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In this paper we explore extensions of the minimal supersymmetric standard model involving two
SUð2ÞL triplet chiral superfields that share a superpotential Dirac mass, only one of which couples to the
Higgs fields. This choice is motivated by recent work using two singlet superfields with the same
superpotential requirements. We find that, as in the singlet case, the Higgs mass in the triplet extension can
easily be raised to 125 GeV without introducing large fine-tuning. For triplets that carry hypercharge, the
regions of least fine-tuning are characterized by small contributions to the T parameter, and light stop
squarks,m~t1 ∼ 300 − 450 GeV; the latter is a result of the tan β dependence of the triplet contribution to the
Higgs mass. Despite such light stop masses, these models are viable provided the stop-electroweakino
spectrum is sufficiently compressed.
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I. INTRODUCTION

The minimal supersymmetric standard model (MSSM)
sets mZ as the upper bound of the tree-level mass of the
lightest charge parity (CP) even scalar in the spectrum.
Since this particle is commonly identified with the standard
model (SM) Higgs boson, either large one-loop corrections
due to heavy third family squarks or a high degree of stop
mixing are necessary to push mh up to the observed value
of ∼125 GeV [1,2]. Either of these two requirements on the
stops introduces subpercent fine-tuning [3]. This occurs
because both effects radiatively induce large corrections to
the soft mass of the Higgs field m2

Hu
, which must be

canceled off in order to stabilize the electroweak scale. In
this sense, the observation of the Higgs with a 125 GeV
mass makes the MSSM alarmingly fine-tuned, independent
of the fact that we have not yet discovered any super-
symmetric particles.
A variety of techniques have been proposed to avoid

such a heavy stop spectrum. The simplest possibilities are
to extend the MSSM gauge group or field content,
respectively modifying the D- and F-terms of the Higgs
potential [4–6]. While the former necessarily alters the
quartic terms in a manner dictated by the gauge group, the
latter relies on raising the quartic coupling of the Higgs
bosons via the inclusion of extra superpotential couplings.

A class of well-known models based on this effect is the
next-to-minimal supersymmetric standard model (NMSSM)
which adds a gauge singlet field S to the MSSM. Although
capable of rendering the correct Higgs mass, the NMSSM
does so by decoupling the scalar part of the singlet superfield.
However, the soft mass of the singlet feeds back into
m2

Hu
; m2

Hd
at one loop via the renormalization group equa-

tions (RGE). Large singlet masses therefore can lead to large
corrections to m2

Hu;d
, so the NMSSM solution to the Higgs

mass comes at the expense of substantial fine-tuning.
The authors of [7] extended the NMSSM with a second

singlet S̄ which does not couple to the Higgs doublets yet
has a superpotential mass term with S:

W ¼ WYukawa þ ðμþ λSÞHuHd þMSS̄; ð1Þ

where WYukawa stands for the usual MSSM Yukawa terms;
due to the Dirac mass term between the singlets, the model
was dubbed the Dirac NMSSM. The tree-level Higgs mass
squared in this setup is modified, receiving a positive
contribution that depends on the S̄ soft mass, and a negative
contribution that depends on the S soft mass. Including the
one-loop correction from stop loops (see for example [8])
the resulting Higgs mass is

m2
h ¼ m2

Zcos
2ð2βÞ þ λ2v2sin2ð2βÞ
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with

Lt ≡ log

�
M2

SUSY

m2
t

�
; ~Xt ≡ 2X2

t

M2
SUSY

�
1 −

X2
t

12M2
SUSY

�
ð3Þ

and Xt being the usual stop mixing parameter.
To efficiently raise the Higgs mass, one takes advantage

of the positive term while trying to keep the negative term
as small as possible. The positive term is increased by
taking the soft mass of the noncoupled singlet, m2

S̄, to be
much larger than the supersymmetric mass term,M. IfM is
also larger than λ2v2 than the negative term is minimized.
While large singlet masses in the NMSSM come hand in
hand with increased tuning, this does not happen here.
Specifically, the authors of [7] showed that the mass of S̄
can be raised almost indefinitely without introducing fine-
tuning—a clear violation of the conventional wisdom that
increases to the Higgs mass require new light states. As
explained in [7], the keys to this behavior are the Dirac
mass term between S and S̄ and the absence of couplings of
S̄ with Hu, Hd. A detailed study of the Dirac NMSSM was
performed in Ref. [9], taking into account all corrections
at one loop order and dominant two-loop corrections.
Beyond fine-tuning, constraints from supersymmetry
(SUSY) searches and dark matter were also applied.
One disadvantage of the original Dirac NMSSM is that

the singlet contribution to m2
h has the same tan β depend-

ence as in the NMSSM. Specifically, the singlet piece is
largest at low tan β, exactly the region where the MSSM
tree-level Higgs mass vanishes. This can be overcome, but
requires sizable coupling of the singlet to Higgs bosons.
In this paper, we examine the effects of replacing the

singlets in the Dirac NMSSM with triplets under SUð2ÞL,
maintaining the key features of the Dirac mass and with
only one triplet coupled to the Higgs bosons. Triplet
extensions of the MSSM have been studied extensively
[10–19]; they offer richer phenomenology than singlet
extensions, but they are also more constrained.
Specifically, the neutral components of the triplets generi-
cally acquire vacuum expectation values (vev), causing
tension with electroweak precision observables [20,21].1

Nonetheless, triplets offer appealing features when com-
pared with singlets, especially in the context of the Dirac
NMSSM: (i) there is more variety due to two possible
hypercharge assignments, Y ¼ 0 or Y ¼ �1, and (ii) triplets
with hypercharge must be included in pairs for anomaly
cancellation and can only have Dirac-type superpoten-
tial mass.

The rest of the paper is organized as follows. In Sec. II
we introduce the key superpotential interactions and give
the correction to the Higgs mass for both the Y ¼ 0 and
Y ¼ �1 triplet models. Next, in Sec. III we analytically
study the various sources of fine-tuning, pinpointing the
dependence of each term on the triplet parameters. This is
followed up by a discussion of the precision electroweak T
parameter. From this discussion, it will be clear that the
Y ¼ �1 model works better at raising the mass of the
Higgs, avoiding fine-tuning, and staying within the electro-
weak precision constraints. In Sec. IV we perform a
numerical study, focusing on the Y ¼ �1 scenario. As
one of the primary differences between singlets and triplets
is the existence of additional charged and potentially light
fermions, in Sec. V we review the phenomenology of
“exotic” states, examining both direct production and
indirect effects such as altered stop decays. Finally, con-
clusions are drawn in Sec. VI.

II. THE MODELS

There are two signature features in the Dirac NMSSM
[7], a Dirac mass term between two strictly different
superfields, and the fact that only one of the two singlets
couples to the Higgs doublets. The extension explored here,
where a pair of triplets takes the role of the singlets, should
maintain both properties. With this in mind, we define Σ1 to
be a SUð2ÞL triplet chiral superfield which couples to the
Higgs bosons in the superpotential, and define a second
triplet Σ2, which does not. This is not the most general
superpotential allowed by the symmetries of the model but
we follow the setup of the original Dirac NMSSM; in any
case the choice is radiatively stable since superpotential
couplings cannot be generated via radiative corrections.2

With the inclusion of the triplets Σ1;2 the superpotential is
enlarged to

W¼μHu ·HdþμΣTrðΣ1 ·Σ2ÞþWH−ΣþWYukawa ð4Þ

where the isospin product employs the convention a · b≡
aiεijbj with ε21 ¼ −ε12 ¼ −1. The parameter μΣ is a
supersymmetric Dirac mass for the triplets, WH−Σ couples
Hu;d with Σ1 in a way specified by the hypercharge
assignments of the triplets, and WYukawa represents the
standard MSSM Yukawa couplings.
We analyze the cases Y ¼ 0 and Y ¼ �1 for the

hypercharge of the triplets.3 When the triplets have hyper-
charge Y ¼ 0, they can couple to a combination of HuHd.
This case should be seen as a simple extension of the singlet
Dirac NMSSM scenario, as the couplings take the same
form up to factors of

ffiffiffi
2

p
coming from the normalization of

1Triplet extension which preserves custodial symmetry, such
as the supersymmetric custodial triplet model, allows for large
triplet vev (and light scalars) without tension from electroweak
precision observables [22–24].

2One could also use a spurion analysis of an extra broken
symmetry which would suppress the unwanted couplings [7].

3These are the only possibilities that simultaneously permit a
Dirac mass term and supply extra neutral scalars to raise m2

h.
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the triplets. On the other hand, triplets with a hypercharge
Y ¼ �1 can only couple toH2

d orH
2
u. We examine the case

where Hu couples to the triplet but Hd does not, since the
latter will only generate an increased Higgs mass for the
unphysical region of tan β < 1. Both triplet scenarios
contain charged scalars and fermions that are absent in
the singlet Dirac NMSSM. While potentially interesting at
colliders, these extra states have minimal impact on the
Higgs mass or fine-tuning, so we largely ignore them here.
Comments on the phenomenology of the extra states can be
found in Sec. V.

A. Y ¼ 0 case

Triplets with hypercharge Y ¼ 0 couple to both Hu and
Hd and are a simple extension to the singlet case studied
in [7]. The superpotential is given by Eq. (4) with

WH−Σ ¼ λHd · Σ1Hu: ð5Þ

Forming the scalar potential, the superpotential terms are
accompanied by the soft terms

ΔVsoft ¼ m2
TTrjΣ1j2 þm2

χTrjΣ2j2
þ ðλAλHd · Σ1Hu þ μΣBΣTrðΣ1 · Σ2Þ þ H:c:Þ;

ð6Þ

and the usual SUð2ÞL and Uð1ÞY D-terms. Here, mT;χ are
the triplet soft masses; Aλ and BΣ are the trilinear and
bilinear soft couplings respectively. While it is possible to
give Y ¼ 0 triplets a non-Dirac supersymmetric mass, we
ignore this possibility here as we are particularly interested
in the effects of Dirac masses. Focusing on the CP even
scalar sector of the theory, the sole difference between the
triplet and singlet MSSM extensions is factors of

ffiffiffi
2

p
coming from the normalization of the triplet. The full
CP even scalar potential for this scenario is shown in
Appendix A.
Isospin triplets can potentially disrupt electroweak pre-

cision tests unless their vev remain small. A simple way to
mitigate the size of the triplet vev is to take the scalar
triplets to be heavier than the Higgs bosons. In this limit,
which we assume throughout, the scalar triplets can be
integrated out and are effectively replaced by combinations
of lighter fields:

Σ1;neut ≡ T0 →
λffiffiffi
2

p μðjH0
uj2 þ jH0

dj2Þ − AλH0�
u H0�

d

μ2Σ þm2
T

þO
�

1

D2
T
;

1

DTDχ
;
1

D2
χ

�
ð7Þ

Σ2;neut ≡ χ0 →
λμΣffiffiffi
2

p H0
uH0

d

μ2Σ þm2
χ
þO

�
1

D2
T
;

1

DTDχ
;
1

D2
χ

�
; ð8Þ

where DT;χ ≡ μ2Σ þm2
T;χ . The resulting effective potential

for the Higgs bosons can be found in Eq. (A3). From the
effective potential, we can read off the modified tree-level
CP-even scalar mass matrices. Taking the decoupling limit
for simplicity and adding the one-loop stop contribution to
the lightest tree-level mass eigenvalue, we find the Higgs
mass

m2
h ¼ m2

Zcos
2ð2βÞ þ ðstop loopsÞ þ v2λ2

2
sin2ð2βÞ m2

χ

μ2Σ þm2
χ

−
v2λ2

2

j2μ� − Aλ sinð2βÞj2
μ2Σ þm2

T
: ð9Þ

The expression above, with a positive (negative) piece
that depends on the uncoupled (coupled) triplet soft mass is
clearly reminiscent of the singlet Dirac NMSSM, Eq. (2).
As in the singlet case, the interplay between the two terms
plays an important role in the fine-tuning of the model.

B. Y ¼ �1 case

Given that the superpotential should conserve hyper-
charge and be holomorphic, a supersymmetric mass term
for a triplet with hypercharge Y ¼ 1 can only be included if
there is a second triplet with Y ¼ −1. Anomaly cancella-
tion also rests on introducing hypercharge triplets in
vectorlike pairs. As in the Y ¼ 0 scenario above, we
assume Σ1 is the triplet with superpotential couplings to
the Higgs bosons. Depending on its hypercharge Σ1 will
only be able to couple either to H2

u or H2
d, which is distinct

from the Y ¼ 0 setup. To get the largest impact from the
triplet-Higgs coupling, we want it to couple as much as
possible to the physical Higgs boson. At large tan β and
large mA, the Higgs boson resides primarily in Hu; there-
fore we assign Y ¼ −1 to Σ1, permitting the interaction

WH−Σ ¼ λHu · Σ1Hu: ð10Þ

The second triplet Σ2 (now with hypercharge Y ¼ 1) has
no superpotential couplings. The soft terms are as in
Eq. (6) with the same modification to the Aλ term as in
the superpotential, and the complete CP-even scalar
potential is given in Appendix B.
When the triplet scalars are integrated out in this

scenario, the neutral components are replaced by

Σ1;neut ≡ T0 →
λðAλH0�

u H0�
u − 2μH0�

u H0
dÞ

μ2Σ þm2
T

þO
�

1

D2
χ
;

1

DχDT
;
1

D2
T

�
ð11Þ

Σ2;neut ≡ χ0 →
−λμΣH0

uH0
u

μ2Σ þm2
χ

þO
�

1

D2
χ
;

1

DχDT
;
1

D2
T

�
: ð12Þ
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Working with the effective Higgs potential and proceeding
as in the Y ¼ 0 case, we find the decoupling-limit Higgs
mass to be

m2
h ¼ m2

Zcos
2ð2βÞ þ ðstop loopsÞ

þ 4v2λ2sin4ðβÞ
�

m2
χ

μ2Σ þm2
χ

�

−
v2λ2sin2ð2βÞ
μ2Σ þm2

T
j2μ� − Aλ tanðβÞj2: ð13Þ

Comparing m2
h in the two models, Eqs. (9) and (13),

we see similar features. In both models there is a positive
contribution to the Higgs mass proportional to
m2

χ=ðμ2Σ þm2
χÞ. This is maximized when m2

χ ≫ μ2Σ, and
goes to zero whenm2

χ ≪ μ2Σ, so the Higgs mass is increased
the most by decoupling the scalar part of Σ2. In Sec. III
we show that the decoupling of m2

χ barely affects the
fine-tuning.
The amplitude and tan β dependence of the positive term

is different for the Y ¼ 0 triplets and the Y ¼ �1 triplets,

C0ðβÞ ¼
v2λ2

2
sin2ð2βÞ ð14Þ

for Y ¼ 0 and

C1ðβÞ ¼ 4v2λ2 sin4 β: ð15Þ

for Y ¼ 1. C0 is maximized when 2β ¼ π=2, or tan β ¼ 1.
However, C1 is maximal as β → π=2, or tan β → ∞. As the
tan β dependence of C1 aligns with that of the MSSM, the
size of the triplet contributions to the Higgs mass does not
need to be as large, leading to smaller values of λ in the
Y ¼ �1 model.
Equations (9) and (13) also have a term which acts to

lowerm2
h. The negative terms depend on the mass of Σ1, the

triplet which couples to the doublets. A large soft mass for
Σ1 decreases the absolute value of the negative term, raising
the Higgs mass. However, m2

T also enters into the radiative
corrections of the Higgs soft masses, so the mT value that
minimizes the fine-tuning is less clear cut and is best
tackled numerically.
Both of the negative terms also contain a factor which

depends on the difference between μ and Aλ, j2μ�−
Aλ sinð2βÞj2 for the Y ¼ 0 case and j2μ� − Aλ tan βj2 for
Y ¼ �1 respectively. The same expressions appear in the
effective triplet vev, Eqs. (7) and (8) or Eqs. (11) and (12)
after the Higgs doublets acquire vacuum expectation
values. The T parameter is tightly constrained by precision
electroweak measurements; however, the fact that the
same expressions appear in the Higgs mass and the triplet
effective vev implies that regions with the smallest negative
contribution to the Higgs mass are also the regions with the
smallest T parameter.

Having shown how the Higgs mass is altered in the two
Dirac triplet scenarios and identified key parameters, we
now move on to study the fine-tuning.

III. FINE-TUNING CALCULATIONS
AND T PARAMETER

Equations (9) and (13) show that decoupling the soft
mass of Σ2 leads to a maximal increase in the Higgs mass.
Ordinarily, the introduction of large scalar masses to correct
the Higgs mass increases the fine-tuning. In the next
subsection we show that this is not the case for this model;
the fact that Σ2 does not couple to the doublets allows it to
be decoupled with small effects on the fine-tuning, as in the
original Dirac NMSSM model. Beyond the fine-tuning of
the Higgs mass, triplet models are also constrained by the
T parameter, which we examine more closely in Sec. III B.

A. fine-tuning of m2
Hu

We adopt the definition of fine-tuning of [7],

Δ¼ 2

m2
h

max

�
m2

Hu
;m2

Hd
;
dm2

Hu

dlogðuÞL;
dm2

Hd

dlogðuÞL;δm
2
H0

u
;μBμ;eff

�
ð16Þ

where L≡ logðΛ=m~tÞ accounts for the running to the
SUSY breaking scale, logðuÞ is the running scale and
δm2

H0
u
is the one-loop finite threshold correction from the

triplets; following [7], we set L ¼ 6. Although we use the
same definition for Δ that was used for the singlet model,
we expect the triplet case to be slightly different due to
larger triplet-Higgs couplings (coming from the normali-
zation of the triplets) and the different hypercharge pos-
sibilities. Putting all of the components together and taking
the maximum contribution is best done numerically.
However, before launching into numerics, in this section
we examine each of the different components of Δ to get a
better feeling for their relative importance and to see how
they depend on the triplet parameters.
The first entries in Δ arem2

Hu
andm2

Hd
, the tree-level soft

masses for the Higgs doublets. These are not free param-
eters; rather they are set by the requirement that electro-
weak symmetry is broken at the minimum of the scalar
potential [see Eqs. (A4) and (A5) for Y ¼ 0 and (B4)–(B5)
for Y ¼ �1]. In solving the minimization conditions, m2

Hu

and m2
Hd

inherit a complicated dependence on the triplet
parameters that is difficult to generalize. As these entries
are typically subdominant in Δ, we do not attempt to tease
out the triplet parameter dependence analytically.

The next components of Δ are
dm2

Hu
d logðuÞL,

dm2
Hd

d logðuÞL, the
radiative corrections to the Higgs soft masses. While
nominally one-loop effects, these radiative pieces have
the potential to be important because they depend
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quadratically on the masses of heavy particles (stops,
triplets, etc.)—objects that do not appear or are subdomi-
nant in the tree-level Higgs potential. Additionally, the
radiative effects are enhanced by L, the logarithm that
encapsulates the running of soft masses down from the

supersymmetry mediation scale. As a result, these radiative
pieces are often the largest component of Δ. To see how
the triplet parameters enter, we need the RGE governing
the evolution of m2

Hu
; m2

Hd
(refer to [25] for general

expressions)

ðY ¼ 0Þ
8<
:

16π2
dm2

Hu
dt ⊃ 6h2t ðm2

Q3
þm2

U3
þm2

Hu
Þ þ 6λ2ðm2

Hu
þm2

Hd
þm2

T þ A2
λÞ

16π2
dm2

Hd
dt ⊃ 6h2bðm2

Q3
þm2

D3
þm2

Hd
Þ þ 6λ2ðm2

Hu
þm2

Hd
þm2

T þ A2
λÞ

ð17Þ

and

ðY ¼ �1Þ
8<
:

16π2
dm2

Hu
dt ⊃ 6h2t ðm2

Q3
þm2

U3
þm2

Hu
Þ þ 6λ2ð2m2

Hu
þm2

T þ A2
λÞ

16π2
dm2

Hd
dt ⊃ 6h2bðm2

Q3
þm2

D3
þm2

Hu
Þ;

ð18Þ

where t ¼ logðuÞ. The large top Yukawa, ht and the
dependence on the stop masses needed in the MSSM to
raise the Higgs mass are what drives the fine-tuning. In the
triplet scenario, the extra contributions to the (tree-level)
Higgs mass from the triplets permit lighter stops and allow
for a less tuned model.
The key difference between the Dirac NMSSM and the

traditional NMSSM is that the mass of the uncoupled state
does not feed into the Higgs soft masses at loop level. This
same behavior is reproduced neither in Eq. (17) nor (18),
neither of which depends onmχ , the mass of Σ2. As a result,
large mχ , and thereby large positive contributions to the
Higgs mass, are permitted without giving rise to fine-
tuning. The soft mass of Σ1 and the trilinear soft term Aλ

enter into the running of m2
Hu
; m2

Hd
, so in principle large

values for them would increase Δ. However, both m2
T and

A2
λ enter into the beta functions multiplied by λ2; hence a

smaller λ would permit these two quantities to take
moderate values without dominating the fine-tuning.
Following the radiative piece in Δ is the threshold

correction δm2
H0

u
, the finite contribution tom2

Hu
that emerges

when heavy fields are integrated out. The threshold terms
are important as they are the only place where the soft mass
of the uncoupled triplet m2

χ (or the noncoupling singlet, in
the model of Ref. [7]) enters into the fine-tuning. The
threshold corrections, presented in full in Appendix C,
depend on the soft masses of both triplets. However, since
mT also appears in the (log-enhanced) RGE part of the
tuning discussed above, keeping mT small minimizes the
tuning. WithmT kept small, the threshold correction is well
approximated by the Σ2 piece alone:

ðY ¼ 0Þ∶ δm2
H0

u
≃ 3

2

λ2μ2Σ
16π2

log
m2

χ þ μ2Σ
μ2Σ

and

ðY ¼ �1Þ∶ δm2
H0

u
≃ 6

λ2μ2Σ
16π2

log
m2

χ þ μ2Σ
μ2Σ

: ð19Þ

If μ2Σ ≳m2
χ , there is little fine-tuning from the threshold

correction. We saw in Sec. II that the most interesting
parameter space—where the triplet contribution to the
Higgs mass is large and positive—occurs when
m2

χ ≫ μ2Σ. For this hierarchy of parameters, the threshold
contribution can be non-negligible, though only when μ2Σ is
large (compared to mh) as well.
The final component ofΔ is the dependence on μ and Bμ.

For the triplet scenario with hypercharge, this component
of the tuning is identical to the MSSM. Triplets without
hypercharge are slightly more complex, since the effective
triplet vev shift μ and Bμ from their MSSM values. The
shifted values are given by

μeff ¼ μ −
ffiffiffi
2

p

2
λhT0i and ð20Þ

μBμ;eff ¼ μBμ −
λffiffiffi
2

p ðAλhT0i þ μΣhχ0iÞ: ð21Þ

Though not usually the dominant component in Δ, these
contributions to the fine-tuning measure are inevitable as μ
and Bμ enter directly into the tree-level mass matrix of the
Higgs boson.
After considering the individual components of the fine-

tuning measure, we are now ready for a full numerical
study of the tuning over a range of triplet parameters.
Before doing so, we first examine how the T parameter
constrains the available parameter space.

B. Constraints from the T parameter

Electroweak scalar triplets that acquire vacuum expect-
ation values notoriously spoil the relation between mW and
mZ. This mass ratio is more commonly expressed as the T
parameter
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αT ¼ m2
W

m2
Zcos

2θW
− 1: ð22Þ

The authors of [26,27] used data from Z pole measurements
[28], the running quarkmasses [29], the five-quark hadronic
vacuum polarization contribution to αðM2

ZÞ, Δαhadð5Þ ðM2
ZÞ

[30], the mass and width of theW [29], top quark mass [31],
and Higgs mass measurements [32,33] to preform a global
fit of electroweak data. A value of T ¼ 0.09� 0.13 gives
the best fit of the data if all of the oblique parameters are
allowed to float.4 Forcing the (tree-level) triplet contribu-
tions to the T parameter to lie within the 1-σ uncertainty, we
can derive a bound on the triplet model parameters. In an
effective theory where we have integrated out the triplets,
there are no triplet fields around to get vev, but the T
contributions are still present in the form of higher dimen-
sional operators. Specifically, after integrating out the
triplets, the kinetic term for the Σi becomes (schematically)

jDμΣij2integrated out
���������!Σ 1

Λ2
jHDμHj2; ð23Þ

which, once theHiggs bosons are set to their vev, contributes
differently to theW andZmass. The operator is intentionally
left vague, as the actual combinations of theHu andHd and
the mass scale Λ are different for each triplet.
For the triplets with Y ¼ 0, this operator contributes

to T by

T Y¼0 ¼
1

α

4ðhχ0i2 þ hT0i2Þ
v2 − 4ðhχ0i2 þ hT0i2Þ ð24Þ

where hT0i and hχ0i are the values of Eqs. (7) and (8) after
the doublets have developed vev—what we dub “effective
vev” for the triplets. The effective vev are approximately
given by

hT0iY¼0 ≈
v2λ

2
ffiffiffi
2

p 2μ� − Aλ sinð2βÞ
μ2Σ þm2

T
and

hχ0iY¼0 ≈ −
v2λ

2
ffiffiffi
2

p μΣ sinð2βÞ
μ2Σ þm2

χ
; ð25Þ

up to higher order terms in 1=ðμ2Σ þm2
T;χÞ. For the case

with hypercharge, the T parameter takes the form

T Y¼�1 ¼ −
1

α

2ðhχ0i2 þ hT0i2Þ
v2

ð26Þ

with hT0i and hχ0i now coming from Eqs. (11) and (12)
once the doublets acquired the vev,

hT0iY¼−1 ≈ −
v2λ
2

sinð2βÞð2μ� − Aλ tanðβÞÞ
μ2Σ þm2

T
and

hχ0iY¼1 ≈ v2
−λμΣsin2ðβÞ
μ2Σ þm2

χ
: ð27Þ

Inspecting these equations, we can identify several
parameter combinations that dictate the size of the T
parameter.

(i) m2
χ : The effective vev hχ0i → 0 in the limit of large

mχ . In order to effectively raise the Higgs mass, we
want m2

χ ≫ μ2Σ. Large mχ also does not add to the
fine-tuning (see previous subsection), so large mχ is
preferred for both the fine-tuning and the T
parameter.

(ii) m2
T : Similarly, the effective vev hT0i → 0 in the limit

of large mT . A large value for mT also reduces the
negative term in the Higgs mass squared equations.
However, m2

T enters into the tuning from the RGE
running terms and can quickly dominate the fine-
tuning.

(iii) μΣ: Both hχ0i → 0 and hT0i → 0 for large μΣ. This is
not desired as it decreases the triplet contribution to
the Higgs mass and removes any interesting phe-
nomenology of extra light states.

(iv) λ: The T parameter goes as λ2. The fact that the
Y ¼ �1model can easily get the correct Higgs mass
for lower values of λ implies that the model with
hypercharge will not be as constrained by the T
parameter for fixed stop masses.

(v) μ and Aλ: One could also have a cancellation
between the μ and Aλ terms. This would be a
cancellation between a supersymmetric term and a
soft term, which is in itself unnatural.

(vi) tan β: The triplets with hypercharge Y ¼ �1 have an
extra dependence on sinð2βÞ in hT0i. At large values
of tan β, this goes to 0. Large values of tan β were
already preferred for Y ¼ �1 in order to raise the
Higgs mass as much as possible. The Y ¼ 0model is
not as lucky.

Considering these points, in particular the λ and tan β
dependence, it is clear that the T parameter is more
constraining on the Y ¼ 0 model. In addition, for fixed
triplet-Higgs coupling λ, the triplet contribution to the
Higgs mass in the Y ¼ 0model is smaller than in the singlet
Dirac NMSSM scenario because of the

ffiffiffi
2

p
factor in the

normalization of the neutral components. As this scenario
suffers in fine-tuning and the T parameter without the
promise of interesting phenomena, we choose to ignore the
Y ¼ 0Dirac triplet model for the rest of the paper and focus
our numerical and phenomenological study on Y ≠ 0.
Lastly, we point out that hT0i and hχ0i contribute to the

T parameter at tree level, and to order λ2. To be consistent,
we have also calculated the one-loop fermionic contribu-
tions to the T parameter to order λ2. Because the triplet

4If the U parameter is fixed to U ¼ 0, the best fit is
T ¼ 0.10� 0.07.
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fermions are Dirac particles, and the mixing to order λ2

keeps the entire triplet representation the same mass, there
is no contribution to the T parameter at order λ2.

IV. NUMERICAL STUDY: Y ¼ �1

The analytical expressions of the last section allowed us
to determine the overall scheme needed to minimize fine-
tuning and yet maximize the triplet contributions to the
Higgs mass. Focusing entirely on the Y ¼ �1 scenario, the
preferred regions are large tan β, large mχ , and small values
for mT and the stop masses. The coupling λ needs to be
large enough to raise the Higgs mass without being so large
as to induce large triplet vev. While there are multiple free
parameters at hand, we wish to keep our numerical analysis
both detailed and manageable. For this reason, we limit the
parameters we vary to two scans, one over λ andmT and the
other over μΣ and mχ . The other parameters are fixed to
benchmark values shown in Table I.
The values for the fixed parameters in Table I are

motivated by several considerations. First, since the
Higgs mass contribution, fine-tuning, and T parameter
are improved at large tan β, we select tan β ¼ 10 as a
representative value. Next, the scalar masses mA and BΣ
play little role in our results, so they are good parameters to
fix. The mass mA enters into the Higgs mass matrix;
however as we always assume the decoupling limit it
has little effect (so long as the value we choose is large
enough to justify the decoupling limit). Similarly, the soft
parameter BΣ mixes the scalars from Σ1 and Σ2. This
mixing does not change our results, but complicates the
translation between the scalar mass eigenstates and the
Lagrangian parameters. Therefore we select a small BΣ for
simplicity.
The effective vev hT0i (and therefore the T parameter)

depend on the difference between μ and Aλ; however, this
term is suppressed at large values of tan β. Varying Aλ over
a moderate range of values, we find the fine-tuning does not
change much. Therefore, we set Aλ to 0 (together with At
for consistency), a choice that fits well within gauge
mediated SUSY breaking scenarios [34–39].
The last parameter we fix is μ. Since we have decoupled/

ignored the wino, the chargino mass is set by μ; thus the
existing LEP2 bound [40] on charginos sets a lower bound
of μ ≳ 100 GeV. High μ values are also disfavored by fine-
tuning, so we therefore pick an intermediate value of μ ¼
250 GeV for our benchmark. The contribution to the tuning

for this choice ΔðμÞ ¼ 8.47; as this value is independent of
the rest of the spectrum, ΔðμÞ should be regarded as the
minimum tuning possible according to our measure. From
the fine-tuning perspective alone, a value of μ closer to the
LEP2 bound would be better. However, as we detail in
Sec. V, μ also plays a role in stop phenomenology.
To study the fine-tuning, we scan over the remaining

triplet parameters, the coupling λ, the Dirac mass, μΣ, and
the soft masses, mχ and mT . Once values for these are
chosen, the triplet contribution to the Higgs mass is known
[see Eq. (13)] and the stops are the only part left to enforce
mh ¼ 125 GeV. As the stop contribution to the Higgs mass
depends on the masses of both stops, we must make some
assumptions in order to extract the values. We study two
different assumptions, both chosen for their simplicity and
generality:
(1) Left- and right-hand stops have the same mass.

(m ~Q3
¼ m ~uc

3
.)

(2) The right-hand stop is used to set the Higgs mass
while the left-hand stop is set to 800 GeV, which is
above the most stringent LHC limits [41–51].5

Next, we use SuSpect2 [52] to find the mass of the Higgs in
the MSSM for the benchmark values and a given set of stop
masses. The final Higgs mass squared is then the result
of adding the MSSM part and the triplet contribution in
quadrature.

m2
h ≡ ð125.5 GeVÞ2 ¼ m2

hðMSSMÞ þm2
hðTripletÞ: ð28Þ

We vary the value of the stop mass until this relationship is
achieved. Then, once the stop mass is known, we can
calculate the fine-tuning defined in Eq. (16). We point out
that since the triplets do not talk to the stops or the rest of
the spectrum at tree level, our use of SuSpect is restricted to
the Higgs mass only.
Knowing that the triplet contribution to the Higgs mass is

largest when mχ ≫ μΣ, we first choose to fix

mχ ¼ 10 TeV and μΣ ¼ 300 GeV ð29Þ

and scan over the value of λ and mT . The left panels of
Fig. 1 show the values of the stop soft masses that are
needed in order to set the correct Higgs mass; in Fig. 1(a),
both stop soft masses are equal, while in Fig. 1(b) the left-
hand soft mass is fixed at 800 GeV and the right-hand soft
mass is indicated by the contours. The triplets do not affect
the Higgs mass in the MSSM limit that λ → 0, so very large
stop masses are needed. As λ is increased from zero, the
necessary stop mass decreases. If λ≳ 0.35, the triplet F-
terms generate a Higgs mass that is always greater than
observed value. These regions are marked in green in the
figures. The soft massmT only affect the mass of the Higgs

TABLE I. Benchmark parameter values for the calculation of
the fine-tuning variables for the Y ¼ �1 model. For simplicity,
the gaugino masses and all squark/slepton masses other than the
stop are assumed to be decoupled.

tan β ¼ 10 mA ¼ 300 GeV At ¼ 0

μ ¼ 250 GeV BΣ ¼ 100 GeV Aλ ¼ 0

5Another simple possibility would be fixing m ~Q3
and varying

m ~uc
3
instead, but that is more restrictive because m ~Q3

also controls
the sbottom masses.
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boson through the negative term in Eq. (13). For large
values of tan β, this term is negligible.
The fine-tuning is calculated at each point once the stop

masses have been obtained. Contours of Δ are shown in the
right panels of Fig. 1. The white, pink, and blue regions
represent a fine-tuning of Δ ≤ 100, 100 < Δ ≤ 1000, and
Δ > 1000 respectively. The RGE running part of the
fine-tuning measure is dominant and depends on h2t ðm2

Q3
þ

m2
U3
Þ and λ2m2

T . Increasing λ lowers the stop masses,
decreasing the fine-tuning until λ2m2

T is comparable to
h2t ðm2

Q3
þm2

U3
Þ. As such, a small value of the soft mass is

preferred for fine-tuning, although the T parameter can
cause issues if mT is too light.
At each point in the scan we calculate the effective

triplet vev and their contribution to the T parameter. The

red regions show where the triplet contributions to T are
larger than the 0.13 1-σ uncertainty [27]. We also mark in
orange what could be excluded by a new precision study
of the Z pole if the uncertainty on the T parameter were
decreased by an order of magnitude. Figure 1 has the soft
mass of Σ2 decoupled (mχ ¼ 10 TeV), so hχ0i is neg-
ligible and T is only affected by hT0i. The large value of
tan β suppresses hT0i so the current T bounds can only
exclude mT < 200 GeV at the largest allowed values of
λ. An improved measurement brings the exclusion to
values of λ as low as 0.1 and soft masses as large as
500 GeV. The vev hT0i is proportional to 1=ðμ2Σ þm2

TÞ,
so the reach of this exclusion region is strongly depen-
dent on the value of μΣ as well, which has been kept
fixed up to this point.

FIG. 1 (color online). The left panels show contours of the stop soft mass needed in order to raise the Higgs mass to the observed value
when μΣ ¼ 300 GeV, mχ ¼ 10 TeV and tan β ¼ 10. In (a) both stops have the same mass while (b) only changes the right-hand soft
mass and keeps the left-hand stop at 800 GeV. The right panels show the corresponding contours of fine-tuning. The dark red region
marks where the vev of the triplets cause too-large contributions to the T parameter. The orange region supposes an improvement in the
measured T parameter by an order of magnitude.
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Before discussing the differences between the two
different stop assumptions, we scan over μΣ and mχ to
understand how these affect the Higgs mass, fine-tuning,
and T . We chose the point

λ ¼ 0.25 and mT ¼ 800 GeV; ð30Þ

which in the first scan lies close to the smallest fine-tuned
contour and is beyond the reach of the improved T
exclusion. Figure 2 shows the results of the second scan
again with the stop masses in the left panels and the shaded
regions the same as in Fig. 1. The triplet contribution to m2

h
is proportional to m2

χ=ðμ2Σ þm2
χÞ. Larger values of mχ

decrease the stop masses while larger μΣ decouples the
effect of the triplets and forces larger stop masses. Lines of
constant stop mass run along the diagonal.

The right panels of Fig. 2 show the corresponding fine-
tuning measure. Over most of the parameter space, the fine-
tuning contours follow the stop mass contours which
implies that the RGE running term is dominating the
fine-tuning. This is not the case in the upper right part
of the plots for large values of mχ and μΣ. In these regions
the finite threshold correction piece of the fine-tuning
dominates. This term is never dominant for μΣ ≲ 1 TeV
or mχ ≲ 10 TeV.
The T parameter constrains more of the parameter space

in this scan. In this case, mT is large so hT0i does not
contribute much to T . Instead, T is controlled by hχ0i
which is proportional to μΣ=ðμ2Σ þm2

χÞ. Keeping the triplet
contributions to T within the 1-σ uncertainty excludes out
to μΣ ≤ 1.1 TeV for mχ ≲ 800 GeV. The orange region
again shows what could be excluded if the uncertainty were

FIG. 2 (color online). Analogous panels to Fig. 1, this time with varying μΣ and mχ for fixed λ ¼ 0.25 and mT ¼ 800 GeV. In Sec. V,
we study the phenomenology of the dashed green line.
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improved by an order of magnitude. This may be the best
method for explicitly excluding parameter space and
reaches out to μΣ ≤ 1.5 TeV for mχ ≲ 1.2 TeV. Having
a low value for μΣ allows for a large triplet contribution to
the Higgs mass without the need to worry about the finite
threshold correction term in the fine-tuning. In this region,
the T parameter forces mχ to large values to decrease hχ0i.
This in turn increases the triplet contribution to the Higgs
mass, lowering the fine-tuning.
Having discussed how the fine-tuning depends on the

triplet parameters, we now examine the effects of the
different stop assumptions. The general results apply to
both scans, but we focus only on the second scan, with λ
and mT fixed. The stop contribution to the Higgs mass
depends on the geometric mean of the stop masses. At
μΣ ¼ mχ ¼ 10 TeV, the geometric mean of the stops needs
to be around 800 GeV. In this case, both assumptions for
choosing the stop mass give m ~Q3

¼ m ~uc
3
¼ 800 GeV and

the corresponding measure of fine-tuning is around 50.
Lowering the value of μΣ increases the triplet contributions
to the Higgs mass and decreases the stop masses and fine-
tuning. The minimum stop mass (still alongmχ ¼ 10 TeV)
is reached when μΣ ≤ 2 TeV. When both stop soft masses
are simultaneously changed, they take on a minimum mass
of around 450 GeV. The minimum fine-tuning is then
Δ ∼ 9. On the other hand, when only changing the right-
hand soft mass, it needs to be even lighter. Its minimum soft
mass is around 260 GeV which gives a fine-tuning of 17.
Although one stop mass is lighter, the RGE running (and
thus the tuning) are worse because the left-hand mass is still
at 800 GeV. We have marked the line mχ ¼ 10 TeV with a
green dashed line and study the phenomenology along this
line in more detail in the next section.
The benchmark values that we have used allow for quite

low values of fine-tuning for both assumptions about the
stop masses. This low fine-tuning comes at the cost of
having light stops. In fact, for stop mass assumptions, the
minimum stop mass achieved is well below the 750–
800 GeV LHC limits [41–51]. In the next section we show
that these searches do not exclude all of our regions of low
fine-tuning. However, this does raise the question about
how the model can deal with LHC SUSY searches and
what other signatures to search for. Although the triplet
scalars need to be heavy, their fermion counterparts—the
tripletinos—with mass ∼μΣ, can be light enough to be
reachable by the LHC. In the next section we briefly
explore the phenomenology of the tripletinos at the LHC.
We examine both the direct constraints on these particles
and how tripletinos affect the decay of the stops.

V. TRIPLET FERMION PHENOMENOLOGY

A. (Lack of) constraints on tripletinos

The Y ¼ 1 triplets contain neutral, �1 and �2 charged
fermions. The neutral and singly charged fermions mix

with the neutralinos and charginos, respectively (the mass
matrices of the fermions are shown in Appendix D). The
doubly charged states, on the other hand, do not mix with
SM particles. One might expect that strong bounds would
exist for such exotic states. The tripletinos, however, are
good at hiding.
(1) Direct searches

The charge �1; 0 tripletinos are subject to MSSM
electroweakino searches, which currently exclude
regions where the lightest supersymmetric particle
(LSP) mass is less than around 150 GeV if there are
no light sleptons [53,54]. These searches are most
powerful if the LSP is light and if there is a large
separation between the mass of the LSP and the
mass of the rest of the other states. As a result, these
conventional searches fail for quasidegenerate elec-
troweakino spectra, such as one expects in a pure
Higgsino scenario or with a Higgsino-tripletino
admixture. Another possibility is to look for
disappearing tracks [55] or long-lived charged par-
ticles [56,57], though these approaches require a
level of degeneracy that is atypical in the region
of tripletino-Higgsino parameter space we are
interested in.
One potential avenue is a search focusing on the

doubly charged tripletinos and μΣ < μ. The (lighter)
mass eigenstates are then given by

m~χþþ ¼ μΣ;

m~χþ ¼ μΣ

�
1 −

1

2

λ2v2

μ2
ð1 − cosð2βÞ

�
; and

m~χ0 ¼ μΣ

�
1 −

λ2v2

μ2
ð1 − cosð2βÞ

�
: ð31Þ

For benchmark parameters μ ¼ 250 GeV, λ ¼ 0.25
and taking μΣ ¼ 150 GeV, the masses are 150, 145.5
and 141 GeV respectively. The pair production cross
section of the doubly charged state at the LHC is
1.05 (2.48) pb for the LHC at 8 (14) TeV. These decay
down to the neutral state through W� bosons.
Although the decay products will be soft and hard
to detect, the signal has 4 W� bosons which can
decay leptonically. A dedicated search is beyond the
scope of this paper, but the relatively large cross
section along with the clean final state could motivate
a search for the doubly charged particles—recoiling
off a hard, initial-state jet for triggering purposes.

(2) Oblique parameters
Triplet fermions have the potential to generate a

loop-level contribution to the T parameter. How-
ever, at Oðλ2Þ we find this contribution to be zero
due to the Dirac nature of the tripletinos and the near
degeneracy of the states. We calculated this using
mass insertions to account for Higgsinos-tripletino
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mixing, as well as in an effective theory where the
Higgsinos were integrated out. In both cases the
vacuum polarization amplitudes Π11ð0Þ and Π33ð0Þ
are nonzero, but their difference is zero.

(3) Higgs observables
The addition of SUð2ÞL triplets to the content of

the MSSM adds more charged particles which
couple to the Higgs boson and could affect the
decay of h → γγ. Unlike more traditional triplet
extensions [15,16,18,58] only one of the triplets
couples to Higgs bosons, and in the Y ¼ �1 Dirac
triplet extension of the MSSM, the partial width is
not affected to lowest order. The only way that the
triplets in this model play a role in the diphoton rate
is by allowing for lower stop masses which affect
both the production and the decay of the Higgs
boson [8,59].

Moving to direct production at the LHC, the triplet
fermions are hard to detect due to the small mass splitting.
Giving the triplets a Dirac mass and having only one triplet
couple to the doublet makes their presence hard to find in
sensitive loop-level processes too. The effects of the triplets
can still be seen in the efficient raising of the Higgs mass
leading to light stops. If the triplet fermions happen to be
lighter than the stops it would be possible to use stop
decays to observe the triplet fermions.

B. Stop decays

We have seen that the inclusion of Y ¼ �1 triplets with
interactions inspired by the Dirac NMSSM—namely where
only one triplet couples to Higgs bosons—leads to light
stops. While nice from a fine-tuning perspective, light stops
are constrained by the LHC, so we must make sure these
“natural” scenarios are not ruled out by experimental
searches. As we illustrate in this section, the phenomenol-
ogy of the stops depends on the hierarchy of μ and μΣ and
whether the lightest stop is on the left- or right-hand side. In
all four scenarios we sketch out the viable parameter space.
In most circumstances, we find that compressed spectra are
required to avoid LHC limits, such that larger values of μ
are necessary; this a posteriori motivates our benchmark
choice μ ¼ 250 GeV.
To anchor our phenomenology study, we fix λ ¼ 0.25,

mT ¼ 800 GeV mχ ¼ 10 TeV, and vary μΣ (all other
parameters are taken from Table I). This parameter slice
is indicated by the green dashed line in Figs. 2(a)–2(b) and
is characterized by low fine-tuning. The spectrum of the
charginos, neutralinos and stops along this line is shown
below in Fig. 3. The solid colored lines show the chargino/
neutralino masses; the sharp feature at μΣ ∼ μ ¼ 250 GeV
corresponds to where the composition of the lightest ~χ0i ; ~χ

þ
shifts from primarily tripletino to primarily Higgsino. The
black lines in Fig. 3 indicate the stop spectra for both stop
selection choices (see Sec. IV). The solid line corresponds
to changing both the left- and the right-hand soft masses

simultaneously. The dashed line, labeled ~t1, and the dotted
line, labeled ~t2 mark the masses of the two stops when the
left-hand soft mass is set to 800 GeV and the right-hand
mass moves to accommodate the Higgs mass.
The next ingredient in the stop phenomenology is the

branching ratio. Using the same set of parameters as in
Fig. 3, we plot the branching ratio below in Fig. 4 for both
stop scenarios. In the branching ratio calculations we only
keep the two-body final states. Both sets of branching ratios
show a feature at μΣ ∼ 250 GeV where the character of the
electroweakinos changes. For light right-hand stops (left
panel of Fig. 4) the branching fraction for ~t1 → bχþ1 is
∼100% over a wide range of μΣ because the triplet states do
not couple directly to the stops and the stop mass in this
scenario is nearly the same mass as our benchmark
Higgsino (the LSP) mass. In the right panel, where both
left and right-hand stops have the same mass, there is more
variety in the branching ratios because the stops are heavy
enough to undergo both ~t → tχ0i and ~t → bχþi decays.
From Figs. 3 and 4, we can see the phenomenology

naturally splits up into four categories, μ < μΣ, μ > μΣ for
either m~t1 ≪ m~t2 or m~t1 ≅ m~t2, which we discuss in more
detail below:
Case m~t1 ≪ m~t2 : Here the left-hand stop mass is fixed to

800 GeV and the right-hand stop mass is variant to satisfy
the Higgs mass. For μΣ ≲ 2 TeV, m~t1 ∼ 300 GeV.

(i) μΣ > μ: Here the tripletinos play little role, and the
low energy states are simply stops and Higgsinos.
These scenarios are tightly constrained unless the
Higgsino mass μ is nearly the same as the stop mass
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FIG. 3 (color online). Spectrum of the stops, neutralinos and
charginos. The Higgsino mass parameter μ ¼ 250 GeV while
the triplet mass is along the horizontal axis. Two methods of
choosing the stop mass are shown. The solid black line labeled
~t1;2 marks changing both the left and right soft masses simulta-
neously. The dashed lines keep the left-hand soft mass at
800 GeV and use the right-hand mass to set the Higgs mass.
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and the only two-body decay mode is ~t → bχþ1 . As μ
approaches m~t1 , the b and subsequent χþ1 decay
products become soft and conventional stop
searches become inefficient. For m~t1 ¼ 300 GeV,
a Higgsino mass of μ≳ 180 GeV is needed
[44,50,51,60] to avoid current LHC bounds.

(ii) μΣ < μ: In this case the tripletinos are lighter than the
Higgsinos, so stop decays proceed in two steps: stop
decaying to Higgsino, then Higgsino decaying to
tripletino. The visibility of this setup depends on the
μΣ − μ difference. If the two scales are sufficiently
separated, the Higgsino decays are energetic and will
be picked up by standard stop searches, regardless
of how degenerate μ and m~t1 are. Therefore, for this
scenario to be viable, all three scales m~t1 ; μ and μΣ
must be nearby; for the benchmark value μ ¼
250 GeV, we estimate μΣ ≳ 200 GeV is required.

Casem~t1 ∼m~t2 : In this case, the stop masses are changed
together to accommodate the Higgs mass. The stops have a
mass of around 450 GeV for μΣ ≲ 2 TeV. For larger μΣ, the
triplet contribution to m2

h shrinks and the stops quickly
increase in mass.

(i) μΣ > μ: The stop now has phase space to decay
through a top quark and does so around 30% of the
time. Searches for this mode include the leptonic
decays and all hadronic decays [45–47,49]. For a
stop mass of 450 GeV, the limits extend up to an LSP
mass of around 220 GeV; thus our model with μ ¼
250 GeV survives. However, a left-hand stop im-
plies a left-hand sbottom of similar mass. The
sbottom searches are very effective for this sort of
the spectrum and place constraints on the sbottom up
to a mass of ∼700 GeV for an LSP mass of 250 GeV
[61,62]. The sbottom (and stop) mass is raised above

700 GeV when the triplet effects are decoupled with
μΣ > 10 TeV. In the large region of parameter space
where the sbottoms are 450 GeV, in order to be
viable, the LSP mass (μ in this case) must be raised
to ∼300 GeV.

(ii) μΣ < μ: In this region, all stops and bottoms first
decay to Higgsino plus b=t, with the Higgsino
subsequently decaying to tripletino. The sbottom
searches can again be useful, but one potential
caveat is that the sbottom decays in our scenario
are quite busy, containing extra objects from the
Higgsino decay. These final states may be inefficient
in sbottom searches such as [62] which explicitly
veto events with leptons or with more than two jets.
The extent to which this scenario can evade the
sbottom searches without being collected by another
search requires a dedicated analysis, though it is
possible that a region window near μΣ ∼ μ exists
undetected by current stop or sbottom searches.

Summarizing, the light stops that are a consequence of
this triplet extension are safe from current LHC bounds if
the spectrum is sufficiently squeezed. For m~t1 ≪ m~t2 (light
right-hand stop), the benchmark (μ ¼ 250 GeV) scenario is
safe provided μΣ > 200 GeV. For degenerate left- and
right-hand stops, the bounds are more stringent and are
driven by sbottom searches. For the benchmark set of
parameters to be safe, either the entire stop spectrum must
be raised to ≳700 GeVðμΣ > 10 TeVÞ or the Higgsinos
and tripletinos must be made more degenerate with the
stops, μΣ ∼ μ≳ 300 GeV. Continued searches for stop and
sbottom squarks will place tighter constraints on the model
if no sparticle is found. These stop limits may be alleviated,
for example, by lowering λ or raising μ, though at the
expense of increased fine-tuning.
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FIG. 4 (color online). Branching ratios of the stops when only considering two-body decays. The bino and wino have been completely
decoupled, only leaving the Higgsino and tripletino for the stop decays. The left panel has the left-hand stop mass set to 800 GeV and
uses the right-hand mass to raise the Higgs mass. The right panel has both soft masses change to set the Higgs mass. The Higgsino mass
is μ ¼ 250 GeV.
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VI. DISCUSSION AND CONCLUSION

We have examined extensions of the MSSM by two
SUð2ÞL triplets where only one triplet is permitted to
couple to the Higgs doublets. While not generic, this setup
is radiatively stable and has the property—first pointed out
in the Dirac NMSSM [7] using singlets—that large, ≳ few
TeV soft masses for the uncoupled field generate tree-level
contributions to the Higgs mass without the price of
increased fine-tuning. Triplet extensions can either have
Y ¼ 0 or Y ¼ �1; we have studied the Higgs mass
contributions, fine-tuning, and T -parameter constraints
for both cases.
Triplets with nonzero hypercharge are well suited to this

scenario as they must appear in pairs and can only have
Dirac-type superpotential masses. For Y ¼ �1 scenarios,
we findmh ¼ 125 GeV can be achieved with fine-tuning as
small as one part in ten (according to the same fine-tuning
measure used in [7]). We find that the least tuned regions
of parameter space coincide with regions where the
T -parameter constraint—usually a thorn in the side of
triplet models—is not an issue. The smallness of the T
parameter is a consequence of the tan β dependence of the
triplet-Higgs interaction, aided by the fact that the
uncoupled triplet soft mass can be very large (≳TeV).
The least tuned regions also have light stop spectra,

either m~t1 ∼ 300 or m~t1 ∼ 450 GeV depending on whether
only one stop is light or both. Such light stops are running
out of hiding places at the LHC. In order to remain
undetected, the stops must be fairly degenerate with the
LSP, m~t1 −mLSP ≲ 100 GeV, though the details of the
bounds depend on the hierarchy of the triplet Dirac mass
μΣ and the Higgsino mass μ, as well as on the handedness
of the lightest stop; scenarios with light right-hand stops are
less constrained than with left-hand stops.
In addition to light stops, the charged and neutral

fermionic components of the triplets, the tripletinos, may
be light. In the parameter space of interest for the purposes
of raising the Higgs mass, these triplets are unconstrained

by existing LHC searches. This stealthiness is due to the
small splitting among the triplet states and because the
tripletinos only couple to Higgs and gauge bosons at tree
level. Finally, for certain triplet parameters—for example
μΣ ∼mχ ∼ 2 TeV for the parameter set in Fig. 2(b)—the
T -parameter contribution from the triplet sector may be
within the reach of future precision electroweak studies.
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APPENDIX A: POTENTIAL FOR
THE Y ¼ 0 TRIPLETS

In the following two appendixes we list the effective
potential, the expressions for the soft masses in terms of the
model parameters (via the minimization conditions) and the
change in the Higgs mass coming from the triplet sector. It
must be emphasized that all of these are tree-level quantities
that will receive loop corrections. For the model involving
two Y ¼ 0 triplets, the triplet fields are given by

Σ1 ¼
�
T0=

ffiffiffi
2

p
−Tþ

2

T−
1 −T0=

ffiffiffi
2

p
�

and

Σ2 ¼
�
χ0=

ffiffiffi
2

p
−χþ2

χ−1 −χ0=
ffiffiffi
2

p
�
: ðA1Þ

The only change in the superpotential from the MSSM is

W ⊃ λHu · Σ2Hd:

Expanding the neutral scalar potential including the soft
terms leads to

Vneutral ¼ m2
Hu
jH0

uj2 þm2
H0

d
jH0

dj2 þm2
χ jχ0j2 þm2

T jT0j2 þ
���� λffiffiffi

2
p H0

dT
0 − μH0

d

����2 þ
���� λffiffiffi

2
p H0

uT0 − μH0
u

����2
þ
����μΣχ0 þ λffiffiffi

2
p H0

dH
0
u

����2 þ jμΣT0j2 þ g2 þ g02

8
ðjH0

dj2 − jH0
uj2Þ2

þ
�
μΣBΣχ

0T0 þ BμμH0
dH

0
u þ

Aλλffiffiffi
2

p H0
dH

0
uχ

0 þ H:c:

�
: ðA2Þ

The heavy triplet scalars are then integrated out, leading to an effective potential of

Veff ⊃ ðm2
Hu

þ jμj2ÞjH0
uj2 þ ðm2

Hd
þ jμj2ÞjH0

dj2 þ
m2

Z

4v2
ðjH0

dj2 − jH0
uj2Þ2 − ðBμμH0

dH
0
u þ H:c:Þ

þ jλH0
dH

0
uj2

2

�
1 −

μ2Σ
μ2Σ þm2

χ

�
−

λ2

2ðμ2Σ þm2
TÞ

jAλH0
dH

0
u − μðjH0

uj2 þ jH0
dj2Þj2 þ ðhigher orderÞ: ðA3Þ
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Terms of order OðD−2
χ ; D−2

T ; D−1
χ D−1

T Þ and higher inverse powers have been neglected, where Dχ;T ≡ ðμ2Σ þm2
χ;TÞ. The

conditions needed to achieve electroweak symmetry breaking (EWSB) at the minimum of this potential are

m2
Hu

¼ −jμj2 þm2
Z

2
cosð2βÞ þm2

Acos
2β −

λ2v2

2
cos2β þ v2λ2

2

−4jμj2 − Aλðμþ μ�Þðcosð2βÞ − 2Þ cot β − 2A2
λcos

2β

μ2Σ þm2
T

− μ2Σv
2λ2

cos2β
μ2Σ þm2

χ
; and ðA4Þ

m2
Hd

¼ −jμj2 −m2
Z

2
cosð2βÞ þm2

Asin
2β −

λ2v2

2
sin2β þ v2λ2

2

−4jμj2 þ Aλðμþ μ�Þð2þ cosð2βÞÞ tan β − A2
λsin

2β

μ2Σ þm2
T

− μ2Σv
2λ2

sin2β
μ2Σ þm2

χ
: ðA5Þ

The corresponding shift in the MSSM physical Higgs mass
in the decoupling limit

Δm2
h ¼

v2λ2

2
sin2ð2βÞ m2

χ

μ2Σ þm2
χ
−
v2λ2

2

j2μ� − Aλ sinð2βÞj2
μ2Σ þm2

T
:

APPENDIX B: POTENTIAL FOR
THE Y ¼ �1 TRIPLETS

Now we examine the model where the triplets have
hypercharge Y ¼ �1, which can then be expressed as

Σ1 ¼
�
T−=

ffiffiffi
2

p
−T0

T−− −T−=
ffiffiffi
2

p
�

and

Σ2 ¼
�
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ffiffiffi
2

p
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ffiffiffi
2

p
�
: ðB1Þ

The superpotential is modified from the MSSM with

W ⊃ λHu · Σ1Hu:

The neutral potential is then given by

Vneutral ¼ m2
Hu
jHuj2 þm2

Hd
jHdj2 þm2

χ jχ0j2 þm2
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The heavy triplets are integrated out, leaving an effective potential of

Veff;neut ¼ ðm2
Hu

þ μ2ÞjH0
uj2 þ ðm2
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þ μ2ÞjH0
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The minimization conditions are given by

m2
Hu

¼ −jμj2 þ 1
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This leads to a shift in the Higgs mass in the decoupling limit of

Δm2
h ¼ 4v2λ2sin4ðβÞ

�
m2

T1

μ2Σ þm2
χ

�
−
4v2λ2sin2ðβÞ
μ2Σ þm2

T
j2μ� cosðβÞ − Aλ sinðβÞj2: ðB6Þ

APPENDIX C: FINITE THRESHOLD CORRECTION

The threshold correction arises when the heavy triplet fields are integrated out. The one-loop contribution is given by

δm2
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We are only interested in the finite piece.

APPENDIX D: NEUTRALINO AND CHARGINO MIXING IN Y ¼ �1

The Y ¼ �1 mixing matrix for the neutralinos in the basis ψ0 ¼ ð ~B; fW0; fH0
d;
fH0
u;
fT0; ~χ0Þ is given by

LNeutralino Mass ¼ −
1

2
ðψ0ÞTM ~Nψ

0 þ c:c:

M ~N ¼

0
BBBBBBBB@

M1 0 −cβsWmZ sβsWmZ −
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2
p
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2
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1
CCCCCCCCA
; ðD1Þ

where cβ, sβ, cW , and sW represent the cosine or sine of beta or θW. The triplets add one chargino. Using the basis
ψ� ¼ ð ~Wþ; ~Hþ

u ; ~χþ; ~W
−; ~H−

d ; ~T
−Þ, the chargino mass matrix is

LChargino Mass ¼ −
1

2
ðψ�ÞTM ~Cψ

�;

where

M ~C ¼
�

0 XT

X 0

�
;

and
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Finally, the doubly charged fermion mass matrix is

LDoubly Charged ¼ −
1

2

�
~χþþ ~T−−

��
0 −μΣ

−μΣ 0

��
~χþþ
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�
: ðD3Þ
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