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I consider models in which nonstandard supersymmetry-breaking terms, including Dirac gaugino
masses, arise from F-term breaking mediated by operators with a 1=M3 suppression. In these models, the
supersoft properties found in the case of D-term breaking are absent in general, but can be obtained as a
special case that is a fixed point of the renormalization group equations. The μ term is replaced by three
distinct supersymmetry-breaking parameters, decoupling the Higgs scalar potential from the Higgsino
masses. Both holomorphic and nonholomorphic scalar cubic interactions with minimal flavor violation are
induced in the supersymmetric Standard Model Lagrangian.
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I. INTRODUCTION

In the minimal supersymmetric Standard Model (MSSM)
the gaugino partners of the gauge bosons can only have
Majorana masses. However, by enlarging the particle content
of the model to include chiral superfields in the adjoint
representation, it is possible to instead have Dirac gaugino
masses [1–3]. This amounts to promoting the gauge sector
particle content of the theory to that of N ¼ 2 supersym-
metry. In Ref. [4], Fox et al. proposed a particularly
compelling and predictive way to incorporate Dirac gaugino
masses, called supersoft supersymmetry breaking. In this
framework, supersymmetry is broken by a D-term vacuum
expectation value (VEV), leading directly to Dirac gaugino
masses together with specific nonholomorphic scalar cubic
couplings. TheMSSM squarks and sleptons remain massless
at tree level, and do not receive ultraviolet (UV) divergent or
renormalization group (RG) corrections. Earlier, Jack and
Jones [5,6] had noted the existence of the corresponding
RG trajectory in the context of a general theory with
“nonstandard” supersymmetry breaking: nonholomorphic
scalar cubic interactions and supersymmetry-breaking chiral
fermion masses in addition to Dirac gaugino masses.
Supersymmetric models with Dirac gaugino masses

from supersoft breaking have unique phenomenological
properties. As noted in Ref. [4], the real scalar part of the
adjoint chiral superfield receives a mass at tree level, but
the imaginary part (in an appropriate phase convention) is
massless at tree level, and another Lagrangian term that can
be added to the theory threatens to make one or the other of
them tachyonic. After integrating out the heavy real scalar
adjoint field, the resulting effective theory does not include
the MSSM scalar quartic interactions that usually follow
from integrating out the D-term auxiliary fields of the
Standard Model gauge groups. This makes it somewhat
problematic to stabilize the Higgs potential sufficiently to
accommodate the observed Higgs mass ofMh ¼ 125 GeV.

Solving these problems requires some interesting and
nontrivial model building. Dirac gaugino masses together
with an approximate R symmetry, or an exact R symmetry
together with an extension of the Higgs sector, provide a
strong natural suppression of flavor- and CP-violating
effects in low-energy experiments, even if flavor and CP
symmetries are not respected at all in the squark and slepton
mass sectors [7]. Given the present lack of evidence for
superpartner production at the Large Hadron Collider
(LHC), another attractive feature of supersoft models is
that they predict [8,9] a significant weakening of the limits
that can be obtained for any given beam energy. This is
partly because gluinos are predicted to be much heavier
than squarks, and partly because of the suppression of
squark pair production due to the Dirac nature of the gluino.
Recent years have seen other important studies on the
phenomenological implications of Dirac gaugino mass
models for colliders [10–15] and dark matter [16–20].
Dirac gaugino models have been further developed in
Refs. [21–60] in a variety of interesting directions.
In this paper, I consider models with Dirac gaugino

masses arising from an F-term VEV, rather than theD-term
VEV in supersoft models. In these models, the supersoft
property is lost in general, but appears as a special case, a
fixed point of the RG equations. The adjoint scalars can
naturally be made heavy. The μ problem is solved in a way
that decouples the naturalness of the electroweak breaking
scale from the Higgsino masses, similar to that proposed in
the supersoft case in Ref. [56].

II. DIRAC GAUGINO MASSES FROM
F-TERM VEVS

In this paper, the MSSM gauginos will be denoted λa,
where a is an index that runs over the adjoint representation
of the gauge group with gauge coupling ga. The usual
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Majorana gaugino masses then can be written in two-
component notation as1

L ¼ −
1

2
Maλ

aλa þ c:c: ð2:1Þ

In general, to obtain Dirac gaugino masses in the low-energy
effective theory, one introduces new chiral superfields Aa

with complex scalar component ϕa and two-component
fermion component ψa. Then one can have Dirac gaugino
masses by coupling the gauginos to the adjoint chiral
fermions:

L ¼ −mDaψ
aλa þ c:c: ð2:2Þ

It is also possible to have a Majorana mass term for the chiral
adjoint fermions:

L ¼ −
1

2
μaψ

aψa þ c:c: ð2:3Þ

A completely general theory would have all three terms.
In supersoft models [4], it is assumed that the main

source of supersymmetry breaking in the MSSM can be
written as

L ¼ ka
M

Z
d2θW 0αWa

αAa þ c:c:; ð2:4Þ

where M is a scale associated with the communication
between the supersymmetry-breaking sector and the
MSSM, ka are dimensionless parameters, Wa

α ¼ λaα þ � � �
are the MSSM gauge group field strength superfields,
W 0α ¼ hDiθα is an Abelian superfield strength with a
D-term spurion component, and α is a Weyl spinor index.
As a convention, hDi is chosen to be positive. In terms of
the component fields, the result is Dirac gaugino masses
accompanied by specific scalar interactions:

L ¼ −mDaðψaλa þ c:c:Þ þ
ffiffiffi
2

p
mDaDaðϕa þ ϕa�Þ

þ gaDaðϕ†
i t

aϕiÞ þ
1

2
ðDaÞ2 ð2:5Þ

where the indices a and i are implicitly summed over, with i
labeling the scalar field flavors in the theory, ta are the
generators of the gauge group Lie algebra, and the Dirac
gaugino masses are

mDa ¼ kahDi=
ffiffiffi
2

p
M: ð2:6Þ

The last two terms in Eq. (2.5) come from the kinetic terms
of the chiral and gauge superfields, respectively. After
integrating out the MSSM gauge group auxiliary fields Da,

one finds [4] that the canonically normalized real scalar
adjoint field, Ra ¼ ðϕa þ ϕa�Þ= ffiffiffi

2
p

, has a squared mass
equal to 4m2

Da and a nonholomorphic supersymmetry-
breaking interaction with the other scalars that is also fixed
in terms of the Dirac gaugino mass, while the imaginary
scalar adjoint field Ia ¼ iðϕ�a − ϕaÞ= ffiffiffi

2
p

remains massless
and free of supersymmetry-breaking interactions:

L ¼ −mDaðψaλa þ c:c:Þ − 2m2
DaR

2
a − 2gamDaRaðϕ†

i t
aϕiÞ

−
1

2
g2aðϕ†

i t
aϕiÞ2: ð2:7Þ

The last term is the usual supersymmetric D-term-induced
scalar quartic interaction. The other terms in Eq. (2.7) form
the specific combination of supersymmetry-breaking cou-
plings that was recognized as a RG invariant trajectory in
[6]. The reason for this becomes apparent by writing it in
terms of a (nonrenormalized) superpotential spurion term
as in Eq. (2.4).
The last three terms in Eq. (2.7) are proportional to the

square of gaðϕ†
i t

aϕiÞ þ 2MDaRa. Therefore, this quantity
is set equal to 0 by the equations of motion upon
integrating out the heavy field Ra, eliminating [4] the
scalar quartic terms that are usually present in the low-
energy effective theory. These include the quartic terms
responsible for stabilizing the Higgs scalar boson poten-
tial, so the absence of such terms increases the difficulty of
obtaining Mh ¼ 125 GeV.
A term that could be expected to accompany Eq. (2.4) is

the so-called “lemon-twist” term

L ¼ kLTa
M2

Z
d2θW 0αW 0

αAaAa þ c:c:

¼ kLTa
hDi2
M2

ðϕaϕa þ c:c:Þ ð2:8Þ

¼ −kLTa
hDi2
M2

ðI2a − R2
aÞ; ð2:9Þ

where kLTa are dimensionless parameters, taken to be real
here. If kLTa < 0, then this holomorphic scalar squared mass
term makes the imaginary scalar adjoint Ia tachyonic,
unless there are other positive contributions to the squared
mass. On the other hand, if kLTa > k2a, we see by comparing
with Eq. (2.7) that then Ra will be tachyonic at tree level. In
simple UV completions of the supersoft Lagrangian, kLTa is
indeed found to be larger in magnitude than k2a, posing a
tachyonic adjoint problem [4,28,45] in the absence of fine-
tuning or contrivance. Some proposals to deal with this
issue are given in Refs. [4,28,45,56,59,60].
In this paper, I will consider the possibility that Dirac

gaugino masses instead come from an F-term VEV spurion
X ¼ θθhFi, via the Lagrangian term [62]:

1The spinor and superspace conventions used here are as in
Ref. [61].
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L ¼ −
cð1Þaffiffiffi
2

p
M3

Z
d4θX�XWaα∇αAa ¼ −mDaψ

aλa ð2:10Þ

where hFi is chosen real as a convention and cð1Þa is a
dimensionless parameter for each of SUð3Þc, SUð2ÞL and
Uð1ÞY , and now instead of Eq. (2.6),

mDa ¼ cð1Þa hFi2=M3: ð2:11Þ

Note that DαΦ is not supergauge covariant if Φ is a
nonsinglet chiral superfield. Here

Dα ¼
∂
∂θα − iðσμθ†Þα∂μ ð2:12Þ

is the usual chiral covariant superderivative, with the
“covariant” here traditionally referring to supersymmetry
transformations, rather than supergauge transformations.
Therefore, Eq. (2.10) instead uses a “gauge-covariant chiral
covariant superderivative,” whose action on a chiral super-
field Φ is defined by

∇αΦ ¼ e−VDαðeVΦÞ ð2:13Þ

where V ¼ 2gaVata, with ta the matrix generator for the
rep of Φ and Va is the MSSM vector superfield for the
index a. However, in Wess-Zumino gauge, the eV and e−V

factors have no practical effect on the component-level
expressions here or below when spurions X�X ¼
θ†θ†θθhFi2 are present.
Equation (2.10) is a nonholomorphic source for the Dirac

gaugino mass. Therefore, the Dirac gaugino masses are not
accompanied by the supersoft scalar couplings, in general.

III. OTHER LAGRANGIAN TERMS AND
MODEL-BUILDING CRITERIA

A. Terms with 1=M3 suppression

The Dirac gaugino mass with F-term spurion origin
given by Eq. (2.10) can be accompanied by other super-
symmetry-breaking Lagrangian terms in the low-energy
effective theory. Since it is suppressed by 1=M3, it is not at
all clear whether it can be the dominant source of
supersymmetry breaking in the MSSM sector.
In particular, even if X carries a conserved charge, this

term is allowed:

L ¼ −
kΦ�

iΦj

M2

Z
d4θX�XΦ�

i e
VΦj ð3:1Þ

where Φi are the chiral superfields of the theory, including
the quarks, leptons and Higgs fields of the MSSM and the
adjoint chiral superfields. If present, this term can give
nonholomorphic squared masses to the MSSM Higgs,
squarks and sleptons with a mass scale of order hFi=M,

which should be much larger than the Dirac gaugino
masses, unless the dimensionless parameters kΦ�

iΦj
are very

small, or hFi is comparable to M2. There are also terms

L ¼ −
1

M2

Z
d4θX�XðkAAAaAa þ kHuHd

HuHdÞ ð3:2Þ

that can give holomorphic squared mass terms to the scalar
adjoints and the Higgs fields.
Estimating naively, if mDa ∼ hFi2=M3 is to be of order

m~g ∼ 1 TeV, then if kΦ�
iΦj

is of order 1, the squark mass

scale hFi=M should be of order m ~Q ∼
ffiffiffiffiffiffiffiffiffiffi
Mm~g

p
. This can be

up to an intermediate scale 1011 GeV if M is the reduced
Planck mass, but could be much smaller if M is low. For
large M, one can have a version of supersymmetry with
Dirac gaugino masses and hierarchically heavier squarks
and sleptons (sometimes called “PeV-scale” or “split” or
“semisplit” supersymmetry, depending on the extent of the
hierarchy). While such possibilities should not be dis-
missed immediately and can have some intriguing proper-
ties [63–65], this goes against the main motivation for
supersymmetry, the solution to the hierarchy problem
associated with the electroweak scale. Therefore, for the
rest of this paper I instead prefer to pursue the possibility
that the operators in Eqs. (3.1) and (3.2) are absent or
sufficiently suppressed, and ask what happens if the Dirac
gaugino masses are among the largest manifestations of
supersymmetry breaking in the visible sector.
There is no obvious symmetry that would allow the

Dirac gaugino mass operator of Eq. (2.10) while forbid-
ding Eq. (3.1). Indeed, realizations of Dirac gaugino
masses using F-term VEVs in gauge mediation evidently
do [25,26,28] generically have scalar masses of the type
given in Eq. (3.1). The Dirac gaugino masses can be
comparable to, but somewhat smaller than, these scalar
squared masses, but this requires a low M. This has the
drawback that it appears to force one to view the apparent
gauge coupling unification as a mere accident, as the
combined presence of light adjoint and light messenger
chiral superfields will cause the Standard Model gauge
couplings to become nonperturbatively strong in the
UV before they unify. Perhaps a more palatable approach
is that in models of deconstructed gaugino mediation
[66,67], it is possible to highly suppress (“screen”) the
nonholomorphic scalar squared masses compared to the
Dirac gaugino masses [32], even though the former are not
forbidden by symmetry.
Rather than commit to a particular type of UV com-

pletion, I will instead consider a set of model-building
criteria that are designed to allow F-term generated Dirac
gaugino masses to dominate over, or be comparable to,
other sources of supersymmetry breaking. First, I assume
that X carries some conserved charge, so that parametri-
cally larger Majorana gaugino masses arising from
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−
1

M

Z
d2θXWaαWa

α; ð3:3Þ

as well as holomorphic scalar interactions from super-
potential terms involving X, are forbidden. Second,
suppose that all interactions between the spurions X;X�
and the MSSM sector are suppressed by 1=M3, whereM is
a characteristic large mediation mass scale, with terms of
order 1=M2 either forbidden or suppressed. This appeal to
dimensional analysis (which perhaps could have a geo-
graphical or dynamical origin, as in [32]), rather than
symmetry, would eliminate from contention Eqs. (3.1) and
(3.2). Third, suppose that the spurion interactions respect
the approximate flavor symmetries of the Standard Model;
this assumption is technically natural, and effectively bans
squark and slepton chiral superfields from appearing in the
spurion terms. Finally, if one wants the Dirac gaugino
masses and other supersymmetry-breaking interactions
discussed below to be larger than the effects of
anomaly-mediated supersymmetry breaking (AMSB)
[68], one must have hFiβ=MPlanck ≲ hFi2=M3, where β
schematically represents the beta function or anomalous
dimension suppression inherent in AMSB. This can hold if
M is not larger than about 1013 GeV, so the scenario below
apparently requires supersymmetry breaking to occur and
to be communicated at a scale well below the Planck mass.
I admit to not knowing of any UV completion that
guarantees all of these criteria as stated, and it is conceiv-
able that none exists. Nevertheless, without further apology,
I will proceed to consider their consequences.
Besides the Dirac gaugino masses of Eq. (2.10), one has

the following set of Lagrangian terms (and their complex
conjugates) allowed by the above criteria:

cð2Þaffiffiffi
2

p
M3

Z
d4θX�XAa∇αWaα; ð3:4Þ

−
cð3Þa

2M3

Z
d4θX�XWaαWa

α; ð3:5Þ

−
cð4Þa

4M3

Z
d4θX�X∇αAa∇αAa; ð3:6Þ

−
cð5Þa

4M3

Z
d4θX�XAa∇α∇αAa; ð3:7Þ

−
cð6Þa

4M3

Z
d4θX�XAa�ðeV∇α∇αAÞa; ð3:8Þ

−
cð7Þ

2M3

Z
d4θX�X∇αHu∇αHd; ð3:9Þ

−
cð8Þ

4M3

Z
d4θX�XHu∇α∇αHd; ð3:10Þ

−
cð9Þ

4M3

Z
d4θX�XHd∇α∇αHu; ð3:11Þ

−
cð10Þ

4M3

Z
d4θX�XH�

ueV∇α∇αHu; ð3:12Þ

−
cð11Þ

4M3

Z
d4θX�XH�

de
V∇α∇αHd; ð3:13Þ

where the cðiÞ are dimensionless parameters, and∇α∇αΦ ¼
e−VDαDαðeVΦÞ for a chiral superfield Φ. I do not impose

an exact Uð1Þ R symmetry; otherwise all but cð1Þa and cð2Þa

would vanish, and it would be necessary to introduce an
extra pair of Higgs doublet chiral superfields, as in [7].
Also, for simplicity I do not consider terms of the form
1
M3

R
d4θX�XΦ3 þ c:c: and 1

M3

R
d4θX�XΦ2Φ� þ c:c: where

Φ3 and Φ2Φ� represent different gauge-invariant combina-
tions of adjoint and Higgs chiral superfields. These can
contribute scalar cubic interactions of the same magnitude
as the Dirac gaugino masses. I also neglect the effects of
any superpotential terms that do not involve the MSSM
quark and lepton superfields. Thus there is no super-
symmetric μ term and any superpotential couplings of
the adjoints are taken to be small. Now let us consider the
component field form of each of the terms in Eqs. (3.4)–
(3.13) in turn.

B. Optional supersoft interactions

The Lagrangian contribution from the term in Eq. (3.4)
together with its complex conjugate can be written as

L ¼ mRa
Daðϕa þ ϕa�Þ=

ffiffiffi
2

p
¼ mRa

DaRa; ð3:14Þ

where

mRa
¼ 2cð2Þa hFi2=M3: ð3:15Þ

After combining this with the rest of the Lagrangian
involving the Da auxiliary field, and integrating it out,
one obtains

L ¼ −
1

2
ðmRa

Ra þ gaϕ
†
i t

aϕiÞ2: ð3:16Þ

This is recognized as the scalar part (only) of the supersoft
interaction, but with a parameter mRa

that is independent
of the Dirac gaugino mass parameter mDa ¼ cð1Þa hFi2=M3.
A specific linear combination of Eqs. (2.10) and (3.4),
namely cð1Þa ¼ cð2Þa so that mRa ¼ 2mDa, gives a combina-
tion proportional to the complete supersoft interaction.
The reason for this can be seen by noting that [taking
cð1Þa ¼ cð2Þa ¼ 1] integration by parts in superspace yields
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1ffiffiffi
2

p
M3

Z
d4θX�XDαðAaWaαÞ

¼ 1

4
ffiffiffi
2

p
M3

Z
d2θD†D†DαðX�XÞAaWaα; ð3:17Þ

so that the chiral superfield 1
M3 D†D†DαðX�XÞ now plays

the role of the D-term spurion 1
MW 0α in the supersoft

Lagrangian Eq. (2.4). Previous papers that discuss Dirac
gaugino masses in the context of F-term spurions have used
this supersoft form; see for example Refs. [25,27,32].
However, with F-term breaking, that specific linear combi-
nation is not preferred in general, except that it is a fixed
point of the RG running, with mixed stability properties to
be discussed below. Therefore it is possible to assume that

jcð2Þa j is smaller than jcð1Þa j, so that the Dirac gaugino mass
parameter dominates over the scalar adjoint interactions.
This will avoid the problem of the missing scalar quartic
couplings in the low-energy MSSM effective theory that
can occur in the supersoft case.

C. General gaugino masses

The terms in Eqs. (3.5) and (3.6), together with their
complex conjugates, provide Majorana masses for the
gaugino and the adjoint chiral fermion, respectively, with

L ¼ −
1

2
Maλ

aλa −
1

2
μaψ

aψa þ c:c:; ð3:18Þ

where

Ma ¼ cð3Þa hFi2=M3; ð3:19Þ

μa ¼ cð4Þa hFi2=M3: ð3:20Þ

These terms, and the Dirac gaugino mass mDa from
Eqs. (2.10)–(2.11), are all parametrically of the same order,
so the gaugino mass can be the most general allowed by
gauge invariance. In the basis ðλa;ψaÞ, the gaugino mass
matrix is

�
Ma mDa

mDa μa

�
; ð3:21Þ

The gluinos will be Dirac-like if jcð3Þa j and jcð4Þa j are both
much less than jcð1Þa j, or Majorana-like if at least one of
jcð3Þa j and jcð4Þa j is much greater than jcð1Þa j, or could have a
mixed Dirac/Majorana character. This provides a continu-
ous set of possibilities for gluino couplings to quark-squark
in the MSSM, following from the mixing. For the electro-
weak gauginos, there is of course a further complication
due to mixing with the Higgsinos.

D. Scalar adjoint masses

The Lagrangian term of Eq. (3.7) and its complex
conjugate give a common positive-definite squared mass
to both the real and imaginary parts of the adjoint scalar:

L ¼ mSaϕ
aFa þ c:c: → −jmSaj2jϕaj2

¼ −
1

2
jmSaj2ðR2

a þ I2aÞ; ð3:22Þ

where the→ indicates the effect of integrating out the chiral
adjoint auxiliary field Fa in this term together with its
kinetic term contribution jFaj2, and

mSa ¼ cð5Þa hFi2=M3: ð3:23Þ
This mass scale is again parametrically the same order as
the Dirac gaugino mass. Unlike the minimal version of the
supersoft model, the adjoint scalar Ra and pseudoscalar Ia
therefore can naturally have a common positive squared
mass at tree level, in addition to the positive squared mass
for Ra if cð2Þa does not vanish.
Note that the particular linear combination cð4Þa ¼ cð5Þa

would give a supersymmetric mass to the chiral adjoint
superfield, with mSa ¼ μa. The reason for this is that the
corresponding Lagrangian term is [for cð4Þa ¼ cð5Þa ¼ 1]

−
1

8M3

Z
d4θX�XDDðAaAaÞ; ð3:24Þ

which, upon integration by parts twice, can be written as a
superpotential term:

1

32M3

Z
d2θD†D†DDðX�XÞAaAa ¼ hFi2

2M3

Z
d2θAaAa:

ð3:25Þ

In fact, this term has precisely the same effect as the one
proposed by Nelson and Roy in Ref. [56] in the supersoft
case with D-term breaking. However, again in the present
context there is no reason in general to prefer this specific
linear combination.
If we also include the term Eq. (3.8), then Eq. (3.22) is

generalized to

L ¼ ðmSaϕa þm0
Saϕ

�
aÞFa þ c:c:; ð3:26Þ

where

m0
Sa ¼ cð6Þa hFi2=M3; ð3:27Þ

so that after integrating out Fa we get

L ¼ −ðjmSaj2 þ jm0
Saj2Þjϕaj2 − ðmSam0�

Saϕ
2
a þ c:c:Þ:

ð3:28Þ
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This still always provides positive semidefinite squared
masses for both of the adjoint scalar degrees of freedom,
but splits them apart. The squared mass eigenvalues
are ðjmSaj � jm0

SajÞ2.

E. Solution to the μ problem

The three Lagrangian terms in Eqs. (3.9)–(3.11) provide
a novel solution to the μ problem. First, Eq. (3.9) and its
complex conjugate yield a mass for the Higgsinos only:

L ¼ −~μ ~Hu
~Hd þ c:c: ð3:29Þ

where

~μ ¼ cð7ÞhFi2=M3: ð3:30Þ
Equations (3.10) and (3.11) and their complex conjugates
provide terms:

L ¼ μuHuFHd
þ c:c: → −jμuj2jHuj2 þ � � � ; ð3:31Þ

L ¼ μdHdFHu
þ c:c: → −jμdj2jHdj2 þ � � � ; ð3:32Þ

where

μu ¼ cð8ÞhFi2=M3; μd ¼ cð9ÞhFi2=M3: ð3:33Þ
The→ in Eqs. (3.31) and (3.32) corresponds to the effect of
integrating out the auxiliary fields FHd

and FHu
when their

kinetic terms jFHd
j2 and jFHu

j2 are included. The ellipses in
Eqs. (3.31) and (3.32) refer to nonholomorphic scalar cubic
couplings, which are

L ¼ ytμd~tRð~t�LH0
d þ ~b�LH−

d Þ
þ ybμu ~bRð ~b�LH0

u þ ~t�LH
þ
u Þ

þ yτμu ~τRð~τ�LH0
u þ ~ν�τHþ

u Þ þ c:c: ð3:34Þ
in the approximation that the only Yukawa couplings are yt,
yb, and yτ. These have the same form as the scalar cubic
terms that occur in the supersymmetric part of the MSSM
Lagrangian. However, here these terms are supersymmetry
violating in general, because μu, μd, and ~μ are different.
Thus, there are really three μ terms, all parametrically of

the same order but otherwise distinct: ~μ for the Higgsinos,
μu for the up-type Higgs scalars, and μd for the down-type
Higgs scalars. There is a special choice with cð7Þ ¼ cð8Þ ¼
cð9Þ that yields a supersymmetric relation ~μ ¼ μu ¼ μd, but
in general this specific linear combination is not preferred.
This means that the Higgsino mass ~μ is independent of the
Higgs scalar potential sector, effectively decoupling the
Higgsinos from electroweak-scale naturalness issues. A
quite similar mechanism2 has been proposed in Ref. [56] in

the supersoft context, where there can be two distinct μ
terms, one shared by the Higgsinos and the Hu scalars, and
the other common to the Higgsinos and the Hd scalars. In
fact, the two Nelson-Roy Higgs μ terms are obtained in the
present context by restricting to the special parameter
subspace with 2cð7Þ ¼ cð8Þ þ cð9Þ.
The holomorphic scalar squared mass term L ¼

−bHuHd þ c:c: will arise by RG evolution from ~μ.
While this is loop suppressed, one can obtain a sufficiently
large b if j ~μj is not too small, with no naturalness concerns
since it is not tied to jμuj in this model. Therefore,
naturalness of electroweak symmetry breaking might
actually prefer a relatively heavier Higgsino, in contra-
diction with popular argument. However, there is another,
probably better, way to get the b-term, discussed in the next
subsection.

F. MSSM a-term and b-term
(holomorphic scalar) couplings

Finally, consider including the terms in Eqs. (3.12) and
(3.13) and their complex conjugates, in conjunction with
the terms in Eqs. (3.10) and (3.11) just considered. Their
effect is to modify Eqs. (3.31) and (3.32) to give a total:

L ¼ ðμuHu þ μ0dH
�
dÞFHd

þ ðμ0uH�
u þ μdHdÞFHu

þ c:c:;

ð3:35Þ

where

μ0u ¼ cð10ÞhFi2=M3; μ0d ¼ cð11ÞhFi2=M3: ð3:36Þ

Now, adding in the jFHu
j2 and jFHd

j2 kinetic terms and
integrating out the auxiliary fields one obtains, in addition
to the nonholomorphic scalar cubic couplings of Eq. (3.34),
terms that have exactly the same form as the usual MSSM
soft scalar interactions:

L ¼ −ðHu ~̄uau ~Q −Hd
~̄dad ~Q −Hd ~̄eae ~Lþ bHuHd þ c:c:Þ

− jMuj2jHuj2 − jMdj2jHdj2: ð3:37Þ

Here the Higgs scalar squared mass parameters are now

jMuj2 ¼ jμuj2 þ jμ0uj2; ð3:38Þ

jMdj2 ¼ jμdj2 þ jμ0dj2; ð3:39Þ

b ¼ μuμ
0�
d þ μdμ

0�
u ; ð3:40Þ

and the a-terms are, in terms of the corresponding super-
potential Yukawa coupling matrices yu, yd, and ye,

au ¼ μ0�u yu; ð3:41Þ
ad ¼ μ0�d yd; ae ¼ μ0�d ye: ð3:42Þ

2Some other intriguing ways of decoupling the Higgsino mass
from the naturalness of the Higgs potential are proposed in
Refs. [69–72].
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In this way, one obtains minimal flavor-violating a-terms,
including the Higgs-top-squark-anti-top-squark coupling at
which is useful in obtaining one-loop contributions that
help give a Higgs mass as high as 125 GeV. The magnitude
of at is related at tree level to a lower bound on jMuj,
as seen from comparing Eqs. (3.38) and (3.41). Note that
all of these terms are parametrically related to the mass
scale hFi2=M3.
The terms in the effective Lagrangian listed above

include nonstandard supersymmetry breaking operators,
including those claimed to be hard breaking in the
classification of Ref. [73]. Here, they have been shown
to arise from a consistent spurion analysis, but one might
still worry about destabilizing divergences associated with
tadpoles in the case of a gauge singlet chiral superfield [74].
One way to avoid this is to only include Dirac gauginos for
the SUð2ÞL and SUð3Þc gauginos. Alternatively, one may
assume that at very high energies the gauge singlet chiral
superfields are actually in a nonsinglet representation of an
extended gauge group.

IV. RENORMALIZATION GROUP
RUNNING EFFECTS

In the previous section, it was found that the supersym-
metry breaking from an F-term spurion VEVand mediated
by operators suppressed by 1=M3 can produce all types of
supersymmetry breaking with positive mass dimension,
including the “nonstandard” terms: Dirac gaugino masses,
chiral fermion masses, and nonholomorphic scalar cubic
interactions. Note that the Higgs-related terms discussed
here are actually independent of the Dirac gaugino mass
issue. One can delete any or all of the adjoint chiral
superfields from the theory, and the same mechanism will
work to provide three independent μ terms, in a theory with
F-term breaking and suppression of communication of
supersymmetry breaking by 1=M3.
If the adjoint chiral superfields and Dirac gaugino masses

are included, with a mass scale of order TeV, then gauge-
coupling unification can be achieved by also adding in
vectorlike chiral superfields in the leptonlike representations

Lþ L̄þ 2 × ½eþ ē� ¼ ð1; 2;−1=2Þ þ ð1; 2;þ1=2Þ
þ 2 × ½ð1; 1;−1Þ þ ð1; 1;þ1Þ�

ð4:1Þ
of SUð3Þc × SUð2ÞL ×Uð1ÞY . The resulting two-loop run-
ning of gauge couplings is shown in Fig. 1, using a
simplified supersymmetric threshold at 2 TeV. Although
the SUð3Þc gauge coupling would not run in the one-loop
approximation, it actually becomes significantly stronger
in the UV due to two-loop effects, with α3ðMGUTÞ=
α3ð2 TeVÞ ¼ 1.3.
The complete two-loop RG equations for a general

theory of this type have already been given in [5,6].

The specialization to the MSSM (plus chiral adjoint
superfields) will not be given here, as this can now be
done easily by symbolic manipulation, for example using
modern tools such as Ref. [38]. The case discussed here is
different than e.g. in Ref. [37,51], because here the super-
soft scalar interactions have been decoupled from the Dirac
gaugino masses.
Because the supersoft case is a fixed point of the more

general case, it is interesting to consider whether that fixed-
point solution is attractive (stable) in the infrared (IR). To
investigate this, without taking on the most general case,
consider the following supersymmetry-breaking Lagrangian
terms that involve the gauginos and the chiral adjoint fields:

L ¼ −
�
1

2
Maλ

aλa þ 1

2
μaψ

aψa þmDaψ
aλa

þ
ffiffiffi
2

p
gamDaNaϕ

aðϕ†
i t

aϕiÞ

þ 1

2
baðϕaÞ2 þ c:c:

�
−m2

ajϕaj2: ð4:2Þ

Here I have assumed that the scalar cubic couplings of
adjoints to MSSM fields labeled by i are actually indepen-
dent of i. This condition is preserved by one-loop RG
running if it is true at any scale, and it is a feature of
Eq. (3.16), which may serve as a boundary condition on the
running. These couplings are also normalized to the gauge
coupling ga and the Dirac gaugino mass mDa, so that they
are represented by three dimensionless running parameters
Na, one for each of the gauge groups SUð3Þc, SUð2ÞL, and
Uð1ÞY . The one-loop beta functions of the gauge couplings
and the gaugino/adjoint fermion masses and the Na are
found from Ref. [6]:

2 4 6 8 10 12 14 16
Log10(Q/GeV)
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U(1)

SU(2)

SU(3)

FIG. 1 (color online). The two-loop running of the SUð3Þc,
SUð2ÞL, and Uð1ÞY inverse gauge couplings α−1a , as a function of
the renormalization scaleQ, with the MSSM particle content plus
adjoint chiral superfields and the vectorlike chiral superfields in
the representations of Eq. (4.1). For simplicity, the masses of all
particles that are beyond the Standard Model are put at a single
threshold at 2 TeV.
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16π2βga ¼ g3a½TaðRFÞ − 2CðGaÞ�; ð4:3Þ

16π2βMa
¼ g2aMa½2TaðRFÞ − 4CðGaÞ�; ð4:4Þ

16π2βμa ¼ g2aμa½−4CðGaÞ�; ð4:5Þ

16π2βmDa
¼ g2amDa½TaðRFÞ − 4CðGaÞ�; ð4:6Þ

16π2βNa
¼ 4g2aCðGaÞðNa − 1Þ; ð4:7Þ

where CðGaÞ is the quadratic Casimir of the adjoint
representation of the gauge group, and TaðRFÞ is the
Dynkin index of the chiral superfields that are in the
fundamental representation (i.e., not including the adjoint
representation chiral superfields). For SUð3Þc, one has
CðGaÞ ¼ 3 and TaðRFÞ ¼ 6. For SUð2ÞL, one hasCðGaÞ ¼
2 and TaðRFÞ ¼ 7þ nLþL̄. For Uð1ÞY, one has CðGaÞ ¼ 0
and TaðRFÞ ¼ ð33þ 3nLþL̄ þ 6neþēÞ=5 in a GUT normali-
zation (so using g1 ¼

ffiffiffiffiffiffiffiffi
5=3

p
g0). For the minimal MSSM

with Dirac gaugino masses, nLþL̄ ¼ neþē ¼ 0, and for the
model that unifies gauge couplings with Eq. (4.1),
nLþL̄ ¼ 1, neþē ¼ 2. I will use the latter in the numerical
results and fixed-point analysis below.
Also found from Ref. [6] are the beta functions for the

nonholomorphic and holomorphic adjoint scalar masses,
respectively:

16π2βm2
a
¼ g2a½4TaðRfÞjNaj2jmDaj2 − CðGaÞð8jMaj2
þ 8jμaj2 þ 16jmDaj2Þ�; ð4:8Þ

16π2βba ¼ g2a½4TaðRfÞN2
am2

Da þ CðGaÞ
× ð8Maμa − 8m2

Da − 4baÞ�: ð4:9Þ

Now, for illustrative purposes, let us specialize to the case
thatMa and μa can be neglected in comparison tomDa, and
normalize the adjoint scalar squared masses to the latter:

m2
a ¼ 2EajmDaj2; ð4:10Þ

ba ¼ 2Bam2
Da: ð4:11Þ

This defines, for each gauge group, two dimensionless
running parameters Ea and Ba, in terms of which the
adjoint scalar tree-level squared mass eigenvalues are
2m2

DaðEa � jBajÞ. Note that Na, Ea, and Ba are each 1
in the supersoft case. From Eqs. (4.8) and (4.9), the beta
functions for the last two are

16π2βEa
¼ g2a½2TaðRFÞðN2

a − EaÞ þ 8CðGaÞðEa − 1Þ�;
ð4:12Þ

16π2βBa
¼ g2a½2TaðRFÞðN2

a − BaÞ þ 4CðGaÞðBa − 1Þ�:
ð4:13Þ

It is clear from Eqs. (4.7), (4.12), and (4.13) that the
supersoft trajectory Ba ¼ Ea ¼ Na ¼ 1 is indeed a fixed
point, as originally observed by Ref. [6]. However, if cð1Þa

and cð2Þa in Eqs. (2.10) and (3.4) are nonzero but different
from each other, then one will have Ba ¼ Ea ¼ Na ≠ 1
initially. The subsequent RG running will then make them
all different. The Uð1ÞY scalar cubic parameter3 N1 does
not run at all at one-loop order, and the E1 ¼ N2

1 and
B1 ¼ N2

1 fixed points are actually unstable in the IR. From
Eq. (4.7), we see that the fixed points for N3 ¼ 1 and N2 ¼
1 are stable in the IR, but while the E3 ¼ 1 fixed point is
formally stable, in practice that stability is never realized in
the running even if the input scale is very high. The fixed
points B3 ¼ 1 and E2 ¼ 1 are not even formally stable in
the IR at one-loop order, while the fixed point B2 ¼ 1 is
definitely unstable in the IR.
If one assumes that at the input scale M the starting

boundary condition is N2 ¼ N3 ¼ 0, the resulting running
for N2 and N3 [for SUð2ÞL and SUð3Þc respectively] is
shown in Fig. 2. In this graph, four different choices for the
input scale are shown: M ¼ 106 and 1010 and 1013 GeV
and the gauge coupling unification scale. (However, as
noted above, the input scaleM probably should be less than
roughly 1013 GeV, if one wants AMSB contributions to the
gaugino mass to be not larger than the Dirac gaugino
masses.) We see that the attractive fixed point at N3 ¼ 1 is

3 4 5 6 7 8 9 10 12 14 16
Log10(Q/GeV)
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1

Na

SU(3)
SU(2)

FIG. 2 (color online). Four examples of the one-loop running of
the scalar cubic coupling parameters N2 and N3 [for SUð2ÞL and
SUð3Þc respectively] as defined by Eq. (4.2). The parameter N1

does not run at one-loop order. The boundary conditions are
N2 ¼ N3 ¼ 0 at input scales M ¼ 106 and 1010 and 1013 GeV
and the gauge coupling unification scale. The vectorlike chiral
superfields of Eq. (4.1) are included to provide gauge coupling
unification.

3Gauge invariance dictates that couplings with different
indices a corresponding to the same simple or Abelian gauge
group component are degenerate. Therefore, as a slight abuse of
notation, in the following 1, 2, 3 are used for the index a to label
the Uð1ÞY , SUð2ÞL, and SUð3Þc components respectively.
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not actually approached unless the input scale M is very
high, while the fixed point N2 ¼ 1 is quite weakly
attractive, due to the smaller Casimir invariant and smaller
gauge coupling below the unification scale.
The one-loop order beta functions for the MSSM scalar

squared masses are (including the effects of possible
Majorana gaugino masses Ma)

16π2βðm2Þji ¼ 8g2aCaðiÞδji ½ðjNaj2 − 1ÞjmDaj2 − jMaj2� þ � � �
ð4:14Þ

where CaðiÞ are the quadratic Casimir invariants [4=3 for
squarks for SUð3Þc, 3=4 for doublets for SUð2ÞL, and
3Y2

i =5 for scalars with weak hypercharge Yi], and the
ellipses represent the usual Yukawa and a-term contribu-
tions from the MSSM. In the supersoft case, Na ¼ 1 and
Ma ¼ 0, so there is no positive gaugino mass contribution
to squark and slepton squared masses from running. In the
scenario of the present paper, there is such a contribution
even neglectingMa, since Na is not at its fixed-point value.
This contribution will be positive definite from running into
the IR as long as jNaj < 1. In practice, this will always be
the case if Na starts from 0 at M, as was seen in Fig. 2.
In Fig. 3, the squark and the two scalar color adjoint

(sgluon) mass eigenvalues are shown for the case that the
Dirac gluino mass cð1Þa dominates at the input scale Minput,
so that N3 ¼ E3 ¼ B3 ¼ 0 there and both the Majorana
gluino mass M3 and the supersymmetry-breaking color
adjoint fermion mass μ3 are neglected. The results are
expressed as ratios of the scalar masses to the gluino Dirac
mass at the renormalization scaleQ ¼ 2 TeV, as a function
of the input scale Minput. Only one-loop QCD-enhanced

effects are included. A realistic model probably must have
Minput at least as large as 104 GeV, but the results are shown
for Minput all the way down to 2 TeV, to illustrate the
expected behavior that if there is no RG running then
squarks and sgluons are massless at tree level.
Clearly, even one decade of RG running is enough to

generate sufficient squark and sgluon masses. Figure 3
shows that for Minput > 100 TeV, the (tree-level) first- and
second-generation squark masses are between about 0.5
and 0.7 of the gluino Dirac mass; this is in comparison to a
factor of 0.1 to 0.2 for the corresponding ratio of pole
masses in supersoft models. Of course, additional model
parameter-dependent contributions to the gluino mass
matrix Eq. (3.21) can strongly modify this prediction in
either direction, but it shows that the RG contributions to
sfermion squared masses due to Dirac gaugino masses are
generically significant and positive. Also we see that both
sgluons have positive squared masses, provided that the
input scale Minput is smaller than 1014 GeV, even without
using the contributions from the mechanism of Sec. III D.
ForMinput larger than about 1014 GeV, the lighter sgluon is
tachyonic, breaking color, but as mentioned previously the
AMSB contribution to gaugino masses should dominate in
that case anyway. One of the sgluons is heavier than the
Dirac gluino provided that Minput > 20 TeV, and one is
lighter. Of course, finite one-loop corrections and two-loop
RG corrections, as well as electroweak and Yukawa effects
for the squarks, should also be taken into account in order
to get more precise estimates. Moreover, nonzero values of

cð2Þa , cð3Þa , cð4Þa , cð5Þa , and cð6Þa can all disrupt these simple
predictions in calculable ways.

V. OUTLOOK

In this paper, I have considered a spurion operator
analysis of a scenario in which supersymmetry breaking
appears in the MSSM sector via operators with F-term
VEVs that are suppressed by 1=M3 whereM is a mediation
mass scale. The result of this is that one can obtain all soft
terms, including Dirac gaugino masses and nonholomor-
phic scalar cubic interactions, with a common mass scale
hFi2=M3. The supersymmetric μ term of the MSSM is
replaced by three independent supersymmetry-breaking
parameters, decoupling the Higgsino mass from the
Higgs scalar potential. This illustrates that although it is
traditional to think of μ as a superpotential parameter, it
might be more sensible, depending on the mechanism for
supersymmetry breaking, to instead regard it as a part of the
soft supersymmetry-breaking Lagrangian.
In general, Dirac gaugino mass parameters need not be

accompanied by supersoft scalar interactions. This has both
good and bad implications. The adjoint scalars are naturally
both massive, and there is no problem in maintaining the
electroweak scalar quartic interactions that provide for a
large Higgs mass. The squarks and sleptons of the MSSM
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FIG. 3 (color online). The masses of squarks (solid line) and the
two color adjoint scalar sgluons (dashed lines) expressed as
tree-level ratios mscalar=mD3 at the scale Q ¼ 2 TeV. Results are
shown as a function of the input scale Minput at which the
boundary condition N3 ¼ E3 ¼ B3 ¼ 0 is applied. Only one-
loop QCD-enhanced RG contributions due to the Dirac gluino
masses mD3 are included.
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get positive RG corrections to their masses from gauginos,
unlike in the supersoft case. However, the supersoft
mechanisms for safety from flavor- and CP-violating
effects, and for explaining the lack of detection by the
last run of the LHC, are diminished. The gaugino masses
can in principle be of the most general mixed Majorana/
Dirac form, with consequences for phenomenology that
have already been explored in Refs. [8–15]. One interesting
possibility is that the gluino can be mostly Dirac and
accompanied by the (approximate) scalar supersoft inter-
actions, as this is an IR quasistable fixed point of the RG
equations, while the electroweak gauginos could be either
purely Majorana with no adjoint chiral superfields, or else
very far from the supersoft fixed-point trajectory, which is
not attractive in the IR for SUð2ÞL or Uð1ÞY. Alternatively,

one can simply discard all of the adjoint chiral superfields,
as the mechanisms for nonstandard supersymmetry break-
ing and three distinct μ parameters will still go through.
An obvious important remaining question is whether the

model-building criteria assumed here can be realized (at
least approximately) in a full UV completion. If so, it would
be interesting to outline the requirements for doing so,
and any relationships between couplings that might be
implied.
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