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A novel model of spontaneous leptogenesis is investigated, where leptogenesis takes place in the thermal
equilibrium due to a background Nambu-Goldstone field in motion. In particular, we identify the Nambu-
Goldstone field to be the Majoron which associates with spontaneous breakdown of (discrete) B − L
symmetry. In this scenario sufficient lepton number asymmetry is generated in a primordial thermal bath
without having CP-violating out-of-equilibrium decay of the heavy right-handed Majorana neutrinos.
To obtain the observed baryon asymmetry, the neutrino masses are predicted in certain ranges, which can
be translated into the effective mass of the neutrinoless double beta decay.
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I. INTRODUCTION

Baryon asymmetry of the Universe is one of the biggest
mysteries in particle physics and cosmology. Direct obser-
vations show that the Universe contains no appreciable
primordial antimatter, although theories of particle physics
treat matter and antimatter in an equitable manner [1]. To
date, the asymmetry between matter and antimatter has
been measured precisely by two independent observations,
the cosmic microwave background (CMB) measurement
[2] and the measurements of the primordial abundances of
the light elements [3] predicted by big bang nucleosyn-
thesis (BBN). The baryon asymmetry is often parametrized
by the baryon abundance, ΩBh2,

ΩBh2 ¼ 0.0222þ0.00045
−0.00043 ðCMBÞ;

0.0220� 0.046 ðBBNÞ; ð1Þ

or parametrized by the baryon-to-photon number ratio at
today’s temperature of the Universe, ηB,

ηB ≃ 6 × 10−10 ×

�
ΩBh2

0.022

�
: ð2Þ

In view of the success of the inflationary paradigm, the
baryon asymmetry generated before inflation has been
diluted away, and hence, the baryon asymmetry cannot
be explained by an initial condition of the Universe. As
pointed out by Sakharov [4], to generate the asymmetry
dynamically, the following three conditions are required to
be fulfilled in the expanding Universe: (i) baryon number
nonconservation (B violation), (ii) C and CP violation,
(iii) departure from thermal equilibrium. The standard
model (SM) could satisfy all of the conditions, where
(i) is achieved by quantum effect known as sphaleron [5],
(ii) is provided by the CP violating phase in the Cabbibo-
Kobayashi-Masukawa (CKM) matrix, and the first order
electroweak phase transition could be realized (iii) if the

Higgs boson has an appropriate mass. However, the SM
fails to generate sufficient baryon asymmetry since the CP
violating phase in the CKM matrix is too small, and the
observed Higgs mass 125 GeV is too heavy for (iii) [6]. It is
therefore of importance to explore the origin of the bary
on asymmetry in physics beyond the SM.
Among various possibilities of baryogenesis associated

with physics beyond the SM, leptogenesis is one of the
most attractive mechanisms [7]. There, B violation is
provided by lepton (L) symmetry breaking of the right-
handed neutrino mass in conjunction with the sphaleron
effect, and the condition (ii), the CP violation, is satisfied
by the CP-violating phases of the neutrino Yukawa
couplings. Then, lepton number asymmetry is generated
when the right-handed neutrinos in the thermal bath decay
slowly in an out-of-equilibrium way so that condition (iii) is
satisfied. Leptogenesis is quite attractive since it is naturally
achieved along with the seesaw mechanism [8–12] (see
also [13]) which explains the tiny neutrino masses by the
heaviness of the right-handed Majorana neutrinos.
In this paper, we investigate an alternative model of

leptogenesis which does not rely on the out-of-equilibrium
decay of the right-handed neutrinos. Instead, we consider a
model of spontaneous baryogenesis which has been origi-
nally proposed by Cohen and Kaplan in Refs. [14,15],
where, in our case, leptogenesis takes place in the thermal
equilibrium due to a background Majoron field in motion.
In the general spontaneous baryogenesis scenario, the
background field in motion causes level splittings between
the matter and the antimatter via its derivative couplings to
the current of B symmetry.1 Then, with efficient baryon

1In the literature, the level splitting is often called the effective
chemical potential. However, this terminology is somewhat
misleading, since the chemical potential is defined to characterize
the thermal bath. In this paper, we use “(dynamical) level
splitting” to refer the effective chemical potential appearing in
spontaneous baryogenesis.
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violating processes in the thermal equilibrium, the non-
vanishing level splitting leads to the baryon asymmetry of
the Universe. This mechanism for generating baryon
asymmetry works in various setups [16–18], and recently
it is discussed that the lepton asymmetry, i.e., spontaneous
leptogenesis, can be also achieved via anomalous sym-
metries [19,20].
A notable feature of our model is the use of the Majoron

which is the Nambu-Goldstone field associated with sponta-
neous (discrete) B − L symmetry breaking [21,22].2 By
remembering that spontaneous B − L breaking is inevitable
to obtain the mass of the heavy right-handed neutrinos, this
choice makes the model more economical than the models
with additionally introduced field. Moreover, it is also
advantageous that the derivative couplings of the Majoron
to the SM fields are an automatic consequence of the
spontaneous B − L breaking where they are controlled by
the B − L charges of the SM fields.
This paper is organized as follows. In Sec. II, we explain

our setup, and give a formulation to make our notation
clear. Our main results are given in Sec. III where numerical
analysis of the baryon abundance and some phenomeno-
logical implications are discussed. Section IV is devoted to
a summary.

II. SPONTANEOUS B − L SYMMETRY BREAKING
AND MAJORON OSCILLATION

In this section we specify the model of our interest, in
which right-handed neutrinos NR acquire superheavy
Majorana masses via spontaneous (discrete) B − L sym-
metry breaking. For now, let us confine ourselves to a
minimal extension of the SM with global Uð1ÞB−L sym-
metry and one flavor approximation for the lepton sector.
To achieve the Majorana neutrino mass from spontaneous
breaking of B − L symmetry, we introduce a SM singlet
complex scalar field, σ, with the B − L charge−2. With this
charge assignment, the Lagrangian is given by

L ¼ LSM þ 1

2
N̄Ri∂NR þ j∂μσj2 − ½yνN̄RðL ·HÞ þ H:c:�

−
gN
2
½σNC

RNR þ H:c:� − VðH; σÞ; ð3Þ

VðH; σÞ ¼ λHðjHj2 − v2ewÞ2 þ λσðjσj2 − v2B−LÞ2
þ λσHðjσj2 − v2B−LÞðjHj2 − v2ewÞ: ð4Þ

Here, yν, gN , λH;σ;σH are dimensionless coupling constants,
while vew and vB−L are dimensionful parameters which
provide the electroweak and the B − L symmetry breaking
scales, respectively. The dot products denote the SUð2Þ
invariant products, ðA · BÞ≡ A1B2 − A2B1. Around the
B − L breaking vacuum, we parametrize σ by

σ ¼ ðvB−L þ ρ=
ffiffiffi
2

p
Þeiχ=ð

ffiffi
2

p
vB−LÞ; ð5Þ

where ρ is a real part of σ, and χ corresponds to the Nambu-
Goldstone boson, i.e., the Majoron. After B − L symmetry
breaking, NR acquires the Majorana mass MR ¼ gNvB−L.
Hereafter, we assume gN ¼ Oð1Þ and omit gN , i.e.,
vB−L ¼ MR.
Since we are mainly interested in the Universe where the

right-handed neutrinos have decoupled from the thermal
bath, it is enough to use an effective theory obtained by
integrating out NR:

Leff ¼ ðkinetic termsÞ − ∂μχffiffiffi
2

p
MR

JμL

−
mν

2v2ew
ðLC ·HÞðL ·HÞ þ � � � ; ð6Þ

to take the L breaking effects into account. Here, JμL is the
fermionic lepton current, and mν ¼ jyνj2v2ew=MR denotes
the mass of the light neutrinos in the SM. To achieve this

Lagrangian, we have redefined NR → eiχ=ð2
ffiffi
2

p
vB−LÞNR and

L → eiχ=ð2
ffiffi
2

p
vB−LÞL. It should be noted that these redefini-

tions are just a choice of basis in field space, and hence,
physical observables do not depend on the choices of the
basis.3 As we will see in Sec. III C, the temperature Tosc at
which the Majoron starts to oscillate and spontaneous
leptogenesis takes place successfully is Tosc ≳ 1013 GeV
[see Eq. (33)]. In the following analysis, we assume that the
right-handed neutrinos are heavy enough, MR ≳ Tosc≳
1013 GeV, so that the effective field theory in Eq. (6) is
applicable.
At this stage, Majoron is a massless boson because so far

it has been treated as an exact Nambu-Goldstone boson.
It is known, however, that global symmetries might not be
respected in the context of quantum gravity, and hence
violated by gravitational effects [33–35]. Thus, once
gravitational effect turns on, Majoron would acquire a
mass [36,37] via Planck scale suppressed operators:

OðnÞ
M ¼ σn

Mn−4
Pl

ðn ¼ 5; 6; 7;…Þ; ð7Þ

where MPl ≃ 2.4 × 1018 GeV is the reduced Planck mass.
We assume that these breaking operators appear with Oð1Þ
coefficients which we have omitted here. It turns out that
the Majoron mass induced by the dimension n operator,

mðnÞ
χ , is given by

2See, for example, [23–32] for extensive studies on phenom-
enological and cosmological aspects of light Majoron.

3It is also possible to perform computations without these
redefinitions. In this case the current term does not appear, and
instead, the Majoron field appears in front of the dimension five
operators, mν

2v2ew
e−iχ=ð

ffiffi
2

p
vB−LÞðLC ·HÞðL ·HÞ. See Appendix B for

details.
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mðnÞ
χ ∼

�
Mn−2

R

Mn−4
Pl

�
1=2

: ð8Þ

It should be commented that the origin of the explicit
breaking terms in Eq. (7) may be also attributed to
spontaneous breaking of the gauged and hence Uð1ÞB−L
symmetry broken at around the Planck scale to a discrete
B − L (Z2n) symmetry. In the following section, we discuss
how the motion of Majoron leads to spontaneous lepto-
genesis in this setup.
For preparation, let us sketch how the Majoron field

behaves in the expanding Universe. We suppose that B − L
symmetry is spontaneously broken during/before inflation.
During inflation, the quantum fluctuation of the Majoron is
exponentially stretched [38–40], and the Majoron field is
settled at some point on its field space. After inflation, the
Majoron field behaves according to the equation of motion,

χ̈ þ 3H _χ ¼ −∂χVeff ; ð9Þ

where H is the Hubble parameter. Here we define ∂0χ ≡ _χ,
and take Veff ≃ ðm2

χ=2Þχ2 with the Majoron massmχ . In the
radiation dominant epoch, the solution of Eq. (9) is
obtained as

χðtÞ ¼
ffiffiffi
2

p
χ0Γ
�
5

4

��
2

mχt

�
1=4

J1=4ðmχtÞ; ð10Þ

where
ffiffiffi
2

p
χ0 is the initial amplitude. This shows that the

Majoron starts to oscillate coherently when the Hubble
parameter decreases down to H ∼mχ . During inflation, the
Majoron is expected to take a field value on its field space,
0 < χ=

ffiffiffi
2

p
≤ πvB−L, and hence, the initial value of the

motion of the Majoron is χ0 ¼ OðMRÞ.
Once the Majoron starts to oscillate, the derivative

couplings in Eq. (6) become _χ=ð ffiffiffi
2

p
MRÞJ0L, which even-

tually lead to level splittings between the leptons and the
antileptons as we will discuss shortly. A notable feature of
our setup is that the Lepton number violating processes
automatically present in Eq. (6) as the dimension five
neutrino mass operators, and hence, all the necessary
ingredients for spontaneous leptogenesis, i.e., derivative
couplings to the Majoron and the lepton number violating
interactions, are equipped. As we will see in the next
section, once we specify the neutrino masses, resultant
lepton asymmetry depends on only two parameters, i.e., the
mass and the initial amplitude of the Majoron. In particular,
a certain value of the initial amplitude is automatically
chosen due to inflation since B − L symmetry breaking
occurs before/during inflation in our setup. Although the
initial value is randomly determined, it is typically to be of
the order of B − L violation scale,OðMRÞ. It should be also
emphasized that the dynamical level splittings violate the
CPT-invariance, and hence, baryon asymmetry can be
generated without satisfying Sakharov’s conditions exactly.

III. SPONTANEOUS THERMAL LEPTOGENESIS

As we have seen in the previous section, the motion of
the background Majoron field leads to nontrivial contri-
butions to the kinetic term of the leptons. In this section, we
first discuss the kinematics of leptons in the presence of the
background Majoron field. Then, we will move on to
explore viable parameter regions by solving the Boltzmann
equation for the lepton asymmetry.

A. Thermally averaged cross sections in the presence
of Majoron background in motion

To see how the level splittings appear, let us look at the
kinetic terms of the leptons. Here, let us collectively denote
the charged leptons and the neutrinos by ψ with a mass m.4

Due to the derivative coupling to the Majoron, the kinetic
term of ψ is deformed by μχ ≡ _χ=ð ffiffiffi

2
p

MRÞ:

Lkin ¼ ψ̄ði∂ −m − μχγ
0Þψ : ð11Þ

For ψ having momentum p ¼ ðE; ~pÞ, the dispersion
relation of ψ changes to E ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ j~pj2

p
þ μχ due to

the nonzero contribution of μχ , contrary to E0 ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ j~pj2

p
for μχ ¼ 0. Thus, the term proportional to

μχ causes the energy level splittings between the leptons
and the antileptons.5

In the presence of the dynamical level splittings, the
lepton number asymmetry is generated in thermal equilib-
rium by the L symmetry violating processes via the
dimension five operator in Eq. (6). That is, as we will
show by solving the Boltzmann equations, the L breaking
processes smooth out imbalances in the lepton and the
antilepton numbers caused by the level splittings.
By denoting L ¼ ðνL; e−LÞT and H ¼ ðhþ; h0ÞT the

relevant processes for the Boltzmann equation of the lepton
asymmetry are as follows:

ðaÞ hþhþ ↔ eþLe
þ
L ; ðbÞ h−h− ↔ e−Le

−
L;

ðcÞ h0h0 ↔ ν̄Lν̄L; ðdÞ h0†h0† ↔ νLνL;

ðeÞ hþh0 ↔ eþL ν̄L; ðfÞ h−h0† ↔ e−LνL;

ðgÞ hþe−L ↔ h−eþL ; ðhÞ h0νL ↔ h0†ν̄L;

ðiÞ hþe−L ↔ h0†ν̄L; ðjÞ h−eþL ↔ h0νL;

ðkÞ hþνL ↔ h0†eþL ; ðlÞ h−ν̄L ↔ h0e−L:

We express the scattering amplitudes for the process, for
example, hþhþ → eþLe

þ
L by M~a, and eþLe

þ
L → hþhþ by

Ma⃖. To obtain the Boltzmann equations, it is convenient to
consider thermally averaged cross sections in which we

4Here, we discuss the case of the Dirac fermions, although the
result can be applied to the Majorana fermions.

5See Appendix A for a detailed discussion.
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approximate the distribution functions by the Maxwell-
Boltzmann distribution,

hσIvi≡ ðneqÞ−2
Z

dΠ1dΠ2dΠ3dΠ4e−E
0
1
=Te−E

0
2
=T
X
spins

jMIj2;

ð12Þ

where I ¼ ~a; a⃖;…, and we define dΠi ¼ d3pi=ð2πÞ3=
ð2E0

i Þ for the momenta assigned by p1p2 → p3p4 in each
process.6 Normalization factor neq is given by neq ¼
gT3=π2 where g is degrees of freedom of the corresponding
particle.
The detailed discussion of the cross sections are shown

in Appendix A, and finally we obtain hσIvi as follows:

hσ~avi≃ hσ0vi
�
1þ 1

2

μχ
T

�
; hσa⃖vi≃ hσ0vi; ð13Þ

hσ~gvi≃ hσ0vi
�
1 −

5

4

μχ
T

�
; hσg⃖vi≃ hσ0vi

�
1þ 5

4

μχ
T

�
;

ð14Þ

where we take massless limit. Other cross sections can be
written in terms of them:

hσ~avi ¼ hσ~bvi ¼ hσ~cvi ¼ hσ~dvi ¼ ð1=4Þhσ~evi
¼ ð1=4Þhσ~fvi; ð15Þ

hσa⃖vi ¼ hσb⃖vi ¼ hσc⃖vi ¼ hσd⃖vi
¼ ð1=4Þhσ~evi ¼ ð1=4Þhσ~fvi; ð16Þ

hσ~gvi ¼ hσ~hvi ¼ ð1=4Þhσ~ivi ¼ ð1=4Þhσj⃖vi
¼ ð1=4Þhσ~kvi ¼ ð1=4Þhσ ⃖lvi; ð17Þ

hσg⃖vi ¼ hσh⃖vi ¼ ð1=4Þhσ ⃖ivi ¼ ð1=4Þhσ~jvi
¼ ð1=4Þhσk⃖vi ¼ ð1=4Þhσ~lvi; ð18Þ

where hσ0vi≃m2
ν=ð32πv4ewÞ.

B. Boltzmann equations

Before deriving the Boltzmann equations, let us discuss
the relations among the chemical potentials so that the
Boltzmann equations are reduced. First, let us list the
chemical potentials of the SM particles:

gauge bosons∶ μγ; μW� ; μZ; μg;

matter fermions∶ μeLi ; μēLi ; μνLi ; μν̄Li ;

μeRi ; μēRi ;

μuLi ; μūLi ; μdLi ; μd̄Li ;

μuRi ; μūRi ; μdRi ; μd̄Ri ;

Higgs boson∶ μh0 ; μh� ;

where the index i denotes the flavors.7 In the highly heated
thermal bath, the gauge bosons have vanishing chemical
potentials, and hence, the chemical potentials of the
particles and the antiparticles take opposite values with
each other. Further, we hereafter neglect the flavor mixing
for simplicity, so that the chemical potentials do not depend
on flavors:

μeLi ≡ μeL ; μeRi ≡ μeR ; μνLi ≡ μνL ;

μuLi ≡ μuL ; μdLi ≡ μdL ; μuRi ≡ μuR;

μdRi ≡ μdR: ð19Þ
The vanishing chemical potential μW� ¼ 0 leads to further
reductions, μuL − μdL ¼ μνL − μeL ¼ μhþ − μh0 ¼ 0. For
later purposes, we introduce μL, μQ, and μH which denote

μeL ¼ μνL ≡ μL; μuL ¼ μdL ≡ μQ; μh0 ¼ μhþ ≡ μH:

ð20Þ

Neutrality of the Universe also puts a constraint on the
chemical potentials. In general, the total charge of the
Universe, which is denoted as Qtot

A for a quantum number
A, is obtained by Qtot

A ¼PiΔniQAi, where QAi is a charge
of a particle i, and Δni is defined by Δni ≡ nparticlei −
nantiparticlei ¼ 2giT3=π2ðμi=TÞ with μi and gi being the
chemical potential of particle i and its degrees of freedom,
respectively. Here we have again approximated the dis-
tributions by the Maxwell-Boltzmann distribution. The
asymmetries between the particle and the antiparticle
numbers are given by 1=6 and 1=3 instead of 2=π2 for
the Fermi-Dirac and for the Bose-Einstein distributions,
respectively. Therefore, our numerical analyses are
expected to be saddled with Oð10Þ% errors due to the
Maxwell-Boltzmann approximation. Thus, the total hyper-
charge, Qtot

Y , is given by

Qtot
Y ¼ 2T2

π2

�
Ng

�
1

2
ðμuL þ μdLÞ þ 2μuR − μdR

−
1

2
ðμeL þ μνLÞ − μeR

�
þNh

2
ðμhþ þ μh0Þ

�
; ð21Þ

6Here, we define the chemical potential of the thermal
equilibrium so that the Boltzmann factors are given by
e−ðE1;2−μψ Þ=T ¼ e−E

0
1;2=T . See Appendix A for details.

7Here, again we are neglecting electroweak symmetry break-
ing, and hence, μγ;Z;W� should be understood as the ones of the
SUð2Þ × Uð1ÞY gauge bosons, strictly speaking.
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where Ng and Nh are the number of generation and Higgs
doublet, respectively. In the period when the electroweak
interaction is in equilibrium, the Yukawa interactions are
also effective in thermal equilibrium,8 which leads to

μL − μeR − μH ¼ 0; μQ − μuR þ μH ¼ 0;

μQ − μdR − μH ¼ 0; ð22Þ
where we have used Eq. (20). Altogether, the neutrality
condition for the total hypercharge gives the relation

Qtot
Y ¼ 2T2

π2
½2NgðμQ − μLÞ þ ð4Ng þ NhÞμH� ¼ 0: ð23Þ

Besides, we suppose that the sphaleron interaction is in
thermal equilibrium during the time leptogenesis occurs,
which leads to

Ngð3μQ þ μLÞ ¼ 0: ð24Þ
By solving the above relations, we can express all the

chemical potentials of the SM particles in terms of μL;

μH ¼ 8Ng

3ð4Ng þ NhÞ
μL; μeR ¼ 4Ng þ 3Nh

3ð4Ng þ NhÞ
μL; ð25Þ

μuR ¼ 4Ng − Nh

3ð4Ng þ NhÞ
μL; μdR ¼ −

12Ng þ Nh

3ð4Ng þ NhÞ
μL;

μQ ¼ −
1

3
μL: ð26Þ

In particular, the baryon number nB ¼ ð2T2=π2ÞNgð2μQ þ
μuR þ μdRÞ and the lepton number nL ¼ ð2T2=π2Þ
Ngð2μL þ μeRÞ are given by

nB ¼ 2

π2
T2 ×

�
−
4

3
NgμL

�
;

nL ¼ 2

π2
T2 ×

28Ng þ 9Nh

3ð4Ng þ NhÞ
NgμL: ð27Þ

From this, we also obtain a relation between baryon
asymmetry and lepton asymmetry,

nB ¼ −
4ð4Ng þ NhÞ
28Ng þ 9Nh

nL; ð28Þ

where nB ¼ −ð52=93ÞnL by substituting Ng ¼ 3 and Nh ¼
1 in the SM.9

As a result of the above reductions, we are left with only
one undetermined chemical potential, μL, and hence, we
only need to solve the Boltzmann equation of μL. By using
the cross sections given in the previous subsection, the
Boltzmann equation of μL is given by10

d
dT

μL
T

¼ w

�
μL
T

− α
μχ
T

�
; ð29Þ

where w is the wash-out factor defined by

w≃ π4g�s
90

κhσ0vi
sHT

T6

π4
; κ ∼ 3 × 102; ð30Þ

and α is a numerical factor given by α ∼ 0.5. Here s and H
are the entropy density and the Hubble parameter given by

s ¼ 2π2g�s
45

T3; H ¼
ffiffiffiffiffiffiffiffiffi
π2g�
90

r
T2

MPl
; ð31Þ

where g� and g�s are the effective degrees of freedom
for the energy and entropy densities, respectively. When
the temperature is high enough, such as larger than
Oð100Þ GeV, these two effective degrees of freedom get
close to each other around g� ∼ g�s ∼ 100. It should be
noted that w is independent of the temperature during
the radiation dominated period. Equation (29) can be
further simplified by introducing μL=T ≡ ξLewT , which
can be simply solved by

ξLðTÞ ¼ ξLðT iniÞ − αw
Z

T

T ini

dT 0 μχðT 0Þ
T 0 e−wT

0
; ð32Þ

where T ini denotes the initial temperature to solve the
Boltzmann equation. Here, T ini takes to be larger than Tosc
whose expression is shown in Eq. (33). Since μχ ¼ 0 (and
thus ξL ¼ 0) at T ¼ T ini, our results shown in the next
section do not depend on the value of T ini. After the
decoupling of the lepton violating process, i.e., wT ≪ 1,
the lepton asymmetry ends up with μL=T ¼ ξLðTÞ.

C. Numerical results

Our goal in this section is to search for viable parameter
regions for successful leptogenesis. After inflation, the
Majoron is settled at its initial position, and hence, the
dynamical level splittings are vanishing in that period,
i.e., limt→0μχðtÞ ∝ limt→0 _χðtÞ ¼ 0. Besides, the chemical
potentials after inflation are expected to be zero, since
any asymmetry before inflation has been diluted away by
inflation, i.e., μL¼μQ¼μH¼0. With these initialconditions,

8Strictly speaking, the Yukawa interaction of the electron-type
is in thermal equilibrium only for T ≲ 104 GeV.

9The ratio of the baryon asymmetry to the lepton asymmetry
differs from the ones in the literature since the neutrality
condition given in Eq. (21) is slightly different due to the
Maxwell-Boltzmann approximation.

10It should be noted that the obtained differential equation is
the Boltzmann equation for the total lepton charge Qtot

L , and thus,
we can safely omit all collision terms other than L violating
terms: dQtot

L =dt ∝ hσ0vi.
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we solve the Boltzmann equation [Eq. (32)] by the time the
temperature of the Universe decreases to the sphaleron
decoupling temperature Tsph ∼ 100 GeV. Around the tem-
perature Tsph, the sphaleron rate is sufficiently dumped, and
the baryon abundance freezes, which is determined by the
lepton abundance at that time through nB ¼ −ð52=93ÞnL.
Notably, free parameters of new physics in Eq. (29) are only
mχ andMR. Thus, by remembering that the initial amplitude
is of the order of MR, the baryon abundance is given as a
function of mχ for given neutrino masses.
Figure 1 shows the contours of ηB ¼ nB=nγ at today’s

temperature as a function ofmχ and ~mν, where ~m2
ν is defined

by the squared sum of neutrino masses, ~m2
ν ≡Pim

2
νi . Here,

we are taking the mass diagonal basis of the three neutrinos,
so that mνi’s appear in the coefficients of the dimension five
operator in Eq. (6). In the figure, we have assumed χ0 ¼ MR
(left panel) and πMR (right panel) as typical values. Since the
wash-out factor is proportional to ~m2

ν, the net baryon
asymmetry is strongly washed out when ~mν is large. On
the other hand, if ~mν is small, sufficient lepton asymmetry
cannot be achieved since the lepton violating processes are
necessary to generate the asymmetry from the level split-
tings. These behaviors of the lepton (baryon) asymmetry can
be also understood by comparing the temperatures, Tosc and
TB−L, at which the Majoron starts to oscillate, HðToscÞ ¼
mχ , and the lepton number violating interactions decouple
from the thermal bath,HðTB−LÞ ¼ hσ0viT3

B−L, respectively.
Suppose the Universe is dominated by the radiation, we
obtain

Tosc ≃ 1.7 × g−1=4� ðmχMPlÞ1=2;
TB−L ≃ 0.33 × g1=2� hσ0vi−1=MPl; ð33Þ

where they are typically Tosc∼1013 GeV for mχ ∼109 GeV
and TB−L ∼ 1013 GeV for hσ0vi ∼ 10−31 GeV−2. The
orange lines in Fig. 1 show log10½TB−L=Tosc�. In the region
where ~mν is large, the lepton number violating interactions
strongly couple to the thermal bath, and the lepton asym-
metry is significantly washed out. It turns out that when
TB−L is lower than Tosc, it is hard to generate enough lepton
asymmetry. In the region where ~mν is small, on the other
hand, TB−L is much higher than Tosc, and thus, the lepton
number violating interaction is not effective when the
Majoron field starts to oscillate. As we will see, ~mν is
bounded below by experiments. We therefore obtain an
upper limit on ~mν for successful leptogenesis. As a result, we
find the allowed neutrino mass ranges for ηB ∼ 6 × 10−10,

~mν ≲ 5.5 × 10−2 eV; ðχ0 ¼ MRÞ; ð34Þ

~mν ≲ 9.1 × 10−2 eV; ðχ0 ¼ πMRÞ: ð35Þ

It should be noted that the results are saddled with Oð10Þ%
error caused by the Maxwell-Boltzmann approximation.

D. Neutrinoless double beta decay

The allowed ranges of ~mν can be translated into the
allowed ranges of the neutrino spectrum by taking neutrino
mass orderings into account, i.e., the normal hierarchy
(NH) or the inverted hierarchy (IH).11 The NH spectrum
corresponds to mν3 > mν2 > mν1 , whereas the IH spectrum

FIG. 1 (color online). The baryon-to-photon ratio ηB ¼ nB=nγ at today’s temperature is shown as a function of mχ and ~mν, where
~m2
ν ≡Pim

2
νi . The orange lines represent log10½TB−L=Tosc� whose temperatures are defined in the text. The left panel of the figure

corresponds to the case where the initial amplitude of Majoron field is χ0 ¼ MR, whereas χ0 ¼ πMR is shown in the right panel.

11A quasidegenerate spectrum is also possible experimentally.
However, such a spectrum is not favored for successful lepto-
genesis in our scenario since the wash-out effect becomes too
strong.
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tomν2 > mν1 > mν3 . The observed values of mixing angles
and squared mass differences are given by

sin2ð2θ12Þ ¼ 0.846; sinð2θ13Þ ¼ 9.3 × 10−2;

sinð2θ23Þ ¼ 1.0; m2
S ≡m2

ν2 −m2
ν1 ¼ 7.54 × 10−5 eV2;

m2
A ≡ jm2

ν3 −m2
ν1 j ¼ 2.47 × 10−3 eV2 ðNHÞ;

2.39 × 10−3 eV2 ðIHÞ; ð36Þ
where we have taken the central values given in Ref. [41].
Then, we have two mass spectra as

NH∶ mν1 ≡m0; mν2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þm2
S

q
;

mν3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þm2
A

q
; ð37Þ

IH∶ mν1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þm2
A

q
; m2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þm2
S þm2

A

q
;

mν3 ≡m0; ð38Þ
where m0 denotes the lightest neutrino mass in each mass
ordering.
Figure 2 shows favored regions of neutrino masses for

successful leptogenesis in our scenario, where mν1 ; mν2 ; mν3
and ~mν are depicted by three dashed lines and a black solid
line as a function ofm0. In the upper two panels of Fig. 2, the
initial Majoron amplitude is taken to be χ0 ¼ MR, whereas

the bottom two panels represent the cases for χ0 ¼ πMR.
The left two panels are assumed the NH neutrino spectrum,
whereas the IH spectrum is considered in the right two
panels. In all the panels of Fig. 2, the gray shaded regions
depict the disfavored regions for successful leptogenesis,
which correspond to the ranges in Eqs. (34) and (35).
Therefore, the allowed regions exist only in the case that the
line of ~mν comes into the white region between two gray
shaded areas, which is almost determined by the atmospheric
neutrino mass scale mA. In the case of χ0 ¼ MR the IH
spectrum is rather disfavored in all parameter regions,
while sufficient lepton asymmetry can be achieved in
the NH spectrum with the parameter region of m0≲
1.3 × 10−2 eV.12 On the other hand, in the case of
χ0 ¼ πMR, both the NH and the IH spectra are consistent
with successful leptogenesis where m0 ≲ 4.4 × 10−2 eV for
the NH spectrum and m0 ≲ 3.4 × 10−2 eV for the IH
spectrum.
The obtained constraints have implications on the

neutrinoless double beta decay whose decay width is
proportional to a so-called effective mass, jmeej2,

jmeej≡
���X

i

mνiU
2
ei

���: ð39Þ

FIG. 2 (color online). Possible neutrino mass ranges are shown as a function of m0, the lightest neutrino mass. The initial Majoron
amplitude is taken to be χ0 ¼ MR in the upper two panels of the figure, whereas the bottom two panels show the case of χ0 ¼ πMR.
The left two panels are assumed the NH neutrino spectrum, whereas the IH spectrum is considered in the right two panels. The gray
regions are disfavored since neutrino masses are too heavy/small to produce sufficient lepton asymmetry.

12Here, again it should be cautioned that we have Oð10Þ%
errors in our estimations.
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Here, U denotes the Maki-Nakagawa-Sakata matrix para-
metrized by

U ¼

0
B@

1 0 0

0 c23 s23
0 −s23 c23

1
CA
0
B@

c13 0 s13e−iδ

0 1 0

−s13eiδ 0 c13

1
CA

×

0
B@

c12 s12 0

−s12 c12 0

0 0 1

1
CA
0
B@

eiα1=2 0 0

0 eiα2=2 0

0 0 1

1
CA; ð40Þ

where sij ≡ sinðθijÞ; cij ≡ cosðθijÞ, and δ and αi are Dirac
and Majorana phases, respectively. Once we input a
neutrino mass spectra, we obtain the effective mass as a
function of m0 as shown in Fig. 3, where the Majorana
phases are scanned for ½0; 2π�. It should be noted that
though the effective mass also depends on the Dirac phase,
the dependence is degenerated with those of the Majorana
phases. The upper limit on m0 comes from the CMB
observation,

P
imνi ≲ 0.9 eV [2], which is roughly the

same for both the NH and the IH cases. The range of
effective mass jmeej > 0.2 eV has been excluded by the
null observations of the neutrinoless double beta
decay [42,43].
In Fig. 3, we show the upper limits on m0 for the

successful leptogenesis obtained in Fig. 2. In the case of
χ0 ¼ MR, the IH spectrum is not successful, and hence,
only the NH case is shown, i.e., m0 ≲ 1.3 × 10−2 eV as a
red dashed line. In the case of χ0 ¼ πMR, the limits, m0 ≳
4.4 × 10−2 eV (NH) and m0 ≳ 3.4 × 10−2 eV (IH) are

depicted by the red dot-dashed and solid lines, respectively.
Future measurements of neutrinoless double beta decay are
expected to reach jmeej ¼ Oð10Þ meV [44]. The figure
shows that if jmeej > Oð10Þ meV is confirmed by the
neutrinoless double beta decay, almost all the parameter
region for the successful leptogenesis will be excluded.

E. Viable models

Finally let us discuss viable models consistent with
cosmological observations. Since the Majoron we are
interested in is superheavy, mχ ≳ 1010 GeV, Planck sup-
pressed operators play important roles not only on their
masses as in Eq. (7) but also on its decay rate. Here, we
consider the following operators as examples:

OðnÞ
D ¼ σn−2jHj2

Mn−4
Pl

ðn ¼ 5; 6; 7;…Þ; ð41Þ

to induce a rather large decay rate of the Majoron.13 It
should be noted that the Majoron masses generated by

these operators are negligibly small compared to OðnÞ
M in

Eq. (7). As discussed below, the power of σ in OðnÞ
D is

expected to be the same as that in OðnÞ
M . Therefore, let us

suppose that the Majoron decay is induced by Oð7Þ
D for

example, where Eq. (7) gives Oð5Þ
M to the Majoron mass in

this case. On the other hand, ifOð7Þ
D dominates the Majoron

mass term at H ≃mχ , the Majoron would dissipate before
the time to oscillate. Let us derive the condition to evade
such an undesired case:

m2
χχ

2 > χ5jhj2=M3
Pl ∼ ðχ5=MPlÞðT2=MPlÞ ∼ ðχ5=MPlÞHosc:

ð42Þ

At the time to oscillate, we obtain

χ0 < ðM2
PlmχÞ1=3

∼ 2.2 × 1015
��

MPl

1018 GeV

�
2
�

mχ

1010 GeV

��
1=3

GeV

ð43Þ

by using Hosc ¼ mχ and χ ¼ χ0. We can therefore avoid
such a situation in most cases.
Since we aim to discuss a connection to a possible

ultraviolet completion of our model, we constrain ourselves
on the cases where both the operators OM and OD are
induced by a condensate of either a scalar field or a
composite field. For example, suppose a scalar filed Φ
with charge qΦ under the gauged Uð1ÞB−L acquires a VEV,

FIG. 3 (color online). The effective mass, jmeej, is shown as a
function ofm0, where the NH and the IH cases are depicted by the
blue and the green regions, respectively. The upper bound for m0

comes from the CMB observations, and the upper bound for jmeej
is given by Refs. [42,43]. The red dashed line shows the limit for
the NH spectrum in the case of χ0 ¼ MR. The red dot-dashed and
the solid lines put the upper limits on the NH and the IH cases for
χ0 ¼ πMR, respectively.

13The decay rate via the derivative couplings is proportional to
the neutrino masses, and hence, very small.
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hΦi ¼ vΦ, corresponding OðnÞ
M and OðnÞ

D are induced from
the operators such as

~OM ¼ Φ
M�

σqΦ=2

MqΦ=2−4
Pl

; ~OD ¼ Φ
M�

σqΦ=2jHj2
MqΦ=2−2

Pl

; ð44Þ

where we assume qΦ ≥ 10, andM� is a certain high energy
scale below MPl. The charge qΦ is a model dependent
parameter, and we demonstrate the cases of qΦ ¼ 10 and 12
in this section, leading to Z10 or Z12 B − L symmetries,
respectively. Eventually, spontaneous breaking of the
resultant discrete symmetry induces the Majoron, as we
have discussed in the previous section. It should be noted
that in these cases the initial amplitude of the Majoron is
restricted to a smaller range than ð0; π� × vB−L. For
example, in the Z10 model the remnant discrete symmetry
is Z2 after σ acquires a VEV, and hence the Majoron takes
an initial field value within the range of χ=

ffiffiffi
2

p ¼
ð0; π=5� × vB−L. The resultant baryon number asymmetry
is, therefore, roughly the same as the left panel of Fig. 1
when χ0 takes the maximal value, χ0 ¼ π=5vB−L ∼MR. In
this case only the NH spectrum is favored as shown in
Fig. 2. Such a restriction is rather relaxed in the Z12 model.
Figure 4 shows several constraints onmχ andMR for two

example cases of Z10 (left panel) and Z12 (right panel),
respectively. In both cases, we require that the discrete
symmetry is broken before inflation to avoid the domain
wall problem. In addition, we also require that the Majoron
starts to oscillate well after inflation. Thus, the Hubble
parameter during inflation, Hinf , is much larger than the
Majoron mass. In such a situation, the quantum fluc-
tuation of Majoron field causes a baryonic isocurvature

perturbation, which is constrained by CMB observations.
In order to be consistent with the observations, the Majoron
fluctuation should satisfy [45–47]: 10−5 ≳ δχ=χ0 ∼Hinf=
ð2πMRÞ≳Hosc=ð2πMRÞ, where Hosc ≡HðToscÞ≃mχ .
From this argument, at least, the conditionHosc=ð2πMRÞ ≲
10−5 should be satisfied. In the figure, we show the value of
Hosc=ð2πMRÞ as the black solid lines.
In the case of Z10, the Majoron mass comes from Oð5Þ

M ,

i.e., mð5Þ
χ in Eq. (8), while the χ-H-H interaction is induced

from Oð7Þ
D ∼ ðM4

R=M
3
PlÞχjHj2. It is necessary to pay atten-

tion whether the Majoron dominates the primordial energy
density of radiation or not before its decay, since the
Majoron decay might dilute the generated lepton asym-
metry. The temperature at which the Majoron dominates,
Tdom, depends on whether the Majoron is thermalized or
not:

Tdom ¼ 15ζð3Þ
π4

mχ

g�
ðthermalÞ;

M2
R

3M2
Pl

Tosc ðnonthermalÞ: ð45Þ

The Majoron thermalization occurs via the inverse decay
process induced by the χ-H-H coupling,14 where the
inverse decay rate is given by Γth ∼ ðM4

R=M
3
PlÞ2=ð8πÞ=T,

which becomes equal to the Majoron decay ΓD at T ≃mχ .
The Majoron is therefore thermalized when mχ < T th,

FIG. 4 (color online). Several cosmological bounds are shown in the mχ-MR plane. The left and right panels show the Z10 and Z12

models, respectively. The Majoron never enters the thermal bath other than the yellow shaded regions. In the blue regions the energy of
the Majoron oscillation dominates the energy density of the Universe. The deeper blue regions represent the range where the right-
handed neutrino is thermalized after reheating. In the gray region the Majoron survives until BBN takes place. The black solid lines

show the baryonic isocurvature fluctuations, and the black dashed lines depict the Majoron masses, mðnÞ
χ , given by Eq. (8).

14It should be noted that the Majoron couplings to the Standard
Model particles via the dimension five operators are highly
suppressed by small neutrino masses.
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where the thermalization temperature T th is obtained by
solving the condition HðT thÞ ¼ ΓthðT thÞ.
The yellow region in the left panel of Fig. 4 satisfies

mχ < T th, where the Majoron is thermalized by the effect of
the decay operator. In that region, however, the domination
temperature is always smaller than the decay temperature
TD defined by

TD ¼
�
90M2

PlΓ2
D

π4g�

�
1=4

; ð46Þ

and thus, the dilution does not occur. In the whole regions
other than the yellow region, the Majoron does not enter
the thermal bath, and the energy density of the Majoron
oscillation dominates at Tdom as given by Eq. (45). When
Tdom becomes larger than TD, the Majoron dominates the
Universe, and causes dilution of baryon asymmetry due
to entropy production, which is represented by the blue
shaded region in the figure. The gray shaded region in the
figure shows that TD is smaller than the temperature
at which BBN takes place, T ∼Oð1Þ MeV, where the
Majoron decay spoils the successful BBN.
When Tosc > MR, the right-handed neutrinos are in the

thermal bath when spontaneous leptogenesis takes place,
which is depicted by the deeper blue shaded region in the
figure. In this region, conventional thermal leptogenesis can
take place if it is possible, and further lepton asymmetry
could be generated even if the dilution occurs. Since this
possibility is out of our study, however, we do not discuss it
further.
Let us finally mention the Majoron mass mðnÞ

χ repre-
sented by the black dashed lines in the figure. In the Z10

model, for example, the Majoron mass is obtained by mð5Þ
χ ,

and the line representing mð5Þ
χ in the left panel of the figure

is in the region where Majoron dominates the energy
density of the Universe. This shows that we need

Oð1%–0.1%Þ fine-tuning of the coefficient of Oð5Þ
M to

obtain viable Majoron parameters for a given MR. The
same figure for Z12 shows that we need some amount of

fine-tuning of the coefficient of Oð6Þ
M .

IV. SUMMARY

We have proposed a new type of spontaneous lepto-
genesis caused by the oscillation of the Majoron field. As
exploited by Cohen and Kaplan [14,15], the mechanism
evades the Sakharov’s conditions. Therefore, our scenario
can work in the case that the conventional leptogenesis
does not work, e.g., even when there are not large enough
CP phases. As a notable feature, all the necessary ingre-
dients for spontaneous leptogenesis are automatically
equipped within our setup, i.e., derivative couplings to
the Majoron and the lepton number violating interactions.
Once the neutrino masses are determined, the resultant
lepton asymmetry depends on the Majoron mass and the

initial value of the Majoron amplitude. On the other hand,
the dynamical level splitting is induced by μχ which is
normalized by MR. Since the initial amplitude of the
Majoron field is typically to be OðMRÞ, μχ is not strongly
affected by B − L symmetry breaking scale. Therefore, the
sufficient baryon asymmetry can be achieved if the
Majoron has an appropriate mass.
To explain the observed baryon number asymmetry, we

find that the neutrino masses are predicted in some ranges
since the resultant lepton number asymmetry strongly
depends on the wash-out effect caused by the dimension
five operators of the neutrino masses. As a result, we find
that spontaneous leptogenesis rather disfavors the degen-
erate neutrino spectrum. The effective mass of neutrinoless
double beta decay is also constrained accordingly. We have
also discussed viable models, which are Z10 and Z12

models, consistent with cosmological observations.
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APPENDIX A: CROSS SECTIONS IN THE
PRESENCE OF THE MAJORON

BACKGROUND

In this Appendix we give detailed calculations of
scattering cross sections in the Majoron background.

1. Fermions with nonvanishing μχ
Let us first consider a free Dirac fermion, which corre-

sponds to the limit of the vanishing dynamical level
splittings, μχ → 0 in Eq. (11). In this case, the Dirac field
satisfies ði∂ −mÞψ ¼ 0, and then we expand the solution as

ψðxÞ ¼ ψþðxÞ þ ψ−ðxÞ; ðA1Þ

ψþðxÞ ¼
Z

d3p
ð2πÞ3 b~pu~pðtÞei~p·~x;

ψ−ðxÞ ¼
Z

d3p
ð2πÞ3 d

†
~pv~pðtÞe−i~p·~x; ðA2Þ

where we omit spin indexes. The independent solutions u~p

and v~p satisfy the Dirac equation for a particle and
antiparticle, respectively, and hence, b~p and d~p are the
creation and the annihilation operators of the particles and
the antiparticles. The time dependence of these solutions can
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be expressed by the energy eigenvalues, ω0ð~pÞ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~pj2 þm2

p
, as follows:

u~p ¼ ½2ω0ð~pÞ�−1u0~pe−iω0ð~pÞx0 ;

v~p ¼ ½2ω0ð~pÞ�−1v0~peiω0ð~pÞx0 ; ðA3Þ

where we choose a normalization by recovering spin indexes
r and s as

u0†~p;ru
0
~p;s ¼ 2ω0ð~pÞδrs;

v0†~p;rv
0
~p;s ¼ 2ω0ð~pÞδrs: ðA4Þ

As a result, we can expand ψ in terms of b~p and d~p,

ψðxÞ ¼
Z

d3p
ð2πÞ32ω0ð~pÞ

½b~pu0~pe
−ip·x þ d†~pv

0
~pe

ip·x�; ðA5Þ

where we define p ¼ ðω0; ~pÞ. This leads to the momentum
conservation of S matrix for the two-body process, for
example, hþðp1Þhþðp2Þ → eþL ðp3ÞeþL ðp4Þ, as

S ¼ ð2πÞ4δðp1 þ p2 − p3 − p4Þ · iM; ðA6Þ

where M is a scattering amplitude.
Next let us see the case of nonvanishing μχ where

Eq. (A6) is slightly deformed. In this case, the
Lagrangian of a fermion is given by

L ¼ ψ̄ði∂ −m − μχγ
0Þψ : ðA7Þ

As discussed in Sec. II, μχ stems from the Majoron
background in motion, and thus it depends on time. The
situation of our interest is the case at which the Majoron
starts to oscillate in the expanding Universe. The time scale
of the Majoron oscillation is, therefore, Oð1=mχÞ. The
typical time scale of the scattering among ψ’s is, on the
other hand, characterized by 1=T since ψ is in the thermal
bath. The temperature at which the Majoron starts to
oscillate is roughly obtained by H ¼ mχ, and hence, 1=T ∼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MPlmχ

p
is much shorter than the time scale of Majoron

oscillation. We can therefore treat μχ as a constant in the
cross section calculations.
In the similar way to the previous case, we can take the

solution of the Dirac equation given by Eq. (A7) as

~ψðxÞ ¼ ~ψþðxÞ þ ~ψ−ðxÞ; ðA8Þ

~ψþðxÞ ¼
Z

d3p
ð2πÞ3 b~p ~u~pðtÞei~p·~x;

~ψ−ðxÞ ¼
Z

d3p
ð2πÞ3 d

†
~p ~v~pðtÞe−i~p·~x: ðA9Þ

It should be noted that these solutions, ~u~p and ~v~p,
have deformed dispersion relations given by ωð~pÞ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~pj2 þm2

p
þ μχ ¼ �ω0ð~pÞ þ μχ . The time depend-

ence of the solutions is therefore governed by ωð~pÞ, and
hence we obtain

u~p ¼ ½2ω0ð~pÞ�−1u0~pe−iμχx
0

e−iω0ð~pÞx0 ;

v~p ¼ ½2ω0ð~pÞ�−1v0~pe−iμχx
0

eiω0ð~pÞx0 : ðA10Þ

It should be noted that u0 and v0 are the one defined for
μχ ¼ 0. This result implies that M does not depend on
μχ , and hence, the S matrix depends on μχ only through the
δ-function of the four momentum, i.e.,

S ¼ ð2πÞ4δ4ðp1 þ p2 − p3 − p4 þ 2pχÞ · iM; ðA11Þ

where pχ ≡ ðμχ ; ~0Þ in a certain frame.

2. μχ dependence of phase space integrations

We now show that the phase space factor does not
depend on the effective chemical potential at the leading
order of μχ . First, we again clarify our situation: we are
focusing on that the Universe is filled by a background field

χ which is a function of time, and only pχ ¼ ð∂0χ; ~0Þ takes
place the effective chemical potential. In this case the frame

taking ~pχ ¼ ~0 is useful for our purpose. However, to
calculate the reaction rate, i.e., the phase space integration,
it is much easier to consider the center of mass frame of
the initial state. We therefore relate these two frames by
Lorentz boosts.
Suppose the initial particles have momenta p1 ¼

ðE1; ~p1Þ and p2 ¼ ðE2; ~p2Þ, and the initial total momentum
is defined by Pini ¼ p1 þ p2. In general, when we are in

the frame where pχ ¼ ðμχ ; ~0Þ, Pini is not in its center of
mass frame. Here, we call this frame the original frame

where the momentum set is fPðOÞ
ini ; p

ðOÞ
χ g. Each momentum

is written by

PðOÞ
ini ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sþ j~Pinij2

q
; ~Pini

	
; ðA12Þ

pðOÞ
χ ¼ ðμχ ; ~0Þ: ðA13Þ

On the other hand, we can take the frame of ~PðOÞ
ini ¼ ~0,

which we call the center of mass frame where the

momentum set is given by fPðCMSÞ
ini ; pðCMSÞ

χ g. Each momen-
tum is written by

PðCMSÞ
ini ¼ ð

ffiffiffi
S

p
; ~0Þ; ðA14Þ

pðCMSÞ
χ ¼ μχffiffiffi

S
p ×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sþ j~Pinij2

q
;−~Pini

	
: ðA15Þ
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These two frames, fPðOÞ
ini ; p

ðOÞ
χ g and fPðCMSÞ

ini ; pðCMSÞ
χ g, are

transformed by the Lorentz boost each other: PðCMSÞ
ini ¼

Λ−1PðOÞ
ini and pðCMSÞ

χ ¼ Λ−1pðOÞ
χ , where

Λ ¼
 

γ γ~β

γ~βT 1þ ðγ − 1Þ ~βT ~β
j~βj2

!
;

Λ−1 ¼
 

γ −γ~β

−γ~βT 1þ ðγ − 1Þ ~βT ~β
j~βj2

!
; ðA16Þ

~β ¼
~Piniffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sþ j~Pinij2
q ;

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − j~βj2

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sþ j~Pinij2

q
ffiffiffi
S

p : ðA17Þ

This allows us to obtain the cross section in the original
frame after performing calculations in the center of
mass frame.
In the center of mass frame we consider the following

quantities:

dΦðp3; p4Þ≡ d3p3

ð2πÞ32E0
3ð~p3Þ

d3p4

ð2πÞ32E0
4ð~p4Þ

× ð2πÞ4δ4ðPini − p3 − p4 þ 2pχÞ; ðA18Þ

I ≡
Z

dΦðp3; p4Þ
X
spins

jMðp1; p2; p3; p4Þj2; ðA19Þ

where we take the massless limit and E0
i ð~pÞ≡

ffiffiffiffiffiffiffiffi
j~pj2

p
(i ¼ 3; 4).After reparametrizingp3 − pχ ≡ ~p3 andp4 − pχ≡
~p4, we immediately obtain ~~p4 ¼ −~~p3 ≡ −~~p due to ~Pini ¼ ~0.

The remaining delta function implies Etot − E0
3ð~~p3 − ~pχÞ−

E0
4ð~~p4 þ ~pχÞ ¼ 0, where Etot ≡

ffiffiffi
S

p þ 2pðCMSÞ0
χ . By elimi-

nating this delta function, we obtain

j~~pj2 ¼ E2
totðE2

tot − 4j~pðCMSÞ
χ j2Þ

4E2
tot − 16j~pðCMSÞ

χ j2ð~~n · ~nχÞ
; ðA20Þ

where ~pðCMSÞ
χ ≡ j~pðCMSÞ

χ j~nχ and ~~p≡ j~~pj~~n. We finally obtain
the expression for dΦð ~p3; ~p4Þ as

dΦð ~p3; ~p4Þ¼
1

4ð2πÞ2
j~~pj2dΩ

ðE0
3þE0

4Þj~~pjþ ðE0
3−E0

4Þj~pχ jð~~n · ~nχÞ
;

ðA21Þ

where dΩ is the solid angle element of the final state
momentum. In the original frame, there is no specific three
dimensional direction, and hence, the cross section is

independent of the direction of ~Pini. We may therefore

take ~Pini ¼ ð0; 0; pzÞ without loss of generality, which leads
to j~pχ j ¼ p0

χ jpzj=
ffiffiffi
S

p
and p0

χ ¼ μχ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSþ p2

zÞ=S
p

. By per-
forming the integration over the solid angle, we obtain the
cross section. At the leading order of μχ , we have

dΦð ~p3; ~p4Þ ¼ dΦðp3; p4Þ þOðμ2χÞ;

dΦðp3; p4Þ ¼
dΩ
32π2

; ðA22Þ

and hence, the phase space factors do not have μχ
dependence at the leading order. Therefore, we find that
the μχ dependence of the reaction rates, I, should appear
through the momentum dependence of the squared ampli-
tude after phase space integration,

I ≃
Z

dΦðp3; p4Þ
X
spins

jMðp1; p2; ~p3; ~p4Þj2: ðA23Þ

It should be noted that in the case where the leptons
appear only in the initial states, pχ dependence would
appear through the initial state momenta such as
Mð ~p1; ~p2; p3; p4Þ. On the other hand, pχ dependence in
the delta function can be always absorbed by p3 and p4

dependence of the amplitude. Therefore, in this case the
cross section does not depend on μχ since the amplitude is
proportional to ðp1 · p2Þ, but ðp3 · p4Þ. It is also possible
that pχ dependence is absorbed by p1 and p2. However,
such redefinition of initial state momenta makes the
definition of “actual” lepton chemical potential obscure,
and thus, this way is rather complex,15 and we do not
employ this manner.

APPENDIX B: CROSS SECTION CALCULATIONS
IN ANOTHER FIELD BASIS

We here discuss an alternative and equivalent way to
calculate cross sections by employing another field basis.
When we achieve the effective Lagrangian given by
Eq. (6), L and NR is rotated along to χ flat direction,
and thus we have the ∂μχJ

μ
L interaction. On the other

hand, physical observables should not be responsible to
this transformation. Therefore, we expect that our result
does not change in the case that we employ the field
basis without the rotation of L. Let us confirm this
anticipation.

15In this way we should introduce the actual lepton chemical
potential so that both cases are equivalent.
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The effective Lagrangian we are interested in is

L0
eff ¼ ðkinetic termsÞ

−
�
mν

2v2ew
ei2χ=ð

ffiffi
2

p
vB−LÞðLC ·HÞðL ·HÞ þ H:c:

�
þ � � � ;

ðB1Þ
instead of Leff given by Eq. (6). As mentioned in
Appendix A, the time variation of χ is much slower than
the time scale of the scattering process. This allows us to
expand χ by a reference time as χ ¼ _χtþ � � �, and thus we
have eiχ=ð

ffiffi
2

p
vB−LÞ ∼ eiμχ t where we can use μχ as a constant

in this calculation.16 A comparison between Leff , L0
eff leads

to a replacement of the couplings from mν=ð2v2ewÞ →
mν=ð2v2ewÞe2iμχ t, without the modification of the fermion
dispersion relations. This replacement therefore modifies
the delta function in S matrix, δ4ðp1 þ p2 − p3 − p4Þ, to,
e.g., δ4ðp1 þ p2 − p3 − p4 þ 2pχÞ as is the case of
Eq. (A11). Consequently we obtain the same expression
of the S matrix leading to the equivalent results of the
calculation in Appendix A.
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