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From continuum studies it is known that the Coulomb string tension σC gives an upper bound for the
physical (Wilson) string tension σW [D. Zwanziger, Phys. Rev. Lett. 90, 102001 (2003)]. How does such a
relationship translate to the lattice, however? In this paper we give evidence that on the lattice, while the two
string tensions are related at zero temperature, they decouple at finite temperature. More precisely, we show
that on the lattice the Coulomb gauge confinement scenario is always tied to the spatial string tension,
which is known to survive the deconfinement phase transition and to cause screening effects in the quark-
gluon plasma. Our analysis is based on the identification and elimination of center vortices, which allows
us to control the physical string tension and study its effect on the Coulomb gauge observables. We also
show how alternative definitions of the Coulomb potential may sense the deconfinement transition;
however, a true static Coulomb gauge order parameter for the phase transition is still elusive on the lattice.
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I. INTRODUCTION

Recent years have seen a rising interest in Coulomb
gauge investigations of Yang-Mills theories in general, and
in the Hamiltonian formulation in particular [1–17]. In the
latter case, once Weyl gauge is implemented to eliminate
the A0ðxÞ components of the gauge fields, the Hamilton
operator and the Gauss’s law constraint are invariant under
the residual time-independent gauge transformations and,
moreover, only depend on the remaining spacelike gauge
fields and momenta AaðxÞ, Π̂aðxÞ. In Abelian theories, the
transversal part of these vector fields is gauge independent
and thus physical, so that Coulomb gauge can be seen as
the physical gauge, eliminating all gauge-dependent
degrees of freedom. In non-Abelian theories, this is no
longer strictly true, but the elimination of the longitudinal
degrees of freedom via Coulomb gauge still resolves
Gauss’s law, providing a formulation in terms of the
transversal fields1 Aa⊥, Πa⊥ alone, where studies of the
Yang-Mills ground state are more natural. Such a resolution
of Gauss’s law through Coulomb gauge thus “automati-
cally” incorporates the constraints one should impose in the
Hamiltonian formulation, circumventing the explicit con-
struction of the physical Hilbert space [18]. This results in
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where J ½A� is the determinant of the Faddeev-Popov
operator, i.e., the inverse Coulomb ghost propagator

ðĜ−1Þabðx; yÞ ¼ ð−∂iD̂
ab
i Þδðx − yÞ; ð4Þ

while the Coulomb Hamiltonian HC describes the self-
interaction of non-Abelian color charges with density

ρaðxÞ ¼ ψ†ðxÞTaψðxÞ − fabcAb
i ðxÞΠc

i ðxÞ ð5Þ
through the non-Abelian Coulomb kernel

F̂abðx; yÞ ¼
Z

d3zGacðx; zÞð−∂2
z ÞGcbðz; yÞ: ð6Þ

The first term on the right-hand side of Eq. (5) is the matter
charge density, which for the pure Yang-Mills case should
be understood as an external source, while the second part
is the dynamical charge density of the non-Abelian gauge
field. In the Abelian theory the latter would, of course, be
absent, and Eq. (6) would become the ordinary Coulomb
kernel, i.e., the Green’s function of the Laplacian
F̂ðx; yÞ ¼ ð4πjx − yjÞ−1.
From Eq. (6) one can define the non-Abelian color

Coulomb potential, i.e., the Coulomb energy density for a
pair of static quark-antiquark color charges separated by a
distance x:

Vab
C ðpÞ ¼ g2

Z
d3x e−ip·xhF̂abðx; 0Þi: ð7Þ

In a seminal paper [19] Zwanziger, extending ideas first put
forward by Gribov [20], showed how such a Coulomb
potential gives a natural upper bound to Wilson’s physical
potential [21]. In other words, the presence of Coulomb
confinement is a necessary condition for the physical
confinement mechanism to take place in Yang-Mills
theories. These results are based on Gribov’s intuition that

1We will omit the index ⊥ on transversal vector fields in the
following.
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the Yang-Mills dynamics must be restricted to the first
Gribov region, where the Faddeev-Popov operator in
Eq. (4) is positive definite.2 Further signatures of this idea
are the infrared (IR) divergence of the Coulomb gauge
ghost form factor and the emergence of an IR scale in the
gluon dispersion relation [20,22].
The Gribov-Zwanziger confinement scenario has been

investigated in detail on the lattice [23–43], confirming the
expected relationships between Coulomb gauge Green’s
functions, Coulomb potential, and confinement. However,
since all lattice investigations are defined through a
Euclidean-Lagrangian formalism, the contact with results
obtained in a continuum Hamiltonian formulation is not
straightforward. In particular, Weyl gauge can never be
implemented on the lattice due to the periodic boundary
conditions in the time direction, even in the so-called lattice
Hamiltonian limit [41,44], where one takes strongly aniso-
tropic lattices with a much finer spacing in the temporal
direction. At finite temperatures, due to the fixed finite
length of the compactified time direction, the situation gets
even worse.
The main problem is that in any Euclidean-Lagrangian

formalism, static quantities must be extracted from corre-
lators which extend along the time direction.3 Lattice
Coulomb gauge observables, on the other hand, are defined
at fixed time slices, involving only the space components of
the vector fields. At T ¼ 0, theOð4Þ rotational symmetry is
unbroken and the restriction to spacelike gauge fields is
irrelevant, so the Coulomb gauge analysis of confinement
on the lattice is fully valid. As T increases, however, it is
conceivable that lattice Coulomb gauge observables,
remaining “stuck” into the fixed time slice, will only sense
space-space correlations. Since the area law for spatial
Wilson loops survives above Tc, causing screening effects
in the quark-gluon plasma, this nonperturbative effect could
turn out to dominate the Coulomb gauge dynamics well
above the deconfinement transition. In fact, all attempts to
extend lattice investigations in Coulomb gauge to finite
temperature [46] have up to now led to inconclusive results.
In this paper we give evidence that
(1) On the lattice, the relationship between Gribov-

Zwanziger and Wilson confinement disappears
above the deconfinement phase transition.

(2) The reason for such a failure lies in the strong
correlation between the Coulomb string tension σC
and the spatial Wilson string tension.

Moreover, to calculate σC, one also needs to discretize the
Coulomb potential. Contrary to the continuum Hamiltonian
formulation, on a finite lattice several inequivalent defi-
nitions of VC are possible. Our numerical results lead to the

conclusion that extending the meaning of the Coulomb
potential VC as the force between color charges from the
Hamiltonian picture to the lattice formulation can lead to
inconsistent results, and that the lattice versions of VC are
sensitive to the same quark correlations that build the
spatial string tension in the high-temperature phase.
To test our assumption, we need a tool to control the

Wilson string tension σW , both for the whole ensemble and
for its spatial directions separately. To do so, we adapt a
method pioneered in Ref. [47] by removing either
(1) all center vortices from the gauge field

(full vortex removal), or
(2) only vortices that pierce spacelike Wilson loops

(spatial vortex removal).
The rationale behind this strategy is clear: physical confine-
ment should be caused by percolating center vortices
piercing timelike Wilson loops [27,36,48–51].4
Removing all center vortices will thus disable confinement
in the Yang-Mills ensemble, while removing spatial vor-
tices only should therefore not affect the interquark
potential; in fact, Polyakov loop correlators involve only
temporal links and thus remain exactly unaffected by such a
procedure. Any effect of spatial vortex removal on
Coulomb gauge observables thus cannot be related to
confinement and must, instead, be attributed to the dis-
appearance of quark screening effects through the removal
of the spatial string tension. This would then be a direct
proof that such observables predominantly see the spatial
correlations in the gluon plasma rather than the confining
force between static color charges.

II. SETUP

A. Lattice setup

For our Coulomb gauge investigation we will employ the
anisotropic Wilson action [44,66] for the color group
SUð2Þ as proposed in Refs. [35,40,41]:
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where UμνðxÞ is the standard plaquette. For each choice of
βs ≠ βt, the spatial and temporal lattice spacings as and
at have to be determined nonperturbatively, giving
the renormalized anisotropy through the ratio ξ ¼ as=at.
The couplings are usually parameterized as βs ¼ βγ and
βt ¼ β=γ, where γ is the bare anisotropy, which needs to be

2A unique elimination of all gauge copies requires an even
further restriction to the so-called fundamental modular region,
where the gauge functional only possesses absolute maxima.

3For instance, Polyakov loops are a most efficient way to
determine the static interquark potential [45].

4A precise relationship between such gauge-fixed, so-called
P-vortices and the topological center vortices originally intro-
duced by ’t Hooft [52] is still missing. The interested reader is
referred to Refs. [53–65] for further discussions on the subject.
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tuned with β in order to realize the desired ξ [44]. Tables for
ξ and as at selected choices of β and γ can be found, for the
color group SUð2Þ, in Ref. [41]. All simulations for which
no explicit value for ξ is reported have been performed in
the isotropic case ξ ¼ 1.
Most of the finite-temperature simulations have been

performed on lattices of sizes V ¼ Nt × 323 with varying
Nt; different choices will be explicitly indicated in the data.
The gluon propagator, the ghost propagator, and the
Coulomb potential have been computed from 100 inde-
pendent samples in double precision, while the precise
determination of the string tension through Creutz ratios at
large distances required up to 105 samples.

B. Center vortex removal

To identify center vortices, we first fixed the
Monte Carlo (MC) configurations to the direct maximal
center gauge [50]; i.e., we maximized

F½U� ¼
X
x;μ

tr½UμðxÞ2�; ð9Þ

where μ ¼ 0, 1, 2, 3 for the full (standard) maximal center
gauge and μ ¼ 1, 2, 3 for the maximal center gauge
restricted to the spacelike links (“spatial maximal center
gauge”). For the numerical implementation of Eq. (9) we
have used an iterated over-relaxation algorithm based on
the gauge-fixing CUDA code cuLGT [67]. For configura-
tions which required subsequent Coulomb gauge fixing, we
stopped the center gauge fixing as soon as the functional
value Eq. (9) changed by less than ϵ ¼ 10−12 within 100
iterations. For the measurements where no further gauge
fixing was required, we performed the center gauge fixing
in single precision using ϵ ¼ 10−7.
Center projected configurations are then obtained after

center gauge fixing by mapping the links to the closest
center element:

Zs=f
μ ðxÞ ¼ sign tr½UμðxÞ�I; ð10Þ

where the indices “s” and “f” stand for “spatial” and “full,”
respectively, with the index μ ¼ 1, 2, 3 in the former and
μ ¼ 0;…; 3 in the latter case. To create vortex-free con-
figurations, we follow Ref. [47] and define

Vs=f
μ ðxÞ ¼ Zs=f

μ ðxÞ ·UμðxÞ; ð11Þ

where μ runs again over only spatial or over all Lorentz
indices, respectively.

C. Coulomb gauge

Since we want to investigate the effect of vortex removal
and center projection on correlators in Coulomb gauge,
we need to transform each of the configurations

fZf ; Zs; Vf ; Vsg discussed above to Coulomb gauge.5 We
employ a combination of simulated annealing and over-
relaxation [75,76], again adapting the CUDA code cuLGT
[67]. For the center projected configurations, we first had to
apply a random gauge transformation, since the Coulomb
FP operator would otherwise be singular; the links in the
center projected, Coulomb gauge fixed configurations are
therefore no longer elements of Z2, but again of SUð2Þ.
After gauge fixing, we calculated, from the ghost

propagator

GðpÞ ¼ dðpÞ
jpj2 ¼ trhð−D̂ ·∇Þ−1i; ð12Þ

the ghost form factor dðpÞ and the Coulomb potential

VCðpÞ ¼ g2trhð−D̂ ·∇Þ−1ð−∇2Þð−D̂ · ∇Þ−1i; ð13Þ

both directly in momentum space, where ð−D̂ · ∇Þ is the
Faddeev-Popov operator. If the Coulomb potential is lin-
early rising at large distances like VCðrÞ≃ σCr, its Fourier
transform will behave as VCðpÞ≃ 8πσC=p4 at very small
momenta. It is therefore customary to plot the quantity
p4VCðpÞ (often normalized by 8πσW) in which a nonzero
intercept at p → 0 signals a nonvanishing Coulomb string
tension; we will follow this convention below.
As mentioned in the Introduction, there is also an

alternative definition of the Coulomb potential, directly
calculated in position space:

aVCðjx − yjÞ ¼ −lim
t→0

d
dt

log htr½PtðxÞP†
t ðyÞ�i

¼ − log htr½U0ðxÞU†
0ðyÞ�i; ð14Þ

wherePtðxÞ is a Polyakov line of length ðatÞ starting at lattice
site ð0; xÞ. The equality in the second line is not obvious and is
discussed inmore detail inRefs. [27,38,77]. Though formally
equivalent in the Hamiltonian limit, two such alternative
definitions of the Coulomb potential need not coincide on a
finite lattice andwill, in fact, show rather different behavior at
finite temperatures. This is obviously due to the fact that
Eq. (13) depends only on spatial links, whereas Eq. (14)
depends only on temporal links; both get treated differently in
Coulomb gauge and at finite temperature.

III. RESULTS

A. Finite temperature in Coulomb gauge

As discussed in the Introduction, a coherent picture of
the Gribov-Zwanziger confinement mechanism emerges

5We are aware that this procedure is not exactly equivalent to
fixing Coulomb gauge directly. For critical discussions about the
effect of subsequent incomplete gauge fixings, Gribov copies,
and projections, see e.g., Refs. [68–74].
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from lattice Coulomb gauge investigations at T ¼ 0. As T
is increased, however, propagators do not seem to show a
significant sensitivity to the deconfinement phase transi-
tion, as can be seen in Figs. 1, 2, and 3–4 for the gluon
propagator, the ghost form factor and the Coulomb poten-
tial, respectively. Any deviation from the T ¼ 0 case starts
well above T ¼ 1.5Tc. Also, the nontrivial infrared behav-
ior seems to be at first enhanced, rather than decaying
towards the perturbative expectation.6 In particular, the
Coulomb string tension extracted from the Coulomb

potential in Figs. 3 and 4 persists above the deconfinement
phase transition, remaining constant up to 1.5Tc and
increasing above it; see the figure captions for further
details.
These unexpected results were, in fact, the initial

motivation for the present work. The fundamental puzzle
is how it comes about that finite-temperature correlators on
the lattice decouple from the behavior around Tc expected
from continuum investigations [15], while agreeing so well
at T ¼ 0. Our working hypothesis is that the spatial
rather than the temporal string tension underlies the
finite-temperature lattice Coulomb gauge dynamics.
Indeed, the spatial string tension is known to persist and
even rise above Tc, causing the strong correlations expected
in the quark-gluon plasma. We have therefore decided to
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FIG. 1 (color online). Gluon propagator for various temper-
atures at β ¼ 2.49 and anisotropy ξ ¼ 4. As T increases, the
infrared Gribov mass M ∼D−1

2ð0Þ increases as well [30,33].
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FIG. 2 (color online). Ghost form factor for various temper-
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exponent of the infrared increasing power law as compared to
the other data.
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FIG. 3 (color online). Coulomb potential from Eq. (13) for
various temperatures at β ¼ 2.49 and anisotropy ξ ¼ 4; the
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We find that the extrapolation to p → 0 is compatible with an
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FIG. 4 (color online). Coulomb potential from Eq. (14) for
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6The only exception might perhaps be the ghost form factor in
Fig. 2, whose IR exponent seems to decrease for T ≫ Tc; such an
exponent is, however, quite difficult to determine reliably; see
Ref. [41] for a critical discussion.
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investigate this matter in more detail by going back to
T ¼ 0 and controlling the string tension via the removal of
(all or only spatial) center vortices in MC configurations.

B. Vortex removal versus Coulomb gauge

1. String tension

In a first step, we calculated the temporal and spatial
string tensions through Creutz ratios [78], defined at
distance R as in Ref. [79]:

χðT þ 0.5; Rþ 0.5Þ ¼ − log
WðT þ 1; Rþ 1ÞWðT; RÞ
WðT þ 1; RÞWðT; Rþ 1Þ :

ð15Þ

To reduce the statistical noise, we used five steps of APE
smearing [80] with α ¼ 0.5 for all links, or only for the
spatial links (if only spatial vortices were removed); such a
procedure cannot, of course, be applied to the center
projected links.
We first calculated the spatial string tension at zero and

finite temperatures to confirm that its dependence on the
temperature mimics the one we found for the Coulomb
potential in Figs. 3 and 4. In Fig. 5 we show the spatial
string tension for exactly the same configurations from
which Figs. 3 and 4 were calculated. The signal-to-noise
ratio tends to get worse as T and r rise; the data for T ¼ 3Tc
above r ¼ 7 have been omitted, since their error bars are
orders of magnitude higher than the reported data. Still, it is
obvious from the plot that, within errors, the spatial string
tension hardly changes up to 1.5Tc, while it is consistently
higher at 3Tc. As a cross-check, we have calculated the
spatial string tension for a value of β and at temperatures for
which the signal-to-noise ratio is known to be good; results
are shown in Fig. 6. The T ¼ 0 and the T ¼ 1.1Tc data are

indistinguishable within error bars; on the other hand, the
1.8Tc data extrapolate to a higher spatial string tension,
consistent with our expectations.
The above results show that we ought to be on a good

path in assuming that the Coulomb and the spatial string
tensions are correlated, since both behave semiquantita-
tively in the same way as the temperature is increased. We
still, however, need to check that the spatial string tension is
the “cause” for the Coulomb string tension. To achieve this,
we will check what happens to the Coulomb string tension
after removing degrees of freedom which are known to be
strongly correlated to the confinement properties of the
theory, namely center vortices.
As a first check we verified that, as expected from the

literature, the Wilson string tension drops to zero after full
vortex removal (VR) and, conversely, keeps its SUð2Þ value
after full center projection (CP) (see Fig. 7). Next, we
repeat this procedure (vortex removal and center
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from the same configurations as in Figs. 3 and 4; the dependence
with the temperature is the same. Data at 3Tc for r > 7 have been
omitted, since the signal-to-noise ratio was very poor.
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projection) in the spatial directions only. For the resulting
configurations, it is necessary to distinguish between the
temporal χðT; RÞ and the spatial Creutz ratios χðR1; R2Þ. As
expected, the spatial string tension σs drops to zero after
removing all spatial vortices, cf. Fig. 8. On the other hand, a
direct measurement of the temporal string tension turns out
to be impossible: as illustrated in the histogram in Fig. 9, all
space-time Wilson loops receive random sign flips through
spatial vortex removal; the signal-to-noise ratio becomes
hopeless. However, the temporal string tension σt measured
from Polyakov loop correlators cannot change under
spatial center projection (sCP) or vortex removal (sVR),
since both procedures do not affect the temporal links from
which the Polyakov lines are built. We can therefore safely
conclude that all spatial-vortex-removed configurations are
still confining, exhibiting the exact same value for σt as the
original gauge-unfixed ones.

The spatial projection, with or without vortex removal,
can further introduce gauge noise in the temporal links if
followed by a Coulomb gauge fixing. This makes a direct
measurement of the temporal string tension through Creutz
ratios challenging, as can be seen from the large error bars
arising at large distances r in Fig. 8. As can also be seen from
this figure, both string tensions still exceed the asymptotic
SUð2Þ reference string tension at distances as large as r ∼ 9,
where they either have not yet reached a plateau (spatial) or
are disappearing in statistical noise (temporal). We do not
have a clear explanation for this slow convergence.

2. Ghost form factor

From the results above, it is obvious that the MC
configurations after spatial vortex removal still exhibit
temporal confinement but no spatial confinement. It is
interesting to see how the Coulomb gauge correlators react
to this change of physics in the underlying ensemble. As
shown in Fig. 10, the ghost form factor is no longer
compatible with a power law in the deep infrared, after both
full and spatial vortex removal. As for the center projected
configurations, a naive computation of the ghost propagator
is ill defined, because the Faddeev-Popov (FP) operator
acquires additional zero modes from the center vortices
which sit directly on the Gribov horizon.7 It is, however,
possible to invert the FP operator in the subspace orthogo-
nal to the kernel, which thus gives the subleading con-
tributions to dðpÞ. The result is shown in Fig. 11, where we
observe an enhancement in the mid-momentum regime and
a suppression in the deep infrared as compared to the
unprojected Coulomb gauge. From these investigations, it
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7The N2
c − 1 constant zero modes are easy to take care of by
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is clear that the infrared enhancement of the original
Coulomb gauge form factor is in fact tied to the spatial
string tension, as elimination of the latter leads to to a
dramatic suppression of the former in the IR.

3. Coulomb potential

The extrapolation of the Coulomb string tension σC from
the potential Eq. (13) is possible but suffers from large
uncertainties for a variety of reasons. Estimates were given
in Refs. [27,29,31,34,37,41]. We follow the convention in
the literature and plot in Fig. 12 the ratio p4VCðpÞ=ð8πσWÞ,
which yields σC=σW in the limit p → 0, cf. the remark after
Eq. (13). As can be clearly seen from the plot, the Coulomb
string tension σC disappears after both full and spatial
vortex removal. Since the latter case still contains the full
temporal string tension, as discussed in Sec. III B 1, it is

clear that the definition of the Coulomb string tension
through Eq. (13) must be directly related to the spatial
string tension.
It is interesting now to consider Eq. (14), our alternative

definition of the Coulomb potential. From Ref. [27] this is
known to allow for a better extrapolation of the Coulomb
string tension while still vanishing after full vortex removal,
cf. Fig. 13, where it has been plotted together with its full
center projected and full vortex removed counterparts. On
the other hand, the spatial vortex removed correlators must
remain unchanged, since Eq. (14) employs the temporal
links U0ðxÞ only. Remarkably, its spatial center projected
counterpart still rises linearly, as can be seen in Fig. 14. It is
thus clear that the definition given in Eq. (14) of the
Coulomb potential is indeed sensitive to both the temporal
and the spatial string tension, as it still rises linearly after
both spatial center projection and spatial vortex removal.
This is not in contrast with the result found in Sec. III A:
above the phase transition, the temporal string tension
vanishes, thus leaving only the spatial string tension to
affect the U0ðxÞ correlators at high temperatures.
Therefore, when either the temporal or the spatial string
tension disappears, as above the deconfinement transition
(temporal, see Fig. 4), or after spatial vortex removal
(spatial, see Fig. 14), Eq. (14) will still give a linear rising
potential. Only when both are eliminated via full vortex
removal (see Fig. 13) does the U0ðxÞ correlator become
asymptotically flat.
Eq. (14) is therefore some kind of hybrid definition,

sensitive to the confining string tension but, because of its
“distance” to the Hamiltonian formulation due to being
defined on a single time slice, still not sufficient to have
overlap with all the excited states. The very large value it
assumes after spatial center gauge fixing and projection
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FIG. 11 (color online). Ghost form factor after center projection
(and restriction to the nonzero subspace) at β ¼ 2.15.
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FIG. 12 (color online). Standard Coulomb potential Eq. (13) in
momentum space, normalized such that the intercept at p → 0
yields 8πσC. The relatively sharp drop in the deep infrared for the
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FIG. 13 (color online). Coulomb potential from Eq. (14) in
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that a fairly large coupling β ¼ 2.60 could be afforded to
minimize discretization effects. See the discussion at the end
of Sec. III B for further details.
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(see Fig. 14) is likely a related phenomenon, since a mixing
of degrees of freedom obviously occurs. Modifications of
Eq. (14) might offer better results, since correlators of
longer open Polyakov lines could turn out to be closer to
the finite-temperature dynamics in Coulomb gauge.
However, as the length of the line increases, the relationship
with the original Coulomb potential becomes obfuscated.
Thus, a static Coulomb gauge observable that can detect the
deconfinement phase transition on the lattice remains
somewhat elusive.

IV. CONCLUSIONS

In this paper we have investigated the relationship
between spatial and Coulomb string tension as measured
through the standard lattice definition of Coulomb gauge
correlators. Such observables are made out of the spacelike
links at a fixed time slice and, as we have seen, can only be
used for investigations at T ¼ 0. As the temperature
increases, temporal and spatial string tension decouple,
and we find that the dynamics of static Coulomb gauge
observables are clearly dominated by the latter and not the
former. This explains why the Coulomb string tension from
Eq. (13) persists above Tc, and the low-order lattice Green’s
functions do not react to the loss of the temporal string
tension at and above Tc.
The alternative definition of the Coulomb potential

pioneered in Ref. [77], on the other hand, turns out to
detect both the temporal and the spatial string tension, but it
still cannot fully resolve the deconfinement phase transi-
tion, as this would probably require longer lines with
temporal extensions comparable to the first excited states of
the theory [27]. Such observables can, however, no longer
be easily related to the static Coulomb potential. More
refined lattice observables are clearly necessary, and they
may be tested with the methods laid out in this paper.
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