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We show the existence of a family of four-dimensional vacuum spacetimes with asymptotically velocity-
dominated singularities and without symmetries. The solutions are obtained using Fuchsian methods and
are parametrized by several free functions of all space coordinates which control their asymptotic
expansion.
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A key question in mathematical general relativity is the
understandingof the dynamics of the gravitational fieldwhen
singularities are approached. It has been conjectured [1] that
the behavior of the metric will be rather involved, exhibiting
a complicated “mixmaster” behavior reminiscent of that
encountered in oscillating Bianchi models [2]. However, in
spite of many interesting studies (cf., e.g., Refs. [3–6] and
references therein), the issue remains wide open. In fact,
except for the finite-dimensional families of Refs. [2,5], all
remaining four-dimensional vacuum singularities rigorously
constructed so far [7,8] exhibit “asymptotically velocity-
dominated behavior.” Moreover, all four-dimensional
vacuum examples with well-understood dynamical behavior
near a singularity involve metrics with at least a one-
dimensional isometry group. The purpose of this work is
to point out that one can use the approach developed in
Ref. [4] to construct a family of examples with velocity-
dominated asymptotics and without any symmetries. (See
Refs. [9–11] for nonvacuum four-dimensional examples and
Ref. [12] for vacuum higher-dimensional ones. Further
references can be found in Ref. [13].)
It is clear from the ansatz below that the solutions we

construct are highly nongeneric. While they do not tell us
anything about what happens in the generic case, they
provide the largest class known so far of vacuum four-
dimensional spacetimes with controlled behavior as the
singularity is approached.
As such, we consider metrics of the form

g ¼ −e−2
P

3

a¼1
βadτ2 þ

X3
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e−2β
a
N a

iN a
jdxidxj; ð1Þ

with βa and N a
i, i; a ∈ f1; 2; 3g, depending on all coor-

dinates τ, xi and behaving asymptotically as

βa ¼ βa∘ þ τpa∘ þOðe−τνÞ and

N a
i ≕ δai þN s
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i ¼ δai þOðe−τνÞ; ð2Þ

where ν is a positive constant andN s
a
i ¼ 0 for a ≥ i, while

the βa∘ ’s and pa∘ ’s depend only upon space coordinates.
In fact, we have the more precise expansions
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where the functions fP∘iag1≤a<i≤3 depend only on space
coordinates.
Our solutions are parametrized by freely prescribable

analytic functions β2∘ , β3∘ , and P∘21 of all space coordinates
as well as two analytic functions, p2∘ and p3∘ , depending on
all space coordinates, which are free except for the
inequalities

0 < p2∘ < ð
ffiffiffi
2

p
− 1Þp3∘ : ð6Þ

The remaining functions p1∘ , β1∘;3, P∘32, and P∘31 are then
determined by the asymptotic constraint equations:

p1∘ ¼ −
p2∘p3∘

p2∘ þ p3∘
; ð7Þ

β1∘;3 ¼ −ðp2∘ þ p3∘Þ−1ðp2∘;3 þ p1∘;3 þ β2∘;3ðp1∘ þ p3∘Þ
þ β3∘;3ðp1∘ þ p2∘ÞÞ; ð8Þ

P∘32;3 ¼ 2ðG2cpc∘;2 þ βd∘;2p
f∘GdfÞ; ð9Þ

P∘31;3 ¼ −P∘21;2 þ 2ðG1cpc∘;1 þ βd∘;1p
f∘GdfÞ: ð10Þ
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Here, the 3 × 3 matrix Gab ¼ ð2δab − 1Þ=2 and its inverse Gab ¼ −
P

c≠d δ
c
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d
b can be explicitly written as
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These solutions arise as follows: The vacuum Einstein equations for a metric of the form (1) can be encoded in the
Hamiltonian [4]
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with Ca
bc ¼

P
i;k 2N

a
kðN −1Þi½bðN −1Þkc�;i, where the

derivative operator “ ;a” is defined as ;a ¼ ðN −1Þia∂i,
and where the πa’s are canonically conjugate to the βa’s,
while the Pj

a’s are canonically conjugate to the N a
j’s.

It is relatively straightforward, though somewhat tedious,
to check that Hamilton’s evolution equations with the
ansatz (2)–(7) verify the hypotheses of the “Fuchs theorem”
of Choquet–Bruhat ([14][Appendix V, p. 636]). This gives
the existence of the solution of the evolution equations.
To show that these also satisfy the constraint equations, a

system of evolution equations for the constraints is derived
which is homogeneous and also verifies the hypotheses of
the Fuchs theorem. As the full constraints approach the
asymptotic ones, which vanish, and the Fuchs theorem
guarantees that the only asymptotically vanishing solution
to a homogeneous Fuchsian system is identically zero, the
constraints are satisfied. This establishes the existence of
vacuum spacetimes as above.
The question then arises as to what are the isometries of

the metrics just constructed. In Ref. [15], it is asserted that
transformations mixing time and space coordinates are
prohibited by the choices of lapse and shift and the
assumption that the singularity is approached as τ → ∞.
While this is plausible, the assertion is not clear, and we
have not been able to provide a proof. Assuming, never-
theless, that all isometries do indeed preserve the τ slicing,
Killing vectors X of g should have a vanishing τ compo-
nent: XðτÞ ¼ 0. Under this last condition, a calculation
shows that generic choices of the free functions above only
lead to trivial Killing vector fields. More generally, one can
show that generic metrics in our class do not have any
isometries that preserve the τ slicing of the space-
time ðM; gÞ.

We have

RαβγδRαβγδ ¼
�
16e4ðβ1∘þβ2∘þβ3∘Þðp2∘p3∘Þ2

ðp2∘ þ p3∘Þ2

× ððp2∘Þ2 þ p2∘p3∘ þ ðp3∘Þ2Þ þOðe−ντÞ
�

× eτ4ðp1∘þp2∘þp3∘Þ;

which shows that the curvature tensor grows uniformly
without bounds on all causal curves in the spacetimes
constructed above, since the product p2∘p3∘ has no
zeros.
We note that our preliminary attempts to find an ansatz

for higher-dimensional solutions that is compatible with the
Fuchs theorem and has no symmetries have not been
successful.
It should be pointed out that our considerations are

unaffected by the presence of a cosmological constant.
Indeed, all equations above remain unchanged, except for

the addition of a term 2Λe−2
P

a
βa in (11), with Λ

influencing only lower order terms in the asymptotic
expansions of the solutions.
Details of the analysis outlined above can be found

in Ref. [16].
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