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Core optics components for high-precision measurements are made of stable materials, having small
optical and mechanical dissipation. The natural choice in many cases is glass, in particular fused silica.
Glass is a solid amorphous state of material that could not become a crystal due to high viscosity. However,
thermodynamically or externally activated stimulated local processes of spontaneous crystallization
(known as devitrification) are still possible. Being random, these processes can produce an additional noise,
and influence the performance of such experiments as laser gravitational wave detection.
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I. INTRODUCTION

High-precision measurements always face a lot of noises
and instabilities. The LIGO project [1,2] has to account for
many fundamental sources of fluctuations. Fluctuations of
temperature, which are translated into displacement of the
mirror’s surface through thermal expansion (thermoelastic
noise) [3,4] and change of optical path due to fluctuations
of refraction index (thermorefractive noise) [5], combine
producing generalized thermo-optical noise [6,7]. Better-
known Brownian fluctuations causing displacement of
the mirror’s surface [8,9] and photoelastic effect [10]
produced by these fluctuations form the Brownian branch
of noises.
Not all noise sources are easy to identify. In this work we

try to estimate a noise coming from structural transforma-
tions in material. Fused silica is a glass—neither crystal nor
liquid. It is one of the polymorphic forms of silicon dioxide
and its internal energy is higher than that of a crystalline
state. The process of glass crystallization at temperatures
below glass transition is often called devitrification and was
observed during long-term heating, under high-intensity
laser exposition [11] or ballistic impact [12]. It is essential
that different states have different material parameters (see
Table I), specifically density and refractive index.
As one can see from the Table I the density of fused silica

is smaller than that of crystalline quartz. In this way some
contraction of fused silica samples in time should be
observed if devitrification takes place. This effect of
contraction is indeed known for glasses and its rate for
different materials was measured [13–15]. On the other
hand, each event of local crystallization is a discrete event
causing small perturbations. The aim of the paper is to
calculate the influence of possible local crystallization/
reordering processes in the bulk of the matter on its surface
and to calculate the spectral density of the surface fluctua-
tions produced by this effect. We also give the empirical
estimation of the rate at which such processes can happen

in fused silica suspension fibers and use it to find the
absolute values of the corresponding noise using the
approach introduced in [16].

II. NOISE OF COLLAPSING BUBBLES

We start considering a piece of glass constituting the
mirror, a small part of which (which for simplicity we call a
bubble) has changed its state. This transition results in a
local change of material parameters and also in equilibrium
state parameters of such a bubble. One of these parameters
is obviously the equilibrium volume, that is, the volume of
nonstrained matter or exactly mb=ρ̄c (where mb is the mass
of the bubble and ρ̄c is the density of the crystal phase).
But as a part of the bulk matter in the glassy state, this
bubble still preserves the volume of the previous state’s
equilibrium volumemb=ρ̄g, where ρ̄g is the density of glass.
In this way, from the difference of the equilibrium densities
of the two phases we are getting an initial strain.
We now have a binary system with the first component

being a crystal bubble with a deformation ub,

̈~ub þ c2tc rot rot ~ub − c2lc grad div ~ub ¼ 0; ð2:1Þ

~ubjt¼0 ¼ ~u0: ð2:2Þ

ctc and clc , consequently ctg and clg , are transversal and
longitudinal speeds of sound in a crystalline or glassy state
and ~u0 is the time-independent initial deformation field.
The second component is a glass. As a model task to

understand the influence of such bubbles on the surface we

TABLE I. Material parameters of polymorphic forms of silicon
dioxide.

Fused silica α-quartz Stishovite

Density, g=cm3 2.20 2.65 4.29
Heat capacity, J=ðkg × KÞ 1.052 0.740 0.834
Refractive index 1.46 1.54 1.80*gorm@hbar.phys.msu.ru
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are considering half space in cylindrical coordinates
(ρ, z, ϕ).

~̈uþ c2tg rot rot ~u − c2lg grad div ~u ¼ 0 ð2:3Þ

~ujΓ ¼ ~ubjΓ0 − ~u0jΓ0 ;

σ̂~n⊥jΓ ¼ σ̂b~n0⊥jΓ0 ;

σzρjz¼0 ¼ 0 ¼ ρ̄gc2tg

�∂uρ
∂z þ ∂uz

∂ρ
�
;

σzφjz¼0 ¼ 0 ¼ ρ̄gc2tg

�∂uφ
∂z þ 1

ρ

∂uz
∂φ

�
;

σzzjz¼0 ¼ 0 ¼ 2ρ̄gc2tg
∂uz
∂z

þ ðρ̄gc2lg − 2ρ̄gc2tgÞ
�∂uρ
∂ρ þ ∂uz

∂z þ uρ
ρ

�
; ð2:4Þ

where σ̂ is the stress tensor, ~u the mirror deformation, Γ the
initial boundary (equilibrium form of the collapsing bubble
of the first phase), Γ0 the equilibrium boundary of the
second phase, and ~n⊥ and ~n0⊥ the unit normal vectors to
those boundaries (see Fig. 1). In our case we assume the
equilibrium states to be a sphere with the radius a
(Γ ∈ ½r ¼ a�) for the glass phase and a0 ¼ a

ffiffiffiffiffiffiffiffiffiffiffi
ρ̄g=ρ̄c3

p
(Γ0 ∈ ½r ¼ a0�) for the crystalline phase. The initial defor-
mation can be obtained from the stationary spherical
problem with displacement on the boundary:

c2tc rot rot ~u0 − c2lc grad div ~u0 ¼ 0.

urjr¼a0 ¼ a − a0: ð2:5Þ

III. QUASIEMPIRICAL ESTIMATION

The above described stress-strain problem is still quite
complex to solve analytically in the arbitrary case.
However, the initial displacement problem can be modeled
by a thermoelastic problem, introducing thermal fluctuation
in a bubble in the form

Tð~rÞ ¼ T1e
−j~r−~r0 j2

b2 : ð3:1Þ

Then the solution of the elastic equation with the heat
source

1 − ν

1þ ν
grad div ~u − 1 − 2ν

2ð1þ νÞ rot rot ~u ¼ αgradT ð3:2Þ

will provide us a good estimate for (2.1)–(2.5), with local
pressure substituted by a heat source (α is the coefficient of
thermal expansion and ν is the Poisson coefficient). To find
the parameters T1 and b consider a pure spherical case
(expansion of a spherical shell). In [17] we can find
expressions for variations of inner and outer spherical
radius change as shown in Fig. 2.

δr
δR

¼ 1

3

1þ ν

1 − ν

R2

r2
: ð3:3Þ

Here R ≫ r is assumed. In our case R is the distance of the
collapsing bubble from the surface of the mirror, δR is the
surface displacement, r is simply a, the radius of the
collapsing bubble, and δr is ueq, the stationary solution of
the system (2.1)–(2.5). For a rough estimation it can be
approximated as

δr ≈ a

0
B@1 −

ffiffiffiffiffi
ρ̄g
ρ̄c

3

s 1
CA: ð3:4Þ

On the other hand, (3.2) has an exact solution in this
spherical case when R ≫ b:

δr ¼ α
1þ ν

1 − ν
T1

b2

a2

� ffiffiffi
π

p
4

berf
a
b
− a
2
e−

a2

b2

�
; ð3:5Þ

δr
δR

¼
ffiffiffi
π

p
bffiffiffi

π
p

berf ab − 2ae−
a2

b2

R2

a2
; ð3:6Þ

letting us estimate T1 and b. We then search for a solution
of (3.2) in cylindrical coordinates for half space in the form
~u ¼ ~u1 þ gradϕ where ϕ takes the right part of (3.2)

u

u
b

FIG. 1 (color online). Evolution of a phase transition bubble.
The initial state bubble with radius a (left). The bubble changes
state to a phase with equilibrium radius a0 and gets strained
(center). The system transforms to a new, deformed equilibrium
state (right). FIG. 2. Sphere radius change.
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Δϕ ¼ 1þ ν

1 − ν
αT ð3:7Þ

and gives the boundary for the ~u1 problem. So the ϕ is a
simple driven Poissonian solution of well-known form and
the ~u1 problem can be treated as a boundary-driven half-
space problem solved in [18]. The result for the displace-
ment field ~u should be taken on boundary and averaged
over the profile of a Gaussian beam with radius w to catch
the measured displacement of the mirror.

δzjðxj; yj; zjÞ ¼
Z

uzðx; y; 0; xj; yj; zjÞ
2

πw2
e−2

x2þy2

w2 dS:

ð3:8Þ
After some calculations similar to [4] we obtain the
averaged surface response on crystallization of a bubble
occurring at coordinates xj, yj, zj,

δzjðxj; yj; zjÞ ¼ 2αT1ð1þ νÞπ3=2b3

×
Z

e−k2⊥w2=4e−k2b2=4e−i~k~rj k⊥
k2

d3k
ð2πÞ3 :

ð3:9Þ

Note that 2π3=2αT1b3ð1þνÞ≈6πð1−νÞ2
1þν ð1− ffiffiffi

3
p ρ̄g

ρ̄c
Þa3¼ξVa

due to (3.4)–(3.5), eliminating thermodynamical parame-
ters. Here we changed 4=3πa3 to Va, the volume of a
collapsing region, in an attempt to generalize formulas to an
arbitrary bubble geometry.
The process of noise results as a sum of discrete

collapses

δzðtÞ ¼
XNðtÞ

j

Hðt − τjÞδzjðxj; yj; zjÞ ð3:10Þ

where xj; yj; zj; τj position and time of a collapse and HðtÞ
is a Heaviside step function. For the stationary Gaussian
process we obtain

hδzðtÞi ¼ λ

Z
V
δzjðx; y; zÞdV

Z
t

0

Hðt − τÞdτ

¼ λξVawIlðR=w; L=wÞt ð3:11Þ

Sδz ¼ λ

Z
V
δzjðx; y; zÞ2dV ~Hð−ωÞ ~HðωÞ

¼ λξ2V2
aISðR=w; L=wÞ

wω2
; ð3:12Þ

where λ is the process rate parameter, number of events per
second in unit volume, and Il and IS are numerical values
of underlying integrals, R and L, radius and thickness of the
mirror. The numerically calculated dimensionless integrals
Il and IS are represented in Fig. 3.

In [15] a contraction of a silica Fabri-Perot etalon was
measured. Two mirrors with a diameter of about we ¼
0.66 cm were connected with a Le ¼ 10 cm long tube with
outer diameter of Re ¼ 2 cm. For this geometry (3.8)
should be changed as the measurement is equivalent to
averaging over a ring and not a Gaussian spot. Furthermore,
the [4] approach is not precise as it uses an assumption of
infinite half space, while here we need a long thin cylinder.
To overcome this issue we use Finite Element Method
(FEM) modeling. A cylinder with the above parameters
was modeled using Comsol Multiphysics. Structural
Mechanics module was used with two different problem
formulations: a direct boundary load problem and a

FIG. 3 (color online). Dimensionless integrals Il for the case of
long cylinder [with the analytics used in (3.13)] and numerically
calculated IS for a mirror [based on (3.9)].
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prescribed temperature problem (thermal expansion node
under linear elastic material node). The two solutions were
found identical with respect to force normalization. The
main results of the modeling are shown on Figs. 4–5.
From the simulations it follows that the whole region of a

cylinder can be subdivided in two parts: (1) a sphere with
the center in the center of a collapsing bubble, touching
the closest surface of the cylinder and (2) the rest of
the cylinder. The solution inside the sphere is close to the
spherically symmetric solution (3.3). Outside the sphere the
solution is close to constant spherical field. The averaged
elementary response from one bubble in case of surface
averaging is found to be practically constant with depth and
varies less than by 0.8% with offset from the axis.

The averaged elementary response from one bubble in
case of Gaussian averaging is in good agreement with the
theory (3.9) till the depth of 2.5w, and approaches the first
modeling case after 3.6w (see Fig. 4 top). That can be
explained easily, having in mind that the cylinder radius
here was R ¼ 3w. The idea is that the bubble “feels” only
the closest boundary (the one that is touched by the earlier
mentioned sphere). For the depths less than R (and close to
the cylinder axis) the governing boundary is the front
surface, making the problem similar to half space and
demonstrating appropriate transversal variations for
Gaussian averaging and constant for surface averaging
(see Fig. 5). For greater depths the governing surface is the
side surface, and the distance from it to the collapses near
cylinder axis is constant, providing a constant response
from depth.
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FIG. 4 (color online). Averaged z-displacement magnitude
produced by a bubble on the cylinder axis as a function of zj
(top) and cylinder radius (bottom). The averaging is made with
and without the Gaussian function (red and blue-plus lines). The
theory (green crosses) line in the top figure is (3.9). The R-
dependence is taken for different bubble depth zj and is very
close to const=R2 dependence (green-cross line) in all cases of
surface averaging.
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In this way, for noise calculation we assume that (3.9) is
valid until the depth of the bubble is smaller than R and
stays constant for larger depths with an error no larger than
13%. However, as LIGO mirrors have L ≈ R we thus stay
in half-space approximation for spectral density and do not
need the z > R extension. For the time constant determi-
nation we assume the elementary response from one bubble
to be constant and equal to δzjð0; 0; RÞ. With these argu-
ments the contraction and noise (3.9) can be found
analytically. Then the limit of small w should be taken
to remove the Gaussian beam radius from expressions. It
ensures that the response value at the depth R is equal to the
one of the surface averaging case. Thus we get
δzjð0; 0; RÞ ∝ R−2 which is shown as a green line on
Fig. 4 (right). For the process parameter we obtain

λ ¼
_hδzi
Le

2

Vaξ

2R2
e

R2
e − w2

e
: ð3:13Þ

We assume that the size of collapse is of the order of
silica molecule Va ≈

MSi
ρ̄cNA

¼ 45 × 10−30 m3 (a ≈ 0.22 nm),
where MSi ¼ 60 g=mol, molar mass, NA, Avogadro num-
ber. From [15] we get _ϵzz ¼ −5.8 × 10−15 per second and
calculate λ ≈ 1.54 × 1016 events per second per m3. The
resulting spectral density of devitrification noise at 100 Hz
for R ¼ L ¼ 20 cm and w ¼ 6 cm is

ffiffiffiffiffiffi
Sδz

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ϵzzξVa

wω2

Le

we

ISðR=w; L=wÞ
IlðRe=we; Le=weÞ

s

¼ 6.31 × 10−25 m=Hz1=2; ð3:14Þ

which is 8000 times smaller than the Brownian noise in
substrates and coatings for LIGO mirrors [8,10].

IV. DEVITRIFICATION NOISE IN STRING
SUSPENSIONS

Another estimate of event-based noise was made
recently for suspension fibers by Yu. Levin [16]. He
considered spontaneous discrete stress relaxation events
(creep events) in suspension strings. However, he also
suffered from the lack of the process rate parameter and
event volume values and thus could not obtain absolute
noise values. One can speculate about the origin and
direction of the creep events, but local reordering may
be one of the sources. So we can use formulas (49) and (52)
from [16] to estimate devitrification noise in suspensions,
changing RhV2i (Levin’s notation) to NVsλV2

a (our nota-
tion), where Vs ¼ πr2sls, the volume of the string, and N is
the number of strings. Three devitrification noises together
with existing LIGO noises are shown on Fig. 6.
This naive estimate of suspension noise due to devitri-

fication does not take into account the complex multistage

suspension system of LIGO. Furthermore the time param-
eter for the loaded case (mirror mass is about 40 kg) is
probably smaller because the extension caused by massive
mirrors opposes crystallization with contraction.
Nevertheless we present at least the upper bound, which
is already 2 × 105 times smaller than the Brownian sus-
pension noise.

V. CONCLUSION

The main uncertainty of our estimates is the average
radius of collapsing bubbles. Our initial idea to estimate it
from the crystal-glass internal energy difference encoun-
tered a serious problem as this energy is also not known
exactly. Different estimates from the literature give values
varying by two to three times.
Note that spectral density (3.12) strongly depends on

average radius of collapsing bubbles for constant λ:
Sδz ∼ λa6. However, taking into account that the value of
λa3 is taken from contraction rate (3.13), we get that
effectively

ffiffiffiffiffiffi
Sδz

p
∼ a3=2, i.e., increase of the radius a ten

times will increase the estimate (3.14) 30 times. It means
that reliable knowledge of collapsing radius a (as well as λ)
is very important.

ACKNOWLEDGMENTS

S. P. V. and M. L. G. acknowledge support from the
Russian Foundation for Basic Research (Grants No. 14-
02-00399A and No. 13-02-92441 in the frame of program
ASPERA) and National Science Foundation (Grant
No. PHY-130586).

Frequency [Hz]
101 102 103

S
tr

ai
n 

[1
/

H
z]

10-30

10-28

10-26

10-24

10-22

10-20

AdvLIGO Noise Curve: P
in

 = 125.0 W

Suspension thermal noise
Coating Brownian noise
Substrate Brownian noise
Total LIGO noise
Creep Horizontal
Creep Vertical
Crystalization

FIG. 6 (color online). Creep suspension noises from [16] using
process parameter of devitrification (3.13) and devitrification
noise (3.14) in mirrors together with other Advanced LIGO
noises.

SPONTANEOUS CRYSTALLIZATION NOISE IN MIRRORS … PHYSICAL REVIEW D 92, 041101(R) (2015)

041101-5

RAPID COMMUNICATIONS



[1] B. Abbott et al., LIGO: the Laser Interferometer Gravita-
tional-Wave Observatory, Rep. Prog. Phys. 72, 076901
(2009).

[2] J. Aasi et al., Advanced LIGO, Classical Quantum Gravity
32, 074001 (2015).

[3] V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin,
Thermodynamical fluctuations and photo-thermal shot
noise in gravitational wave antennae, Phys. Lett. A 264,
1 (1999).

[4] V. B. Braginsky and S. P. Vyatchanin, Thermodynamical
fluctuations in optical mirror coatings, Phys. Lett. A 312,
244 (2003).

[5] V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin,
Thermo-refractive noise in gravitational wave antennae,
Phys. Lett. A 271, 303 (2000).

[6] M. L. Gorodetsky, Thermal noises and noise compensation
in high-reflection multilayer coating, Phys. Lett. A 372,
6813 (2008).

[7] M. Evans et al., Thermo-optic noise in coated mirrors for
high-precision optical measurements, Phys. Rev. D 78,
102003 (2008).

[8] G. M. Harry et al., Thermal noise in interferometric gravi-
tational wave detectors due to dielectric optical coatings,
Classical Quantum Gravity 19, 897 (2002).

[9] G. M. Harry et al., Thermal noise from optical coatings
in gravitational wave detectors, Appl. Opt. 45, 1569
(2006).

[10] N. M. Kondratiev, A. G. Gurkovsky, and M. L. Gorodetsky,
Thermal noise and coating optimization in multilayer
dielectric mirrors, Phys. Rev. D 84, 022001 (2011).

[11] A. Salleo, S. T. Taylor, M. C. Martin, W. R. Panero,
R. Jeanloz, T. Sands, and F. Y. Génin, Nature materials,
Nat. Mater. 2, 796 (2003).

[12] M. Grujicic, J. Snipes, S. Ramaswami, R. Yavari, and B.
Cheeseman, Densification and devitrification of fused silica
induced by ballistic impact: A computational investigation,
J. Nanomater. 2015, 14 (2015).

[13] F. Riehle, Use of optical frequency standards for measure-
ments of dimensional stability, Meas. Sci. Technol. 9, 1042
(1998).

[14] A. Takahashi, Long-term dimensional stability and longi-
tudinal uniformity of line scales made of glass ceramics,
Meas. Sci. Technol. 21, 105301 (2010).

[15] J. W. Berthold, S. F. Jacobs, and M. A. Norton, Dimensional
stability of fused silica, Invar, and several ultra-low thermal
expansion materials, Metrologia 13, 9 (1977).

[16] Y. Levin, Creep events and creep noise in gravitational-wave
interferometers: Basic formalism and stationary limit,
Phys. Rev. D 86, 122004 (2012).

[17] L. Landau and E. Lifshitz, Course of Theoretical Physics,
Statistical Physics Vol. 5 (Elsevier Science, NewYork, 2013).

[18] L. Landau, L. Pitaevskii, A. Kosevich, and E. Lifshitz,
Course of Theoretical Physics, Theory of Elasticity Vol. 7
(Elsevier Science, New York, 2012).

KONDRATIEV et al. PHYSICAL REVIEW D 92, 041101(R) (2015)

041101-6

RAPID COMMUNICATIONS

http://dx.doi.org/10.1088/0034-4885/72/7/076901
http://dx.doi.org/10.1088/0034-4885/72/7/076901
http://dx.doi.org/10.1088/0264-9381/32/7/074001
http://dx.doi.org/10.1088/0264-9381/32/7/074001
http://dx.doi.org/10.1016/S0375-9601(99)00785-9
http://dx.doi.org/10.1016/S0375-9601(99)00785-9
http://dx.doi.org/10.1016/S0375-9601(03)00473-0
http://dx.doi.org/10.1016/S0375-9601(03)00473-0
http://dx.doi.org/10.1016/S0375-9601(00)00389-3
http://dx.doi.org/10.1016/j.physleta.2008.09.056
http://dx.doi.org/10.1016/j.physleta.2008.09.056
http://dx.doi.org/10.1103/PhysRevD.78.102003
http://dx.doi.org/10.1103/PhysRevD.78.102003
http://dx.doi.org/10.1088/0264-9381/19/5/305
http://dx.doi.org/10.1364/AO.45.001569
http://dx.doi.org/10.1364/AO.45.001569
http://dx.doi.org/10.1103/PhysRevD.84.022001
http://dx.doi.org/10.1038/nmat1013
http://dx.doi.org/10.1155/2015/650625
http://dx.doi.org/10.1088/0957-0233/9/7/006
http://dx.doi.org/10.1088/0957-0233/9/7/006
http://dx.doi.org/10.1088/0957-0233/21/10/105301
http://dx.doi.org/10.1088/0026-1394/13/1/004
http://dx.doi.org/10.1103/PhysRevD.86.122004

