found in the pair-wise comparisons, though the larger
model space did lead to larger uncertainties on the Bayes
factors. The uncertainties were computed from the variance
of the running Bayes factors, and compared to analytic
estimates based on the number of transitions between the
models [17]. Both methods yielded consistent error esti-
mates. We further checked that the error estimates were
consistent with the spread seen when repeating the analysis
dozens of times with different random number seeds.

C. Classifying the signals

We begin looking at the statistical properties of the signals
themselves. While this is not something we can do with
actual observations where the signals must be extracted from
noisy data, it is interesting to compare the observed proper-
ties of the signals to the intrinsic properties of the signals.
Figure 3 is a histogram of signal samples as well as the

best fit Gaussian (“single gauss”), two-component
Gaussian (“double gauss”), and nonstandardized student’s
t-distribution for a simulated signal with an average density
of one source per ten frequency bins. As expected for such
a sparse population, the single-Gaussian fit is extremely
poor compared to the two-component Gaussian or non-
standardized student’s t-distibution fit.
Figure 4 is a plot of Bayes factor quantile intervals as a

function of the total number of frequency bins, comparing
the two-component Gaussian and nonstandardized stu-
dent’s t-distribution models to the reference Gaussian
model. The source density was set to 10/bin for these
simulations. The two panels correspond to astrophysical
source models S0 and S1. In the upper panel the astro-
physical sources were drawn from source model S0. In the
lower panel, the astrophysical sources were drawn from
source model S1. There was no detector noise in these
simulations. Note that the Bayes factors in the lower panel
are shifted slightly higher relative to those in the upper
panel, consistent with the expectation that the Gaussian-
distributed astrophysical source population will tend to
produce closer—and hence more-easily resolvable—
sources. We see that at this relatively high source density,
we need a large amount of data (many frequency bins) to
detect the subtle departure from Gaussianity.
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FIG. 3 (color online). Histogram of signal samples and the
corresponding best fit single-Gaussian, double-Gaussian, and
nonstandardized student’s t-distribution for a signal consisting of
a superposition of sinusoids drawn from an astrophysical pop-
ulation with a source density of 0.1/bin in 256 frequency bins and
an SNR-per-bin of 1.
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We should emphasize that the quantile intervals shown in
Fig. 4 (and in several other figures to follow) define the
probability distribution for the Bayes factor values as
estimated from 256 independent realizations of the simu-
lated signal and noise for each set of parameter values:
these are not error bars on the individual Bayes factors. For
a single realization of the simulated signal and noise, the
uncertainty in the value of the Bayes factor as estimated
from 128 independent Monte Carlo simulations is ≲10%,
which we can ignore in the quantile plots.
Figure 5 is a similar plot of Bayes factor quantile

intervals as a function of the number of sources per bin,
comparing the two-component Gaussian and nonstandard-
ized student’s t-distribution. The total number of bins was
set to 128 and the signals were drawn from astrophysical
source model S0. As expected from the central limit theorem,
the simulated data are consistent with a Gaussian probability

distribution when the average number of signals per fre-
quency bin is large. It is interesting to note the large spread in
the Bayes factors in the transition region between 1 and 10
sources per bin. This tells us that some realizations look
Gaussian, while others look highly non-Gaussian.
Similar to the results shown in Fig. 4, the nonstandardized

student’s t-distribution model has consistently higher Bayes
factors than the two-component Gaussian model. This
suggests using it over the two-component Gaussian model
when modeling non-Gaussian stochastic signals. However,
the fact that we are not able to find an analytic expression for
the corresponding marginalized likelihood function [see
Eq. (19)] means that the student’s t-distribution model has
a much higher computational cost than the two-component
Gaussian model. As such, for all subsequent model com-
parison simulations that we do—which include simulated
noise in a two-detector network—we use the two-component
Gaussian stochastic model instead of the more expensive
nonstandardized student’s t-distribution model.

D. Detecting and characterizing signals
in noisy detector data

Next we turn our attention to the observed properties of
the signals in a more realistic setup that includes instrument
noise and a network with two coaligned and colocated
detectors. A multidetector analysis is needed to distinguish
signals from noise. In this study we need to consider the
dependence on SNR, in addition to the dependence on
source density and data volume (number of frequency
bins). In the infinite SNR limit we recover the pure signal
analysis described in the previous section. For more
realistic SNRs, a signal that is best described as determin-
istic or non-Gaussian in the absence of noise may favor a
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FIG. 4 (color online). Bayes factor 80% quantile intervals for
the two-component Gaussian and nonstandardized student’s
t-distribution signal models as a function of the total number
of frequency bins. The source density was set to 10/bin for all the
simulations. In the upper panel the astrophysical sources were
drawn from the source model S0. In the lower panel the
astrophysical sources were drawn from source model S1.
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FIG. 5 (color online). Bayes factor 80% quantile intervals for
the two-component Gaussian and nonstandardized student’s
t-distribution signal models as a function of the total number
of sources per bin. The total number of bins was set to 128 and
the astrophysical sources were drawn from source model S0.
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stochastic or Gaussian description in the presence of noise
when model simplicity wins out over model fidelity.
In addition to the Gaussian and two-component

Gaussian signal models (M1 and M2), we additionally
consider a deterministic model made up of the sum of
sinusoids (M3), and a hybrid model with a Gaussian-
stochastic component and a collection of sinusoids (M4).
Figure 6 compares the cross-correlated data in two detec-
tors to a marginalized posterior distribution for the frequen-
cies used by the multicomponent sinusoid model. In this
instance, the brightest sinusoid in the data was confidently
detected, as indicated by the large peak in the posterior
distribution. The second and third brightest signals in the
data were marginally detected, as indicated by the secon-
dary peaks in the posterior distribution.
The question of whether the data are best described by a

deterministic model, a non-Gaussian stochastic model or a
Gaussian-stochastic model depends on many factors,
including the source density, the noise level, the number
of frequency bins and the SNR-per-bin. In what follows we
explore the impact of each of these factors.
A major challenge that we face is that the outcomes vary

greatly from one simulation to the next, especially in the
limit that there are few sources and/or few frequency bins.
To counter this we performed a large number of simulations
and aggregated the results. When showing Bayes factors
between the various signal models and the noise model, we
display the mean values along with the 80% quantile
intervals derived from the ensemble of simulations.
More directly, we also report the fraction of times each
model had the highest Bayesian evidence on a realization-
by-realization basis. While the general trend is that the

Gaussian model is more likely to be favored as the number
of sources per bin increases, the deterministic model can
sometimes be preferred at high source density, and the
Gaussian-stochastic model can sometimes be preferred at
low source density. Note that while ground- and space-
based interferometric detectors and pulsar timing arrays
nominally cover much larger frequency bands than we
consider here, their “V-” shaped sensitivity curves limit the
effective number of frequency bins to 100’s for interfer-
ometers and 10’s for pulsar timing arrays.
Figure 7 shows the fraction of times that a non-Gaussian

model has higher evidence than the Gaussian model as a
function of the source density for the three source models.
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FIG. 6 (color online). The cross-correlated signalþ noise in the
two detectors for the simulated data shown in Fig. 1 is compared
to the scaled posterior density for the frequencies of the sinusoids
found by a transdimensional MCMC analysis of the data. The
three brightest signals in the data had amplitudes and frequencies
ðA¼4.46;f¼22.45HzÞ, ðA¼4.41;f¼110.66HzÞ and ðA¼3.73;
f¼39.23HzÞ. Only the brightest of these was a clear detection,
though the analysis did occasionally lock onto the other signals.
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FIG. 7 (color online). The fraction of times a non-Gaussian
model has higher evidence than the Gaussian model as a function
of the source density for the three source models. For these
simulations the number of bins was fixed at 32 and the average
SNR-per-bin was fixed at 2. Upper panel: The fraction of
times the deterministic, multisinusoid model M3 had higher
evidence than the Gaussian-stochastic model M1. Lower panel:
The fraction of times the stochastic two-component Gaussian
model M2 had higher evidence than the Gaussian-stochastic
model M1.
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Here the number of bins was fixed at 32 and the average
SNR-per-bin was fixed at 2. The general trend is as expected
from the central limit theorem—as the number of signals per
frequency bin grows the data look less deterministic and
more Gaussian. The more realistic source model S2, which
has a variety of intrinsic source luminosities, was consis-
tently less Gaussian than source models S0 and S1, which
assumed equal luminosity sources. Even at high source
densities, model S2 could appear deterministic or non-
Gaussian.
Figure 8 extends the study of the dependence on the

source density to include the full set of signal models, and
in addition to showing the fraction of time that each model
is favored, also shows the Bayes factor quantile intervals

for the four signal models. The total number of bins was set
to 32 for these simulations, which included simulated noise
in addition to the simulated astrophysical signals from
source model S2. For these simulation the SNR-per-bin
was fixed at 2, with different realizations of the noise used
for the different simulations. Note that for low source
densities, the models that include deterministic sinusoid
signals are the preferred models. The effectiveness of models
having Gaussian or non-Gaussian stochastic signal compo-
nents improve as the source density increases. As expected,
the hybrid model performs best for all source densities.
Figure 9 shows how the model selection results are

affected by the number of frequency bins, keeping the
source density fixed at one-per-bin and the SNR-per-bin
fixed at 2. As the number of frequency bins increases, the
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FIG. 8 (color online). Upper panel: Bayes factor 80% quantile
intervals for the four different signalþ noise models relative to
the noise-only model as a function of the number of sources per
bin. The total number of bins was set to 32 for these simulations,
and the astrophysical sources were drawn from source model S2.
The SNR-per-bin was fixed at 2, with different realizations of
noise used for the different simulations. Lower panel: Fraction of
time that the different models had the largest Bayes factor for the
different simulations.
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FIG. 9 (color online). Upper panel: Bayes factor 80% quantile
intervals for the four different signalþ noise models relative to
the noise-only model as a function of the total number of
frequency bins. The source density was set to 1/bin for all the
simulations, and the astrophysical sources were drawn from
source model S2. The SNR-per-bin was fixed at 2, with different
realizations of noise used for the different simulations. Lower
panel: Fraction of time that the different models had the largest
Bayes factor for the different simulations.
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chances of having one or two loud sources dominate the total
signal increases, and consequently, the deterministic multi-
sinusoid model and the two-component Gaussian stochastic
models are more likely to outperform the Gaussian model.
Finally, Fig. 10 shows how the model selection is

affected by the SNR-per-bin, keeping the source density
fixed at one-per-bin and the number of bins fixed at 32. The
Bayes factors for all the signalþ noise models increase
quadratically with increasing SNR-per-bin, which is to be
expected when compared to the noise-only model. For
sufficiently large SNR-per-bin (so that the signal is detected
by all the models), the relative performance of the various
signal models is independent of the SNR-per-bin.

VI. DISCUSSION

We presented a Bayesian search for non-Gaussian
gravitational-wave backgrounds. We found that a

gravitational-wave signal comprised of the sum of discrete
sources drawn from some astrophysical population may be
best described as either deterministic, non-Gaussian sto-
chastic, or Gaussian-stochastic depending on the number of
sources, and the size of the data set. In our studies the
simulated data were produced by adding together multiple
sinusoids with amplitudes drawn from one of three astro-
physical source distributions, to which was added an
independent white noise realization in each detector.
While the deterministic signal model M3, made up of a
variable number of sinusoids, is able to precisely match the
simulated data, the simpler Gaussian M1 and non-
Gaussian M2 stochastic signal models are often preferred.
The general trend follows our expectation that the signals
appear increasingly stochastic and Gaussian as the number
of sources per frequency bin increases. We found that
departures from Gaussianity are more likely to be detected
in large data sets (in our case, for large numbers of
frequency bins), but that the ability to distinguish between
the various signal models was independent of the SNR
(once the signal became detectable). In all cases, a hybrid
model, M4, that combines variable contributions from
deterministic and stochastic signals that are determined by
the data, outperformed each of the single element models
most of the time. This finding may be of particular
relevance to the detection of low frequency gravitational
waves by pulsar timing arrays.
Although for simplicity we considered colocated and

coaligned detectors and white power spectra, the method
can easily be extended to handle more realistic detector
geometry (i.e., separated and misaligned detectors) as well
as colored noise and signal spectra. For example, a black
hole population typically has more bright signals at low
frequencies. There are also many other signal and noise
models that can be considered.
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APPENDIX: BAYES FACTOR CALCULATION

Suppose we have two models that we would like to
compare, denotedM1 andM0, with parameters ~θ1 and ~θ0,
respectively. As described in Sec. III C, the Bayes factor
B10ðsÞ for modelM1 relative to modelM0 given observed
data s is defined by

B10ðsÞ ¼
pðsjM1Þ
pðsjM0Þ

; ðA1Þ
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FIG. 10 (color online). Upper panel: Bayes factor 80% quantile
intervals for the four different signalþ noise models relative to
the noise-only model as a function of SNR-per-bin. The total
number of bins was set to 32 and the source density to 1/bin for all
the simulations. The astrophysical sources were drawn from
source model S2. Lower panel: Fraction of time that the different
models had the largest Bayes factor for the different simulations.
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where

pðsjMÞ ¼
Z

d~θpðsj~θ;MÞπð~θjMÞ ðA2Þ

for either model (i.e., M ¼ M0 or M1). The quantity
pðsjMÞ is called the “evidence” for model M. The Bayes
factor is the ratio of the evidences for the two models; it
equals the posterior odds ratio for the two models if they
have equal a priori probabilities.
Since analytic or direct calculations of the evidence

integrals is usually not possible, we need to estimate the
Bayes factor numerically. In this appendix, we describe a
few of the methods used for the study described in this paper.
Readers interested in more details should see Sec. II of [27].

1. Laplace approximation

If we assume that the data are informative, so that the
likelihood function is peaked relative to the prior proba-
bility distribution, then we can use the Laplace approxi-
mation to estimate the evidence integral (A2):

pðsjMÞ≃ pðsj~θML;MÞΔVM

VM
; ðA3Þ

where ~θML ≡ ~θMLðsÞ maximizes the likelihood pðsj~θ;MÞ
with respect to variations of ~θ; ΔVM is the characteristic
width of the likehood function around its maximum; and
VM is the total parameter space volume for the model
parameters. The ratio ΔVM=VM can be thought of as an
Occam’s factor, which penalizes a model if its parameter
space volume is larger than needed to fit the data. Doing
this calculation for both M0 and M1, and then taking the
ratio of the two results, we find

B10ðsÞ≃ pðsj~θ1;ML;M1Þ
pðsj~θ0;ML;M0Þ

ΔV1=V1

ΔV0=V0

ðA4Þ

¼ ΛMLðsÞ
ΔV1=V1

ΔV0=V0

; ðA5Þ

where ΛMLðsÞ is the maximum-likelihood ratio.
As a very simple example, consider the case of N

samples of data s, consisting of an unknown constant
signal in additive white Gaussian-stationary noise with
known variance σ2. Let M0 denote the noise-only model
with likelihood function

pðsjM0Þ ¼
YN
i¼1

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−s
2
i =2σ

2

; ðA6Þ

and let M1 be the signalþ noise model defined by the
likelihood function

pðsjθ;M1Þ ¼
YN
i¼1

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−ðsi−θÞ2=2σ2 ; ðA7Þ

and prior πðθÞ ¼ 1=θmax, where θ ∈ ½0; θmax� is the
unknown signal amplitude. Then one can easily show that
the maximum-likelihood parameter value is the sample
mean

θMLðsÞ ¼
1

N

XN
i¼1

si ≡ s̄; ðA8Þ

and the Bayes factor for the signalþ noise model M1

relative to the noise-only model M0 is

B10ðsÞ≃ σ=
ffiffiffiffi
N

p

θmax
exp

�
1

2

s̄2

σ2=N

�
: ðA9Þ

It has logarithm

2 lnB10ðsÞ≃ 2 ln

�
σ=

ffiffiffiffi
N

p

θmax

�
þ s̄2

σ2=N
: ðA10Þ

Since σ̄2 ≡ σ2=N is the variance of the sample mean s̄ (or,
equivalently, it is the characteristic width of the likelihood
function around its maximum value), we see that twice the
log of the Bayes factor is effectively the squared SNR of
the maximum-likelihood estimator θMLðsÞ. The first term
on the right-hand side of Eq. (A10) is the Occam’s penalty
factor associated with the size of the parameter space
volume θmax. This term is negative and reduces the value of
the log of the Bayes factors if increases N while θmax and σ
are held fixed.

2. Savage-Dicke density ratio

The Savage-Dicke density ratio can be defined whenever
model M0 is a subset of model M1, and the prior
probabilities factorize. Both of these conditions hold, for

example, if ~θ1 ¼ f~θ0; ~θextrag, with

πð~θ1jM1Þ ¼ πð~θ0jM0Þπð~θextrajM1Þ ðA11Þ

and

pðsj~θ0;M0Þ ¼ pðsj~θ1;M1Þj~θextra¼~θextra;0
ðA12Þ

for some fixed set of parameter values ~θextra;0. The Savage-
Dicke density ratio r10ðsÞ is then defined as

r10ðsÞ≡ πð~θextra;0jM1Þ
pð~θextra;0js;M1Þ

; ðA13Þ

where pð~θextra;0js;M1Þ is the marginalized probability
density function

pð~θextrajs;M1Þ ¼
Z

d~θ0pð~θ0; ~θextrajs;M1Þ ðA14Þ
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evaluated at ~θextra ¼ ~θextra;0. Using Bayes’s theorem in the
form

pð~θ0; ~θextrajs;M1Þ ¼
pðsj~θ0; ~θextra;M1Þπð~θ0; ~θextrajM1Þ

pðsjM1Þ
ðA15Þ

and Eqs. (A11) and (A12), one can show that

r10ðsÞ ¼ B10ðsÞ ðA16Þ
exactly. The advantage of using the expression for the
Savage-Dicke density ratio to estimate the Bayes factor is
that it only requires exploration of the posterior distribution
for model M1.

3. Reversible jump MCMC

Reversible jump, or transdimensional MCMC algorithms,
explore the space of models in addition to the parameters of
each model. The Bayes factor between two models M0 and
M1 is simply estimated from the ratio of the number of
iterations that the chain spends in each model:

B10ðsÞ ¼
number of interations in modelM1

number of interations in modelM0

: ðA17Þ

The accuracy of the estimate depends on the number of
transitions between the two models—the more transitions,
the more accurate the estimate. The problem with this
simple approach is that it becomes difficult to compute
Bayes factors smaller than 10−3 or larger than 103, since
the chains spend very little time in the disfavored model,
and hence the exploration of that model can fail to
converge to the stationary state. Ideally, we would
like the chain to spend an equal amount of time in each
model, so that all models are explored equally well (that
is, assuming each model has a comparable dimension-
ality; if the model dimensions are significantly different,
more time should be spent exploring in the higher-
dimensional model).
To achieve good mixing within each model and between

models, we introduce an artificial prior weighting on the
models that compensates for the difference in the Bayes
factors. For example, if the Bayes factor between two
models is 1000, we introduce a prior that favors the low
probability model by a factor of 1000, so the chains spend
an equal number iterations in each model [28]. Since the
appropriate weighting is not known in advance, an iterative
scheme is used that adjusts the artificial prior weighting on
the models until balance is achieved. The true Bayes factors
are then found from the iteration ratio divided by the
artificial prior odds ratio.

[1] P. Rosado, Phys. Rev. D 84, 084004 (2011).
[2] T. Regimbau and V. Mandic, Classical Quantum Gravity 25,

184018 (2008).
[3] T. Regimbau and S. A. Hughes, Phys. Rev. D 79, 062002

(2009).
[4] T. Regimbau, Res. Astron. Astrophys. 11, 369 (2011).
[5] E. Thrane, Phys. Rev. D 87, 043009 (2013).
[6] P. A. Rosado, A. Sesana, and J. Gair, Mon. Not. R. Astron.

Soc. 451, 2417 (2015).
[7] I. Mandel, Report No. LIGO-P1400200 (2014).
[8] S. Drasco and E. E. Flanagan, Phys. Rev. D 67, 082003

(2003).
[9] D. M. Coward and R. R. Burman, Mon. Not. R. Astron. Soc.

361, 362 (2005).
[10] N. Seto, Phys. Rev. D 80, 043003 (2009).
[11] L. Martellini and T. Regimbau, Phys. Rev. D 89, 124009

(2014).
[12] B. Allen and J. Romano, Phys. Rev. D 59, 102001

(1999).
[13] E. T. Jaynes, Probability Theory: The Logic of Science

(Cambridge University Press, Cambridge, England, 2003).
[14] J. Skilling, Bayesian Analysis 1, 833 (2006).
[15] F. Feroz, M. P. Hobson, E. Cameron, and A. N. Pettitt (to be

published).

[16] T. Littenberg and N. Cornish, Phys. Rev. D 91, 084034
(2015).

[17] N. Cornish and T. Littenberg, Classical Quantum Gravity
32, 135012 (2015).

[18] R. van Haasteren, Y. Levin, P. McDonald, and T. Lu, Mon.
Not. R. Astron. Soc. 395, 1005 (2009).

[19] N. J. Cornish and J. D. Romano, Phys. Rev. D 87, 122003
(2013).

[20] I. J. Good, The Estimation of Probabilities: An Essay on
Modern Bayesian Methods (MIT Press, Cambridge,
Massachusetts, 1965).

[21] C. N. Morris and S. L. Normand, in Bayesian Statistics 4,
edited by A. P. Dawid, J. M. Bernardo, J. O. Berger, and
A. F. M. Smith (Oxford University Press, New York, 1992),
p. 321.

[22] M. Adams and N. Cornish, Phys. Rev. D 82, 022002 (2010).
[23] E. Thrane and J. D. Romano, Phys. Rev. D 88, 124032 (2013).
[24] N. Christensen, Phys. Rev. D 46, 5250 (1992).
[25] É. É. Flanagan, Phys. Rev. D 48, 2389 (1993).
[26] A. Sesana, Mon Not. R. Astron. Sc. 433, L1 (2013).
[27] N. J. Cornish and T. B. Littenberg, Phys. Rev. D 76, 083006

(2007).
[28] C. Han and B. P. Carlin, J. Am. Stat. Assoc. 96, 1122

(2001).

NEIL J. CORNISH AND JOSEPH D. ROMANO PHYSICAL REVIEW D 92, 042001 (2015)

042001-14

http://dx.doi.org/10.1103/PhysRevD.84.084004
http://dx.doi.org/10.1088/0264-9381/25/18/184018
http://dx.doi.org/10.1088/0264-9381/25/18/184018
http://dx.doi.org/10.1103/PhysRevD.79.062002
http://dx.doi.org/10.1103/PhysRevD.79.062002
http://dx.doi.org/10.1088/1674-4527/11/4/001
http://dx.doi.org/10.1103/PhysRevD.87.043009
http://dx.doi.org/10.1093/mnras/stv1098
http://dx.doi.org/10.1093/mnras/stv1098
http://dx.doi.org/10.1103/PhysRevD.67.082003
http://dx.doi.org/10.1103/PhysRevD.67.082003
http://dx.doi.org/10.1111/j.1365-2966.2005.09178.x
http://dx.doi.org/10.1111/j.1365-2966.2005.09178.x
http://dx.doi.org/10.1103/PhysRevD.80.043003
http://dx.doi.org/10.1103/PhysRevD.89.124009
http://dx.doi.org/10.1103/PhysRevD.89.124009
http://dx.doi.org/10.1103/PhysRevD.59.102001
http://dx.doi.org/10.1103/PhysRevD.59.102001
http://dx.doi.org/10.1214/06-BA127
http://dx.doi.org/10.1103/PhysRevD.91.084034
http://dx.doi.org/10.1103/PhysRevD.91.084034
http://dx.doi.org/10.1088/0264-9381/32/13/135012
http://dx.doi.org/10.1088/0264-9381/32/13/135012
http://dx.doi.org/10.1111/j.1365-2966.2009.14590.x
http://dx.doi.org/10.1111/j.1365-2966.2009.14590.x
http://dx.doi.org/10.1103/PhysRevD.87.122003
http://dx.doi.org/10.1103/PhysRevD.87.122003
http://dx.doi.org/10.1103/PhysRevD.82.022002
http://dx.doi.org/10.1103/PhysRevD.88.124032
http://dx.doi.org/10.1103/PhysRevD.46.5250
http://dx.doi.org/10.1103/PhysRevD.48.2389
http://dx.doi.org/10.1093/mnrasl/slt034
http://dx.doi.org/10.1103/PhysRevD.76.083006
http://dx.doi.org/10.1103/PhysRevD.76.083006
http://dx.doi.org/10.1198/016214501753208780
http://dx.doi.org/10.1198/016214501753208780

