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Cosmological α attractors give a natural explanation for the spectral index ns of inflation as measured by
Planck while predicting a range for the tensor-to-scalar ratio r, consistent with all observations, to be
measured more precisely in future B-mode experiments. We highlight the crucial role of the hyperbolic
geometry of the Poincaré disk or half plane in the supergravity construction. These geometries are isometric
under Möbius transformations, which include the shift symmetry of the inflaton field. We introduce a new
Kähler potential frame that explicitly preserves this symmetry, enabling the inflaton to be light. Moreover,
we include higher-order curvature deformations, which can stabilize a direction orthogonal to the
inflationary trajectory. We illustrate this new framework by stabilizing the single superfield α attractors.
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I. INTRODUCTION

Inflationary theory provides a simple explanation of the
approximate homogeneity and isotropy of our world. For a
broad set of initial conditions, the solutions of the equations
of motion for the inflaton field and the geometry of space
rapidly approach an inflationary attractor solution which
describes an exponentially expanding nearly uniform uni-
verse. Moreover, inflation provides a physical mechanism
to generate the deviations from smoothness due to quantum
fluctuations. Cosmic microwave background (CMB) obser-
vations such as those made by Planck have tested and
narrowed down the possibilities [1,2].
In this paper we discuss cosmological α attractors [3–5],

which provide an excellent fit to the latest observational
results for α≲Oð10Þ; see Fig. 1. Similar to inflation itself,
these attractors have the property that almost independent
of the choice of the inflaton potential in these models, an
inflationary model comes out that generates the right value
of the spectral index ns and a tensor-to-scalar ratio r
determined by the geometry of the moduli space.
Thus, observational predictions of these models are to a

large extent determined by geometry, as emphasized in [6],
rather than by the potential. For decades there was an
expectation that with more CMB data we would be able to
reconstruct the inflationary potential. There is an ongoing
change in the paradigm now: we attempt to reconstruct
geometry of the moduli space, not the potential.
In order to highlight the role of geometry, following [6],

we formulate these models in a way that makes the relevant
symmetries of the moduli space manifest. Concretely, we
use the freedom in the choice of the Kähler frame in

supergravity to construct a Kähler potential that is invariant
under the subgroup of the Möbius group that is relevant for
this type of inflation. In this way, the shift of the inflaton is
a symmetry of the Kahler potential during inflation, only
slightly broken by the superpotential. This makes manifest
a crucial feature of α-attractor models: the inflaton is light.

II. MÖBIUS TRANSFORMATIONS

First we describe the necessary mathematical back-
ground. The symmetry of the moduli space metric corre-
sponds to the Möbius group, both in disk and in half-plane
variables. The metric in half-plane variables reads

FIG. 1 (color online). The Planck/BICEP2/Keck 2015 con-
straints on ns and r with the predictions of a number of models
[1,2]. The yellow lines correspond to the simplest α-attractor
models for a full range 0 < α < ∞ and N ¼ 50; 60 [4]. These
predictions nicely fit the latest cosmological data for the most
natural choice of α≲Oð10Þ.
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ds2 ¼ 3α
dTdT

ðT þ TÞ2 ¼ 3α
dτdτ

ð2 ImτÞ2 ; ð1Þ

where τ ¼ iT. The full set of isometries of this geometry
can be generated by the following four transformations:

(i) Translation of the imaginary part: T → T − ib.
(ii) Dilatation of the entire plane: T → a2T.
(iii) Inversion: T → 1=T.
(iv) Reflection of the imaginary part: T → T.

The three holomorphic combinations of these, i.e. trans-
lations, dilatations and inversions, generate the following
Möbius transformations:

τ →
aτ þ b
cτ þ d

; Δ≡ ad − bc ≠ 0; ð2Þ

and a; b; c; d are real numbers. The Möbius group therefore
corresponds to a transformation associated with an
GLð2;RÞ matrix

M ¼
�
a b

c d

�
∈ GLð2;RÞ: ð3Þ

The Poincaré line element above is invariant under any
nonsingular transformation. However, when restricting to a
particular half plane, this is only mapped onto itself when
one takes the determinant Δ to be positive.
A general Möbius transformation can be conveniently

parametrized via the Iwasawa decomposition,

M ¼ K · A · N;

¼
�
cos θ − sin θ

sin θ cos θ

�
·

�
r1 0

0 r2

�
·

�
1 x

0 1

�
; ð4Þ

whose parameters are given by

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2

p
; x ¼ abþ cd

a2 þ c2
;

r2 ¼
Δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ c2
p ; cos θ ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ c2
p : ð5Þ

Here the K · A · N subgroups parametrize the compact,
Abelian and nilpotent transformations of the Möbius group,
respectively. In the case that Δ ¼ 1 the symmetry is
reduced to SLð2;RÞ.

III. A NEW KÄHLER FRAME

Now that we have phrased the Iwasawa decomposition,
we can turn to explicit realizations of this geometry in terms
of Kähler potentials, and a discussion of the physical
significance as to which of the isometries they preserve.
First let us address the expression of T in canonical

variables,

T ¼ exp

� ffiffiffiffiffiffi
2

3α

r
φ

�
þ iχ; ð6Þ

where the dilatonic field φ will be our inflaton, and χ our
axion. This physical realization is determined crucially by
the geometry we choose to employ. The SLð2;RÞ sym-
metry of the kinetic terms of the axion-dilaton pair was first
derived in the context of N ¼ 4 supergravity in [7]. The
nilpotent subgroup N of the Iwasawa decomposition,
relevant to the conventional Kähler potentials, acts as a
shift on the axionic field:

χ → χ þ b: ð7Þ

In contrast, the Abelian dilatation shift symmetry, A, acts
on both components,

χ →
a
d
χ; φ → φþ

ffiffiffiffiffiffi
3α

2

r
logða=dÞ: ð8Þ

Note that this acts as a shift symmetry on the field φ, which
will play the role of the inflaton in our context.
The conventional formulation of the Kähler potential in

half-plane variables is

K ¼ −3α logðT þ TÞ: ð9Þ

While it is symmetric under the nilpotent subgroup, it is not
invariant under the Abelian subgroup A corresponding to
dilatations. The latter is particularly important as it corre-
sponds to the shift symmetry of the inflaton, as we will
show below. Therefore it would be valuable to highlight
this shift symmetry in a Kähler potential, and only
introduce a (small) shift symmetry breaking via the
superpotential.
To this end we introduce a new Kähler potential, which

in half-plane coordinates is defined by

KH ¼ −3α log
�
T þ T
2jTj

�
¼ −

3α

2
log

�ðT þ TÞ2
4TT

�
; ð10Þ

where jTj ¼ ðTTÞ1=2. It is related to the old Kähler
potential by means of a Kähler transformation

KðT; TÞ → KðT; TÞ þ fðTÞ þ fðTÞ;
WðTÞ → WðTÞe−fðTÞ; ð11Þ

with parameter fðTÞ ¼ 3
2
α logðTÞ. Such a transformation

preserves the scalar potential but changes the Kähler
potential and superpotential. As a consequence, the sym-
metries of both Kähler potentials are different: the choices
(9)–(10) are invariant under nilpotent and Abelian trans-
formations, respectively, of which the latter correspond to
the shift symmetry of the inflaton.
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In detail, from the full set of Möbius transformations (3),
the new Kähler potential is preserved by the following
transformations:

M ¼
�
a 0

0 d

�
∶ T →

aT
d

dilatation;

M ¼
�
0 b

c 0

�
∶ T → −

b
cT

inversion: ð12Þ

Note that in the Iwasawa decomposition the latter can be
seen as an arbitrary dilatation, r1 ¼ c, r2 ¼ −b, followed
by a discrete inversion with θ ¼ 90° in (4).
The new Kähler potential has a symmetry under the shift

of the inflaton, accompanied by the rescaling of the inflaton
partner. This symmetry leads to the following feature of the
new Kähler potential: during inflation, in these models the
inflaton partner T − T vanishes and K ¼ 0, as will be
explained in the “universal stabilization” section. This is
obviously invariant under the inflaton shift. This inflaton
shift symmetry is only slightly broken by the superpoten-
tial, resulting in a naturally light inflaton.
The difference between both Kähler potentials is rem-

iniscent of the mechanism of the inflaton shift symmetry for
a flat moduli space [8]. There the Kähler potential does not
depend on the inflaton direction, which one can take as the
real part of the chiral multiplet Φ, and depends only on its
partner: K ¼ 1

2
ðΦ − ΦÞ2. While this is related by a Kähler

transformation to the canonical case K ¼ ΦΦ, only the
former has a shift symmetry for the inflaton. Again, since
only the superpotential breaks this symmetry of the Kähler
potential, the inflaton can be naturally light during inflation
in the supergravity model of the quadratic chaotic inflation
[8]. Moreover, this construction can be generalized by
including a generic function in the superpotential. This
results in a broad class of chaotic inflation model in
supergravity with nearly arbitrary inflaton potentials pro-
posed in [9].
Our new Kähler frame can be seen as the curved analog

of the flat Kähler potential with a shift symmetry. In the
limit α → ∞ where the curvature tends to zero, the new
Kähler potential (10) goes to K ¼ 1

2
ðΦ − ΦÞ2 after the

identification T ¼ expð2Φ= ffiffiffiffiffiffi
3α

p Þ, as used in [10]. A
peculiar property of both is that K as well as KΦ vanish
on the inflationary trajectory Φ ¼ Φ.

IV. DISK VARIABLES

In disk variables, related to the half-plane variables by
the Cayley transform,

Z ¼ T − 1

T þ 1
; T ¼ 1þ Z

1 − Z
; ð13Þ

the conventional Kähler potential is

K ¼ −3α logð1 − ZZÞ; Z ¼ e
ffiffiffi
2
3α

p
φ þ iχ − 1

e
ffiffiffi
2
3α

p
φ þ iχ þ 1

: ð14Þ

Note that an interesting and cosmologically important
feature of a disk variable is that at χ ¼ 0

Zjχ¼0 ¼ tanh

�
φffiffiffiffiffiffi
6α

p
�
: ð15Þ

This Kähler potential parametrizes the same geometry: it is
related to the half-plane Kähler potentials (9)–(10) by a
Cayley and a Kähler transformation. A consequence of the
latter is that the symmetries of the Kähler potential change.
As is clear from the formulation in disk variables, this form
of the Kähler potential has a rotational symmetry, corre-
sponding to the compact group K.
The new Kähler potential reads

KD ¼ −
3α

2
log

� ð1 − ZZÞ2
ð1 − Z2Þð1 − Z2Þ

�
; ð16Þ

which is related to KH by means of a Cayley trans-
formation, without the need of any supplementing
Kähler transformations. Therefore it has the same explicit
symmetries. In disk variables, the dilatation symmetry
acts as

ð1� ZÞ → ð1� ZÞ β � γ

β þ Zγ
ð17Þ

with real parameters β ¼ ðaþ dÞ and γ ¼ ða − dÞ. In
addition, the inversion symmetry takes the form

ð1� ZÞ → ð1 ∓ ZÞ
eβ ∓ eγeβ þ Zeγ ð18Þ

again for real parameters eβ ¼ ðb − cÞ and eγ ¼ −ðbþ cÞ. A
particular case of this is Z → −Z and corresponds to a θ ¼
90° rotation in the Iwasawa decomposition.
Noting that dilatation takes

ðZZ − 1Þ → ðZZ − 1Þ ðβ − γÞðβ þ γÞ
ðβ þ γZÞðγZ þ βÞ ; ð19Þ

it is apparent that the dilatation operation leaves invariant
the quantity

I ¼ ZZ − 1

ð1 − ZÞð1þ ZÞ :

This object is also special under the inversion operation,
which simply takes the conjugation, swapping between
I ↔ I . As such, the disk Kähler potential makes these
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symmetries manifest when the argument of the logarithm is
written as II .

V. UNIVERSAL STABILIZATION

The crucial issue of the stabilization of the inflaton
partner during inflation as well as the stabilization of both
the inflaton and its partner at the minimum has been studied
in detail over the years [11,12]. In particular, in the case of a
single superfield, the average mass of its two components
reads [11,13] [see Eqs. (2.20) and (A.1) in [13]]:

m2 ¼ KΦΦ∇Φ∇ΦV ¼ 3

�
Rþ 2

3

�
m2

3=2 þ RV; ð20Þ

for a critical point with V 0 ¼ 0,DW ≠ 0, and where R is the
Ricci scalar, V ¼ eKðjDWj2 − 3jWj2Þ and DW ¼ ∂ΦWþ
KΦW. The above is only a condition on the average of the
two masses, of the inflaton and its partner, and does not
address stability in each of the two directions separately.
Moreover, this condition is derived for V 0 ¼ 0. However,
during inflation the potential is rather flat: the inflaton mass
squared is much smaller than V due to slow roll conditions.
Therefore a positive average m2 ¼ OðVÞ implies that the
inflaton partner is stable during inflation. Hence R > −2=3
is a necessary condition and R ≥ 0 is a sufficient condition
for stabilization during inflation.
We demonstrate that the crucial role played by the Kähler

curvature allows one to stabilize the inflaton partner in a
universal way. To this end, we deform the maximally
symmetric Kähler manifold by adding quadratic and
quartic terms:

K ¼ −3α
1þ 2c2

log

�
T þ T
2jTj

�
1þ c2

�
T − T

T þ T

�
2

þ c4

�
T − T

T þ T

�
4
��

ð21Þ

where we redefine the overall coefficient 3α to include a set
of α-attractor Kähler potentials which have been studied in
[5,14]. Both of the new terms contribute to the curvature
and can be used to stabilize the imaginary direction.
Importantly, the higher-order terms preserve all symmetries
of this Kähler potential, both the dilatations and the
inversions. We therefore retain the crucial inflaton shift
symmetry, while breaking the axionic shift symmetry even
stronger.
The curvature of the geometry based on (21) is only

constant in the case with c2 ¼ c4 ¼ 0. However, the
curvature corrections are constant along the inflationary
trajectory T ¼ T, leading to

R ¼ −
2ð1þ 8c2 þ 6c22 − 12c4Þ

3αð1þ 2c2Þ
: ð22Þ

Note that the mass of the inflaton partner χ can be made
large, for example by taking c2 small and c4 ≫ 1. In this
case R ≈ 8c4

α and the total mass of the inflaton and its partner
in Eq. (12) is m2 ≈ 8c4

α ð3m2
3=2 þ VÞ þ 2m2

3=2. The inflaton
being light, we see that the inflaton partner near χ ¼ 0 is
heavy and tends to reach the minimum quickly. We perform
a more detailed study of the likelihood of the configuration
with χ ¼ 0 in the case of the two-superfield model in [15].
There we find that the configuration with χ ¼ 0 naturally
emerges as a result of the cosmological evolution, and it is
stable. Thus the above conditions on stability during
inflation, either the necessary one R > −2=3 or the
sufficient one R ≥ 0, can always be achieved, for any α,
by tuning c2 and c4.
Single-superfield models have seen a lot of progress

recently; general potentials were constructed in [16,17],
one of the first inflationary models in supergravity was
unearthed again [18,19] and the first examples of α
attractors were constructed [10,20]. The difference between
the latter two resides in the choice of Kähler potential. The
first used the case c2 ¼ c4 ¼ 0 leading to the following
curvature and necessary stability condition [10]:

R ¼ −
2

3α
> −

2

3
⇔ α > 1: ð23Þ

Instead, the second used the Kähler potential introduced in
[5] with 2c2 ¼ 1 − α and c4 ¼ 0, leading to

R ¼ −
2

3α
− 1þ 1

α2
> −

2

3
⇔ α < 1: ð24Þ

As a consequence, their regimes of stability turn out to be
complementary. From the above it follows that these
stability constraints are mere consequences of the particular
choice of higher-order terms. With the results of this article,
however, one can achieve stability for any configuration of
α by including general quadratic and quartic terms [21].
A similar analysis of the stability cosmological attractors

based on two superfields, in case the second superfield is
nilpotent [22], has the following features. We consider
models of the kind

K ¼ KðΦ;Φ; SSÞ; W ¼ S fðΦÞ; ð25Þ

where Φ can be either half-plane or disk coordinates. Due
to the nilpotency of S, we are only interested in stabilizing
the inflaton partner during inflation. The average mass
formula is, again up to slow roll corrections [9],

m2 ¼ð1þ RbsÞV; Rbs ¼ KΦΦKSSRΦΦSS: ð26Þ

In this case it is therefore the bisectional curvature that
determines stability. An example of this is provided by the
Kähler potential
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K ¼ −3α log
�
T þ T
2jTj − SS

2jTj
�
1 − cbs

�
T − T

T þ T

�
2
��

;

ð27Þ

which leads to a bisectional curvature given by
Rbs ¼ −ð1þ 2cbsÞ=ð3αÞ. Without the stabilization term
this model is therefore unstable for α < 1=3 [4].
However, it follows from this general discussion of the
cosmological attractor models based on two superfields
(where the second superfield is nilpotent) that there is a
universal geometric mechanism of stabilization of the
inflaton partner during inflation, based on the bisectional
curvature. The details will be described separately in [15].

VI. CONCLUSIONS

We have proposed a new Kähler potential for the
hyperbolic geometry which preserves the shift symmetry
of the inflaton φ. In terms of the Iwasawa decomposition
into K · A · N subgroups, the new Kähler frame exactly
picks out the relevant Abelian subgroup A of the full
Möbius group. Higher-order corrections can be used to

stabilize the orthogonal directions while retaining the
inflaton shift symmetry.
This improvement of the Kähler potential is especially

suitable for the investigation of cosmological attractors,
which make cosmological predictions determined almost
solely by the geometry of the moduli space rather than by
the details of the inflaton potential. Our construction
explains the naturally flat inflaton potential by having a
shift symmetry in the Kähler potential that is only weakly
broken by the superpotential; moreover, due to the robust-
ness of the cosmological attractors, the details of this
breaking do not affect the cosmological predictions.
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