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We discuss thermal production of (pseudo) Goldstinos, the Goldstone fermions emerging from
(multiple) SUSY-breaking sectors, when the reheating temperature is well below the superpartner masses.
In such a case, the production during the matter-dominated era induced by the inflaton decay stage is more
important than after reheating. Depending on the SUSY-breaking scale, Goldstinos are produced by a
freeze-in or freeze-out mechanism via 1 → 2 decays and inverse decays. We solve the Boltzmann equation
for the momentum distribution function of the Goldstino. In the freeze-out case, Goldstinos maintain
chemical equilibrium far after they are kinetically decoupled by elastic scatterings and, consequently,
Goldstinos with different momentum decouple at different temperatures. As a result, their momentum
distribution function shows a peculiar shape, and the final yield is smaller than if kinetic equilibrium were
assumed. We revisit the cosmological implications in both R-parity-conserving and R-parity-violating
supersymmetric scenarios. For the former, thermally produced Goldstinos can still be abundant enough to
be dark matter at present times even if the reheating temperature is low, of order 1 GeV. For the latter, if the
reheating temperature is low, of order 0.1–1 GeV, they are safe from the BBN constraints.
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I. INTRODUCTION

When considering the consequences of early universe
cosmology, it is customary to assume that all interesting
phenomena, such as dark matter production, take place
after the inflationary period, and in particular after reheat-
ing, which marks the moment when the energy density of
the inflaton decay products (radiation) dominate over the
inflaton energy density. This is justifiable, as any primor-
dial abundance was inflated away and large amounts of
entropy are injected during the inflaton decay stage, further
diluting any other particle produced during reheating.
However, if the reheating temperature TR, the maximum

temperature of the thermal bath in the radiation-dominated
era, is well below the mass scale relevant for the particle
production, the abundance produced during the inflaton
decay stage could be more important than the one produced
after reheating. There are several early works to calculate
the production of WIMP-like particles and its phenomeno-
logical consequences during this period when the reheating
temperature is low enough [1–3]. In this case, the inflaton
decay stage can be approximated as the matter-dominated
era with constantly injected radiation, and the thermal
production can be calculated independently from the
specific inflation model. The higher temperature can be
achieved during this era and naive (Boltzmann) exponential
suppression for the abundance is replaced by power
suppression. On the other hand, in the studies of thermal
production of super-weakly interacting particles (SWIMP),

e.g. gravitinos and axions, such consideration has been
ignored so far, with many works focusing on the production
at high TR.

1

One well-motivated class of SWIMP is a Goldstone- or
Goldstino-like particle, ζ, whose interaction to the visible
sector is suppressed by the symmetry-breaking scale, and
this scale is much higher than its mass. This class of
particles is particularly interesting in the sense that
their elastic scattering rate is doubly suppressed by the
symmetry-breaking scale compared to their production
rate. Therefore, the momentum transfer between
Goldstinos is only maintained by chemical interactions
(inelastic scattering). Actually, this does not give any
difference if the production happens at high TR or during
the radiation-dominated era, because chemical interactions
also give a thermal distribution for ζ as fζðpÞ ∝ e−p=T .
However, if TR is well below the relevant particle’s mass
that produces ζ, and the production during the early matter-
dominated era is important, the situation is different. As we
will show below, the production rate at low temperature is
quite momentum dependent, and fζðpÞ is no longer
proportional to the thermal distribution. Their inverse decay
rate becomes more complicated, so a detailed treatment of
Boltzmann equations is needed especially when the
symmetry-breaking scale is small such as in low-scale
gauge mediation.
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1Reference [4] studied the production of gravitinos taking into
account a proper treatment of the reheating process, with
TR ≫ ~m. In [5], the axino freeze-in thermal production from
the neutralino decays is shortly discussed for low reheating
temperature after thermal inflation.
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In this article, we study thermal production of SWIMPs
at low reheating temperature considering all the aspects
above. We will focus on the production of the Goldstino in
supersymmetric theories, but our treatment would apply
equally to similar particles. In theories where local super-
symmetry (SUSY) is broken spontaneously, the resulting
Goldstino is incorporated in the spin-1=2 degrees of
freedom of the gravitino, which acquires a mass
m3=2 ¼ F=

ffiffiffi
3

p
MP, with F being the scale of SUSY break-

ing andMP ¼ ð8πGNÞ−1=2 ¼ 2.4 × 1018 GeV, the reduced
Planck mass. Because the coupling between the Goldstino
and the visible sector is suppressed by 1=F, their mass and
thermal production rate are tightly related. The relation
between the Goldstino mass and the interaction strength
can be changed if there are multiple sectors with indepen-
dent SUSY-breaking interactions: multiple Goldstini [6]
arise and the scenario deserves more phenomenological
interest. In particular, while one Goldstino is still eaten by
the gravitino, there are uneaten Goldstini, whose mass is
not unambiguously set: at first, in Ref. [6,7], it was shown
that they generally acquire a mass 2m3=2 from supergravity
interactions. This was extended in Ref. [8], where it was
computed that the Goldstino mass could vary around 2m3=2

depending on the SUSY-breaking dynamics, and in
Ref. [9], where it was shown that, even in the global
SUSY limit, the uneaten Goldstinos could receive a large
mass (up to Oð100Þ GeV) if multiple SUSY- breaking
sectors communicate with the Standard Model (SM) via
gauge interactions. In this last case, the SM fields take the
role of messenger fields in mediating SUSY breaking
between the two sectors, and large masses for the
Goldstino can be achieved. The main interesting change
to the standard prediction is that the mass of the uneaten
Goldstinos can be parametrically larger than the gravitino
mass and can be taken as a free parameter depending on the
specifics of the SUSY-breaking dynamics.
This article is structured as follows: in Sec. II, we recall

and discuss in more detail the Goldstino interactions. In
Sec. III, we discuss the early matter-dominated era and
study the production of Goldstinos when the reheating
temperature is well below the superpartner scale,
TR ≲ ~m=10. If the F term is small, the Goldstino is in
thermal equilibrium with the MSSM sector during the
matter-dominated era and the freeze-out temperature is
momentum dependent. This happens because the 2 → 2
scattering that would bring the Goldstinos in kinetic
equilibrium has already frozen out, and only the high-
momentum Goldstinos can efficiently inverse-scatter into
the MSSM thermal bath. We numerically solve the
Boltzmann equation for the momentum distribution func-
tion (instead of the equation for the number density) and
find an analytical solution that reproduces well the numeri-
cal results. We compute the resulting Goldstino number
yield Yζ ¼ nζ=s, which is reduced with respect to the
results that one finds assuming kinetic equilibrium.

Otherwise, for a large F term, the Goldstino is slowly
produced via superpartner decays (freeze-in). We also
consider nonthermal production from direct inflaton
decays. We continue in Sec. IV, where we consider the
late-time implications of the produced Goldstinos. If R
parity is conserved, they can be cold dark matter for
reheating temperatures of order 1 GeV, and overclose
the Universe for larger TR; on the other hand, with R
parity violation (RPV) they can decay and will typically
interfere with big bang nucleosynthesis (BBN). We derive
bounds on the reheating temperature in the range of 0.5–
10 GeV for given RPV couplings and Goldstino masses.
We present final remarks and conclude in Sec. V.

II. GOLDSTINI INTERACTIONS

If there is a single SUSY-breaking sector, then the
corresponding massless fermionic degree of freedom,
the Goldstino, forms the spin-1=2 degrees of freedom of
the gravitino, which has a mass m3=2 ¼ F=

ffiffiffi
3

p
MP. The

situation becomes more complicated if there are multiple
sectors with independent SUSY-breaking dynamics [6]:
then, in the limit in which each sector is decoupled from the
others, each enjoys its own SUSY algebra and, if SUSY
breaking occurs independently in each sector, multiple
massless Goldstinos would arise. Introducing gravitational
interactions, the multiple SUSY algebras are broken down
to a diagonal subgroup, and only a linear combination of
those Goldstini is eaten by the gravitino. As discussed
above, the mass of the uneaten Goldstinos is not propor-
tional to the value of the corresponding F terms and can be
taken as a free parameter. For example, consider the case of
two SUSY-breaking sectors with hierarchical F terms
F1 ≫ F2. The gravitino mass is

m3=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
1 þ F2

2

p
ffiffiffi
3

p
MP

≈
F1ffiffiffi
3

p
MP

; ð1Þ

while the different Goldstini interactions are suppressed by
the different F terms. If each sector contributes SUSY-
breaking scalar mass squares ~m2

ϕ1;2 and gaugino masses
~mλ1;2, we have the following coupling to a matter multiplet
ðϕi;ψ iÞ and gauge multiplet ðλa; AaÞ:

Lint ≈
~m2
ϕ1

Feff
ηψ iϕ†

i −
i ~mλ1ffiffiffi
2

p
Feff

ησμνλaFa
μν þ

~m2
ϕ2

Fζ
ζψ iϕ†

i

−
i ~mλ2ffiffiffi
2

p
Fζ

ζσμνλaFa
μν þ H:c: ð2Þ

Here we have denoted by η the longitudinal component of
the gravitino (the eaten Goldstino) and by ζ the uneaten
Goldstino. Feff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
1 þ F2

2

p
≈ F1 and Fζ ≈ F2 are the

corresponding F terms of η and ζ, respectively. When
j ~m1j≲ j ~m2j, the interactions of ζ are enhanced with respect
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to those of η, while the mass of ζ can be kept as a free
parameter, much greater than F2=MP.
In the following, we will focus on the uneaten Goldstino

ζ, and we will simply refer to it as the Goldstino. We will
denote its F term by Fζ. It is understood that the spectrum
also includes the gravitino, which can be neglected because
of its suppressed interactions.
When the temperature falls well below the sparticle mass

scale, ~m, the effective interactions between the Goldstino
and other light particles are useful to estimate (nonreso-
nant) elastic scattering rates. After integrating out spar-
ticles, two-Goldstino interactions are given as [10–15]

Leff ¼
1

F2
ζ

ζ̄ψ̄ i
□ζψ i −

i
2F2

ζ

ζσμ∂νζ̄FaρνFa
μρ: ð3Þ

If R-parity violating interactions are introduced in the
superpotential as W ¼ λijkΦiΦjΦk, there are single-
Goldstino interactions even after integrating out sfermions
[16],

LRPV
eff ¼

X
ijk

1

~m2
ϕk
Fζ

λijkψ iψ j□ðζψkÞ þ H:c: ð4Þ

This interaction is not only important to determine the
lifetime of the Goldstino, but also to calculate thermal
production at low temperatures.

III. GOLDSTINO PRODUCTION IN THE
MATTER-DOMINATED ERA

A. Cosmology during reheating

The reheating temperature is usually referred to as the
temperature of the thermal bath when the inflaton

decays,2 and it is usually defined asHðTRÞ ¼ ΓI, assuming
that the radiation energy density, ρr, dominates the
Universe. In fact, at the corresponding time tðTRÞ ¼
1=ΓI , where ΓI is the decay rate of the inflaton, the inflaton
energy density is still non-negligible and a temperature
defined in this way was achieved only during matter
domination. Thus, entropy injection is still occurring after
TR. One more precise way to define TR is to consider the
asymptotic behaviors of ρr in both matter- and radiation-
dominated epochs, as shown in Fig. 1,

ρr ¼
π2g�ðTÞ

30
T4

¼
� ðπ2g�ðTÞT4

R=30Þða=aRÞ−3=2 for T ≫ TR;
ðπ2g�ðTÞT4

R=30Þða=aRÞ−4 for T ≪ TR;
ð5Þ

where g�ðTÞ is the effective number of massless degrees of
freedom at the temperature T, a is the scale factor and aR is
the scale at which two asymptotic lines meet. Numerically
we get

TR ¼ 0.7

�
90

π2g�ðTRÞ
�

1=4 ffiffiffiffiffiffiffiffiffiffiffiffi
ΓIMP

p
: ð6Þ

This will be our definition of the reheating temperature.
On the other hand, the thermal bath in the matter-

dominated era reached a higher temperature,
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FIG. 1 (color online). Left: Schematic behavior of the energy densities of the inflaton and of thermal radiation (MSSM fields) during
the matter-dominated era; as ρr ∼ T4, we have TMAX ≫ TR. Right: Evolution of the Goldstino yield with fixed reheating temperature
TR ¼ 20 GeV (corresponding to aR ¼ 5430), squark mass m ~q ¼ 1 TeV and two choices of Fζ ¼ ð100 TeVÞ2, ð5000 TeVÞ2,
corresponding to freeze-out and freeze-in, respectively.

2While we will be referring to the inflaton as the field
dominating the energy density of the Universe in the early
matter-dominated era, there are other cases that reproduce the
same scaling of the energy density, ρX ∼ a−3; a typical example
would be the late decay of moduli, which typically result in very
low reheating temperatures. In any case, we will refer to the
reheating temperature as the maximum temperature achieved in
the last radiation-dominated era, the one leading to big bang
nucleosynthesis.
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TMAX ¼
�

24g�ðTRÞ
5π2g2�ðTMAXÞ

�
1=8
�

μ

TR

�
1=2

TR; ð7Þ

where μ ¼ V1=4
I is the energy scale of inflation, and slow-

roll was assumed for this simplified expression. Because
of the continuous entropy injection during the matter-
dominated period, the temperature scales as T=TMAX ∝
a−3=8 instead of the typical scaling of the radiation-
dominated era, T ∝ a−1 (see Fig. 1). We refer to
Ref. [2] for the details of the computations leading to
TMAX. It is sufficient here to note that TMAX ≫ TR can be
much larger than the TeV (sparticle mass) scale, for typical
inflation scales μ ∼ 108 GeV–1016 GeV. The hierarchy of
relevant scales can be summarized as

mψ ; mζ; TR ≪ ~m ¼ OðTeVÞ≲ TMAX; ð8Þ

where ψ are SM particles, mζ is the mass of ζ, which is
taken as the NLSP by assuming m3=2 < mζ ≪ ~m. We
consider the thermal production of Goldstinos at
T ≲ TMAX, when TR is taken low, TR ¼ OðGeVÞ.
The Goldstino can be produced (and annihilated) via

three different channels: (i) scattering: ϕþ Aμ ↔
ζ þ ψ ; λþ λ ↔ ζ þ λ;…, (ii) (inverse) decay: ϕ ↔ ζþ
ψ ; λ ↔ ζ þ Aμ;…, and (iii) RPV scattering: ψ þ ψ ↔ ζ þ
ψ (here ψ ;ϕ; λ; Aμ, respectively, stand for SM fermions,
sfermions, gauginos, and gauge bosons).
The Boltzmann equation for the number density nζ can

be written as

_nζþ3Hnζ¼gζ

Z
d3pζ

ð2πÞ3C½fζ�

¼hσϕAμ→ζψviϕAμ
nϕnAμ

−hσζψ→ϕAμ
vi

ζψ
nζnψþ��� ðiÞ

þhΓϕ→ζψγ
−1iϕnϕ−hσζψ→ϕviζψnζnψ þ��� ðiiÞ

þhσψψ→ζψviψψnψnψ −hσζψ→ψψviζψnζnψ ; ðiiiÞ
ð9Þ

where γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
, nψ i

≡ gψ i

R
d3pi=ð2πÞ3fψ i

ðpiÞ and

hOiψ i���ψj
≡ 1

nψ i
� � � nψj

×
Z

gψ i
d3pi

ð2πÞ3 � � � gψ j
d3pj

ð2πÞ3 fψ i
ðpiÞ � � � fψ j

ðpjÞO:

ð10Þ

Here, Γϕ→ζψ is defined in the rest frame. We take nΨ ¼ neqΨ
for Ψ ¼ ϕ;ψ ; λ; Aμ because they are all in thermal equi-
librium for the relevant temperature scale. One might
rewrite the inverse scattering and decay terms in the rhs
of the Boltzmann equation, and Eq. (9) becomes

_nζ þ 3Hnζ ¼ ðhσϕAμ→ζψviTn
eq
ϕ n

eq
Aμ

þ hΓϕ→ζψ γ
−1iTneqϕ þ � � �Þð1 − nζ=n

eq
ζ Þ

≡ Γζ
prodðneqζ − nζÞ; ð11Þ

where h� � �iT denotes thermal average. In the treatment of
the Boltzmann equation, we have neglected quantum-
statistical effects (Pauli-blocking/Bose-enhancement), as
we have fi ≲ 1. For the low F term, these (Goldstino-
number-changing) interactions can be in chemical equilib-
rium at high temperatures, until the interaction rate drops
below the Hubble rate and the process freezes out. The
production rate Γζ

prod of Eq. (11) determines the chemical
freeze-out (decoupling) temperature, Tf:o:, defined by
3HðTf:o:Þ ¼ Γζ

prod. Depending on the value of Tf:o:, two
distinct situations for the Goldstino production are possible,
displayed in Fig. 1:

(i) freeze-in: for Tf:o: ≫ ~m, Goldstino interactions were
not in thermal equilibrium when superpartners were
abundant; Goldstino abundance is gradually in-
creased to a maximum, after which they are diluted.

(ii) freeze-out: for Tf:o: ≪ ~m, Goldstinos maintain
chemical equilibrium with the superpartners until
the latter are not abundant.

Since the production at high temperatures T ≳ ~m is
diluted away, we can only focus on the production for
T ≲ ~m. At such low temperature, the Boltzmann equation
can be much simplified by ignoring the scattering con-
tribution to the production of ζ [17,18]; for Tf:o: ≫ ~m, the
freeze-in production by ϕ → ζ þ ψ (λ → ζ þ Aμ) domi-
nates over the diluted freeze-out contribution. One can also
neglect the inverse decay term given by nζ=n

eq
ζ in the last

expression of the second line of Eq. (11).
For the freeze-out case, the situation is more subtle. It

should be noted that the factorization by ð1 − nζ=n
eq
ζ Þ

leading to Eq. (11) is only valid if ζ is in kinetic
equilibrium, or at least if fζðp0Þ=fζðpÞ ¼ e−ðp0−pÞ=T . It is
possible for the Goldstino to elastically scatter off of the
thermal bath as given by the interactions in Eq. (3): if the
elastic interaction rate is large enough, the Goldstinos
would be in kinetic equilibrium with the thermal bath.
However, because the ζ þ ψðAμÞ → ζ þ ψðAμÞ process is
suppressed by F2

ζ while the single-Goldstino production
channels are suppressed only by Fζ, kinetic decoupling
takes place before chemical decoupling.3 To be precise, the
momentum distribution of ζ is determined not only by
elastic scattering but also by chemical interactions. Thus, if
the production happens at T ≫ ~m, energy-momentum
conservation just tells us that the momentum distribution

3This is the opposite behavior from the WIMPs. Even after
chemical decoupling, WIMPs elastically scatter off of the thermal
bath and remain in kinetic equilibrium until lower temperatures.
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of thermally produced ζ would be the form of
fζðpÞ ∝ e−p=T . Also if the chemical interactions are effi-
cient enough (thus, for small Fζ), the produced Goldstinos
will still have a equilibrium distribution function,
fζðpÞ ¼ feqζ ¼ expð−p=TÞ. These arguments are not suf-
ficient to justify the form of equation around the time of
decoupling, since as we will see, at low T with small Fζ

term, Goldstinos with different momentum decouple at
different temperatures and, in the absence of elastic
scattering, do not rethermalize. Furthermore, the continu-
ous entropy injection during the matter-dominated era
causes the Goldstinos decoupled earlier to be colder than
those decoupled later. Therefore, it is necessary to solve the
nonintegrated version of the Boltzmann equation for the
distribution function fζðpÞ:

dfζ
dt

¼ ∂fζ
∂t −Hp

∂fζ
∂p ¼ C½fζ�: ð12Þ

Substituting Hdt ¼ d ln a, for T ≲ ~m this can be rewritten
as

∂fζ
∂ ln a −

∂fζ
∂ lnp ¼

�
1 −

fζ
e−p=T

��
Γϕ→ζψ ~mϕT

Hp2

�

× exp

�
−
p
T

�
1þ ~m2

ϕ

4p2

��
þ ðϕ → λ;ψ → AμÞ ð13Þ

in the limit of mζ → 0. In the Appendix, we provide the
Boltzmann equation for non-negligible mζ ≲ ~m. In the
following, we will only consider decays from one gen-
eration of squarks, ~q, with mass m ~q of OðTeVÞ, while the
others are assumed to be heavier. Adding other contribu-
tions is straightforward. For example, production by
gaugino decays will take the same form with the sub-
stitution m ~q → m~g and changing the number of sfermions
to number of gauginos. For simplicity, the number of
massless degrees of freedom g�ðTÞ is taken constant,
g� ¼ 85, in the whole range TR ≲ T ≲m ~q.
The freeze-out temperature for Tf:o: ≲m ~q is calculated

from

3HðTf:o:Þ ¼ 1.4
�
5π2g�
72

�
1=2 T4

f:o:

MPT2
R

¼
X
1 gen

hΓ ~q→ζqγ
−1iTneq~q =neqζ

≃ 12m5
~q

16πF2
ζ

ffiffiffi
π

p �
m ~q

Tf:o:

�
3=2

e−m ~q=Tf:o: ; ð14Þ

where Γ ~q→ζq ¼ m5
~q=ð16πF2

ζÞ, and the result is

Tf:o: ¼
m ~q

21.2þ δ
; ð15Þ

with δ ¼ 5.5 ln m ~q

20Tf:o:
þ ln m ~q

TeV þ 2 ln ð100 TeVÞ2
Fζ

þ 1
2
ln 85

g�
þ

2 ln TR
10 GeV.

This value is no longer true for a large F term. In this
case, the freeze-out temperature becomes well above m ~q,
and it is mostly determined by the scattering process. The
freeze-out abundance is quite diluted by entropy produc-
tion, and freeze-in production dominates the Goldstino
abundance as shown in Fig. 1.
In the following, we derive the Goldstino yield for each

case of freeze-in and -out.

B. Freeze-in

First, we will consider the simpler case of intermediate or
high Fζ, for which Goldstinos never reach chemical
equilibrium for T ≲m ~q; their abundance is gradually
increased by the thermal decay process until it is not
efficient, after which they are diluted during the rest of the
matter-dominated era.
For nζ ≪ neqζ , the resulting yield at reheating can be

computed as�
nζ
s

�
FI
¼ 1

sR

Z
tR

tI

dt

�
a
aR

�
3X
1 gen

hΓ ~q→ζqγ
−1ineq~q

¼ 15.6MP
P

1 genΓ ~q→ζq

g3=2� T5
R

Z
Tf:o:

TR

dT
T

�
TR

T

�
12

×
K1ðm ~q=TÞ
K2ðm ~q=TÞ

neq~q

≃ 2 × 10−7
�
85

g�

�
3=2
�

TR

10 GeV

�
7

×

�ð500 TeVÞ2
Fζ

�
2
�
TeV
m ~q

�
4

; ð16Þ

where sR ≡ ð2π2g�=45ÞT3
R, and tR is the time at a ¼ aR.Kα

is the modified Bessel function of the second kind, and
K1ðxÞ=K2ðxÞ≃ 1–3=ð2xÞ for x ≫ 1. tI is the initial time
and we took it at the freeze-out of chemical interactions.
The integrand on the second line shows high powers of
ðTR=TÞ caused by entropy injection and temperature
dependence of the freeze-in production rate, and because
the Boltzmann suppression factor at low T from neq~q , the
production rate is most efficient around T ≃m ~q=10. The
final result in Eq. (16) is obtained assuming
TR ≪ m ~q=10 ≪ Tf:o:. Given the expression (15) for Tf:o:,
this corresponds to Fζ ≫ ð500 TeVÞ2 form ~q ¼ 1 TeV. For
lower values of Fζ, the freeze-out abundance is more
important, which will be treated next. Here we just note that
this yield is sizable and we will discuss late-time implica-
tions in Sec. IV.
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C. Freeze-out

For smaller Fζ, one could solve the same Boltzmann
equation, (9)–(11), and find�

nζ
s

�
eq

FO
¼ 1.7 × 10−6

�
85

g�

��
TR

10 GeV

�
5
�
50 GeV
Tf:o:

�
5

:

ð17Þ
This would be incorrect, because the rhs of the Boltzmann
equation (11) was found assuming that the Goldstinos are
in kinetic equilibrium with the rest of the thermal bath.
When Goldstinos are injected in the bath via decays of
nonrelativistic particles, their momentum distribution is
peaked around m ~q=2. Because the 2 → 2 elastic scattering
is frozen out at a higher temperature, it does not thermalize
the distribution function. The result is that Goldstinos with
high momentum easily inverse decay back into super-
partners, while Goldstinos at low momentum are effectively
frozen out. Therefore, one can expect the correct value
would be smaller than Eq. (17).
This behavior can be understood explicitly by looking

at the rhs of the Boltzmann equation for the distribution
function, Eq. (13). We can estimate the effective ratio
between the production rate and the expansion rate as

Rζðp; aÞ≡
X
1 gen

Γ ~q→ζqm ~qT2

Hp3
exp

�
−

m2
~q

4Tp

�
: ð18Þ

For a given scale factor a (corresponding to a given
temperature TðaÞ), Rζðp; aÞ changes with the momentum;

in particular, if Rζðp; a0Þ ≪ 1, the Goldstinos with momen-
tum p are decoupled, while if Rζðp; a0Þ ≫ 1 they are
in equilibrium. In Fig. 2, we plot Rζ as a function of p
for different temperatures, fixing m ~q ¼ 1 TeV, Fζ ¼
ð100 TeVÞ2, TR ¼ 20 GeV. For example, at T ¼ m ~q=5 ¼
200 GeV all Goldstinos with momentum p≳ 50 GeV are
in thermal equilibrium, while at T ¼ m ~q=10 ¼ 100 GeV
only the Goldstinos with momentum p≳ 150 GeV ¼ 1.5T
are, with the Goldstino whose momentum is smaller than
the temperature all decoupled. Thus at T ≈ m ~q=10 the
result is an earlier departure of the number density from its
equilibrium value compared to that of assuming kinetic
equilibrium, Eq. (15) (this earlier departure can also be seen
in Fig. 6 in the Appendix).
Because Rζ becomes very small once it is below one, we

can solve the Boltzmann equation with zero rhs at low
momentum,

dfζðp; aÞ
d ln a

−
dfζðp; aÞ
d lnp

¼ 0 for p < pf:o:ðaÞ; ð19Þ

with boundary condition fζðp; aÞ ¼ e−p=TðaÞ for p ≥
pf:o:ðaÞ. Here pf:o:ðaÞ is the freeze-out momentum
at a given temperature TðaÞ, defined by
Rζðpf:o:ðaÞ; aÞ ¼ 1:

pf:o:ðaÞ ¼
ðkζm ~qÞ2
TðaÞ ; ð20Þ

κζ ¼ 0.13

 
62.3

62.3þ 4 ln T
50 GeV þ 8 ln ð100 TeVÞ2

Fζ
þ 2 ln 85

g�
þ 8 ln TR

20 GeV þ 24 ln 0.13
κζ

!
1=2

: ð21Þ
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FIG. 2 (color online). Left: Effective ratio between the production rate and the Hubble parameter, as a function of the Goldstino
momentum and for different temperatures. Interactions are in chemical equilibrium when Rζ ≫ 1, while the low-momentum region is
frozen-out. Right: Ratio between the Goldstino distribution function and the equilibrium distribution function, at m ~q=T ¼ 30. The
continuous line comes from the numerical integration of the Boltzmann equation, while the magenta dashed line is the approximate
analytical solution of Eq. (22).
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Finally, the solution to the Boltzmann equation is

fζðp; aÞ ¼
�
exp ½−ðp=TζðaÞÞ6=11�; p < pf:o:ðaÞ
exp½−p=TðaÞ�; p > pf:o:ðaÞ

ð22Þ

TζðaÞ ¼
�

TR

κζm ~q

�
5=3
�
aRTR

a

�
: ð23Þ

To illustrate this better, in Fig. 2 we show the ratio
between the resulting Goldstino distribution function and
the equilibrium distribution function, fζ ∝ e−p=T , for a
given temperature T ¼ m ~q=30≃ 33 GeV. In blue, we
show the results from numerical integration of the
Boltzmann equation; in dashed, the analytical expression
for the distribution function, Eq. (22), is shown, in good
agreement with the numerical results. It is seen that the
Goldstinos at high momentum are in equilibrium, while the
low-momentum ones are suppressed.
The late-time yield at low temperatures T ≲ TR, is given

by

�
nζ
s

�
FO

¼ 6.8 × 10−7
�
85

g�

��
TR

10 GeV

�
5
�
130 GeV
κζm ~q

�
5

:

ð24Þ

This is shown in Fig. 3, where we also show the result
following from the kinetic equilibrium assumption,
Eq. (17), and the abundance found without considering
the matter-dominated epoch (that is, the case TR ¼ TMAX)
in which the Boltzmann suppression of the superpartner
number density results in a negligible Goldstino abundance
at low reheating temperatures. Comparing the blue and
magenta lines, we can conclude that a naive treatment of the

Boltzmann equation overestimates the abundance by a
factor of about 3.
As a reminder, these results were found in the limit of

small mζ, but they do not change much if the Goldstino
mass is sizeable. Even for mζ ¼ 100 GeV, the final yield
changes only by about 10%. In the Appendix, we show the
full Boltzmann equation for the massive case, as well as
numerical results for mζ up to 200 GeV (see Fig. 6).
Finally, as the distribution function deviates from the

kinetic equilibrium case, one can also consider if the
Goldstinos produced would form colder or warmer dark
matter, when compared to the case in which the particles
are in kinetic equilibrium. The average momentum for the
Goldstino at T ≲ TR can be evaluated as

hpi≃ 26TζðaÞ ¼ 0.36T

�
g�ðTÞ
g�

�
1=3
�

TR

10 GeV

�
5=3

×

�
130 GeV
κζm ~q

�
5=3

: ð25Þ

This should be compared to the thermal averaged value
hpiT ≃ 3T. For low reheating temperatures, Goldstinos are
colder than the background temperature. This is due to two
competing effects: at first, they are produced at a higher
momentum, p≃m ~q=2, after which they are redshifted
between production and reheating. For low TR, the second
effect is dominant.

D. Nonthermal production

Goldstinos can also be produced nonthermally, for
example by direct moduli/inflaton decays, or by squark
(or other lightest WIMP particles in the MSSM) decays
after freeze-out, for which nζ=s ¼ n ~q=s. The former is a
model-dependent effect and it can be sizable or not.
Concerning the latter, it can be important for large F
terms: first of all, the lifetime of the squark (with
m ~q ¼ 1 TeV) has to be short enough to decay before
BBN, implying Fζ ≲ ð105 TeVÞ2 [6]. Then, if Fζ≳
ð5 × 104 TeVÞ2, the lifetime of squark is long enough to
decay after squark freeze-out by pair annihilation. In this
case, the resulting energy density of the Goldstinos is given
by the nonthermal contribution,

Ωζh2 ¼
mζ

m ~q
Ω ~qh2: ð26Þ

Since the reheating temperature is lower than the freeze-out
temperature of squark annihilation, T ~q ~q �

fr , Ω ~qh2 is also

diluted by a factor of ðTR=T
~q ~q �
fr Þ3 compared to usual

freeze-out abundance with TR → ∞ [2]. Because of the
substantial model-dependence in the nonthermal Goldstino
abundance, the results in Eqs. (16)–(24) should be con-
sidered as conservative results, as it is always possible to

1 2 5 10 20 50 100 200
10 13

10 10

10 7

10 4

0.1

TR GeV

n
s

FIG. 3 (color online). Late-time Goldstino yield as a function of
the reheating temperature TR, given Fζ ¼ ð100 TeVÞ2 and
m ~q ¼ 1 TeV. The blue line represents the numerical results,
which coincide with the analytical result of Eq. (24), while the red
line is the result that one would have found if kinetic equilibrium
was assumed. The dashed red line is the yield found neglecting
the matter-dominated era.
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produce more Goldstinos by introducing nonthermal
processes.

IV. LATE-TIME IMPLICATIONS

The Goldstinos produced in the early matter-dominated
era are generally lighter than any other superpartner, except
the gravitino. As such, they can provide a metastable dark
matter candidate, even for very low reheating temperatures,
TR ∼ 1 GeV. The lifetime for the decay to a gravitino, ζ →
ψ3=2ψSMψ̄SM was computed in Ref. [6] as

τζ ≈ 1022 sec
�

Fζ

ð100 TeVÞ2
�

2
�
100 GeV

mζ

�
7

: ð27Þ

Although this is typically larger than the age of the
Universe, t0 ≃ 1017 sec, indirect detection limits on
decaying dark matter are more stringent, with lower limits
τDM ≳Oð1026–1027Þ sec for dark matter decaying to
quark-antiquark pairs [19–21]. As a crude estimate, we
take the same order of magnitude, τmin

ζ ≈ 1026 sec for the
limits on the decaying Goldstino. These can be avoided
with Goldstini lighter than 100 GeV, or larger Fζ.

A. Assuming R parity

If R parity is conserved, the Goldstino is effectively
stable in most of the parameter space. For a small F term
(corresponding to Goldstinos produced before freeze-out),
the present dark matter density is

ðΩζh2ÞFO¼0.19

�
mζ

1MeV

��
85

g�

��
TR

10GeV

�
5
�
130GeV
kζm ~q

�
5

:

ð28Þ

The allowed region is shown in Fig. 4, and spans the range
0.5 GeV≲ TR ≲ 30 GeV. The result is only logarithmi-
cally dependent on the increase of Fζ, until
Fζ ¼ ð500 TeVÞ2, for which Tf:o: > m ~q=10. For a larger
F term, the relevant process is freeze-in, and the dark matter
abundance can be evaluated from Eq. (16):

ðΩζh2ÞFI ¼ 0.11

�
mζ

2 MeV

��
85

g�

�
3=2
�

TR

10 GeV

�
7

×

�ð500 TeVÞ2
Fζ

�
2
�
1 TeV
m ~q

�
4

: ð29Þ

To summarize this section, the observed dark matter
abundance can easily be produced in a matter-dominated
era, at temperatures above a low reheating temperature TR.

B. Assuming R-parity violation

Another well-motivated possibility is that of R-parity
violation. In the general case, baryon and lepton number
would be violated and the proton would be unstable.
Nevertheless, if lepton or baryon number were to be
independently conserved on their own, proton stability
would be achieved accidentally. In the following, we will
discuss the case in which baryon number is violated while
lepton number is conserved (the other case will have a
similar phenomenology). This is also interesting because
baryonic R-parity violation can account for the matter-
antimatter asymmetry of the Universe with low reheating
temperatures, while other scenarios (such as leptogenesis)
require higher temperatures. The baryonic RPVoperator in
the superpotential is

WBRPV ¼ λ00ijk
2

uci d
c
jd

c
k þ H:c:; ð30Þ

where the contraction of the color indices with an ϵabc

tensor is understood, and as a consequence, j ≠ k.
In low-scale gauge mediation with a single SUSY-

breaking sector, the gravitino is very light and there are
still proton decay channels of the type p → Kψ3=2, medi-
ated by RPV interactions. The resulting limits are very
stringent and were discussed in [22,23]. In the case of
multiple Goldstini, the proton could potentially decay to
any Goldstino lighter than 1 GeV. This is particularly
dangerous when Fζ is small, independently of the
Goldstino mass: for example, the weakest limit is
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10 4

0.01

1
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m mq
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DM
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103

1

10 3

10 6

10 9

FIG. 4 (color online). Late-time energy density of Goldstinos,
with a small F term Fζ ¼ ð100 TeVÞ2 and m ~q ¼ 1 TeV, for
different values of the Goldstino mass. For mζ < 1 keV the
Goldstino is warm or hot dark matter. For mζ in the range
100 GeV–1 TeV (yellow region) the Goldstino lifetime, Eq. (27),
is too short, τ ≲ 1026 sec, and is excluded by DM indirect
detection constraints. The horizontal black line marks the
observed value of the DM abundance, ΩDMh2 ¼ 0.12.
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jλ″323j < 1.31 × 10−6
�

m ~q

1 TeV

�
2 Fζ

ð100 TeVÞ2 : ð31Þ

To avoid this constraint, we require that mζ > mp; how-
ever, now it is the Goldstino which is unstable, as the decay
channel ζ → uidjdk is open. The lifetime is

τζ ¼ 1.57 × 103 sec

�
1

jλ00ijkj
�

2
�
10 GeV

mζ

�
9
�

m ~q

1 TeV

�
4

×

�
Fζ

ð100 TeVÞ2
�

2

; ð32Þ

where jλ00ijkj is the largest RPV coupling for which the decay
is kinematically accessible. As the Goldstino mass natu-
rally lies in the interval 1–100 GeV, the top quark is not
accessible and the most relevant operator with few con-
straints from flavor physics is λ00223c

cbcsc [24].
The lifetime (32) of the Goldstino naturally falls

in a range that is probed by big bang nucleosynthesis: if
a large amount of energy is injected during the thermal
plasma during BBN, the primordial abundance of light
elements is changed and would go against observations.
In particular, the case of hadronic decays was studied in
great details in Refs. [25–28]. In the following, we will use
the results of Ref. [26], where limits on the abundance
MXYX of a decaying particle X were set in the lifetime
range 10−2 sec < τX < 1012 sec, for different masses
MX ¼ 100 GeV, 1 TeV, 10 TeV.
As we are also interested in particles with lighter masses,

we need to extrapolate their results to MX ¼ 10 GeV and
below. Therefore, we will shortly review the source of the
limits. For short lifetimes (τ < 102 sec), the mesons and
nucleons produced by X thermalize quickly, and the main

consequence of the decay is the increase of the neutron-to-
proton ratio, n=p, resulting in larger abundances of D and
4He. For longer lifetimes, mesons decay and primary
protons and neutrons scatter inelastically off of the back-
ground nuclei, generating hadronic showers, dissociating
4He and producing D, T, 3He, which also result in higher
amounts of 6Li, 7Li. At τ > 107 sec, the neutrons decay
away and only protons are left, with a smaller effect on
4He-dissociation. On the other hand, electromagnetic decay
products ðγ; eþ; e−Þ are thermalized by processes such as
γ þ γBG → eþ þ e− if their energy is above the threshold
Eth ¼ m2

e=22T [29]; one should compare this threshold to
the binding energy of D and 4He, respectively, 2.2 and
28.3 MeV: if it is higher, nonthermalized photons will
dissociate deuterium and helium. As the bath temperature
decreases with time, photo-dissociation of D and 4He is
active for τ > 104 sec and τ > 106 sec, respectively.
We simulate the Goldstino decay with PYTHIA 8.2 [30]

and get the total number of charged particles and EM
energy per ζ decay, for different values of mζ. We then
translate the results of Ref. [26] to lower masses. For the
sake of simplicity, we only use the dominant constraints
[that is, primordial helium abundance (Yp)], deuterium to
hydrogen ratio (D=H) and helium-4 to deuterium ratio
(4He=D). Our results are shown in Fig. 5, where for
comparison we also show the constraints of Ref. [26].
For most of the lifetime range, the limits on mζYζ are of

order 10−12–10−14 GeV. Comparing this to the yields found
in Eqs. (16) and (24), only very low reheating temperatures
are allowed. In Fig. 5, we show contours of the maximum
allowed reheating temperatures in themζ − λ00ijk plane: apart
from a small shaded region in the top right corner, for which
τζ < 10−2 sec, the upper limit on the reheating temperature

10 2 100 102 104 106 108 1010 1012
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FIG. 5 (color online). Left: Upper limits on the energy density of a hadronically decaying particle X, with, from bottom to top,
MX ¼ 10 GeV, 100 GeV, 1 TeV, 10 TeV, evaluated from Ref. [26]. Right: Maximum reheating temperature allowed by BBN constraints
while varying λ00ijk and mζ . The other parameters are fixed as Fζ ¼ ð100 TeVÞ2 and m ~q ¼ 1 TeV.
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is of order 0.5 GeV. In the lower left corner, we shaded the
area in which τζ ≫ 1012 sec and Goldstino decays do not
interfere with BBN: here they would be constrained by
diffuse x-ray and γ-ray emissions, and the limits onmζYζ are
typicallymore strict than theBBNones.As this discussion is
beyond the scope of the present paper, we only display the
BBN limits as a conservative bound.
In the presence of R-parity violation, there is one more

channel for the production of Goldstini that had not been
analyzed so far in the literature: the scattering qq → qζ
does not require any on-shell superpartners, in contrast with
the R-parity conserving processes discussed above. Using
the interaction in Eq. (4), the freeze-out temperature for the
scattering is

TRPV
f:o: ¼ 70 GeV

�
g�
85

�
1=10
�

Fζ

ð100 TeVÞ2
�

2=5
�

m ~q

TeV

�
4=5

×

�
1

λ00

�
2=5
�
10 GeV

TR

�
2=5

: ð33Þ

The Goldstino distribution is the same as that in kinetic
equilibrium as long as they are in chemical equilibrium, and
once we solve the relevant Boltzmann equation we find the
yield,

�
nζ
s

�
RPV

¼ 7.0 × 10−7jλ00j2 lnT
RPV
f:o:

TR

�
85

g�

�
3=2
�

TR

10 GeV

�
7

×

�ð100 TeVÞ2
Fζ

�
2
�
TeV
m ~q

�
4

þ 4.7 × 10−8jλ00j2
�
85

g�

�
3=2
�

TR

10 GeV

�
7

×

�ð100 TeVÞ2
Fζ

�
2
�
TeV
m ~q

�
4

: ð34Þ

Here the first term of RHS shows the production during the
matter-dominated era and the second term is the production
after reheating; in general, the former dominates over the
latter, and the R-parity conserving freeze-out contribution
from Eq. (24) is larger than both. For the RPV production
rate to be sizable, the only option would be
TR ¼ TMAX ≪ ~m, for which there is no early matter-
dominated era. In this case, only the last term in the equation
above contributes to Goldstino production. There are still
strong limits from BBN, and the maximum reheating
temperature is of order 1–10 GeV, with smaller RPV
couplings allowing slightly larger reheating temperatures
(Tmax

R ≃ 20 GeV for λ00 ¼ 10−5).
The limits on the reheating temperature cited so far

corresponded to Fζ ¼ ð100 TeVÞ2, with Goldstinos gen-
erated at freeze-out. The dependence of Tmax

R on larger F
terms is first logarithmic, until Fζ ≃ ð500 TeVÞ2, and then
scales as Tmax

R ∝ ðFζ=ð500 TeVÞ2Þ2=7 when the freeze-in

contribution (16) becomes dominant. For example, Fζ ¼
ð106 TeVÞ2 corresponds to Tmax

R ≃ 100 GeV for mζ ¼
10 GeV and λ00ijk ¼ 1.
We end this section by summarizing the strong bounds

on the reheating temperature in the case in which R parity is
violated. For the freeze-out case, the maximum reheating
temperature allowed by BBN constraints is of order 1 GeV.
Some implications for what concerns baryogenesis can be

drawn: because any baryon asymmetry produced at higher
temperatures in the matter-dominated era will be diluted
away, the baryon asymmetry should be generated at temper-
atures between TR and TBBN ∼ 10 MeV. This is possible in
the LSP baryogenesis scenario of Ref. [31] if the Goldstino
decays before BBN (in the upper right corner of Fig. 5): for
example, with parameters chosen as Fζ ¼ ð100 TeVÞ2,
λ00ijk ≃ 0.1, the Goldstino abundance in Eq. (24) can be
large enough for baryogenesis if mζ ≃ TR ≃ 50 GeV.
Even though we have takenm ~q ¼ 1 TeV as a benchmark

point, it is worth noting that current LHC limits on RPV
squarks are less stringent: for a light top squark decaying to
three quarks, the CMS Collaboration excludes masses up to
350–385 GeV in Ref. [32]. Gluino limits are stronger: in
Ref. [33], CMS excludes gluinos in the decay channel ~g →
tbs up to 900 GeV, while in the same channel ATLAS
excludes gluinos up to 874 GeV, with limits of order
800 GeV for different flavor composition of the final states.
Thus, squarks are still allowed to be lighter than in our
benchmark point.

V. CONCLUSIONS

In this work, we have discussed thermal production of
Goldstinos as an example of super-weakly interacting
particles during an early matter-dominated era ending at
reheating. This is important when the reheating temperature
is low, in the GeV range or below, as particle production
through an heavier sector (superparticles) occurs only at
higher temperatures that were not achieved during radiation
domination.
We have analyzed in detail the production of an uneaten

Goldstino by solving the Boltzmann equation for its
momentum distribution function and revisited the cosmo-
logical implications. When the Goldstino is stable enough,
thermal production can provides the correct dark matter
density even for reheating temperatures as small as 1 GeV.
If R parity is violated, the Goldstino has to be heavier than
the proton and is metastable, with a lifetime range that
naturally interferes with BBN. In this case, reheating
temperatures higher than 1 GeV are excluded for almost
all of the small Fζ parameter space.
Such low reheating temperatures suggest a low scale of

inflation and/or introducing certain symmetries to prevent
coupling between the inflaton and visible fields. For
example, if the inflaton decay rate to the MSSM is
Planck suppressed,ΓI ¼ m3

I =M
2
P, the reheating temperature
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is TR ≃ 1 GeVðmI=103 TeVÞ3=2. In this case we can also
find an upper bound on TMAX from its definition in Eq. (7),
TMAX ≲ 103 TeVðTR=GeVÞ2=3. Since the nonthermal pro-
duction is proportional to TR=mI ∝ T1=3

R , it could be more
important at low reheating temperature, and full analysis
considering a specific inflation model is needed. In this
paper, we presented thermal production of Goldstino as
model independent contributions. Our results are
conservative bounds on the abundance, because the non-
thermal productions of SWIMP are just additive quantities.
We showed that the Goldstino is one of many good

examples in which a momentum dependent process gives a
sizable difference compared to that assuming thermal
distribution of the momentum, even if they are produced
from thermal bath. Such effects are also discussed in
Ref. [34] for the production of sterile neutrino dark matter,
and in Ref. [35] for leptogenesis from heavy Majorana
neutrino decays. Since the period of kinetic decoupling and
production mechanism are also important to the evolution
of density perturbation of dark matter, the study of the full
Boltzmann equations in the perturbed spacetime can give
observable consequences for small scale structures.
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APPENDIX: BOLTZMANN EQUATION FOR
MASSIVE GOLDSTINO

In this section we derive the Boltzmann equation for the
momentum distribution function of ζ, fζðpÞ, keeping the
dependence on a nonzero massmζ. The dominant source of
production is sfermion decays, ϕ → ζ þ ψ , when the
temperature is lower that the sfermion mass ~mϕ, and the
contribution from elastic scattering is ignored. As we did in
the rest of this work, we will consider the Boltzmann
equation and distribution functions in the classical limit, i.e.

assuming fχðpÞ ≲ 1, and feqχ ðpÞ≃ e−Eχ=T , where Eχ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

χ þ p2
q

for particle χ. The corresponding Boltzmann

equation in the limit of massless quarks is

dfζ
dt

¼ ∂fζ
∂t −Hp

∂fζ
∂p ¼ C½fζ�

¼ gϕgψ
2Eζ

Z
d3pϕ

ð2πÞ32Eϕ

d3pψ

ð2πÞ32pψ

× ð2πÞ4δð4Þðpμ
ϕ − pμ

ψ − pμÞjMϕ→ζψ j2ðfϕ − fζfψ Þ;
ðA1Þ

where p ¼ jpj. Tree level T symmetry ensures
jMϕ→ζ ψ j2 ¼ jMζψ→ϕj2 at leading order. Sfermions are
in thermal equilibrium, which is maintained by the inter-
actions with the background SM fields
ðϕþ ϕ� ↔ Aμ þ Aμ;ϕþ ψ → ϕþ ψ ;…Þ before such
interactions are frozen. After that, the distribution of
sfermions is determined by the interaction with the
Goldstinos, and we need to solve the coupled
Boltzmann equations. However, most of the Goldstinos
are produced before the freeze-out of sfermion-SM inter-
actions, so we can safely take fϕðpϕÞ ¼ e−Eϕ=T .
Using the identity feqϕ δ

ð4Þðpμ
ϕ − pμ

ψ − pμÞ ¼
feqζ f

eq
ψ δð4Þðpμ

ϕ − pμ
ψ − pμÞ to represent fψ , after integrating

over pψ , we get

C½fζ� ¼
�
1 −

fζ
feqζ

�
gϕgψ jMj2

2Eζ

Z
dpϕ

ð8πÞ f
eq
ϕ

p2
ϕ

Eϕp�
ψ

×
Z

d cos θϕζδðEϕ − Eζ − p�
ψ Þ

¼
�
1 −

fζ
feqζ

�
gϕgψ jMj2
16πEζ

Z
D½p�

dpϕ

p2
ϕ

Eϕp�
ψ

×
e−Eϕ=T

jdp�
ψ=d cos θϕζj

; ðA2Þ

where p�
ψ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
ϕþp2−2pϕpcosθϕζ

q
, so jdp�

ψ=d cos θϕζj ¼
pϕp=p�

ψ . For given p, the integral domain D½p� is deter-

mined by Eϕ − Eζ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
ϕ þ p2 − 2pϕp cos θϕζ

q
for

−1 ≤ cos θϕζ ≤ 1. Then, we find p−
ϕ ≤ pϕ ≤ pþ

ϕ , where

p∓
ϕ ¼ m2

ϕ

ðEζ∓pÞ
2m2

ζ

−
ðEζ � pÞ

2
: ðA3Þ

In terms of energy variable Eϕ, E−
ϕ ≤ Eϕ ≤ Eþ

ϕ , where

E∓
ϕ ¼ m2

ϕ

ðEζ∓pÞ
2m2

ζ

þ ðEζ � pÞ
2

: ðA4Þ

In the massless limit, mζ → 0, we obtain

m2
ϕ

4p
þ p < Eϕ; ðA5Þ

which was used in Eq. (13). It is straightforward to evaluate
C½fζ� as
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C½fζ� ¼
�
1 −

fζ
feqζ

�
gϕgqjMj2
16πEζp

Z
Eþ
ϕ

E−
ϕ

dEϕe−Eϕ=T

¼
�
1 −

fζ
e−Eζ=T

��
gϕΓϕ→ζqmϕT

gζEζp

�
½e−E−

ϕ=T − e−E
þ
ϕ =T �:

ðA6Þ

Finally, the Boltzmann equation can be written as

∂fζ
∂ ln a −

∂fζ
∂ lnp

¼ ð1 − eEζ=TfζÞ
�
Γϕ→ζqm ~qT

HEζp

�
½e−E−

ϕ=T − e−E
þ
ϕ =T �:

ðA7Þ

This expression replaces Eq. (13) in the case of non-
negligible mζ.
For example, in Fig. 6 we show the evolution of the

Goldstino number density for different values of the
Goldstino mass for a fixed TR ¼ 40 GeV. From top to
bottom, with the continuous lines we show the yield
computed assuming kinetic equilibrium and mζ ¼ 0, and
the yields computed solving the above Boltzmann equation
for three different values of the masses, mζ ¼ 0, 100,
200 GeV. We find that the final yield of Goldstinos is not

changed much for mζ ≲ 100 GeV. The dashed lines are the
equilibrium number densities for the three different masses:
we see that the effect of the masses is much smaller than
what was naively expected by looking at the equilibrium
number density.
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FIG. 6 (color online). Evolution of the Goldstino number
density for non-negligible mζ . Here we have fixed
m ~q ¼ 1 TeV, Fζ ¼ ð100 TeVÞ2 and TR ¼ 40 GeV. From top
to bottom, the continuous lines are the yield computed assuming
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full Boltzmann equation, for three different values of the masses,
mζ ¼ 0, 100, 200 GeV. The dashed lines are equilibrium number
densities for the same masses.
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