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We study supersymmetry constraints on higher derivative deformations of type IIB supergravity by
consideration of superamplitudes. Combining constraints of on-shell supervertices and basic results from
string perturbation theory, we give a simple argument for the nonrenormalization theorem of Green and
Sethi, and some of its generalizations.
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Supersymmetry constraints on higher derivative couplings
in maximal supergravity theories have been investigated
extensively in the past [1–7] and have led to remarkable
exact results on the quantum effective action of string theory.
The method of Refs. [3,8–10] in obtaining constraints on
higher derivative terms in gauge and gravity theories with
maximal supersymmetry was by explicitly analyzing super-
symmetry variations of fields and the Lagrangian and their
deformations, starting from the purely fermionic terms. In
this paper we present a simple argument for such non-
renormalization theorems from scattering amplitudes, in the
context of ten-dimensional type IIB supergravity and its
deformations, largely inspired by the work of Refs. [11–13]
on the classification of supergravity counterterms [14–16]
using amplitudes.
To begin with, we recall the spinor helicity formulation

of superamplitudes in type IIB supergravity [17,18]. A ten-
dimensional null momentum pm and the corresponding
(constrained) spinor helicity variables λαA are related by

pmδAB ¼ Γm
αβλ

α
Aλ

β
B; ð1Þ

where α is a chiral spinor index of SOð1; 9Þ and A is a
spinor index of the SOð8Þ little group. The 28 ¼ 256 states
in the supergraviton multiplet are built from monomials in a
set of Grassmann variables ηA. The supermomentum is then
defined as

qα ¼ λαAη
A: ð2Þ

A typical n-point superamplitude takes the form [19]

A ¼ δ10ðPÞδ16ðQÞF ðλi; ηiÞ; ð3Þ

where P ¼ P
n
i¼1 pi, and the 32 supercharges that act on the

n-particle asymptotic states can be expressed as

Qα ¼
Xn
i¼1

qαi ; ~Qα ¼
Xn
i¼1

λαAi
∂
∂ηAi : ð4Þ

They obey fQα; ~Qβg ¼ 1
2
Γαβ
m Pm. The nontrivial supersym-

metry Ward identities on A are

δ10ðPÞδ16ðQÞ ~Qα½F ðλi; ηiÞ� ¼ 0: ð5Þ

We can write the CPT conjugate of the amplitude A as

Ā ¼ δ10ðPÞ ~Q16F ðλi; ∂=∂ηiÞ
Yn
i¼1

η8i : ð6Þ

Evidently, if A obeys supersymmetry Ward identities, so
does Ā.
Now let us focus on supervertices, namely superampli-

tudes with no poles in momenta. There are three basic types
of supervertices we can write down. First, we can take
F ðλi; ηiÞ to be independent of ηi, namely

F ðλi; ηiÞ ¼ fðsijÞ; ð7Þ

where sij ¼ −ðpi þ pjÞ2 ¼ −2pi · pj. The CPT conjugate
of this construction gives another supervertex. We refer to
these as F-term vertices [20]. A third type of supervertex
(D-term) is given by

δ10ðPÞδ16ðQÞ ~Q16hðλi; ηiÞ: ð8Þ

Here h is an arbitrary function of the spinor helicity
variables. All supervertices we know of are of these three
types. We conjecture that these are in fact the only super-
vertices that obey supersymmetry Ward identities, and we
proceed with this assumption [23].
Let us inspect a particularly simple set of n ¼ ð4þ kÞ-

point F-term vertices, with F ðλi; ηiÞ ¼ 1,

δ10ðPÞδ16ðQÞ: ð9Þ
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In component fields, we expand the axion-dilaton field as
τ ¼ τ0 þ φ, where τ0 is the background value. Such a
vertex then corresponds to an independent set of couplings
in the Lagrangian of the form [2,4]

φkR4 þ � � � : ð10Þ

Similarly, the conjugate vertex

δ10ðPÞ ~Q16
Y4þk

i¼1

η8i ð11Þ

corresponds to the coupling φ̄kR4 þ � � �. Note that in the
k ¼ 0 case, δ16ðQÞ ¼ ~Q16Q4

i¼1 η
8
i is self-conjugate, and

corresponds to the R4 vertex [24]. In particular, we see that
there are no independent supervertices of the form
φkφ̄lR4 þ � � � with k;l ≥ 1. In other words, the supersym-
metry completion of such couplings must be a super-
amplitude nonlocal in momenta.
Note that in a superamplitude, two SOð8Þ little group

invariant monomials in ηAi , namely 1 and η8i , correspond
to the ith external particle being φ and φ̄, respectively.
The nonlinearly realized SLð2;RÞ of type IIB supergravity
is broken by the expectation value of τ to a Uð1Þ [25],
which acts on the amplitude by

P
ið14 ηi ∂

∂ηi − 1Þ and assigns
opposite charges to φ and φ̄. This SLð2;RÞ is generally
broken explicitly by the higher derivative supervertices of
consideration here.
Now, we would like to constrain the coupling

fðτ; τ̄ÞR4 þ � � � ð12Þ

by type IIB supersymmetry. In a vacuum in which τ
acquires a constant expectation value τ0, expanding
τ ¼ τ0 þ φ, we obtain a series of operators,

fðτ0; τ̄0ÞR4 þ ∂τfðτ0; τ̄0ÞφR4 þ ∂ τ̄fðτ0; τ̄0Þφ̄R4

þ ∂τ∂ τ̄fðτ0; τ̄0Þφφ̄R4 þ � � � : ð13Þ

Since there are independent φR4 and φ̄R4 supervertices,
∂τf and ∂ τ̄f can take an arbitrary value at τ ¼ τ0. This
reflects a freedom in adjusting fðτ; τ̄Þ by a holomorphic
and an antiholomorphic function of τ. On the other hand,
∂τ∂ τ̄f at τ ¼ τ0 is not independent, because there is no
independent φφ̄R4 vertex. This 6-point coupling, therefore,
must be constrained in terms of the R4 coefficient, namely
fðτ0; τ̄0Þ, by supersymmetry.
In principle, one can ask for the most general 6-point

superamplitude that obeys supersymmetry Ward identities
and factorization through lower point amplitudes by uni-
tarity. By dimensional analysis, the 6-point φ-φ̄-R4 super-
amplitude could only factorize through a single R4

supervertex and supergravity vertices (Fig. 1). The φφ̄R4

coupling itself can then be recovered by taking the soft limit
on a pair of φ and φ̄ scalar lines [26].
We do not know a systematic way of building higher

point superamplitudes with the R4 on-shell supervertex
[27]. However, from unitarity, we know that such a relation
must exist, and is linear in this case, namely

ðImτ0Þ2∂τ∂ τ̄fðτ0; τ̄0Þ ∝ fðτ0; τ̄0Þ; ð14Þ
where the ðImτ0Þ2 factor comes from the normalization of
the dilaton-axion kinetic term. To determine the relative
coefficient, it suffices to find any set of such couplings that
solve the supersymmetry and unitarity constraints. String
perturbation theory already gives such a solution. Since the
tree-level effective action of type IIB string theory contains
an R4 coupling at α03 order, it suffices to examine this
coupling in the Einstein frame, which takes the form

τ3=22 R4; ð15Þ

where τ2 is the imaginary part of τ.
Since ∂τ∂ τ̄τ

3=2
2 ¼ 3

16
τ−1=22 , we immediately obtain the

relation

4ðImτ0Þ2∂τ∂ τ̄fðτ0; τ̄0Þ ¼
3

4
fðτ0; τ̄0Þ; ð16Þ

which must then hold for the general fðτ; τ̄Þ at all values of
τ0. This is the nonrenormalization theorem of Green and
Sethi [3]. Below, we write fnðτ; τ̄Þ for the coefficient of
DnR4, and so fðτ; τ̄Þ is denoted f0ðτ; τ̄Þ.
Note that there is no independent D2R4 supervertex, as

the corresponding superamplitude must be proportional to
δ16ðQÞðsþ tþ uÞ ¼ 0. We next apply the argument to the
f4ðτ; τ̄ÞD4R4 coupling. Once again, the holomorphic and
antiholomorphic parts of f4ðτ; τ̄Þ are unconstrained by
supersymmetry, as there are independent φkR4 and φ̄kR4

FIG. 1. Factorization of the 6-point amplitude through one
DnR4 vertex (shaded blob) and a pair of supergravity cubic
vertices.
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supervertices. On the other hand, ∂τ∂ τ̄f4 must obey a linear
relation with τ−22 f4ðτ; τ̄Þ, due to the factorization of the
6-point superamplitude. Note that the 6-point amplitude at
this order in the momentum expansion does not factorize
through two R4 vertices (Fig. 2), as the latter can only
contribute to the 6-point amplitude at D6R4 order [30].
Now taking the IIB string tree-level effective action, and

expanding to α05 order, we find in the Einstein frame the
coupling

τ5=22 ðs2 þ t2 þ u2ÞR4: ð17Þ

By comparison, we then immediately obtain the relation

4τ22∂τ∂ τ̄f4ðτ; τ̄Þ ¼
15

4
f4ðτ; τ̄Þ: ð18Þ

At f6ðτ; τ̄ÞD6R4 order, we encounter a novelty: as
already mentioned, the 6-point amplitude at this order in
the momentum expansion admits a factorization into a pair
of R4 supervertices. Thus, we expect the coefficient f6ðτ; τ̄Þ
to obey a relation of the form

τ22∂τ∂ τ̄f6 ¼ af6ðτ; τ̄Þ þ bf0ðτ; τ̄Þ2; ð19Þ

where a and b are two constants. More precisely, we define
f6ðτ; τ̄Þ to be the coefficient of ðs3 þ t3 þ u3ÞR4 ¼ 3stuR4.
Inspecting the well-known string tree-level massless
4-point amplitude,

δ16ðQÞ Γð− α0s
4
ÞΓð− α0t

4
ÞΓð− α0u

4
Þ

Γð1þ α0s
4
ÞΓð1þ α0t

4
ÞΓð1þ α0u

4
Þ

¼ δ16ðQÞ
�
−

64

α03stu
− 2ζð3Þ − ζð5Þ

16
α02ðs2 þ t2 þ u2Þ

−
ζð3Þ2
96

α03ðs3 þ t3 þ u3Þ þ � � �
�
; ð20Þ

we can identify the following couplings in the Einstein
frame [31],

− 2ζð3Þτ3=22 α03R4 −
ζð5Þ
16

α05τ5=22 ðs2 þ t2 þ u2ÞR4

−
ζð3Þ2
96

α06τ32ðs3 þ t3 þ u3ÞR4 þ � � � ð21Þ

Comparing to Eq. (19), with f0 ∝ τ3=22 and f6 ∝ τ32, we
immediately obtain a linear relation between a and b.
Another relation between a and b may be extracted from
the string 1-loop effective action. The perturbative con-
tribution to f0 and f6 can be expanded in the form [6]

fnðτ; τ̄Þ ¼ ftreen þ f1-loopn þ f2-loopn þ f3-loopn þ � � � : ð22Þ

In particular, at 1-loop order, we expect

τ22∂τ∂ τ̄f
1-loop
6 ¼ af1-loop6 ðτ; τ̄Þ þ 2bftree0 ðτ; τ̄Þf1-loop0 ðτ; τ̄Þ:

ð23Þ

The 4-point massless genus one string amplitude amplitude
has analytic as well as nonanalytic terms in the momentum
expansion. The R4 term, with coefficient f1-loop0 ∝ τ−1=22 ,
and the D6R4 term, with coefficient f1-loop6 ∝ τ2, are
analytic, and were computed in Ref. [35]. They give an
independent linear relation which then fixes a and b, as in
(5.39) of Ref. [6]. In the end, one finds

4τ22∂τ∂ τ̄f6 ¼ 12f6ðτ; τ̄Þ − 6f0ðτ; τ̄Þ2: ð24Þ

As was pointed out in Ref. [6], the string 3-loop contri-
bution f3-loop6 [6,36–39], proportional to τ−32 , is what solves
the homogeneous version of the constraining equation
(namely, it is annihilated by 4τ22∂τ∂ τ̄ − 12).
Now let us consider D8R4 terms. There is again one

independent 4-point supervertex one can write down [40],

δ16ðQÞðs4 þ t4 þ u4Þ: ð25Þ

This is, in fact, proportional to the D-term vertex

δ16ðQÞ ~Q16

�X4
i<j

η8i η
8
j

�
: ð26Þ

To understand the constraints on f8ðτ; τ̄Þ, let us inspect
ðn ¼ 4þ kÞ-point supervertices of the form

δ16ðQÞ ~Q16Fðη8i Þ; ð27Þ

where Fðη8i Þ is a polynomial in the little group invariants
η8i , of total degree 8m in the η’s, for some integer m ≥ 2.
This then corresponds to a coupling of the form
φk−mþ2φ̄m−2D8R4. Since these D-term vertices by con-
struction obey supersymmetry Ward identities, there are no
constraints on the coefficients of φk−mþ2φ̄m−2D8R4, thus,
no constraint on f8ðτ; τ̄Þ from supersymmetry alone.
At order D10R4, there is again just one independent

4-point supervertex δ16ðQÞðs5 þ t5 þ u5Þ. This is propor-
tional to the D-term vertex δ16ðQÞ ~Q16½Pn

i<j sijη
8
i η

8
j � [41].

As in the D8R4 case, there are no supersymmetry

FIG. 2. Factorization of the 6-point amplitude through a pair of
R4 vertices.
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constraints on the coefficient f10ðτ; τ̄Þ. In other words, the
differential constraint proposed in Ref. [42] should be a
consequence of additional properties of IIB string theory.
In conclusion, the formulation of higher derivative

couplings in maximally supersymmetric gravity theories
in terms of on-shell supervertices gives a simple classi-
fication of independent couplings allowed by supersym-
metry. When combined with solutions to supersymmetry
Ward identities provided by string perturbation theory, the
consideration of supervertices then leads to a derivation
of type IIB supersymmetry constraints on the F-term
fðτ; τ̄ÞDnR4 coupling (n ¼ 0; 4; 6). The result is nonethe-
less a consequence of maximal supersymmetry on higher
derivative supergravity theories, and no longer depends on
string theory. Clearly, this strategy generalizes straightfor-
wardly to maximal supergravity theories in other dimen-
sions as well [43]. We shall leave this to a future
publication.
Finally, let us comment on the role of SLð2;RÞ sym-

metry of type IIB supergravity, which, as already men-
tioned, is explicitly broken by these higher derivative terms.
A coupling of the form fnðτ; τ̄ÞDnR4 violates SLð2;RÞ
unless fn is a constant, but the latter is incompatible with
the supersymmetry constraints (a nontrivial second order

differential equation in τ; τ̄) for F-term vertices. From this
perspective, a role of the nonlinearly realized SLð2;RÞ
symmetry of type IIB supergravity is to rule out F-terms as
potential counterterms. Indeed, the UV divergence in type
IIB supergravity first arises at 2-loop order, corresponding
to an SLð2;RÞ-invariant D-term counterterm of the form
D10R4. One may expect that the E7ð7Þ symmetry of four-
dimensional maximal supergravity plays a similar role in
that it rules out F-terms as counterterms, but there appear to
be plenty of D-term supervertices compatible with E7ð7Þ
that could serve as counterterms [44–52].
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