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If the Standard Model (SM) is an effective theory, as currently believed, it is valid up to some energy
scale Λ to which the Higgs vacuum expectation value is sensitive throughout radiative quadratic terms. The
latter ones destabilize the electroweak vacuum and generate the SM hierarchy problem. For a given
perturbative ultraviolet (UV) completion, the SM cutoff can be computed in terms of fundamental
parameters. If the UV mass spectrum involves several scales, the cutoff is not unique and each SM sector
has its own UV cutoff Λi. We have performed this calculation assuming the minimal supersymmetric
standard model (MSSM) is the SM UV completion. As a result, from the SM point of view, the quadratic
corrections to the Higgs mass are equivalent to finite threshold contributions. For the measured values of
the top quark and Higgs masses, and depending on the values of the different cutoffs Λi, these contributions
can cancel even at renormalization scales as low as multi-TeV, unlike the case of a single cutoff where the
cancellation only occurs at Planckian energies, a result originally obtained by Veltman. From the MSSM
point of view, the requirement of stability of the electroweak minimum under radiative corrections is
incorporated into the matching conditions and provides an extra constraint on the focus point solution to the
little hierarchy problem in the MSSM. These matching conditions can be employed for precise calculations
of the Higgs sector in scenarios with heavy supersymmetric fields.
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I. INTRODUCTION

In the StandardModel (SM) [1] as an effective field theory
with a physical cutoff Λ, the Higgs mass parameter is
corrected by (incalculable) quadratic divergences that can
destabilize the electroweak vacuum. This fact is usually
associated with the SM hierarchy problem [2]. In the
presence of a perturbative ultraviolet (UV) completion
(beyond the TeV scale) with heavy fields coupled to the
Higgs sector, the quadratic divergences appear as finite
threshold effects, which can therefore be reliably computed
in perturbation theory, after theheavy states are integratedout
at the matching scale between the low-energy (LE) and the
UV high-energy (HE) effective theories. So, if the UV
completion of the SM is known and it is perturbative, the
hierarchy problem is entirely due to calculable finite effects
and can be fully quantified. If the UV completion is non-
perturbative, as it happens in the case where the Higgs is
composite, the calculation cannot rely onperturbation theory,
but the presence of a new scale, even if it is dynamically
generated, makes it possible to estimate the size of the
threshold corrections to the Higgs mass [3]. Here we will
consider the former case where the UV completion is
perturbative.
The absence of any departure from the SM predictions in

current experimental data at the LHC is pointing toward the
existence of new physics at least in the multi-TeV region,

by which the naturalness problem is becoming more acute.
This in turn is hinting at less conventional solutions to the
hierarchy problem, as, e.g., hypothetical solutions provided
by the theory that breaks supersymmetry at the (high) scale
where supersymmetry breaking is transmitted from the
hidden to the observable sector. It is therefore important to
compute the large radiative contributions to the hierarchy
problem in order to settle the required conditions at the high
scale for the stability of the electroweak vacuum in the
effective theory (the SM) below the matching scale.
In this paper we will consider the SM as the LE effective

theory of the minimal supersymmetric standard model
(MSSM), matching the two theories at the decoupling
scale Qm where the supersymmetric partners are integrated
out. We assume the MSSM is valid up to scales of the order
of the Planck scaleMP, where it can be understood as, e.g.,
the flat limit (MP → ∞) of N ¼ 1 supergravity [4], which
should eventually be in turn UV completed by some more
fundamental (superstring) theory. The hope is that the
fundamental theory could provide the requirements for
solving the SM hierarchy problem, under the form of some
HE parameter relations. For that reason, in this paper we are
trying to fix the required conditions that could lead to
stability of the electroweak minimum, but by no means are
we trying to claim any solution to the hierarchy problem,
nor even a precise quantification of the fine-tuning.
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Threshold effects when matching the SM with the
MSSM have been extensively studied for dimensionless
parameters, as, e.g., the SM Yukawa and quartic couplings,
thus fixing the physical Higgs and fermion masses [5]. For
dimensional parameters, as the Higgs mass parameter, the
thresholds have not been systematically considered.1

However, the hierarchy problem precisely resides in those
dimensional parameters, as solving the equations of mini-
mum providing the electroweak vacuum expectation value
(VEV) of the Higgs field requires a certain amount of fine-
tuning that quantifies the hierarchy problem.2

It is thus worth improving our knowledge on the dimen-
sional parameter thresholds. To this aim, in this paper we
analyze the effects on the SMHiggsmass parameter from the
decoupling of the heavy MSSM fields. This will result in
precise relations to be satisfied at the matching scaleQm, in
order to have the stability of the electroweak minimum.
Technically, we perform the matching in the one-loop RG-
improved approximation, as going beyond one loop should
not add qualitative complications or dominant contributions.
Similarly we perform the matching procedure in the sym-
metric phase for theMSSM, so our results should be affected
by tiny corrections of Oðv2=Q2

mÞ.
The outline of the paper goes as follows. In Sec. II we

present some general ideas about the decoupling using the
scale invariance of the effective potential in the one-loop
RG-improved approximation. We show that in the consid-
ered approximation the decoupling scale Qm is arbitrary,
although in view of minimizing (unconsidered) higher loop
corrections it is convenient to take it of the order of
magnitude of the masses of the decoupled fields. Simple
toy models to illustrate the general matching procedure are
presented in Sec. III, where we also stress the role, for scale
invariance, of the anomalous dimensions of scalar fields
(included in the wave-function radiative corrections),
which is an ingredient alien to the effective potential,
constructed at zero external momentum. The case of the
MSSM is reviewed in Sec. IV, and the detailed matching
between SM and MSSM Higgs mass parameters is per-
formed in Sec. V. The threshold effects induced in the
effective theory are computed in Sec. VI. In particular, we
show that for the MSSM scenario with degenerate soft
breaking masses the finite correction to the SM Higgs mass
parameter precisely reproduces the result obtained by
Veltman (in the context of dimensional regularization in
two dimensions) [8] if the SM cutoff is identified with the
common mass of the degenerate and heavy supersymmetric
partners. Instead, for the more general scenario with

nondegenerate heavy masses, the effective theory can often
be interpreted as a SM with different cutoffs for each
(quarks, gauge bosons, etc.) sector. In such a case the finite
correction to the SM Higgs mass parameter consists in a
generalized Veltman result with deformations that can be
negligible depending on the hierarchy of the spectrum. In
Sec. VII we express the HE parameters evaluated at the
decoupling scaleQm in terms of their values at the scaleM
where the supersymmetry breaking is transmitted to the
observable sector, and we constrain these values to be
compatible with sensible matching conditions. We then
quantify the threshold effects and their impact on the Higgs
sector. We focus on the parameter region corresponding to
the focus point (FP) solutions. The regions where the
electroweak stability is not spoiled by the finite corrections
in the matching conditions can be understood as general-
ized FP solutions that include threshold effects. Our
conclusions are presented in Sec. VIII, as well as a
discussion on the scale, gauge, and renormalization scheme
dependence of our results. Finally, technical details of the
calculation of the radiative corrections to the SM Higgs
mass parameter stemming from the different supersym-
metric sectors are presented in Appendix A. A nice check
of the consistency of our calculation is the explicit proof of
the one-loop scale invariance of our results, and this is
presented in Appendix B.

II. GENERAL IDEAS ABOUT THE DECOUPLING

Before putting forward the explicit relation of the
effective potential V in the LE and HE regions, let us
review some general ideas about the effective potential [9].
The effective potential improved by the RG depends, on top
of the background value of fields ϕi, on a number of
running parameters λI (they include dimensionless cou-
plings as well as dimensionful parameters) and on the
renormalization scale Q, in such a way that the equation

�
Q

∂
∂Qþ βI

∂
∂λI þ γiϕi

∂
∂ϕi

�
V ¼ 0 ð1Þ

is fulfilled. This equation, where γi are the anomalous
dimensions of the fields ϕi, and βI the β functions of the
parameters λI , highlights the renormalization-scale inde-
pendence of the effective potential. The general solution of
Eq. (1) reads as

V ¼ VðQðtÞ; λIðtÞ;ϕiðtÞÞ; ð2Þ

where

QðtÞ ¼ Q expðtÞ; βIðλIðtÞÞ ¼
dλIðtÞ
dt

;

γiðλIðtÞÞ ¼
d logðϕiðtÞ=ϕiÞ

dt
; ð3Þ

1For a previous analysis in the MSSM in the broken electro-
weak symmetric phase, see Ref. [6].

2The instability under radiative corrections coming from new
heavy physics, which is the subject of the present paper, should
not be confused with the instability driven by the renormalization
group (RG) running of the quartic Higgs coupling toward
negative values [7].
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together with the boundary conditions λIð0Þ≡ λI ,
ϕið0Þ≡ ϕi.
In practice the scale independence of the effective

potential (2) holds up to the level of perturbation theory
where the potential is computed. In particular, if we make a
loop expansion of the operator V as

V ¼
X
l≥0

VðlÞ; ð4Þ

the RG-improved potential Vð0Þ has a very strong scale
dependence. This dependence is reduced by considering
Vð0Þ þ Vð1Þ, where Vð1Þ includes the terms that correspond

to the field redefinitions ϕiðtÞ≡ ð1þ Zð1Þ
i ðtÞÞϕi, and the

one-loop RG-improved Coleman-Weinberg contribution
ΔVð1Þ. In fact, in Vð0Þ þ Vð1Þ the whole one-loop scale
dependence cancels out and different choices of Q only
affect higher order corrections. Whereas the explicit
expression of ZiðtÞ depends on the specific model, the
contribution ΔVð1Þ can be generically written as [10]3

ΔVð1Þ ¼ 1

64π2
STrM4ðϕiÞ

�
log

M2ðϕiÞ
Q2

− C
�
; ð5Þ

where STr includes the number of degrees of freedom of
the different mass eigenstates as well as a negative sign for
fermions.
The electroweak-breaking condition, described as the

solution to the equations of minimum

∂V
∂ϕi

¼ 0; ð6Þ

is also scale independent. Such a condition can thus be
deduced from the potential V at any scale Q and any loop
order. However, since one is only able to compute ΔVðlÞ

and ZðlÞ
i with l ≤ n (i.e., up to some perturbative order n),

and the minimization condition should eventually be
related to electroweak observables, in practical cases it is
advisable to minimize

P
l≤nV

ðlÞ (with scale dependence at
nþ 1 loop order) at the electroweak scale Q ¼ QEW.
Employing this choice of renormalization scale is subtle
when also heavy fields are involved, as we describe now.
We consider a HE theory with light and heavy fields.

Light fields have electroweak-breaking and/or invariant
masses of order (or below)QEW, whereas heavy fields have

masses M ≫ QEW. To any fixed order in the loop expan-
sion heavy fields can induce large logarithms in the
minimization condition evaluated at Q ¼ QEW [11]. For
this reason, the minimization should still be performed at
Q ¼ QEW, but in the LE effective theory where the heavy
fields have been decoupled.
As we are considering mass-independent renormaliza-

tion schemes, the decoupling of heavy fields has to be
performed at some scale Qm. In such a case the effective
description at Q ≪ Qm is obtained in two steps:
(i) Matching at Q ¼ Qm of the HE Lagrangian to an
effective Lagrangian (which has all light-fields interactions
allowed by the HE symmetry), and (ii) running of the
effective couplings from Qm to QEW. The matching of the
couplings of the light scalar sector can be obtained by
exploiting the LE and HE effective potentials.
By construction, the HE and LE theories (in the

presence of only light-field backgrounds) have the same
RG-improved potentials at the decoupling scale, i.e.,
VLEðQmÞ ¼ VðQmÞ (LE quantities carry a “LE” subscript;
for HE quantities the subscript “HE” is suppressed). In the
ideal case of perfect scale invariance this equivalence is true
at any scale, and the choice ofQm at which one matches the
two potentials is fully arbitrary. However, in realistic
situations where the potentials are calculated at a given
loop approximation, Qm has to be set at a value that
presumably minimizes the unknown higher order correc-
tions coming from heavy fields. This motivates the
choice Qm ∼M.
The decoupling procedure involves some technical

details when applied to realistic frameworks. The first
issue arises when the HE theory contains several Higgses
acquiring VEVs. This complication does not lead to any
difficulties in our analysis as we are considering scenarios
with the SM as an effective description. In fact, we are
restricting ourselves to cases where all the multi-Higgs
VEVs in the interaction-eigenstate basis can be aligned
along a unique VEV in the mass-eigenstate basis (and this
direction corresponds to the light Higgs of the SM). Clearly
this is possible because we are assuming the mass of the
extra-Higgses to beM ≫ QEW. A second issue arises when
there are several heavy fields with massesMI . If they differ
by orders of magnitude, there exists no choice of Qm that
avoids large logarithms in the matching conditions. In this
case the decoupling procedure has to be repeated as many
times as the number of hierarchically different heavy mass
thresholds. Of course when all MI are similar, the decou-
pling can be performed just once with Qm fixed at some
intermediate value among MI. The simplified concrete
examples of the next sections will better clarify the details
of the decoupling procedure.

III. DECOUPLING IN SOME TOY MODELS

In this section we illustrate the previous ideas about
decoupling. We first analyze a toy model with only one

3As customary, in Eq. (5) the matrix M2 is the squared mass
spectrum in the presence of the background fields ϕi, and the
diagonal matrix C depends on the renormalization scheme. Note
that in Eq. (5) the t dependence is implicit. Concerning the
radiative corrections ZiðtÞ, we remind the reader that they appear
due to the canonical normalization of the kinetic terms and Zið0Þ
can contain finite contributions that depend on the renormaliza-
tion scheme.
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heavy degree of freedom. Second, we consider a case with
several scalar heavy particles and light fermions that
contribute to the light scalar wave function renormalization.
The reader not interested in those technical details can jump
to Sec. IV.

A. First toy model: Scalars

We consider a toy model consisting of a light scalar ϕ
and a heavy scalar S with a HE Lagrangian

L ¼ −Ωþ 1

2
ð∂ϕÞ2 þ 1

2
ð∂SÞ2 − 1

2
m2ϕ2 −

1

4!
λϕ4

−
1

2
M2S2 −

1

2
h2ϕ2S2; ð7Þ

where for simplicity the quartic coupling of the S field has
been set to zero, although it is not protected by any
symmetry. After decoupling the S field the theory is
described by the effective Lagrangian

LLE ¼ −ΩLE þ
1

2
ð∂ϕLEÞ2 −

1

2
m2

LEϕ
2
LE −

1

4!
λLEϕ

4
LE: ð8Þ

In both Lagrangians the parameters are running with the
scale Q.
Since S does not acquire a VEV, the electroweak

breaking field ϕ is aligned to ϕLE. The tree-level
(RG-improved) matching of the parameters at the scale
Qm is then trivial,

ΩLEðQmÞ ¼ ΩðQmÞ; ϕLEðQmÞ ¼ ϕðQmÞ;
mLEðQmÞ ¼ mðQmÞ; λLEðQmÞ ¼ λðQmÞ: ð9Þ

At this point one could already run the LE parameters from
Qm to QEW and obtain the minimization condition.
However, the result would strongly depend on the choice
of Qm. Indeed, since the LE and HE parameters run very
differently, one would obtain different minimization con-
ditions for different values of Qm in Eq. (9), even though
the fundamental HE parameters would be kept fixed. This
problem is alleviated by performing a one-loop matching.
Hereafter we adopt the MS renormalization scheme to
subtract the one-loop divergences.
In the present model there is no one-loop wave function

renormalization, and the tree level relation ϕLEðQmÞ ¼
ϕðQmÞ is preserved at one loop. The one-loop matching of
the other parameters can be obtained by matching the LE
and the HE effective potentials where all parameters are at
the scale Qm. We thus impose the relation

VðϕÞ ¼ VLEðϕÞ ð10Þ

with

VðϕÞ ¼ Ωþ 1

2
m2ϕ2 þ 1

4!
λϕ4

þ 1

64π2
X
i¼ϕ;S

m4
i

�
log

m2
i

Q2
m
−
3

2

�
;

VLEðϕÞ ¼ ΩLE þ
1

2
m2

LEϕ
2 þ 1

4!
λLEϕ

4

þ 1

64π2
m4

ϕLE

�
log

m2
ϕLE

Q2
m

−
3

2

�

þOðϕ6=M2Þ; ð11Þ

where m2
ϕ ¼ m2 þ 1

2
λϕ2, m2

S ¼ M2 þ h2ϕ2 and m2
ϕLE

¼
m2

LE þ 1
2
λLEϕ

2. This matching leads to

ΩLEðQmÞ ¼
�
ΩðQmÞ þ

M4

64π2
log

M2

Q2
m

�
−

3M4

128π2
;

m2
LEðQmÞ ¼

�
m2ðQmÞ þ

h2M2

16π2
log

M2

Q2
m

�
−
h2M2

16π2
;

λLEðQmÞ ¼
�
λðQmÞ þ

12

32π2
h4 log

M2

Q2
m

�
; ð12Þ

which holds up to two-loop corrections4 and where all
parameters are evaluated at the scale Qm. In particular,
because of the one-loop scale invariance of the HE and LE
effective potentials, the arbitrariness of Qm in (12) is
guaranteed at the one-loop level. In fact, within each
parentheses group in (12) the logarithms compensate the
one-loop running of the parameters whose evolutions are
given by the β functions

βΩLE
¼ 1

32π2
m4

LE; βΩ ¼ 1

32π2
ðm4 þM4Þ;

βm2
LE
¼ 1

8π2
λLEm2

LE; βm2 ¼ 1

8π2
ðλm2 þ h2M2Þ;

βλLE ¼
6

32π2
λ2LE; βλ ¼

6

32π2
ðλ2 þ 4h4Þ: ð13Þ

This shows that in the one-loop approximation the running
and matching procedures are commutative and the LE
theory is independent of the decoupling scale.
The one-loop freedom in the choice ofQm can be used to

minimize the higher order corrections to (12). To this aim it
is sensible to choose Qm ¼ M. In this particular case the
matching for m2

LE turns out to be

m2
LEðMÞ ¼ m2ðMÞ − h2

16π2
M2: ð14Þ

4Notice that the difference between LE and HE parameters is at
one loop. Using the former or the latter in the one-loop
contribution to the effective potential makes a difference only
at the two-loop order.
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The second term is the large threshold correction that, in a
more realistic theory as the SM, would destabilize the
electroweak vacuum and would introduce a hierarchy
problem.

B. Second toy model: Scalars and fermions

Further subtleties of the decoupling procedure can be
described in a slightly more complicated scenario. We
consider a HE theory consisting of a light real scalar ϕ, a
light Dirac fermion Ψ, and a number of heavy scalars SI
with masses MI of similar magnitude,

L ¼ −Ωþ 1

2
ð∂ϕÞ2 −m2

2
ϕ2 −

λ

4!
ϕ4

þ 1

2

X
I

½ð∂SIÞ2 − ðM2
I þ h2Iϕ

2ÞS2I � þ iΨ̄∂Ψ − YϕΨ̄Ψ:

ð15Þ

This theory can be described at LE by

LLE ¼ −ΩLE þ
1

2
ð∂ϕLEÞ2 −

m2
LE

2
ϕ2
LE −

λLE
4!

ϕ4
LE

þ iΨ̄LE∂ΨLE − YLEϕLEΨ̄LEΨLE; ð16Þ

and the dependence with respect to Q is implicit in
Eqs. (15) and (16).
Since the SI fields do not acquire any VEV and their

integration does not lead to any tree-level correction to the
LE couplings, the tree-level matching is trivial. Instead the
one-loop matching is less straightforward due, for instance,
to the radiative corrections to the kinetic terms. As we are
interested in the one-loop electroweak-breaking conditions,
we will focus on the effective potential of the light scalar
field. In particular, we want to calculate the RG-improved
one-loop matching at the scaleQm. To this aim we first run
all parameters in (15) and (16) toQm, and then we evaluate
the LE and HE one-loop potentials. We thus absorb the
kinetic-term radiative corrections5 ð1 − 2ZϕðQmÞÞ and
ð1 − 2ZϕLE

ðQmÞÞ into field redefinitions of ϕ and ϕLE,
respectively, where d½ZiðQÞ�=d logQ ¼ γiðQÞ, the anoma-
lous dimension at one-loop order. The expansion of the HE
RG-improved one-loop potential at the scale Qm has to
reproduce the LE one at the same scale. We hence impose
the matching

VðϕÞ ¼ VLEðϕÞ ð17Þ

with

VðϕÞ ¼ Ωþ 1

2
m2ð1þ 2ZϕÞϕ2 þ 1

4!
λð1þ 4ZϕÞϕ4

þ
X

i¼ϕ;SI ;Ψ

ni
m4

i

64π2

�
log

m2
i

Q2
m
−
3

2

�
;

VLEðϕLEÞ ¼ ΩLE þ
1

2
m2

LEð1þ 2ZϕLE
Þϕ2

LE

þ 1

4!
λLEð1þ 4ZϕLE

Þϕ4
LE

þ
X

i¼ϕLE;ΨLE

ni
m4

i

64π2

�
log

m2
i

Q2
m
−
3

2

�

þOðϕ6
LE=M

2Þ;

where m2
ϕ ¼ m2 þ 1

2
λϕ2, m2

SI
¼ M2

I þ h2ϕ2, m2
Ψ ¼ Y2ϕ2,

m2
ϕLE

¼ m2
LE þ 1

2
λLEϕ

2
LE, m

2
ΨLE

¼ Y2
LEϕ

2
LE, and ni ¼ 1ð−4Þ

for real bosons (Dirac fermions). This implies

ΩLEðQmÞ ¼
�
ΩðQmÞ þ

X
I

M4
I

64π2
log

M2
I

Q2
m

�
−
X
I

3M4
I

128π2
;

m2
LEðQmÞ ¼

�
m2ðQmÞ½1þ 2ZϕðQmÞ − 2ZϕLE

ðQmÞ�

þ
X
I

h2IM
2
I

16π2
log

M2
I

Q2
m

�
−
X
I

h2IM
2
I

16π2
;

λLEðQmÞ ¼ λðQmÞ½1þ 4ZϕðQmÞ − 4ZϕLE
ðQmÞ�

þ
X
I

12h4I
32π2

log
M2

I

Q2
m
; ð18Þ

where we are using the tree-level matching condition
YLEðQmÞ ¼ YðQmÞ.6
In this toy model only light degrees of freedom generate

Zϕ and ZϕLE
at one loop via couplings that have trivial tree-

level matching: it thus follows that Zϕ ¼ ZϕLE
.7 Moreover,

in view of minimizing higher loop corrections in the
matching of m2

LE, one can adopt the choice Qm ¼ M̄,
where M̄ is defined as

log M̄2 ¼
P

Ih
2
IM

2
I logðM2

I ÞP
Ih

2
IM

2
I

; ð19Þ

so that only the nonlogarithmic one-loop contribution is left
in the matching condition for m2

LE,

5In the rest of the paper we will consider only the one-loop
RG-improved Coleman-Weinberg potential and wave function
corrections. We then simplify the notation by omitting the
superscript “(1)” in the quantities Zð1Þ

i and ΔVð1Þ introduced in
Sec. II.

6The one-loop matching condition for the Yukawa coupling Y
can be obtained diagrammatically. For the purposes of the
present paper we do not need to make it explicit.

7Note that in scenarios (as the MSSM) where also some heavy
fields contribute to Zϕ, the Zϕ − ZϕLE

dependence on Qm is
necessary to guarantee the scale independence of the one-loop
matching conditions.
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m2
LEðM̄Þ ¼ m2ðM̄Þ −

X
I

h2I
16π2

M2
I : ð20Þ

Of course, the choice (19) is expected to reduce the higher
order correction in the m2

LE matching only if the relation
log M̄2 ∼ logM2

I occurs for all I’s. Otherwise, as already
stressed in Sec. II, it is worth reiterating the decoupling
procedure at each mass scale MI .

IV. THE SM/MSSM MATCHING

In this section we use the MSSM one-loop RG-improved
effective potential to determine the radiative corrections
that can destabilize the electroweak breaking condition in
such a model. The Higgs sector contains two doublets H1

and H2 where in our convention H2 gives the mass to the
top quark and H1 to the bottom quark and tau lepton. The
MSSM Higgs Lagrangian, including only the one-loop
wave function renormalization for the Higgs doublets Zhi ,
can be written as

LMSSM ¼
X
i

ð1 − 2ZhiÞjDμHij2 − VðH1; H2Þ; ð21Þ

where VðH1; H2Þ is the tree-level MSSM Higgs potential.
Then the one-loop RG-improved MSSM potential of the
neutral Higgs fields hi ¼ ReH0

i (i ¼ 1; 2) is

Vðh1; h2Þ ¼ m2
1ð1þ 2Zh1Þh21 þm2

2ð1þ 2Zh2Þh22
− 2m2

3h1h2ð1þ Zh1 þ Zh2Þ

þ g2Z
2
½h21ð1þ 2Zh2Þ − h22ð1þ 2Zh2Þ�2

þ ΔVMSSMðh1; h2Þ; ð22Þ

where ΔVMSSM is the Coleman-Weinberg contribution
generated by all fields of the MSSM and8

g2Z≡ ðg2Y þg22Þ=4; m2
1≡m2

H1
þμ2; m2

2≡m2
H2

þμ2:

ð23Þ

The above equation is understood at an arbitrary renorm-
alization scale Q.
In view of the strong LHC bounds on the masses of

supersymmetric particles we match the MSSMwith the SM
at some high scale Qm, say (multi)TeV. To this aim we
employ the effective potential techniques adopted in the
previous examples. For simplicity, we assume all

parameters to be real although the extension to cases with
complex parameters (and CP violation) is straightforward.
Contrary to the previous examples, the MSSM has two

fields, in the gauge eigenstate basis, that acquire VEVs.
We then go to the mass eigenstate basis to work out the
matching (first at the tree level, then at one loop). The field
rotation can be performed by neglecting the Oðv2=Q2

mÞ
electroweak-breaking contributions (i.e., we proceed in the
electroweak symmetry unbroken phase) since the CP-odd
Higgs mass mA is assumed to be much heavier than
the electroweak scale. The resulting potential can be
matched to the SM potential whose one-loop RG-improved
expression is given by

VLEðhLEÞ ¼ −m2
LEð1þ 2ZhLEÞh2LE þ

λLE
2

ð1þ 4ZhLEÞh4LE
þ ΔVSMðhLEÞ; ð24Þ

where ΔVSM is the SM one-loop RG-improved Coleman-
Weinberg potential in the presence of the background field
hLE ¼ ReH0

LE (with HLE being the SM Higgs doublet). In
Eq. (24) and hereafter the effective higher-order operators,
which are small due to the large hierarchy between heavy
and light fields, are neglected.

A. Tree-level matching

To derive the RG-improved tree-level matching we will
focus on the quadratic part of the tree-level MSSM
potential, Vð0Þðh1; h2Þ, which can be extracted from (22).
At the matching scale Qm we thus obtain

Vð0Þðh1; h2Þ ¼ m2
1h

2
1 þm2

2h
2
2 − 2m2

3h1h2 þ
g2Z
2
ðh21 − h22Þ2:

ð25Þ

The potential Vð0Þðh1; h2Þ at Qm can be rewritten in the
mass eigenstate basis as

Vð0Þðh;HÞ ¼ −m2h2 þm2
HH

2 þ � � � ð26Þ

with m2 ≪ m2
H ¼ m2

1 þm2
2 þm2. This field transforma-

tion is achieved by the rotation

�
h1
h2

�
¼ Rβ

�
h

H

�
; Rβ ¼

�
cos β − sin β

sin β cos β

�
ð27Þ

such that

ðh1; h2Þ
�

m2
1 −m2

3

−m2
3 m2

2

��
h1
h2

�

¼ ðh;HÞ
�
−m2 0

0 m2
H

��
h

H

�
: ð28Þ

8We are using conventionally for the electroweak gauge
couplings the notation g0 ≡ gY and g≡ g2. gY is related to the
Uð1Þ gauge coupling g1 in the SUð5Þ normalization by

gY ¼
ffiffi
3
5

q
g1.
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Note that Eqs. (27) and (28) are equivalent to require

m4
3 ¼ ðm2

1 þm2Þðm2
2 þm2Þ; ð29Þ

tan 2β ¼ 2m2
3

m2
2 −m2

1

ð30Þ

or, alternatively

m2
2 ¼ m2

3= tan β −m2;

m2
1 ¼ m2

3 tan β −m2; ð31Þ

with tan β ≥ 1, as we are assuming m2
3 > 0 and m2

1 ≥ m2
2.

In particular, since we are in the decoupling limit
m2 ≪ m2

H, our definition of tan β coincides with the
MSSM one, tan β ¼ v2=v1 where vi ≡ hhii. Combining
the above relations we also have the explicit expression for
the light mass eigenstate

m2 ¼ −m2
1cos

2β −m2
2sin

2β þm2
3 sin 2β: ð32Þ

In the mass eigenstate basis ðh;HÞ it is easy to obtain the
tree-level matching to the SM. If one extracts the Vð0Þ

LEðhLEÞ
part from the LE one-loop potential of hLE, Eq. (24), and
matches it to Vð0Þðh;HÞ at Qm, one obtains

hLEðQmÞ ¼ hðQmÞ; mLEðQmÞ ¼ mðQmÞ;
λLEðQmÞ ¼ g2ZðQmÞcos22β ½tree level�: ð33Þ

Similarly the matching of the LE and HE Yukawa inter-
actions at Qm yields

ytðQmÞ ¼ YtðQmÞ sin β;
yb;τðQmÞ ¼ Yb;τðQmÞ cos β ½tree level�; ð34Þ

where yt;τ;b and Yt;τ;b are, respectively, the top quark, tau
lepton and bottom quark Yukawa couplings in the SM and
in the MSSM.
Of course, there might already be a problem at tree level:

the right hand side of Eq. (32) is a linear combination of
potentially large masses squared while the left hand side is
a mass squared that is required to be at the electroweak
scale. This fine-tuning is essentially equivalent to that in
Eq. (29). This is the main naturalness problem in the
MSSM. This problem cannot be tackled unless we know
the (fundamental) theory responsible for triggering super-
symmetry breaking at the high scaleM in the hidden sector
and dictating the size of the supersymmetry breaking
parameters in the observable sector. The FP solution
[12,13] just uncovers the functional relationships between
fundamental parameters at the high scale M for which the
naturalness problem is circumvented. However, even if we
accept that the fundamental theory might provide a solution

to the tree-level stability, we still have to worry for loop
corrections, e.g., in the effective theory as those computed
in Ref. [8]. The matching including one-loop corrections
will be done in the next section.

B. One-loop level matching

We now proceed with the one-loop matching. Again we
want towork in themass eigenstate basis.We then impose the
tree-level matching conditions (31) in the one-loop term
ΔVMSSM of (22) and expand ΔVMSSM. Such expansion
produces some newquadratic contributions thatwe absorb as

Vðh1; h2Þ ¼ ~m2
1h

2
1 þ ~m2

2h
2
2 − 2 ~m2

3h1h2 þ � � � ; ð35Þ

where

~m2
i ¼ m2

i þ 2Zhim
2
i þ Δm2

i ;

Δm2
i ¼

∂ΔVMSSM

∂h2i
����
hi¼0

;

~m2
3 ¼ m2

3 þ ðZh1 þ Zh2Þm2
3 þ Δm2

3;

Δm2
3 ¼ −

1

2

∂ΔVMSSM

∂h1h2
����
hi¼0

; ð36Þ

with i ¼ 1; 2. As previously done for the tree-levelmatching,
we diagonalize the quadratic potential (35) by a rotation Rβ

(whose angle differs from that of Sec. IVA although for
notational simplicity we are keeping the same notation for
both) leading to a light mass eigenstate hwith squared mass
− ~m2 and a heavy eigenstate H with squared mass
~m2
H ¼ ~m2

1 þ ~m2
2 þ ~m2, where

~m2 ¼ m2 þ 2m2Zh þ Δm2;

m2 ¼ −m2
1cos

2β −m2
2sin

2β þm2
3 sin 2β;

Δm2 ¼ −Δm2
1cos

2β − Δm2
2sin

2β þ Δm2
3 sin 2β; ð37Þ

andZh ≡ cos2βZh1 þ sin2βZh2 is thewave function renorm-
alization in the MSSM for the mass eigenstate h.9 This
diagonalization requires

~m2
2 ¼ ~m2

3= tan β − ~m2;

~m2
1 ¼ ~m2

3 tan β − ~m2; ð38Þ

which canbeused to express, as it is customary in theMSSM,
tan β and the lightest eigenvalue − ~m2 as functions of the
fundamental parameters,

9Notice that the identity Zhm2 ≡ Zh1m
2
1cos

2β þ Zh2m
2
2sin

2β −
ðZh1 þ Zh2Þm2

3 sin 2β is obtained after using the tree-level match-
ing conditions, Eq. (31), on the masses and mixing angle, as
required by the fact that the wave function renormalization is
already a one-loop effect.
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~m2 ¼ − ~m2
1cos

2β − ~m2
2sin

2β þ ~m2
3 sin 2β;

tan 2β ¼ 2 ~m2
3

~m2
2 − ~m2

1

: ð39Þ

To perform the complete one-loop matching, we would
need to consider ΔVSM. As the light (i.e., SM) fields
provide the same contributions to ΔVSM and ΔVMSSM
modulo the tree-level matching of Yukawa couplings in
Eq. (34) (cf. also Sec. V), we can proceed by taking into
account only the heavy non-SM fields in Δm2

1, Δm2
2, and

Δm2
3. Then the one-loop RG-improved matching of the

quadratic term in the HE and LE theories turns out to be

m2
LEðQmÞ¼m2ðQmÞð1þ2ΔZhðQmÞÞþΔm2ðQmÞ; ð40Þ

where

ΔZhðQmÞ ¼ ZhðQmÞ − ZhLEðQmÞ: ð41Þ
We hence stress that the requirementm2ðQmÞ ∼Q2

EW is not
sufficient to guarantee sensible electroweak breaking con-
ditions as these could be destabilized by Δm2 and ΔZh.

V. Δm2 IN THE MSSM WITH HIGH
SUPERSYMMETRY-BREAKING SCALE

Wewill now explain the main lines to determineΔm2. We
remind the reader that all theMSSMparticles, except the SM
ones, are assumed to be heavy. The one-loop potential
ΔVMSSMðh1; h2Þ can be split into two separated terms:
one term contains contributions from the Higgs sector
A;H;H� and the SM fields, and the second one does it
from the field superpartners ~f (with ~f representing thewhole
list of squarks, sleptons, charginos, and neutralinos). Because
of the triviality of the tree-level matching conditions (33) and
(34), it is easy to see aswe already noticed that the light fields
provide the same contribution to ΔVMSSMðhÞ and to

ΔVSMðhLEÞ. Because of this property the correction Δm2

can be calculated as in Eq. (37) with

Δm2
I ¼

X
r¼ ~f;A;H;H�

Δm2
I;r; ð42Þ

Δm2
i;r ¼

∂ΔVMSSM;r

∂h2i
����
hi¼0

Δm2
3;r ¼ −

1

2

∂ΔVMSSM;r

∂h1h2
����
hi¼0

; ð43Þ

where I ¼ ði; 3Þ, i ¼ 1; 2, and ΔVMSSM;r is the MSSM one-
loop potential generated by the field r.
The explicit form of Δm2

I;r depends on the renormaliza-
tion scheme. In the MS scheme (or equivalently at this level
DR), for which C ¼ ð3=2Þ1 in Eq. (5) for scalars and
fermions, it results

Δm2
i;r ¼

nr
32π2

∂m2
r

∂h2i Gðm
2
rÞ
����
hi¼0

;

Δm2
3;r ¼ −

nr
64π2

∂m2
r

∂h1h2Gðm
2
rÞ
����
hi¼0

; ð44Þ

where nr stands for the number of degrees of freedom of the
particle r and is positive (negative) for bosons (fermions),
while the function Gðx2Þ is defined as

Gðx2Þ≡ x2
�
log

x2

Q2
m
− 1

�
: ð45Þ

For simplicity we determine Δm2 by neglecting the
corrections coming from first and second generations of
squarks and sleptons (the expressions are, however, fully
general and the first two generation sfermions could easily
be included). Details of the calculation are furnished in
Appendix A. Here we only report on the final result,

−Δm2 ¼ 1

32π2

�
6y2t ½Gðm2

QÞ þGðm2
UÞ� þ 6y2b½Gðm2

QÞ þ Gðm2
DÞ� þ 2y2τ ½Gðm2

LÞ þ Gðm2
EÞ�

þ 6y2t X2
t
Gðm2

QÞ −Gðm2
UÞ

m2
Q −m2

U
þ 6y2bX

2
b

Gðm2
QÞ −Gðm2

DÞ
m2

Q −m2
D

þ 2y2τX2
τ
Gðm2

LÞ − Gðm2
EÞ

m2
L −m2

E

− g2YðGðm2
QÞ − 2Gðm2

UÞ þ Gðm2
DÞ − Gðm2

LÞ þGðm2
EÞÞ cos 2β

− 6g22
M2

2GðM2
2Þ − μ2Gðμ2Þ

M2
2 − μ2

− 2g2Y
M2

1GðM2
1Þ − μ2Gðμ2Þ

M2
1 − μ2

−
�
12g22M2μ

GðM2
2Þ − Gðμ2Þ

M2
2 − μ2

þ 4g2YM1μ
GðM2

1Þ −Gðμ2Þ
M2

1 − μ2

�
sin β cos β

þ Gðm2
HÞð−6g2Zcos22β þ 2g2Z þ g22Þ

	
; ð46Þ

ISABELLA MASINA, GERMANO NARDINI, AND MARIANO QUIROS PHYSICAL REVIEW D 92, 035003 (2015)

035003-8



where the soft breaking terms Xt;b;τ are defined as

Xt ¼ At −
μ

tan β
; Xb;τ ¼ Ab;τ − μ tan β: ð47Þ

In Eq. (46) the first two lines correspond to the contribution
from sfermions, the third line the Fayet-Iliopoulos con-
tribution from scalars, the fourth and fifth lines the
contribution from charginos and neutralinos, and the last
line the contribution from the heavy scalar, the pseudo-
scalar, and charged Higgses. Notice that all supersymmetric
parameters are defined at the scale Qm.
We therefore conclude that in the MSSM with heavy

non-SM particles, the Higgs sector at LE appears like the
one of the SM where the Higgs quadratic parameter at the
scale Qm is given by the relation of Eq. (40) with m2 and
Δm2 as in Eqs. (37) and (46) and tan β given by Eq. (39).
Moreover, the explicit expression of ΔZh

10 is not required
in the first approximation as we will see in Sec. VI. Finally,
it is worth noting that, by construction, in the considered
heavy MSSM scenario the electroweak breaking condition
at Q ¼ QEW can be evaluated in the LE theory (avoiding
large logarithms) with no one-loop dependence on the
choice of Qm (cf. Appendix B).

VI. THE STABILITY OF THE SM
EFFECTIVE THEORY

As reminded in Sec. IV, even in the case that the
fundamental theory naturally leads to m2 of the order of
the electroweak scale, we still have to worry about the
destabilization and unnaturalness due to radiative correc-
tions. In this section we sketch some relationships that
would help to not destabilize the vacuum. These can be
deduced after evaluating the size of the radiative corrections
at Qm and forcing them to be in the ballpark of m2ðQmÞ.
Some preliminary observations are in order here:
(i) In general m2ðQÞ has a strong scale dependence,

and its value can span several orders of magnitude.
Its (one-loop) radiative correction is given
by Δm2ðQÞ þ 2m2ðQÞΔZhðQÞ, which is also
strongly scale dependent. Hence claiming m2 ¼
Oð100 GeVÞ2 makes sense only at a specific run-
ning scale and, concerning the hierarchy problem,
the result is satisfactory only if at the same scale the
radiative corrections contain no large logarithms (to
keep perturbation theory trustable) and are of the
order of the electroweak scale or below (to not
destabilize the tree level result). In this section we

assume that the supersymmetry breaking theory
yields m2 ¼ Oð100 GeVÞ2 at the specific scale Qm.

(ii) The strong (one-loop) scale dependences of m2ðQÞ
and its radiative correction have opposite signs and
almost cancel out. Indeed theQ dependence of these
two terms is equivalent to the one of m2

LEðQÞ
[cf. Eq. (40)], which amounts to the β function of
the SM (cf. Appendix B) and is thus negligible for
our purposes.11

(iii) Heavy particles have masses well above m2ðQmÞ.
This implies that the wave function correction
2m2ðQmÞΔZhðQmÞ can be neglected in comparison
to Δm2ðQmÞ.

Therefore within the above approximations the stability
of the electroweak breaking conditions under radiative
corrections can be evaluated by means of the “stability
parameter”

S ¼
����Δm

2ðQmÞ
m2

LEðQmÞ
����; ð48Þ

where the running of m2
LE between QEW and Qm can be

neglected. We now proceed determining S in some specific
scenarios.

A. Degenerate case

We first consider the simplest MSSM scenario where all
mass parameters are degenerate at some common value M,

mQ ¼mU ¼mD ¼mL ¼mE ¼M1 ¼M2 ¼ μ¼mH ≡M:

ð49Þ

In this case all radiative corrections depend on the single
logarithm logM2=Q2

m, and the simplest choice for the
decoupling scale is obviouslyQm ¼ M. Equation (46) thus
yields

Δm2ðMÞ¼ M2

32π2

�
12y2t þ12y2bþ4y2τ −6λ−

3

2
g2Y −

9

2
g22

	
:

ð50Þ

Equation (50) reproduces the SM Higgs mass quadratic
divergence obtained in the case that the SM has a cutoff
Λ≡M [8,15]: the first three terms correspond to the
quadratic divergences coming from the exchange of top,
bottom, and tau fermions [with masses mt;b;τðhLEÞ ¼
yt;b;τhLE], the fourth term corresponds to divergences
coming from the exchange of the SM Higgs [with mass
m2

hðhLEÞ ¼ −m2 þ 3λh2LE] and neutral and charged
Goldstone bosons [with masses m2

χðhLEÞ ¼ −m2 þ λh2LE],10In general ΔZh consists of two terms: one depending on the
renormalization scale and proportional to the anomalous dimen-
sion difference γh − γhLE ; and a second one leading to a one-loop
scale-independent difference between the LE and HE parameters
(see, e.g., [14]).

11We checked numerically that in the SM the quadratic term
changes by about ∼10% for a running from the electroweak to the
Planck scale.
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while the last two terms are equivalent to those due to the
exchange of W and Z gauge bosons [with masses
m2

WðhLEÞ ¼ g22h
2
LE=2 and m2

ZðhLEÞ ¼ ðg2Y þ g22Þh2LE=2]. In
fact, Eq. (50) can be written as a function of SM running
masses as

Δm2ðMÞ ¼ M2

32π2v2

�X
f

nfm2
f − 3m2

h − 3m2
Z − 6m2

W

	
;

ð51Þ

where nf is the number of degrees of freedom of the
fermion f.
As it is well known, for experimental values of the SM

masses the requirement Δm2ðMÞ ¼ 0 in Eq. (51), usually
dubbed the Veltman condition [8], is not fulfilled at weak
scales but at Planckian scales [16]. The value of this high
scale is quantified in the left panel of Fig. 1 where the
contour lines of Δm2ðMÞ ¼ 0 (or equivalently S ¼ 0) are
plotted in the plane ðlog10M=GeV;MtÞ (where Mt is the
top quark pole mass), for different values of mh and
α3ðmZÞ. The plot has been obtained by using the RG
equations of the SM parameters appearing in Eq. (50) at the
next-to-next-to-leading order (NNLO) (as done, e.g.,
in [17]).

B. A simple nondegenerate case

A simple nondegenerate case is the scenario where at the
scale Qm the sfermion, electroweakino, and Higgs sectors
have, respectively, common masses M0, M1=2, and MH as

mQ ¼ mU ¼ mD ¼ mL ¼ mE ≡M0;

M1 ¼ M2 ¼ μ≡M1=2; mH ≡MH: ð52Þ
In this case we can express Δm2ðQmÞ as

Δm2ðQmÞ ¼ Δfm2ðQmÞ þ Δlm2ðQmÞ ð53Þ

with12

Δfm2ðQmÞ ¼
1

32π2
fð12y2t þ 12y2b þ 4y2τÞM2

0

− 4GM2
1=2 − ð6λ −GÞM2

Hg; ð54Þ

Δlm2ðQmÞ

¼ 1

32π2

�
−½ð12y2t þ 12y2b þ 4y2τÞM2

0 þ ð6y2t X2
t

þ 6y2bX
2
b þ 2y2τX2

τÞ� log
M2

0

Q2
m
þ 4GM2

1=2fβ log
M2

1=2

Q2
m

þ ð6λ −GÞM2
H log

M2
H

Q2
m

	
; ð55Þ

where G ¼ ðg2Y þ 3g22Þ=2, fβ ¼ 2þ sin 2β, and all param-
eters are understood at the scale Qm. For definiteness we
take Qm ¼ M0 hereafter. It follows that
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FIG. 1 (color online). Left panel: Contour lines of S ¼ 0 for different values of α3ðmZÞ in the degenerate case of Sec. VI A. The solid
(dashed) lines are obtained takingmh ¼ 126ð125Þ GeV.Right panel:Contour lines of log10 M0 as a function of rH and r1=2 leading toS ¼ 0
in the nondegenerate case of Sec. VI B.We choosemh ¼ 125.1 GeV,mt ¼ 172.5 GeV, α3ðmZÞ ¼ 0.1196, and tan β ¼ 1 for definiteness.
Along the dotted straight line (r1=2 ¼ rH) the quadratic corrections can be understood as a generalization of the Veltman condition.

12The decomposition (53) separates the one-loop scale inde-
pendent contribution from the dependent one, Δfm2ðQmÞ and
Δlm2ðQmÞ, respectively. This separation is defined up to an
arbitrary one-loop scale independent quantity, but our results do
not depend on the convention we are choosing.
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Δfm2ðQmÞ ¼
M2

0

32π2v2

�X
f

nfm2
f − 4ð2m2

W þm2
ZÞr21=2

− ð3m2
h − 2m2

W −m2
ZÞr2H

	
; ð56Þ

Δlm2ðQmÞ ¼
M2

0

32π2v2
f4fβð2m2

W þm2
ZÞr21=2 log r21=2

þ ð3m2
h − 2m2

W −m2
ZÞr2H log r2Hg; ð57Þ

where rH ¼ MH=M0, r1=2 ¼ M1=2=M0, and all masses are
running.
For rH ¼ r1=2 the right hand side of Eq. (56) coincides

with the quadratic divergences that one derives from the SM
effective potential by using as regulators the cutoffΛF ¼ M0

for fermions and the cutoff ΛB ¼ M1=2 ¼ MH for bosons.13

In this case the requirementΔfm2 ¼ 0 can be interpreted as
a generalization of the Veltman condition expressing the
Higgs quadratic divergence in terms of SM parameters and
cutoffs.14 However, the logarithmic corrections are also
sizable and contribute to destabilizing the potential.With the
constraint rH ¼ r1=2, Δlm2 is negligible only when
rH ¼ r1=2 ≈ 1. Correspondingly the condition Δm2 ¼ 0

with cutoffs at the TeV scale is not possible anymore.
However, for rH ≠ r1=2 the stability under perturbative

corrections can still be fulfilled at scales of Oð100 TeVÞ if
one requires the cancellation of the total correction Δm2.
This can be seen in the right panel of Fig. 1 where the
constraints on rH and r1=2 leading to S ¼ 0 (solid curves)
are plotted for several values of M0. The figure is obtained
using Eqs. (56) and (57) with tan β ¼ 5, and running the
SM parameter at NNLO with boundary conditions
mh ¼ 125.1 GeV, Mt ¼ 172 GeV, and α3 ¼ 0.1196 at
the electroweak scale as explained in Ref. [16]. The former
case, rH ¼ r1=2, is exhibited as the dotted straight line in the
right panel of Fig. 1 where we can see that stability can be
achieved for sub-Planckian scales.

C. General soft breaking terms

In principle one expects that all soft breaking para-
meters will be different at the scale Qm. In this general
case the finite threshold contribution to the SM Higgs
mass parameter is given by Eq. (46). The required
condition for keeping Δm2 at the order of the electro-
weak scale is then a hypersurface in the multidimensional
space of supersymmetric parameters ðmQ;mU;mD;mL;
mE; At; Ab; Aτ; m1; m2; μ;M1;M2Þ. In the next section some

of these hypersurfaces are analyzed numerically for the case
of negligible Fayet-Iliopoulos (FI) contribution.15

Before closing this section a couple of comments are in
order. In this section we have assumed m2ðQmÞ at the
electroweak scale without specifying the origin of such a
value. The main ideas to naturally produce m2ðQmÞ at the
electroweak scale are twofold:

(i) If (i) the whole MSSM Higgs sector is at the
electroweak scale (in which case the LE effective
theory is not the SM but a two Higgs doublet
model), and (ii) the masses of the supersymmetric
partners are in the low TeV region (i.e., Qm≫QEW),
then m2ðQmÞ is at the electroweak scale. Moreover,
the requirement jΔm2ðQmÞj≲Oð100 GeVÞ2 is also
automatically satisfied. This parameter configura-
tion might be excluded soon by the LHC lower
bounds on heavy Higgs and superpartner masses,
and we will not further discuss it.

(ii) For tan β ≫ 1 the squared massm2ðQmÞ is similar to
m2

2ðQmÞ [cf. Eq. (37)]. The value of the latter is
naturally small in the FP parameter region of the
MSSM. This possibility has been broadly studied in
the literature [12] although the modifications due to
Δm2 have been overlooked.

In the next section we will analyze the effects that the
one-loop corrections have on the FP solution.

VII. NUMERICAL RESULTS: FOCUS
POINT SOLUTIONS

In this sectionwe concentrate on the FP solution including
the one-loop radiative correction Δm2. We stress that till
nowwe have expressedm2ðQmÞ andΔm2ðQmÞ as functions
of supersymmetric parameters evaluated at the scale Qm.
However, in view of a more fundamental supersymmetry-
breaking description,m2 andΔm2 should be reexpressed in
terms of the supersymmetric parameters evaluated at the
messenger scale M at which supersymmetry breaking is
transmitted to the observable sector. As, depending on the
supersymmetry breakingmodel, some of the parameters can
unify at the messenger scale, the number of independent
parameters at the scaleM can be smaller (than what would
show up at the scale Qm). So, the required relation to keep
Δm2 and m2ðQmÞ of the order of the electroweak scale is
simpler and might appear more natural. This scenario is
considered in this section assuming, at the scale M, as a
simple example the case16

13A similar interpretation is not clear forM1=2 ≠ MH due to the
fact that both the heavy (neutral and charged) Higgs sector and
charginos and neutralinos contribute to the generalized Veltman
condition with terms proportional to squared gauge couplings.

14In particular, for some choices of ΛB and ΛF at the TeV scale,
the condition Δfm2 ¼ 0 can be achieved at low energies.

15We remind the reader that the FI contribution is a RG
invariant. Our assumption is thus valid only if the FI term is zero
at the scale of supersymmetry breaking transmission. Otherwise it
should be taken into account, although its (tiny) contribution
should not change the qualitative conclusions.

16Other cases can obviously be considered along similar lines.
Here we just present the case of Eq. (58) dubbed as NUHM1 [18].
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mQðMÞ ¼ mUðMÞ ¼ M0;

m1ðMÞ ¼ m2ðMÞ ¼ MH; MaðMÞ ¼ M1=2:
ð58Þ

From Eqs. (39) and (40) we can write the matching
conditions as

m2
LE≃m2ðQmÞþΔm2ðQmÞ¼

1

tan2β−1
~m2
1−

tan2β
tan2β−1

~m2
2;

ð59Þ

where Δm2 is given by Eq. (46), and the subleading
radiative contribution 2m2ΔZh from the wave function
renormalization is neglected. For tan β ≫ 1, μ ¼
Oð100 GeVÞ, and small Δm2, the requirement m2ðQmÞ ¼
Oð100 GeVÞ2 implies jm2

H2
j ¼ Oð100 GeVÞ2, wherem2

H1;2

are defined in Eq. (23). For a heavy supersymmetric
spectrum this size of m2

H2
can be generated in the

neighborhood of the FP solution [13,19], which is radia-
tively led tom2

H2
¼ 0. However, in the FP parameter region

there is no general reason why Δm2 should be small. In
fact, the presence of Δm2 can distort the standard FP
solution usually considered in the literature. In this section
we numerically analyze the parameter space of these
modified FP solutions.17

As it was mentioned in the previous section, it is useful
to reexpress the supersymmetric parameters of Eq. (59) in
terms of their values at the high scale M. On dimensional
grounds we can rewrite them as

m2
XðQmÞ ¼ m2

X þ ηXQ½Qm;M�ðm2
Q þm2

U þm2
2Þ

þ
X
a;b

ηXab½Qm;M�MaMb

þ
X
a

ηXaA½Qm;M�MaA0 þ ηXA ½Qm;M�A2
0;

AtðQmÞ ¼ A0 þ fA½Qm;M�A0 þ
X
a

fa½Qm;M�Ma;

ð60Þ
where A0, m2

X, and Ma (with X ¼ Hi;QL;UR;DR, and
a ¼ 1; 2; 3) are, respectively, the stop trilinear mixing
parameter, the sfermion masses, and the Majorana gaugino
masses at the scale M.
Concerning the numerical procedure, we assume mod-

erately large values of tan β (namely tan β≃ 10), which
allows us to approximate Xt ≃ At and to safely neglect all

Yukawa couplings except that of the top quark. Moreover,
we set At at the mass scale ~Q2 ≡mQðQmÞmUðQmÞ in such
a way that the SM RG evolution of the quartic coupling

λð ~QÞ ¼ 1

4
ðg22ð ~QÞ þ g2Yð ~QÞÞ cos2 2β

þ 3

8π
y4t ð ~QÞX2

t

�
1 −

X2
t

12

�
ð61Þ

from ~Q to QEW reproduces the Higgs mass observation,
namely λðQEWÞ ≈ ðmh=vÞ2=2. For the functions
ηX½Qm;M� and f½Qm;M�, which were obtained semi-
analytically for Qm ¼ 2 TeV and μ ∼ 100 GeV in
Ref. [13], we use some simple generalized formulas where
the effect of possible heavy Higgsinos is incorporated.18

Finally, as a fundamental description of the supersymmetric
parameters, we consider the relations in Eq. (58).
Figures 2, 3, 4, and 5 display the values of fundamental

parameters and their corresponding mass spectra leading to
m2

LE ∼ ð100 GeVÞ2. In the left panels of the figures we plot
contour (black dashed) lines for constant values of
log10ðM=GeVÞ such that Eq. (59) at tree level is fulfilled,
and contour (solid red) lines for the stability parameter S of
the one-loop radiative corrections [cf. Eqs. (46) and (48)].
Similarly, the contour lines of mQðQmÞ (solid black lines),
mUðQmÞ (dashed blue lines), andmHðQmÞ (dash-dotted red
lines) are shown in the middle panels, whereas the contour
lines of M3ðQmÞ (solid red lines), M2ðQmÞ (dashed blue
lines), andM1ðQmÞ (dash-dotted black lines) are depicted in
the right panels. We remind the reader that the condition
m2

LE ∼ ð100 GeVÞ2 arises with no tuning between m2 and
Δm2 when S ¼ Oð1Þ.
In Figs. 2 and 3 we consider the case μ ∼ 100 GeV, and

M0 ¼ 0,M0 ¼ 2 TeV, respectively, and in Figs. 4 and 5 the
case with M0 ¼ 2 TeV and heavy and superheavy
Higgsinos, with μ ¼ 2 TeV and μ ¼ M1=2, respectively.
The region with mUðQmÞ < 750 GeV [m2

UðQmÞ < 0] cor-
responds to the yellow [green] shadowed area. In fact, the
yellow band corresponds to the FP for the light stop
scenario [20].
As we can see from the general expression of radiative

corrections, Eq. (46), gauge coupling terms should tend to
compensate top Yukawa coupling terms when
M1=2;MH > M0.

19 This is the case for the models analyzed

17We remind the reader that, in the absence of Δm2, the FP
solution is scale invariant with respect to a common multiplica-
tive factor on the boundary conditions (at the scale M) of the
supersymmetric masses. This scale invariance is broken by Δm2,
which contains logarithms of the supersymmetry breaking
masses over Qm. Still, as radiative corrections are small as
compared to the tree level values, the scale invariance of the FP
solutions is approximatively preserved.

18For the case of heavy Higgsinos we determine the one-loop
RG evolution of the MSSM parameters by neglecting the scale
dependence of μ. This is justified by the fact that the variation of μ
between Qm and M is of the order of 1%.

19This kind of spectra, where the boundary conditions for
gauginos are heavier than sfermions, can be found, e.g., in
minimal gauge mediation (although the considered boundary
conditions in our example of Eq. (58) do not match those of
minimal gauge mediation) with a large number of messengers or
in some extra dimensional mechanisms of supersymmetry break-
ing as gaugino mediation [21,22].
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in Figs. 2–4 where the stability condition is satisfied
for M1=2;MH ≳ 3 TeV. Finally this trend is broken for
superheavy Higgsinos, as the μ ¼ M1=2 case shown in
Fig. 5. Here for very heavy gauginos, M1=2 ≫ 1 TeV, the

value of M2
H ¼ m2

Hu;d
þ μ2 becomes very large and the

condition S ¼ 1 is overshot. Therefore the stability con-
dition requires lighter gauginos than scalars as we can see
in Fig. 5.
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FIG. 2 (color online). Left panel: Contour lines of log10 M=GeV (white labels) and stability parameter S (orange labels) forM0 ¼ 0,
and light Higgsinos, μ ¼ 100 GeV. The (yellow) external shadowed region corresponds tomUðQmÞ < 750 GeV, and the (green) internal
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FIG. 3 (color online). The same as in Fig. 2 but for M0 ¼ 2 TeV.
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FIG. 4 (color online). The same as in Fig. 3 but for μ ¼ 2 TeV.
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VIII. OUTLOOK AND CONCLUSIONS

In view of the growing experimental evidence against the
existence of sub-TeV new physics, and having in mind the
naturalness problem of electroweak interactions, it is inter-
esting to study the matching of the SM with possible UV
completions solving the grand hierarchy problem. In gen-
eral, we expect that the presence of heavy mass states,
coupled to the Higgs sector in the UV theory, would
contribute at the matching scale Qm as finite threshold
corrections to the SM Higgs mass term: these finite con-
tributions trigger the hierarchy problem and destabilize the
electroweak minimum. Determining these corrections is
then of utmost importance to quantify the stability/
naturalness problem and at least to find the parameter
conditions that the underlying (final) theory at the unifica-
tion, or Planck, scale should eventually provide to solve it.
In this paper we have pursued this task for the simplest

perturbative UV completion of the SM solving the hier-
archy problem: the MSSM. Although we have focused on
this model, the qualitative features presented in this paper
are expected to hold in any perturbative UV theory aiming
to solve the grand hierarchy problem. The key ingredient of
our analysis is the one-loop effective potential improved by
the renormalization group equations, and the renormaliza-
tion-scale invariance of such a potential. As a battleground
we have considered the Landau gauge and dimensional
regularization in the MS renormalization scheme (at this
level of the calculation, and for scalar and fermion fields
integrated out, equivalent to the DR). With these choices
we have obtained the one-loop matching between the SM
and MSSM Higgs sectors at the multi-TeV matching scale
Qm, where the large leading logarithms between the high
(unification) scale M and Qm have been resummed.
Motivated by hints from experimental data, the matching

has been performed assuming a large mass hierarchy
between SM and non-SM fields, which allows one to work
in the unbroken electroweak symmetry phase. After having

integrated out the heavy fields, the final one-loop identi-
fication between the SM mass term, m2

SM, and the MSSM
mass terms, m2

I (with I ¼ 1; 2; 3), is given by Eq. (40),
which can be written as

m2
SM ¼ ½−m2

1c
2
β −m2

2s
2
β þ 2m2

3sβcβ�ð1þ 2ΔZhÞ þ Δm2;

ð62Þ

where the radiative contributions ΔZh and Δm2 are,
respectively, coming from the matching between the wave
functions and quadratic interactions of the SM and the
MSSM lightest CP-even Higgs. The main features of the
matching are as follows:

(i) We have integrated out only heavy states from the
MSSM in the effective potential. We have not
integrated out the heavy modes from the light
(SM) states, as in the Wilsonian action, which would
have created a cutoff in the low energy theory. In this
way we can still integrate momenta in the low
energy theory up to infinity and then keep on using
dimensional regularization for them.

(ii) Using the scale independence of the effective po-
tential the matching scaleQm is completely arbitrary
in the considered one-loop approximation. If all
heavy masses are of similar order of magnitude (as
in the high-scale supersymmetry scenario consid-
ered here), Qm can be arbitrarily fixed at some
intermediate value around them to avoid large
logarithms and the breaking of perturbation theory
at higher-loop orders. If very different heavy scales
are present (as, e.g., in split supersymmetry [23]),
then different matching processes should be sub-
sequently applied (cf., e.g., Ref. [14]).

(iii) The size of the squared mass parameter of the
lightest Higgs in the high energy theory,
m2 ¼ −m2

1c
2
β −m2

2s
2
β þ 2m2

3sβcβ, is not physically
meaningful as it is strongly scale dependent. Its
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FIG. 5 (color online). The same as in Fig. 3 but for μ ¼ M1=2. In the (magenta) upper left shadowed region the soft breaking terms
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< 0 are tachyonic at the scale M, although m2
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dependence is mostly compensated by the one of
2ΔZh and Δm2, so that the final one-loop scale
dependence of the right hand side of Eq. (62) is as
weak as that of the SMmass parameter (in particular,
the dependence including large masses appears only
at two loops). The natural scale of the SM electro-
weak sector should hence be deduced considering
the sum of m2 and Δm2 (the ΔZh effect is in general
subleading), possibly at the scale Qm to avoid
perturbative problems. In particular, once the mag-
nitude of m2ðQmÞ is enforced to be of the order of
the electroweak scale, the stability of the electro-
weak breaking conditions is guaranteed by
S ≡ jΔm2ðQmÞ=m2

LEðQmÞj≲ 1.
We now present a short list of results obtained in the

present paper:
(i) When the non-SM fields are heavy and degenerate,

the expression for Δm2 at the matching scale Qm
reproduces the result obtained by Veltman in the SM
using dimensional regularization and extracting the
“quadratic” divergence as the residue of the pole in
d ¼ 2 dimensions. Veltman then interpreted this
result as the coefficient of the cutoff Λ2, while we
can express it as the coefficient of the common
supersymmetric mass squared. Our result is thus
consistent with Veltman’s and puts solid grounds in
the understanding of the SM as an effective theory
below the MSSM. As it is well known, the vanishing
of the Veltman coefficient can be achieved only at
(super)Planckian scales.

(ii) When the MSSM fields are heavy, and of the same
order of magnitude but not fully degenerate, the
stability of the electroweak minimum provides a
generalization of Veltman’s result, which amounts to
introducing different cutoffs for the different SM
sectors, plus a modification that is negligible only
for a strictly nonhierarchical heavy spectrum. In
particular, by assuming the masses of the heavy
Higgses and/or gauginos to be larger than those of
sfermions, one can easily achieve the vanishing of
Δm2 at sub-Planckian scales.

(iii) We have analyzed several cases where the MSSM
mass parameters are generated at high scale, and
transmitted to the observable sector by means of
some mediators between the hidden and observable
sectors, and we have determined the parameter
regions where m2ðQmÞ ∼ ð100 GeVÞ2. However,
also the requirement Δm2ðQmÞ ≲Oð100 GeVÞ2
should be imposed in order to achieve satisfactory
electroweak breaking conditions. The parameter
regions where this latter requirement is also realized
turn out to provide a sort of generalized focus point
conditions that include threshold effects.

Let us finally make some considerations about the
physical significance of the (stability) regions where both

m2
LEðQEWÞ ¼ Oð100 GeVÞ2 and S ≲ 1 conditions are

satisfied:
(i) As we have already mentioned, these regions are

obtained by integrating out the heavy fields at one
loop. The procedure is performed at a renormaliza-
tion scale near the energy scale of the heavy masses.
The result is thus not jeopardized by large loga-
rithms, and it has no relevant one-loop scale
dependence.

(ii) The stability regions do depend on the threshold
contributions we obtain from the effective potential
in a particular (Landau) gauge. Therefore, in
general, we could expect a gauge dependence in
our results. However, as we have performed the
matching in the unbroken electroweak symmetry
phase and upon integrating out only scalars and
fermions (neither gauge nor Goldstone bosons), it
turns out that our computation of the thresholds is
gauge independent within the considered approx-
imations.

(iii) The effective potential depends on the particular
renormalization scheme, and we have worked it out
in the MS scheme, which amounts to subtracting (to
define the counterterm) the infinite term propor-
tional to 2

ϵ − γE þ logð4πÞ − δwith δ ¼ 0. In the MS
scheme the finite term in the effective potential
contributions coming from heavy fermions and
scalars is proportional to the constant C ¼ 3=2
[cf. Eq. (5)]. Subtracting a different infinite counter-
term (with δ ≠ 0, as, e.g., in the MS renormalization
scheme or a variant thereof) would then lead to a
shift in the constant C as C → Cþ δ. Consequently
for the degenerate and almost degenerate cases, the
stability condition S ¼ 0 leading, respectively, to the
exact and generalized Veltman conditions
(cf. Secs. VI A and VI B with r1=2 ≃ rH ≃ 1) would
receive additional contributions. Therefore, the Velt-
man-like conditions we obtain from the MSSM arise
only in the DR scheme and are relevant for the
matching with the SM effective theory in the MS
renormalization scheme.

To conclude, given a scheme of supersymmetry break-
ing involving soft terms above the TeV scale, the
threshold corrections to the Higgs mass parameters play
a determinant role in the stability of the electroweak
breaking conditions and the masses of the Higgs fields.
In the present paper we have determined these threshold
corrections in some MSSM scenarios with no relevant
hierarchy in the heavy mass spectrum, and looked for
soft-parameter relations that could alleviate the little
hierarchy problem. Of course, it is clear that a similar
analysis can also be performed for any perturbative
theory that UV completes the SM. Moreover, an equiv-
alent analysis can be done even if the low energy theory
is itself some extension of the SM, as one in which there
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is an aligned extended Higgs sector [24] giving rise
to, e.g., a two Higgs doublet model. If the UV com-
pletion of the SM is not perturbative, as in the case of a
composite Higgs, the calculation cannot rely on pertur-
bation theory and different methods to evaluate threshold
effects should be used [3]. In general, whatever the
final UV completion of the SM is, we expect it could
provide an answer to the question on why our electro-
weak vacuum is stable and insensitive to high scale
physics.
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APPENDIX A: RADIATIVE CORRECTIONS
TO MASS PARAMETERS

In this appendix we will present a detailed calculation of
the radiative contributions to the mass parameters Δm2

1,
Δm2

2, and Δm2
3 in the MSSM arising from the different

sectors of sfermions, charginos, neutralinos, and the Higgs
scalar sector.

1. Squarks and sleptons

The mass squared matrices for top and bottom squarks
and for tau-sneutrinos and staus can be written as

M2
~t ¼

�m2
Q þ Y2

t h22 þ Π ~uL YtðAth2 − μh1Þ
YtðAth2 − μh1Þ m2

U þ Y2
t h22 þ Π ~uR

�
; ðA1Þ

M2
~b
¼

�m2
Q þ Y2

bh
2
1 þ Π ~dL

YbðAbh1 − μh2Þ
YbðAbh1 − μh2Þ m2

D þ Y2
bh

2
1 þ Π ~dR

�
; ðA2Þ

M2
~ντ
¼

�
m2

L þ Π~νL 0

0 m2
N

�
; ðA3Þ

M2
~τ ¼

�
m2

L þ Y2
τh21 þ Π~eL YτðAτh1 − μh2Þ

YτðAτh1 − μh2Þ m2
E þ Y2

τh21 þ Π~eR

�
; ðA4Þ

where

Π ~f ¼
1

2
½T3~f

ðg2Y þ g22Þ −Q ~fg
2
Y � ðh21 − h22Þ: ðA5Þ

Using the expressions in Eq. (44) it is straightforward to
find the corresponding contributions to Δm2

1;2;3 as

Δm2
1 ¼

2

32π2

�
3Y2

b½Gðm2
QÞ þ Gðm2

DÞ� þ Y2
τ ½Gðm2

LÞ þ Gðm2
EÞ� þ

3Y2
t μ

2

m2
Q −m2

U
½Gðm2

QÞ −Gðm2
UÞ�

þ 3Y2
bA

2
b

m2
Q −m2

D
½Gðm2

QÞ − Gðm2
DÞ� þ

Y2
τA2

τ

m2
L −m2

E
½Gðm2

LÞ −Gðm2
EÞ�

−
g2Y
2
½Gðm2

QÞ − 2Gðm2
UÞ þ Gðm2

DÞ −Gðm2
LÞ þ Gðm2

EÞ�
	
;

Δm2
2 ¼

2

32π2

�
3Y2

t ½Gðm2
QÞ þGðm2

UÞ� þ
3Y2

t A2
t

m2
Q −m2

U
½Gðm2

QÞ −Gðm2
UÞ� þ

3Y2
bμ

2

m2
Q −m2

D
½Gðm2

QÞ − Gðm2
DÞ�

þ Y2
τμ

2

m2
L −m2

E
½Gðm2

LÞ −Gðm2
EÞ� þ

g2Y
2
½Gðm2

QÞ − 2Gðm2
UÞ þ Gðm2

DÞ −Gðm2
LÞ þ Gðm2

EÞ�
	
;

Δm2
3 ¼

2

32π2

�
3Y2

t μAt

m2
Q −m2

U
½Gðm2

QÞ −Gðm2
UÞ� þ

3Y2
bμAb

m2
Q −m2

D
½Gðm2

QÞ −Gðm2
DÞ� þ

Y2
τμAτ

m2
L −m2

E
½Gðm2

LÞ −Gðm2
EÞ�

	
;
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with

Gðm2
XÞ≡m2

X

�
log

m2
X

Q2
m
− 1 − δ

�
: ðA6Þ

Here the function G has been generalized to the subtraction
schemes having C ¼ 3=2þ δ in the scalar contributions of
Eq. (5). Equation (A6) recovers Eq. (45) for the MS (or DR)
subtraction scheme where δ ¼ 0.
If some of the masses are degenerate the following limit

turns useful:

lim
y→x

Gðx2Þ − Gðy2Þ
x2 − y2

¼ log
x2

Qm
2
− δ: ðA7Þ

2. Charginos

The squared mass matrix for the charginos can be
written as

M2
ch ¼

�
M2

2 þ g22h
2
2 g2ðM2h1 þ μh2Þ

g2ðM2h1 þ μ�h2Þ μ2 þ g22h
2
1

�
: ðA8Þ

We can then compute the corresponding contributions to
Δm2

1;2;3 as

Δm2
1 ¼ Δm2

2 ¼ −
4

32π2
g22

M2
2 − μ2

½M2
2GðM2

2Þ − μ2Gðμ2Þ�;

ðA9Þ

Δm2
3 ¼

4

32π2
g22μM2

M2
2 − μ2

½GðM2
2Þ −Gðμ2Þ�; ðA10Þ

with G defined in Eq. (A6). In case of degenerate spectra
the following limit is useful:

lim
y→x

x2Gðx2Þ − y2Gðy2Þ
x2 − y2

¼ x2
�
−1 − 2δþ 2 log

x2

Qm
2

�

ðA11Þ

with δ ¼ 0 in the MS or DR schemes.

3. Neutralinos

The squared mass matrix for the neutralinos can be
written as

M2
ne ¼

0
BBBBBBBB@

M2
1 þ g2Y

2
ðh21 þ h22Þ − 1

2
gYg2ðh21 þ h22Þ − gYffiffi

2
p ðM1h1 þ μh2Þ gYffiffi

2
p ðM1h2 þ μh1Þ

− 1
2
gYg2ðh21 þ h22Þ M2

2 þ g2
2

2
ðh21 þ h22Þ g2ffiffi

2
p ðM2h1 þ μh2Þ − g2ffiffi

2
p ðM2h2 þ μh1Þ

− g1ffiffi
2

p ðM1h1 þ μh2Þ g2ffiffi
2

p ðM2h1 þ μh2Þ μ2 þ h2
1

2
ðg2Y þ g22Þ − 1

2
h1h2ðg2Y þ g22Þ

gYffiffi
2

p ðM1h2 þ μh1Þ − g2ffiffi
2

p ðM2h2 þ μh1Þ − 1
2
h1h2ðg2Y þ g22Þ μ2 þ h2

2

2
ðg2Y þ g22Þ

1
CCCCCCCCA
: ðA12Þ

The derivatives of the mass eigenvalues with respect to the
backgrounds ϕj ≡ ðh21; h22; h1h2Þ can easily be computed
following the techniques introduced in Ref. [25]. The
squared mass eigenvalues are given by the solutions of
the equation defined by the characteristic polynomial

detðM†M − λÞ≡X
n

cðnÞðϕjÞλn ¼ 0; ðA13Þ

where the coefficients of the characteristic polynomial are
functions of h21, h

2
2, and h1h2. Differentiating (A13) with

respect to ϕj we obtain the required expressions

∂λ
∂ϕj

����
hi¼0

¼ −

P
n
∂cðnÞðϕjÞ

∂ϕj
λnP

nnc
ðnÞðϕjÞλn−1

����
hi¼0

; ðA14Þ

where on the right hand side λ denotes the squared mass
eigenvalues.

The calculation of Δm2
1;2;3 is now straightforward and

gives

Δm2
1 ¼ Δm2

2

¼ −
2

32π2

�
g2Y

M2
1 − μ2

½M2
1GðM2

1Þ − μ2Gðμ2Þ�

þ g22
M2

2 − μ2
½M2

2GðM2
2Þ − μ2Gðμ2Þ�

	
;

Δm2
3 ¼

2

32π2

�
g2YM1μ

M2
1 − μ2

½GðM2
1Þ −Gðμ2Þ�

þ g22M2μ

M2
2 − μ2

½GðM2
2Þ −Gðμ2Þ�

	
: ðA15Þ

In the case of equal masses we can use the limiting behavior
in Eqs. (A7) and (A11).
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4. Higgs scalar sector

The general tree level potential for the scalar sector is
given by

V ¼ m2
1jH1j2 þm2

2jH2j2 þm2
3ðH1 ·H2 þ H:c:Þ

þ g2Z
2
ðjH2j2 − jH1j2Þ2 þ

g22
2
jHþ

2 H
0�
1 þH−�

1 H0
2j2;

ðA16Þ

where H1 ·H2 ¼ Ha
1εabH

b
2 with ε12 ¼ −1. The squared

mass matrices for scalars [in the basis ðReH0
1;ReH

0
2Þ],

pseudoscalars [in the basis ðImH0
1; ImH0

2Þ] and charged
scalars [in the basis ðHþ

2 ; H
−�
1 Þ] are

M2
S ¼

�
m2

1 − g2Zðh22 − 3h21Þ −m2
3 − 2g2Zh1h2

−m2
3 − 2g2Zh1h2 m2

2 þ g2Zð3h22 − h21Þ

�
;

ðA17Þ

M2
P ¼

�
m2

1 − g2Zðh22 − h21Þ m2
3

m2
3 m2

2 þ g2Zðh22 − h21Þ

�
;

ðA18Þ

M2
C¼

�
m2

2þg2Zðh22−h21Þþ g2
2

2
h21 m2

3þ g2
2

2
h1h2

m2
3þ g2

2

2
h1h2 m2

1−g2Zðh22−h21Þþ g2
2

2
h22

�
:

ðA19Þ
For each of the previous matrices there are two eigen-

states in the unbroken phase (hi ¼ 0), HSM ¼ cβH1 þ
sβ ~H

�
2 with mass eigenvalue −m2, and Hh ¼ −sβH1 þ

cβ ~H
�
2 with mass eigenvalue m2

H ¼ m2
1 þm2

2 þm2. The
doublet HSM is identified with the SM Higgs doublet,
and we then exclude its contribution to Δm2. Using
Eq. (A14) one obtains that the heavy Higgs contributions
are given by

Δm2
1 ¼

1

32π2
Gðm2

HÞ
m2

1 þm2
2 þ 2m2

× ½2g2Zð3m2
1 − 2m2

2 þm2Þ þ g22ðm2
2 þm2Þ�;

Δm2
2 ¼

1

32π2
Gðm2

HÞ
m2

1 þm2
2 þ 2m2

× ½2g2Zð3m2
2 − 2m2

1 þm2Þ þ g22ðm2
1 þm2Þ�;

Δm2
3 ¼

1

32π2
Gðm2

HÞ
m2

1 þm2
2 þ 2m2

½−2g2Z − g22�m2
3: ðA20Þ

Using now the matching conditions (31), Eqs. (A20) can be
also written as

Δm2
1 ¼

1

32π2
Gðm2

HÞ½−4g2Z cos 2β þ 2g2Z sin
2 β þ g22 cos

2 β�;

Δm2
2 ¼

1

32π2
Gðm2

HÞ½4g2Z cos 2β þ 2g2Z cos
2 β þ g22 sin

2 β�;

Δm2
3 ¼

1

32π2
Gðm2

HÞ½−2g2Z − g22� sin β cos β: ðA21Þ

APPENDIX B: ONE-LOOP SCALE INVARIANCE
OF THE MATCHING

In Sec. III we showed that by construction the one-loop
matching conditions obtained via one-loop RG-improved
effective potentials are independent of the choice of Qm.
Here we use this property to check our finding (46).
The matching condition (40) led to (cf. Sec. III B)

m2
LEðQmÞ ¼ m2ðQmÞ½1þ 2ΔZhðQmÞ� þ Δm2; ðB1Þ

where [cf. Eqs. (38) and (39)]

m2 ¼ −m2
1 cos

2 β −m2
2 sin

2 β þm2
3 sin 2β; ðB2Þ

Δm2 ¼ −Δm2
1 cos

2 β − Δm2
2 sin

2 β þ Δm2
3 sin 2β; ðB3Þ

tan 2β ¼ 2 ~m2
3=ð ~m2

2 − ~m2
1Þ: ðB4Þ

The one-loop scale invariance imposes that in Eq. (B1) the
one-loopQm dependence of the right hand side is the same
as the SM. Here we check this issue.
The total derivative of the right hand side (RHS) in

Eq. (B1) with respect to logQm is given by20

βRHS ¼ −β ~m2
1
cos2β − β ~m2

2
sin2β þ β ~m2

3
sin 2β

þm2ð1þ 2γh − 2γhLEÞ; ðB5Þ

with

~m2
I ¼ m2

I þ Δm2
I ¼ m2

I þ
X
r

Δm2
I;r;

β ~m2
I
¼ βm2

I
þ βΔm2

I
≡ βm2

I
−
X
r

Δr
I ;

ðB6Þ

where the index r runs over the heavy fields as in Eq. (42).
The (one-loop) contribution Δmr

I can hence be deduced
from the one-loop Q dependence of Δm2

I;r. Each quantity
Δm2

I;r is provided in Appendix A and can be decomposed
into its logarithmic and nonlogarithmic contributions as
follows:

Δm2
I;r ¼ Δr

lm
2
I þ Δr

fm
2
I ≡ 1

32π2
lI;r þ

1

32π2
fI;r: ðB7Þ

20Note that the contribution to βRHS coming from derivatives of
the angle βðQmÞ cancels out after imposing Eq. (B4).
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In particular, lI;r ¼ 32π2Δm2
I;rðG → ~GÞ, with ~Gðx2Þ≡

x2 logðx2=Q2Þ, represents all terms proportional to
logarithms of squared masses over Q2

m, and fI;r ¼
32π2Δm2

I;rðG → ḠÞ with Ḡðx2Þ≡ −x2ð1þ δÞ contains
all nonlogarithmic terms (δ ¼ 0 in the MS and DR). At
one loop each fI;r is thus independent of Qm, and it results
in Δr

I ¼ ∂Δm2
I;r=∂Q.

The values of
P

rΔr
I are determined in steps considering

the contributions computed in Appendix A for each sector.
It comes out from sfermions

ð16π2ÞΔ ~f
1 ¼ 6Y2

bðm2
Q þm2

D þ A2
bÞ

þ 2Y2
τðm2

L þm2
E þ A2

τÞ þ 6Y2
t μ

2

−
3

5
g21ðm2

Q − 2m2
U þm2

D −m2
L þm2

EÞ;

ð16π2ÞΔ ~f
2 ¼ 6Y2

t ðm2
Q þm2

U þ A2
t Þ þ 6Y2

bμ
2 þ 2h2τμ2

þ 3

5
g21ðm2

Q − 2m2
U þm2

D −m2
L þm2

EÞ;

ð16π2ÞΔ ~f
3 ¼ 6Y2

t μAt þ 6Y2
bμAb þ 2Y2

τμAτ; ðB8Þ

from charginos

ð16π2ÞΔ~χ�
1 ¼ Δ~χ�

2 ¼ −4g22ðM2
2 þ μ2Þ;

ð16π2ÞΔ~χ�
3 ¼ 4g22μM2; ðB9Þ

from neutralinos

ð16π2ÞΔ~χ0

1 ¼ Δ~χ0

2 ¼ −2g22ðM2
2 þ μ2Þ − 6

5
g21ðM2

1 þ μ2Þ;

ð16π2ÞΔ~χ0

3 ¼ 2g22M2μþ
6

5
g21M1μ; ðB10Þ

and from the scalar, pseudoscalar, and charged Higgs sector

ð16π2ÞΔH
1 ¼ m2

1 þm2
2 þm2

m2
1 þm2

2 þ 2m2

× ½2g2Zð3m2
1 − 2m2

2 þm2Þ þ g22ðm2
2 þm2Þ�;

ð16π2ÞΔH
2 ¼ m2

1 þm2
2 þm2

m2
1 þm2

2 þ 2m2

× ½2g2Zð3m2
2 − 2m2

1 þm2Þ þ g22ðm2
1 þm2Þ�;

ð16π2ÞΔH
3 ¼ −

m2
1 þm2

2 þm2

m2
1 þm2

2 þ 2m2
½2g2Z þ g22�m2

3: ðB11Þ

Now using Eq. (B6) and the MSSM one-loop β
functions [26]

ð16π2Þβm2
1
¼6Y2

bðm2
Qþm2

Dþm2
1þA2

bÞþ2Y2
τðm2

Lþm2
Eþm2

1þA2
τÞþ

�
6Y2

t −6g22−
6

5
g21

�
μ2−6g22M

2
2−

6

5
g21M

2
1−

3

5
g21S;

ð16π2Þβm2
2
¼6Y2

t ðm2
Qþm2

Uþm2
2þA2

t Þþ
�
6Y2

bþ2Y2
τ −6g22−

6

5
g21

�
μ2−6g22M

2
2−

6

5
g21M

2
1þ

3

5
g21S;

ð16π2Þβm2
3
¼
�
3Y2

t þ3Y2
bþY2

τ −3g22−
3

5
g21

�
m2

3þ
�
6Y2

t A2
t þ6Y2

bAbþ2Y2
τAτþ6g22M2þ

6

5
g21M1

�
μ; ðB12Þ

where S ¼ m2
Q − 2m2

U þm2
D −m2

L þm2
E þm2

2 −m2
1, we can write

ð16π2Þβ ~m2
1
¼ ð6Y2

b þ 2Y2
τ − 2g2Z − g22Þm2

1 −m2½ð2g2Z þ g22Þ sin2 β þ 6g2Z cos 2β�;
ð16π2Þβ ~m2

2
¼ ð6Y2

t − 2g2Z − g22Þm2
2 −m2½ð2g2Z þ g22Þ cos2 β − 6g2Z cos 2β�;

ð16π2Þβ ~m2
3
¼ ð3Y2

t þ 3Y2
b þ Y2

τ − 2g2Z − g22Þm2
3 −m2ð2g2Z þ g22Þ sin β cos β: ðB13Þ

Plugging these expressions into Eq. (B5) yields

βRHS ¼ 6Y2
t ðsin β cos βm2

3 − sin2βm2
2Þ þ ð6Y2

b þ 2Y2
τÞðsin β cos βm2

3 − cos2βm2
1Þ

− ð2g2Z þ g22Þð−cos2βm2
1 − sin2βm2

2 þ sin 2βm2
3Þ þ ð6g2Zc22β þ 2ΔγÞm2; ðB14Þ

where Δγ ¼ γh − γLE ¼ γ1 cos2 β þ γ2 sin2 β − γhLE ¼ − 3
2
ð1
5
g21 þ g22Þ. (This difference between γh and γLE is caused by the

heavy electroweakinos.) Finally one imposes the tree-level matching conditions of Eqs. (31) and (33), and obtains
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βRHS ¼
�
6y2t þ 6y2b þ 2y2τ þ 6λ −

9

10
g21 −

9

2
g22

�
m2:

ðB15Þ

Equation (B15) thus agrees with the β function of the
quadratic term in the SM [27]. Note that in Eq. (B15) the
use of tree-level relations within the one-loop β functions is
justified by the fact that we are working at one-loop order.
Before concluding, notice that the splitting (B7) turns out

to be useful also for Δm2. In such a case it reads as

Δm2 ¼ Δlm2 þ Δfm2;

−Δlm2 ¼ Δlm2
1 cos

2 β þ Δlm2
2 sin

2 β − Δlm2
3 sin 2β;

−Δfm2 ¼ Δfm2
1 cos

2 β þ Δfm2
2 sin

2 β − Δfm2
3 sin 2β;

ðB16Þ

although, as we already noticed, the splitting into a
logarithmic (or one-loop scale dependent) and nonlogar-
ithmic (or one-loop scale independent) is not uniquely
defined since, e.g., in the function ½Gðx2Þ −Gðy2Þ�=ðx2 −
y2Þ the splitting process does not commute with the limit
x → y [cf. Eq. (A7)].
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