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We use overlap fermions as valence quarks to calculate meson masses in a wide quark mass range on
the 2þ 1-flavor domain-wall fermion gauge configurations generated by the RBC and UKQCD
Collaborations. The well-defined quark masses in the overlap fermion formalism and the clear valence
quark mass dependence of meson masses observed from the calculation facilitate a direct derivation of
physical current quark masses through a global fit to the lattice data, which incorporates Oða2Þ and
Oðm4

ca4Þ corrections, chiral extrapolation, and quark mass interpolation. Using the physical masses
of Ds, D�

s and J=ψ as inputs, Sommer’s scale parameter r0 and the masses of charm quark and strange

quark in the MS scheme are determined to be r0 ¼ 0.465ð4Þð9Þ fm, mMS
c ð2 GeVÞ ¼ 1.118ð6Þð24Þ GeV

(or mMS
c ðmcÞ ¼ 1.304ð5Þð20Þ GeV), and mMS

s ð2 GeVÞ ¼ 0.101ð3Þð6Þ GeV, respectively. Furthermore,
we observe that the mass difference of the vector meson and the pseudoscalar meson with the same valence
quark content is proportional to the reciprocal of the square root of the valence quark masses. The hyperfine
splitting of charmonium,MJ=ψ −Mηc , is determined to be 119(2)(7) MeV, which is in good agreement with
the experimental value. We also predict the decay constant ofDs to be fDs

¼ 254ð2Þð4Þ MeV. The masses
of charmonium P-wave states χc0, χc1 and hc are also in good agreement with experiments.
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I. INTRODUCTION

A large endeavor has been devoted by lattice QCD to
determine the quark masses which are of great importance
for precision tests of the standard model of particle physics
[1–14]. In the lattice QCD formulation, quark masses are
dimensionless bare parameters and their renormalized
values at a certain scale should be determined through
physical inputs. For the light u; d quarks and the strange
quark, their masses are usually set by the physical pion and
kaon masses as well as the decay constants fπ and fK ,
where the chiral extrapolation is carried out through chiral
perturbation theory [1,3,4]. For heavy quarks, the bare quark
masses are first set in the vicinity of the physical region and
the physical point can be interpolated or extrapolated
through the quark mass dependence observed empirically
from the simulation. In the above procedures, nonperturba-
tive quarkmass renormalization is usually required to match
the bare quark mass to the renormalized one at a fixed scale.
For the heavy quark, theHPQCDcollaboration [6] proposed
a promising scheme to obtain their masses from current-
current correlators of heavy quarkonium,which is free of the
quark mass renormalization [8].
In this work we propose a global-fit strategy to determine

the strange and charm quark masses which incorporates
simultaneously the Oða2Þ correction, the chiral extrapola-
tion, and the strange/charm quark interpolation. The lattice

setup is a mixed action formalism where we use the overlap
fermions as valence quarks and carry out the calculation on
the domain-wall gauge configurations generated by the
RBC and UKQCD Collaborations. Both the domain-wall
fermion (DWF) and the overlap fermion are chiral fer-
mions; as such, they do not haveOðaÞ errors for the valence
quark masses, and the additive renormalization for them is
also negligible (10−9) due to the overlap fermion imple-
mentation. It is also shown that the nonperturbative
renormalization via chiral Ward identities or the regulari-
zation independent/momentum subtraction (RI/MOM)
scheme can be implemented relatively easily. We have
explored this strategy and found that it is feasible for
valence masses reaching even the charm quark region on
the set of DWF configurations that we work on.
The RBC and UKQCD Collaborations have simulated

2þ 1 flavor full QCD with dynamical domain-wall fer-
mion (DWF) on several lattices in the last decade with pion
masses as low as ∼300 MeV and volumes large enough for
mesons (mπL > 4) [3,10,12]. It turns out that the fermions
in this formalism with a finite fifth dimension Ls satisfy the
Ginsparg-Wilson relation reasonably well and the chiral
symmetry breaking effects can be absorbed in the small
residual masses. As for the overlap fermion, its multimass
algorithm permits calculation of multiple quark propaga-
tors covering the range from very light quarks to the charm
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quark. This makes it possible to study the properties of
charmonium and charmed mesons using the same fermion
formulation for the charm and light quarks. Having
multiple masses helps in determining the functional forms
for the quark mass dependence of the observables. In
practice, we calculate the masses of charmonia and charm-
strange mesons with the charm and strange quark mass
varying in a range, through which a clear observation of the
valence quark mass dependence of meson masses can be
obtained. Similar calculations are carried out on six
configuration ensembles and the results are treated as a
total data set for the global fit as mentioned above. It should
be noted that the quark masses in the global fit are matched
to the renormalized quark masses at 2 GeV in the minimal-
subtraction scheme (MS scheme) by the quark mass
renormalization constant Zm calculated in Ref. [15]. In
order to convert the quantities on the lattice to the values in
physical units, we take the following prescription. First, the
ratio of the Sommer scale parameter r0 to the lattice spacing
a, namely r0=a, is measured precisely from each gauge
ensemble. Subsequently, r0=a’s in the chiral limit are used
to replace the explicit finite-a dependence. Instead of
determining the exact value of r0 by a specific physical
quantity, we treat it as an unknown parameter and deter-
mine it along with the quark masses through the global fit
with physical inputs.
One of our major observations is that the masses of the

pseudoscalar and the vector mesons have clear contribu-
tions from the term proportional to the reciprocal of the
square-root of the valence quark masses, as predicted by a
study based on a potential model of the quarkonium where
this kind of contribution is attributed to the scaling behavior
of the spin-spin contact interaction of the valence quarks
[16]. This is also in quantitative agreement with the feature
of the meson spectrum from experiments. After incorpo-
rating this kind of mass dependence to the global fit, the
experimental value of the hyperfine splitting of the 1S
charmonium, the mass difference of J=ψ and ηc, can be
well reproduced after the charm quark mass, the strange
quark mass, and r0 at the physical point are determined by
using J=ψ , D�

s and Ds masses as input. We also extract the
decay constant fDs

of the Ds meson both from the partially
conserved axial current relation and the direct definition of
fDs

along with the renormalization constant ZA of the axial
vector current. The two derivations give consistent results
which are also in agreement with the experimental value
within errors. The masses of charmonium P-wave states
χc0, χc1 and hc are also predicted and they are in good
agreement with experiments.
This work is organized as follows. We give a detailed

description of our numerical study in Sec. II, where we
focus on the derivation of r0=a and its chiral extrapolation,
the quark mass renormalization, and the investigation of the
valence quark mass dependence of mesons, particularly the
hyperfine splitting. The global fit details and the major

results on quark masses and fDs
are given in Sec. III, where

a thorough discussion of the statistical and systematic
errors is also presented. The summary and the conclusions
are presented in Sec. IV.

II. NUMERICAL DETAILS

Our calculation is carried out on the 2þ 1 flavor domain
wall fermion configurations generated by the RBC/
UKQCD Collaborations [17]. We use two lattice setups,
namely, the L3 × T ¼ 243 × 64 lattice at β ¼ 2.13 and the
323 × 64 lattice with β ¼ 2.25. For the β ¼ 2.13 lattice, the

mass parameter of the strange sea quark is set to mðsÞ
s a ¼

0.04 and that of the degenerate u=d sea quark takes the

values of mðsÞ
l a ¼ 0.005; 0.01, and 0.02, which give three

different gauge ensembles. However, it is found that the

physical strange quark mass parameter is actually mðsÞ
s a ¼

0.0348 [17] as determined by the physical Ω baryon mass,
this discrepancy has been corrected by the corresponding

reweighting factors. Similarly, the mðsÞ
s a of the β ¼ 2.25

lattice is set to 0.03 in generating the three gauge ensembles

with mðsÞ
l a taking values 0.004, 0.006, and 0.008, but the

physical mðsÞ
s a for β ¼ 2.25 is found to be 0.0273 [17].

Since the physical values of the sea quark masses are not
the same on the two sets of configuration with different β,
we shall assess its systematic error by introducing a linear

mðsÞ
s dependent term in the global fitting formula and

observing the effects when the sea strange mass is shifted
to the physical values determined by global fitting itself. On
the other hand, the explicit chiral symmetry breaking of the
domain wall fermions gives rise to the residual mass mresa
for the sea quarks which has been studied by RBC and
UKQCD [17]. These corrections to the light sea quark
masses are taken into account for the chiral limit. The
parameters of the six gauge ensembles involved in this
work are listed in Table I, and the numbers of configura-
tions we used are listed in Table II.
We use the overlap fermion action for the valence quarks

to perform a mixed-action study in this work. The massless
overlap fermion operator Dov is defined as

Dov ¼ 1þ γ5ϵðHWðρÞÞ; ð1Þ
where ϵðHWðρÞÞ is the sign function of the
Hermitian matrix HWðρÞ ¼ γ5DWðρÞ with DWðρÞ the

TABLE I. The parameters for the RBC/UKQCD configurations
[17]. mðsÞ

s a and mðsÞ
l a are the mass parameters of the strange sea

quark and the light sea quark, respectively. mðsÞ
resa is the residual

mass of the domain wall sea quarks.

β L3 × T mðsÞ
s a mðsÞ

l a mðsÞ
resa

2.13 243 × 64 0.04 0.005 0.01 0.02 0.00315(4)
2.25 323 × 64 0.03 0.004 0.006 0.008 0.00067(1)
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usual Wilson-Dirac operator with a negative mass param-
eter −ρ. Thus the effective massive fermion propagator
D−1

c ðmaÞ can be defined through Dov as [18,19]

D−1
c ðmaÞ≡ 1

Dcð0Þ þma
; with Dc ¼

ρDov

1 −Dov=2

ð2Þ

where ma is the bare mass of the fermion. From the
Ginsparg-Wilson relation fγ5; Dovg ¼ ρaDovγ5Dov, one
can check the relation fγ5; Dcð0Þg ¼ 0 [20], which implies
that the mass term ma in Eq. (2) acts the same way as an
additive term to the chirally-invariant Dirac operator in the
continuum Dirac operator and thus there is no additive
mass renormalization. On the other hand, in order for the
chiral fermion to exist, ρ should take a value in the range
0 < ρ < 2, so we take the optimal value ρ ¼ 1.5 which
gives the smallest ðmaÞ2 error in the hyperfine splitting and
the fastest production of D−1

c ðmaÞ [21]. Through the
multimass algorithm, quark propagators D−1

c ðmaÞ for
two dozen different valence quark masses ma have been
calculated in the same inversion, such that we can calculate
the physical quantities at each valence quark mass and
obtain clear observation of the quark mass dependence of
these quantities.

A. The ratio of the Sommer scale and the lattice spacing

The unique dimensionful parameter in the lattice for-
mulation of QCD is the lattice spacing a, which is usually
determined through a sophisticated scheme. Although
dimensionful quantities, such as fπ; fK , and hadron masses
have been used to determine the lattice spacing, the lattice
results need to be extrapolated to the continuum limit and
physical pion mass in order for the experimental values to
be used as inputs for such a determination. In contrast to the
hadronic quantities which have explicit dependence of
quark masses, the Sommer parameter, r0 (or r1), which
is relatively easy to calculate, has been used to set the scale.
Still, it needs to be determined precisely at the chiral and
continuum limits. r0 is defined by the relation [22],

�
r2
dVðrÞ
dr

�
r¼r0

¼ 1.65; ð3Þ

where VðrÞ is the static potential in the heavy quark limit
(r1 is defined similarly with 1.65 replaced by 1 [23]).

Practically in each gauge ensemble, VðrÞ can be derived
from the precise measurement of Wilson loopsWðr; tÞ with
different spatial and temporal extensions ðr; tÞ as

hWðr; tÞi ∼ e−VðrÞt: ð4Þ
Figure 1 shows the effective plateaus of VðrÞ at r=a ¼

2.828 with respect to t=a. One can see the measurements
are very precise and the plateaus last long enough (from 8
to 15 approximatively) for a precise determination of r0=a.
VðrÞ is usually parametrized in the Cornell potential

form,

VðrÞ ¼ V0 −
ec
r
þ σr; ð5Þ

where σ is the string tension. Considering the lattice
spacing a explicitly, the potential one measures on the
lattice is actually

aVðr=aÞ ¼ aV0 −
ec
r=a

þ ðσa2Þr=a; ð6Þ

and the aV0, ec, and σa2 can be obtained from a correlated
minimal-χ2 curve fitting to hVðr; tÞi’s through Eq. (6). For
each gauge ensemble, one can find the ratio

TABLE II. The number of configurations of the six ensembles
used in this work.

243 × 64 323 × 64

mðsÞ
l a 0.005 0.01 0.02 0.004 0.006 0.008

ncfg 99 107 100 53 55 50
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FIG. 1 (color online). The plateau of heavy quark potential in
coarse/fine lattice ensembles with lightest sea quark masses. The
upper panel is for the 243 × 64 lattice with mðsÞ

l a ¼ 0.005, the
lower panel for the 323 × 64 lattice with mðsÞ

l a ¼ 0.004.
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r0
a
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1.65 − ec

σa2

r
ð7Þ

using Eq. (3). Table III lists the calculated r0=a’s for the six
ensembles we are using. Note that the sea quark masses
(both light and strange) are bare quark masses of the
domain wall fermion, the physical ones should include the
residual masses (0.00315(4) and 0.00067(1) for the two
lattices respectively [17]) and the mass renormalization
factor (1.578(2) and 1.527(6) correspondingly [17]) in the
MS scheme at 2 GeV, i.e.

mðsÞ;R
l a ¼ ZðsÞ

m ðmðsÞ
l þmðsÞ

resÞa ð8Þ

The r0 dependence on the lattice spacing a and the sea
quark mass up to Oða2Þ can be expressed as [12,24]

r0ða;ml; msÞ ¼ r00

�
1þ

X
i

cai a
2i

�

þ ðcðlÞ þ dðlÞa2ÞðmR
l −mphys

l Þ
þ ðcðsÞ þ dðsÞa2ÞðmR

s −mphys
s Þ: ð9Þ

Note that the sea quark masses ml and ms should take the
renormalized mass values at an energy scale in Eq. (9) in
order for the c; d coefficients in the equation to be free of
the a-dependence. For the ensembles with the same β,
the behavior of r0=a with respect to the light sea quark

mass mðsÞ
l a is shown in Fig. 2, where the square points

are for the coarse lattice β ¼ 2.13 (243 × 64 lattices), and
the circular points are for the fine lattice β ¼ 2.25
(323 × 64 lattices).
In this work, we do not determine r0 (or the lattice

spacing) before the fit of the value of interest like the
hadron masses and decay constants. Instead, we will use
three hadronic quantities to obtain the r0 (and also ms and
mc) with

CðaÞ≡ r0
a
ðmphys

l ; aÞ ð10Þ

as the extrapolated value of a linear fit in mR
l a for each

lattice, i.e.

r0
a
ðmR

l a; aÞ ¼
r0
a
ðmphys

l ; aÞ þ fðlÞðaÞðmR
l −mphys

l Þa:
ð11Þ

Without the information of the lattice spacing, we have to
do the fit with extrapolating r0=a to the chiral limit to
produce a value of r0 and also the lattice spacings of the
ensembles at β ¼ 2.13=2.25, then we can extrapolate r0=a
to mphys

l ¼ 3.408ð48Þ MeV coming from the lattice aver-
age and iterate the fit until the r0=a is converged. The
extrapolated values CðaÞ are also listed in Table III.
Through such a fit, we get fðlÞðaÞ ¼ 6.08ð44Þ for β ¼

2.13 and fðlÞðaÞ ¼ 6.19ð36Þ for β ¼ 2.25, which are
independent of the lattice spacing within errors. This
implies that the coefficient cðlÞ in Eq. (9) is very small
and is consistent with zero. The strange sea quark mass has
been tuned to be close to the physical point, so we ignore
the strange sea quark mass dependence and treat the effect
due to deviation from the physical point as a source of the
systematic uncertainty.
In view of the above discussion for the subsequent global

fits, we shall use the following fitting form

r0ða;ml; msÞ ¼ r00ð1þ ca1a
2Þ þ dla2ðmR

l −mphys
l Þ: ð12Þ

B. Quark mass renormalization

In lattice QCD, the bare quark masses are input param-
eters in lattice units, say, mqa. However in the global fit
including the continuum extrapolation to be discussed later,
mqa has to be converted to the renormalized current quark
mass mR

q ðμÞ at a fixed scale μ and a fixed scheme (usually
MS) which appears uniformly in the global fitting formulas

TABLE III. r0=a’s and the sea quark masses renormalized in
MS scheme at 2 GeV for the six ensembles (EN1, EN2 and EN3
at each of β) we are using. The residual masses of the light
domain wall sea quark have been included in the sea quark
masses. The extrapolated values at the physical point (3.408
(48) MeV) [1,7–11] are also listed. See the text for more details.

EN1 EN2 EN3 Physical point

β ¼ 2.13 mR
l a 0.03653 0.02075 0.01286 � � �

r0=a 3.906(3) 3.994(3) 4.052(3) 4.114(10)

β ¼ 2.25 mR
l a 0.01323 0.01018 0.00713 � � �

r0=a 5.421(5) 5.438(6) 5.459(6) 5.494(3)

4

4.5

5

5.5

6

0  0.01  0.02  0.03  0.04  0.05

r 0
/a

mq
(s),R a

r0/a1(mqa1)
r0/a1(0)
r0/a2(mqa2)
r0/a2(0)

FIG. 2 (color online). Renormalized sea quark mass mR
qa

dependence of r0=a. Square points for β ¼ 2.13 with lattice
spacing a1, and circular points for β ¼ 2.25 with lattice
spacing a2.
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for different lattice spacings. This requires the renormal-
ization constant Zm of the quark mass for each β to be
settled beforehand.
When we use the chirally regulated field ψ̂ ¼

ð1 − 1
2
DovÞψ in the definition of the interpolation fields

and currents for the overlap fermion, the renormalization
constants of scalar (ZS), pseudoscalar (ZP), vector (ZV),
and axial vector (ZA) currents obey the relations ZS ¼ ZP
and ZV ¼ ZA due to chiral symmetry. In addition, Zm can
be derived from ZS by the relation Zm ¼ Z−1

S . In Ref. [15],
the RI-MOM scheme is adopted to do the nonperturbative
renormalization on the lattice to obtain the renormalization
constants under that scheme; those values are then con-
verted from the RI-MOM scheme to the MS scheme using
ratios from continuum perturbation theory. The relations
between Z’s mentioned above are verified, and the renorm-
alization constants obtained are listed in Table IV. Besides
the statistical error, systematic errors including those from
the scheme matching and the running of quark masses
in the MS scheme are also considered in Ref. [15]. The
systematic error from the running quark mass in the MS
scheme is negligibly small, while the one from scheme
matching is at four loops, and has a size of about 1.4%. The

errors of ZMS
S ð2 GeVÞ quoted above include both the

statistical and systematic ones. A systematic discussion
on the renormalization of overlap fermion on domain wall
fermion sea is given in Ref. [15].
With the above prescriptions, we can replace the renor-

malized quark masses and a by the bare quark mass
parameters mqa, r0, Zmð2 GeV; aÞ and CðaÞ defined in
Eq. (10) as

mR
q ð2 GeVÞ ¼ Zmð2 GeV; aÞðmqaÞ

CðaÞ
r0

: ð13Þ

In this way r0 enters into the global fitting formula to be
discussed in Sec. II D as a new parameter and can be
fitted simultaneously with other parameters in the fitting
formulas.
The discretization errors of the renormalization constant

Zm could induce an extra ma2 term on the quark mass
dependence of a given meson mass. Note that the lattice
spacings used in Ref. [15] are slightly different from those
which will be obtained in this paper, and it could be
considered as a source of the ma2 dependence.

C. The quark mass list

Since we are using the overlap fermion action for valence
quarks, we can take advantage of the multimass algorithm
with little computation overhead to calculate the valence
quark propagators for dozens of different quark masses ma
in the same inversion. Subsequently, multiple quantities can
be calculated at these valence quark masses, such that their
quark mass dependence can be clearly observed. Because
we have not determined the concrete values of lattice
spacings yet, we first estimate the meson masses in the
strange and the charm quark mass regions using the
approximate values a−1 ∼ 1.75 GeV for β ¼ 2.13 and
a−1 ∼ 2.30 GeV for β ¼ 2.25 as determined by RBC
and UKQCD [17] where both the sea and valence quarks
are domain-wall fermions. We obtain the dimensionless
masses of the pseudoscalar and vector mesons for different
valence quark masses through the relevant two-point
functions which are calculated with the Z3 grid source
to increase statistics [21]. The physical strange quark mass
is estimated to be around msa ¼ 0.06 for β ¼ 2.13 and
msa ¼ 0.04 for β ¼ 2.25; thus we choose themsa region to
be msa ∈ ½0.0576; 0.077� and msa ∈ ½0.039; 0.047� for the
two lattices, respectively. We cover a wider range for
the charm quark mass, i.e. [0.29, 0.75] and [0.38, 0.57]
for the two lattices to study the charmonium and charm-
strange mesons. The concrete strange and charm quark
mass parameters in this work are listed in Table V.
It should be noted that for β ¼ 2.13 at physical charm

quark mass, discretization artifacts prevent us from com-
puting charmonium states’ masses using point-source
propagators. For amc ≥ 0.7, the quark propagators receive
an unphysical contribution related to the locality radius of
the overlap operator. This can be seen from a heavy quark
expansion of the propagator:

1

Dþm
≈

1

m

�
1 −

D
m
þ
�
D
m

�
2

þ � � �
�
:

The off-diagonal (nonlocal) elements of the operator D
decay exponentially like e−r=rð0Þ [25]. For large masses the
quark propagator will be dominated by the first term in the
expansion, D=m, and at large distances the decay rate will
be set by 1=rð0Þ rather than m. This regime should set in
around the point where the quark mass is comparable with

TABLE IV. The renormalization constants of the overlap
fermion on domain wall fermion sea. Both the statistical error
and the systematic errors from scheme matching and running of
quark masses in the MS scheme are considered.

ZS Zm

β ¼ 2.13 1.127(9)(19) 0.887(7)(15)
β ¼ 2.25 1.056(6)(24) 0.947(6)(20)

TABLE V. The bare mass parameters for valence strange and
charm quarks in this study.

β ¼ 2.13 msa 0.0576 0.063 0.067 0.071 0.077
mca 0.29 0.33 0.35 0.38 0.40 0.42 0.45

0.48 0.50 0.53 0.55 0.58 0.60 0.61
0.63 0.65 0.67 0.68 0.70 0.73 0.75

β ¼ 2.25 msa 0.039 0.041 0.043 0.047
mca 0.38 0.46 0.48 0.50 0.57
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1=rð0Þ. For β ¼ 2.13 the locality radius for the quark
bilinear state is about 1.5a. In Fig. 3 we plot the effective
mass for the pseudoscalar c̄c state using both point sources
and wall-sources. For am ¼ 0.7 both propagators show
signs of this unphysical state at large times, but for the wall-
source propagator the effect of the unphysical state is
weaker and the effective mass forms a plateau whereas for
the point source it never plateaus. We use the wall-source
propagators to extract the masses for charmonium states.
We have used two-term fitting to account for the effect of

the excited state. But for safety, we have to use the coulomb
wall source propagator to construct the charmonium
correlators in the three ensembles with β ¼ 2.13 since
the physical mca is around 0.7. Note that we continue to
use the point source propagator for the c̄s system to obtain
the decay constant of Ds. It should be safe since the
unphysical mode is much heavier thanMðDsÞ orMðD�

sÞ. In
the case of the β ¼ 2.25 ensembles, the correlators based
on the point source propagators are used and the standard
interpolation of the physical charm quark is applied, since
the physical mca is around 0.5 and does not suffer from the
problem of the unphysical state.

D. The quark mass dependence of meson masses

For each of the six gauge ensembles, we calculate the
masses of the pseudoscalar and the vector mesons of the cs̄
and cc̄, with the strange and charm quark taking all the
possible values in Table V. Figure 4 shows the quark mass
dependence of cs̄ mesons, where the upper panel is for the
pseudoscalar (Ds) and the lower panel is for the vector
(D�

s). The abscissa is the sum of the renormalized strange
and charm quark masses at 2 GeV in the MS scheme, which
are converted through Eq. (13) by tentatively taking
r0 ¼ 0.46 fm, for example. Meson masses are also

converted into values in the physical unit using this scale
parameter. Note that we are focusing on the behavior at the
moment, instead of the precise values of the masses here. It
is interesting that the Ds and D�

s masses are almost
completely linear in mR

c þmR
s for both lattices. The light

sea quark mass dependence is very weak for Ds masses in
the upper panel of Fig. 4 but sizable for D�

s masses in the
lower panel. On the other hand, the slopes with respect to
mR

c þmR
s are approximately the same for Ds and D�

s , while
they still slightly depend on the lattice spacing. The red
horizontal lines in the figure show the physical Ds and D�

s
masses, and the intersection regions with the data indicate
where the physicalmc andms should be. Figure 5 is similar
to Fig. 4, but for ηc and J=ψ , where one can see the similar
feature of the charm quark mass dependence of ηc and J=ψ
masses.
Based on the above observations, we assume tentatively

dominance by linear dependence of meson masses on the
quark masses,

Mð0Þðmc;ms;mlÞ ¼ A0 þ A1mc þ A2ms þ A3ml þ � � � ;
ð14Þ
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FIG. 3 (color online). Effective mass plot of the pseudoscalar
meson mass (Ma) at fixed quark masses (ma). The plateau in the
ma ¼ 0.7 case with point source is not reliable. The one with
coulomb gauge fixed wall source is better, while the plateau still
drops down for the t > 25 region. This plot is based on the result
from the gauge ensemble at β ¼ 2.13 with the light sea quark
mass mðseaÞ

l a ¼ 0.05.
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FIG. 4 (color online). The masses of the pseudoscalar and
vector c̄s mesons are plotted with respect to the renormalized
mR

c þmR
s (tentatively taking r0 ¼ 0.46) for the six RBC/UKQCD

gauge ensembles, where the linear behaviors in mR
c þmR

s are
clearly seen. The horizontal lines in the plot are the physical value
of Ds in the upper panel and D�

s in the lower panel.

YI-BO YANG et al. PHYSICAL REVIEW D 92, 034517 (2015)

034517-6



where the coefficients Ai can be different for different
mesons, but are independent of the lattice spacing and
quark masses, since mc;ms;ml here are the current
quark masses in the continuum QCD Lagrangian, which
can be defined at an energy scale through a renormal-
ization scheme and are independent of the lattice
spacing a.
Although Figs. 4 and 5 suggest that the a-dependence is

mild, it is incorporated with the usual generic formula of
the charm quark mass dependence of the physical observ-
ables for the charmonium and charm-light mesons on the
lattice. It is expressed as [26]

Mðmc;ms;ml; aÞ
¼ Mðmc;ms;mlÞ × ð1þ B1ðmcaÞ2 þ B2ðmcaÞ4
þOððmcaÞ6ÞÞ þ C1a2 þOða4Þ: ð15Þ

With the help of chiral perturbation theory, Mðmc;ms;mlÞ
in Eq. (15) could be the theoretical function for the quantity
M which is better known for light quarks. But for
charmonium and charm-strange mesons, the functional

form is not well known but can be investigated empirically
from the lattice observations such as that of Eq. (14). The
polynomial with respect to mca in the parentheses takes
into account the lattice artifacts of the lattice quark actions.
Since we use chiral fermion actions both for the sea quarks
(domain wall fermions) and the valence quarks (overlap
fermions), chiral symmetry guarantees that they are auto-
matically improved to Oða2Þ and higher order artifacts due
to the heavy quark are even powers of mca [26]. In the
ensembles with β ¼ 2.13, even the effect of the m4

ca4 term
could be important since the mca of the physical charm
quark is around 0.7. It motivates us to use a large number of
quark mass parameter values in those ensembles to deter-
mine this effect precisely. There should be also similar
terms for ml and ms, but they are much smaller in
comparison with that of mc and can be neglected. Also
included in Eq. (15) is the explicit artifact in terms of a2

which comes from the lattice gauge action and other
sources of a-dependence.
However, this does not complete the investigation of the

valence quark mass dependence of the meson masses. For
example, if we apply the functional form above in the
correlated fit of the mass of Ds, the χ2=d:o:f: is 4.6, much
larger than unity.
The reason is simple. Given the linear behavior described

above, it would be expected that the mass difference of the
vector and the pseudoscalar mesons with the same flavor
content is also proportional to the valence quark mass. But
the experimental results give a different story: for example,
Mρ −Mπ ∼ 630 MeV, MK� −MK ∼ 400 MeV, MD�−
MD ∼ 140 MeV, MD�

s
−MDs

∼ 140 MeV, MJ=ψ −Mηc∼
117 MeV, etc. do not have a linear dependence in the
sum of their constituent quark masses.
This motivates us to explore the subtle aspect of the

quark mass dependence of the hyperfine splitting with a
closer view. In the following section, we will see that
including this effect reduces the χ2=d:o:f: from (4.6)
mentioned above to ∼1.0.

E. Hyperfine splitting

In the constituent quark potential model, the vector
meson and the pseudoscalar mason are depicted as 13S1
and 11S0 states, respectively, and their mass difference (the
hyperfine splitting) ΔHFS comes from the spin-spin contact
interaction of the valence quark and antiquark. A prelimi-
nary study on the behavior of ΔHFS with respect to the
quark mass mq on the lattice has been performed in
Refs. [21,27], where one finds that ΔHFS ∝ 1= ffiffiffiffiffiffimq

p
describes the data surprisingly well for mq ranging from
the charm quark mass region down to almost the chiral
region. (See Fig. 4 and Fig. 5 in Ref. [21].) For heavy
quarkonium, this behavior can be understood qualitatively
as follows. In the quark potential model, the perturbative
spin-spin interaction gives
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FIG. 5 (color online). The quark mass dependence of the
masses of the pseudoscalar and vector cc̄ mesons is illustrated
in the plots for the six RBC/UKQCD gauge ensembles, where the
linear behaviors in mR

c (tentatively taking r0 ¼ 0.46) are clearly
seen. The horizon lines in the plot are the physical value ηc in the
upper panel and J=Ψ in the lower panel.
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ΔHFS ¼
16παs
9

hs1 · s2iS¼1 − hs1 · s2iS¼0

m2
Q

jΨð0Þj2; ð16Þ

where mQ is the mass of the heavy quark, s1;2 are the spin
operators of the heavy quark and antiquark, and Ψð0Þ is
the vector meson wave function at the origin. In view of the
fact that charmonium and bottomonium have almost the
same 2S − 1S and 1P − 1S mass splittings (N. B. this
equal spacing rule extends to light mesons as well, albeit
qualitatively) it is argued [16] that the size of the heavy
quarkonium should scale as

rQQ̄ ∝
1ffiffiffiffiffiffiffimQ

p ð17Þ

in the framework of the nonrelativistic Schrödinger
equation. This prediction is checked against the leptonic
decay widths and the fine and hyperfine splittings [16] of
charmonium and upsilon and it holds quite well. Since
Ψð0Þ scales as ðrQQ̄Þ−3=2, one finds from Eqs. (16) and (17)
that

ΔHFS ∝
1ffiffiffiffiffiffiffimQ

p : ð18Þ

Even though the above argument is for heavy quar-
konium, it is interesting to see how far down in quark
mass it is applicable with a slight modification. In the
present study, we also check the quark mass dependence
of ΔHFS for the charm-strange systems. For clarity of

illustration, the combined quantity ΔHFS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mR

q1 þmR
q2

q

from the gauge ensembles at β ¼ 2.13=2.25 with the
lightest sea quark mass is plotted versus mR

q1 þmR
q2 in

Fig. 6, where one can see that such a combination is
consistent with a constant within one sigma in each
ensemble, with χ2=d:o:f: ¼ 1.10 from the correlated fit

with only the 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mR

q1 þmR
q2

q
term for all the data points

in the six ensembles. The constants in the two ensem-
bles in the Fig. 6 are different which could be due to an
Oða2Þ or OðmlÞ effect. This suggests the following
functional form

ΔHFS ¼
A4 þ A5mR

lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mR

q1 þmR
q2 þ δm

q ð1þ B0a2Þ: ð19Þ

The parameter δm is included since if δm is zero, the
hyperfine splitting will diverge in the chiral limit. With
δm ¼ 0, the χ2=d:o:f: is 0.87 which is better than the
former fit without any Oða2Þ or OðmlÞ effect, and the
χ2=d:o:f: is almost the same when we set δm ∼ 0.07.
Figure 7 shows the Δ−2

HFS versus mR
q1 þmR

q2 with the
experimental data points from the review of the Particle
Data Group in 2014 [28]. The data of the charm-strange
and charm-charm system in the ensemble with lightest
sea quark mass at β ¼ 2.25 and the correlated fit of
those data with δm ¼ 0.068 (the reason we choose this
value will be discussed in Sec. III A) are also plotted on
Fig. 7. The fit we obtained could explain the splittings
Mρ −Mπ, MK� −MK within 10% level, while the B
meson and bottomonium cases are beyond the scope of
this form.
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FIG. 6 (color online). The quark mass dependence of the

hyperfine splittings ΔHFS ¼ mV −mPS times
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mR
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for

c̄s systems from the gauge ensemble with the lightest sea quark
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consistent with a constant within one sigma for each ensemble,
indicated by a solid line in the plot, obtained from an independent
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Finally, the global fit formula for the meson system is

MðmR
c ;mR

s ; mR
l ; aÞ

¼
�
A0 þ A1mR

c þ A2mR
s þ A3mR

l

þ ðA4 þ A5mR
l Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mR

c þmR
s þ δm

p
�

× ð1þ B0a2 þ B1ðmR
c aÞ2 þ B2ðmR

c aÞ4Þ þ C1a2

ð20Þ

where δm ≈ 70 MeV is a constant parameter, the terms
A5mR

l and B0a2 are introduced for the light sea quark mass
and lattice spacing dependence of ΔHFS. Note that A2 is set
to zero for the charm quark-antiquark system, and A1 is
expected to be close to 1 (or 2) for the meson masses of
c̄sðc̄cÞ system. We keep the mR

c a correction to the fourth
order (mR

c
4a4 ∼ 0.25 for the physical charm quark mass at

the ensembles at β ¼ 2.13, and just 0.0625 for the case at
β ¼ 2.25), which turns out to be enough (and necessary for
the charmonium case) in the practical study.

In view of the observation from Fig. 6 and Fig. 7 that the
hyperfine splitting is primarily determined by the square
root term, one expects that the parameters A0, A1, A2 and A3

of the corresponding pseudoscalar and vector meson
masses to be the same within errors.
It is true that one could do the polynomial expansion

around the physical point, but then the fit would need to be
iterated until the initial value for the center point of the
polynomial expansion converges to the true physical point.
When we do this, we obtain consistent results compared to
those of our preferred square-root fit, but the apparent
simplicity of an interpolation is illusory. With the square
root term, we can skip the iteration, and, as a byproduct,
have a possibly useful phenomenological form.

III. THE GLOBAL FIT AND RESULTS

Actually the meson masses measured from lattice QCD
simulations are dimensionless values. Since we will be
determining the lattice spacing in a global fit, the fit
formula in Eq. (20) cannot be used directly. Instead, we
shall multiply the lattice spacing a to both sides of Eq. (20)
and modify the expression to

Ma ¼
�
A0
0

1

CðaÞ þ A0
1ðmR

c aÞ þ A0
2ðmR

s aÞ þ A0
3ðmR

l aÞ þ ðA0
4 þ A0

5CðaÞðmR
l aÞÞ

1

CðaÞ3=2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðmR
c aþmR

s aþ δmr0=CðaÞÞ
p

�

×

�
1þ B0

0

1

CðaÞ2 þ B0
1ðmR

c aÞ2 þ B0
2ðmR

c aÞ4
�
þ C0

1

1

C3ðaÞ ; ð21Þ

with A0
0 ¼ A0r0; A0

1 ¼ A1; A0
2 ¼ A2; A0

3 ¼ A3; A0
4 ¼ A4r

3=2
0 ; A0

5 ¼ A5r
1=2
0 ;

B0
0 ¼ B0r20; B

0
1 ¼ B1; B0

2 ¼ B2; C0
1 ¼ C1r30: ð22Þ

with mR
l fixed to the physical point (3.408(48) MeV)

[1,7–11]. We have kept the Ma and mR
qa combinations

as they are, sinceMa is measured directly on the lattice and
renormalized mR

qa’s are used as the parameters of the sea
quark and valence quark actions. For the explicit a’s which
are not accompanied by a mass term, we have replaced
them with r0=CðaÞ from Eq. (10).
Now, the global fit can be performed for all the relevant

quantities using the measured results from the six ensem-
bles. It should be noted that the parameters to be fitted with
this expression are A0

0;1;2;3;4;5, B
0
0;1;2, and C0

1 defined in
Eq. (22) for each physical quantity, and the universal
parameter δm. For comparison, we have O(200) data points
for each physical quantity in the c̄s system (the total
number of data points on all the six ensembles), and the
corresponding number in the c̄c system is O(50). Once we
have fitted the coefficients A0

0;1;2;3;4;5 for the three dimen-
sionless quantities MDs

a;MD�
s
a −MDs

a, and MJ=ψa, we
can examine their dimensionful expressions,

MDs
¼ A0Ds

0

r0
þ A0Ds

1 mR
c þ A0Ds

2 mR
s þ A0Ds

3 mR
l

þ
�
A0Ds
4

r3=20

þ A0Ds
5

r1=20

mR
l

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mR
c þmR

s þ δm
p ;

ΔHFS;c̄s ¼
�
A0Δ
4

r3=20

þ A0Δ
5

r1=20

mR
l

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mR
c þmR

s þ δm
p ;

MJ=ψ ¼ A0J=ψ
0

r0
þ A0J=ψ

1 mR
c þ A0J=ψ

2 mR
s þ A0J=ψ

3 mR
l

þ
�
A0J=ψ
4

r3=20

þ A0J=ψ
5

r1=20

mR
l

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mR
c þmR

s þ δm
p :

ð23Þ
We see that they depend on the renormalized charm and
strange quark masses mR

c and mR
s , and the scale parameter

r0 in the continuum limit. From the physical values of
MDs

¼ 1.9685 GeV, ΔHFS;c̄s≡MD�
s
−MDs

¼0.1438GeV,
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and MJ=ψ ¼ 3.0969 GeV as inputs, we can determine
mR

c ;mR
s and r0.

Note that the quark masses here are the ones renormal-
ized under given scheme at given scale, specifically
MSð2 GeVÞ in our case. We ignore the tiny experimental
uncertainties of these values.
The use of the J=ψ mass instead of the ηc mass as one

input is based on two considerations. First, the exper-
imental ηc mass is not as precisely determined as that for
J=ψ . Second, the omission of the c̄c annihilation in the
calculation of charmonium masses necessarily introduces
systematic uncertainties. This kind of uncertainty is
expected to be smaller for J=ψ than for ηc [29].
We list in Table VI the fitting parameters [defined in

Eq. (20)] for MDs
, MD�

s
and ΔHFS;c̄s ≡MD�

s
−MDs

. We
give both the “default fit” (keeping every parameter,
listed as the first line of each quantity) and the “optimal”
case (dropping the parameters which are consistent with
zero, listed as the second line of each channel). The
χ2=d:o:f of two cases are close, while the parameters
from the optimal case have higher precision. We note that
the values of the coefficient A0 of the constant term and
the coefficients A1, A2, and A3 of the terms with linear
quark-mass dependence on MDs

obtained from the
default fit are consistent with those obtained for the
default fit of MD�

s
within errors.

So for the splitting ΔHFS;c̄s, these corresponding coef-
ficients should be, and are, consistent with zero. To obtain
results with higher precision we thus force these coeffi-
cients to be zero in our “optimal” fit for ΔHFS;c̄s. In the first
two rows of ΔHFS;c̄s (the sixth and seventh rows from the
top) in Table VI, we show that both the default fit with all
the parameters [defined in Eq. (20) as deduced from the
combined parameters defined in Eq. (21) by using r0 to be
determined in the following section] and the optimal
fit excluding the constant term and linear-quark-mass-
dependence terms [thus keeping only the 1= ffiffiffiffiffiffimq

p term
and itsOða2Þ corrections] are consistent, but the parameters

we obtain from the latter one have higher precision. So
compared with using MD�

s
as input, replacing it with the

splitting MD�
s
−MDs

gives more precise results for
the predictions of the charm/strange quark mass and r0.
For the same reason, we discuss the splitting ΔHFS;c̄c ≡
MJ=ψ −Mηc instead of Mηc itself.
Note that we did the correlated fit for each quantity

independently (turn on all the coefficients) and optimized
the fit (turn off the negligible coefficients) to obtain the first
two rows of each quantity in Table VI, then did the fully
correlated global fit for all the S-wave quantities to obtain
the third row ofMDs

and ΔHFS;c̄s. The case ofMD�
s
does not

have such a line since we do not use this quantity directly in
the global fit. Due to the correlation between different
quantities, in Table VI, the parameters listed in the second
line ofMDs

andΔHFS;c̄s are slightly different with that in the
third line which are used for the final results and in the
following discussion.

A. Systematic errors

In Tables VII and VIII we list both statistical and
systematic errors. For the statistical error we use the
jackknife error of the global fit. Since we apply a global
fit for data in all of six ensembles (two lattice spacings with
three sea masses each), the errors from the Oða2Þ and
Oðm4

ca4Þ corrections, and linear chiral extrapolation have
been included in the statistical error.
For the systematic errors, we consider those concerning

r0, those of ZmðaÞ, the global parameter δm, continuum/
chiral extrapolation, the correlated fit cutoff, a possible
electromagnetic effect, the effect from the missing charm
sea, the one from the mixed action and the heavy quark data
points in the ensembles at β ¼ 2.13.
(1) Since r0 is the scale we want to determine in

the global fit, we need to consider only two
systematic errors: one from the statistical error of
CðaÞ ¼ r0ðaÞ=a, and the other from the nonzero a2

dependence of r0ðaÞ.

TABLE VI. The fitting parameters [defined in Eq. (20)] for MDs
, MD�

s
and ΔHFS;c̄s ≡MD�

s
−MDs

. We list the “default fit” (keeping
every parameter, listed as the first line of each channel), the “optimal” case (dropping the parameters which are consistent with zero,
listed as the second line of each quantity), and also the parameters obtained in the global fit combining all the S-wave quantities (the third
line of theMDs

and ΔHFS;c̄s cases.MD�
s
does not have this line since we do not use it in the global fit). The χ2=d:o:f of first two cases are

close, while the parameters from the optimal case have higher precision.

χ2=d:o:f: A0 A1 A2 A3 A4 A5 B0 B1 B2 C1

MDs
1.04 1.343(140) 0.881(34) 0.791(25) 0.28(3) −0.499ð200Þ 0.3(2) −0.14ð8Þ 0.07(10) 0.09(10) 0.11(13)
1.07 1.200(54) 0.913(19) 0.824(16) 0.26(2) −0.338ð36Þ � � � � � � 0.061(6) � � � −0.18ð2Þ
� � � 1.297(23) 0.891(8) 0.850(8) 0.30(2) −0.450ð16Þ � � � � � � 0.057(3) � � � −0.18ð1Þ

MD�
s

0.94 1.17(8) 0.904(34) 0.853(16) 0.64(31) −0.172ð55Þ −0.07ð33Þ −0.10ð8Þ 0.088(34) −0.004ð19Þ −0.01ð13Þ
0.95 1.14(4) 0.913(16) 0.840(14) 0.55(7) −0.137ð18Þ � � � � � � 0.070(6) � � � −0.19ð2Þ

ΔHFS;c̄s 0.88 −0.025ð18Þ 0.02(3) 0.02(3) 0.5(5) 0.164(7) 0.23(15) 0.36(16) −0.36ð22Þ 0.30(20) 0.07(4)
0.91 � � � � � � � � � � � � 0.158(7) 0.23(4) 0.35(12) � � � � � � � � �
� � � � � � � � � � � � � � � 0.157(3) 0.29(6) 0.37(8) � � � � � � � � �
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(a) Our global fits use the central values for CðaÞ.
The effect of the statistical errors of CðaÞ for
each value of a used in the fit is incorporated into
a systematic error as follows: For each lattice
spacing, we repeat the global fit with the value of
CðaÞ changed by 1σ and calculate the resulting
difference for each quantity of interest, namely
r0, ms and mc, and then combine in quadrature
the differences for each lattice spacing. This
error will be marked with σðr0=aÞ.

(b) For simplicity, we constrain the fit parameter
r0ðaÞ at the physical point to be constant as a
function of the lattice spacing in the global fits.
But in principle there could be an a-dependence,
with nonzero ca1 in Eq. (12). In the work of RBC-
UKQCD [17], their fit gives ca1 ¼ −0.25ð14Þ. For
such small ca1 , the χ2 of the fit is almost un-
changed: repeating the fit with ca1 ¼ �0.25
changes the χ2=d:o:f: by0.15%.For eachquantity
of interest, the change in its fit value is reported as
a small systematic error in Table VII. Had this
been larger, it would have been incorporated into a
statistical error instead, using ca1 as a fit parameter,
but this was determined to be unnecessary a pos-
teriori. This error will be marked with ∂r0

∂a2.

(2) For the nonperturbative mass renormalization factor
in the RI/MOM scheme, ZmðaÞ, two kinds of
systematic errors are involved.
(a) One is from the statistical errors of ZmðaÞ. We

follow the same procedure as the case of the
statistical errors of CðaÞ to estimate the resulting
effect on the quantities of interest: namely, for
each lattice spacing we redo the fit with the value
of ZmðaÞ changed by 1σ, and then combine in
quadrature the differences. For the strange and
charm quark masses, this is the largest of the four
systematic errors we tabulate. A lot of this is due
to the magnification of the statistical errors of
ZmðaÞ, which are independent at the two lattice
spacings, upon extrapolation in lattice spacing.
This error will be marked with σðMR=statÞ.

(b) On the other hand, the systematic errors of the
perturbative matching from RI/MOM to the MS
scheme, and the running of the mass renormal-
ization factor to the scale of 2 GeV in MS
scheme, are independent of lattice spacing and
are totally the same for any simulation at any
lattice spacing. Furthermore, since the physical
quantities like meson mass or decay constant are
independent of renormalization scheme or en-
ergy scale, this systematic error will not con-
tribute to those quantities, only to the quark
masses. For the quark masses, the systematic
errors are independent of simulation and so are
not magnified by linear extrapolation in lattice
spacing. These, then, are expected to be very
small, which is what we see. This error will be
marked with σðMR=sysÞ.

TABLE VII. The quark mass and Sommer scale r0 after chiral
and linear Oða2Þ extrapolation. The statistical error σðstatÞ, and
twelve systematic errors from r0 σðr0=aÞ and σð∂r0∂a2Þ, the mass
renormalization (MR) σðMR=statÞ and σðMR=sysÞ, the strange
sea quark mass dependence σðSSQMDÞ, the parameter δm
σðδmÞ, the chiral and continuum extrapolation σðchiralÞ and
σðaÞ, the possible mu −md effect σðu − dÞ, the cutoff of the
correlated fit σðcutÞ, the electromagnetic effect σðEMÞ and the
heavy quark artifact σðheavyÞ in the ensembles at β ¼ 2.13 are
listed below the central values.

χ2=d:o:f r0(fm) mc(GeV) ms(GeV)

PDG [28] � � � 1.09(3) 0.095(5)

This work 1.05 0.465 1.118 0.101
σðstatÞ 0.004 0.006 0.003
σðr0=aÞ 0.002 0.001 0.000

σð∂r0∂a2Þ 0.005 0.007 0.004

σðMR=statÞ 0.001 0.022 0.000
σðMR=sysÞ – 0.003 0.000
σðSSQMDÞ 0.006 0.004 0.002
σðδmÞ 0.001 0.001 0.000
σðchiralÞ 0.004 0.006 0.003
σðu − dÞ 0.001 0.001 0.000
σðaÞ 0.002 0.002 0.001
σðcutÞ 0.001 0.001 0.000
σðEMÞ 0.002 0.002 0.001
σðheavyÞ 0.005 0.007 0.001
σðall sysÞ 0.009 0.024 0.006
σðallÞ 0.010 0.025 0.007

TABLE VIII. Charmonium spectrum results and fDs
after

chiral and linear Oða2Þ extrapolation, in unit of GeV.

ΔHFS;c̄c Mχc0 Mχc1 Mhc fDs

PDG [28] 0.1132(7) 3.4148(3) 3.5107(1) 3.5254(2) 0.258(6)
The work 0.1188 3.439 3.524 3.518 0.2536

σðstatÞ 0.0021 0.037 0.043 0.011 0.0022
σðr0=aÞ 0.0002 0.001 0.003 0.004 0.0001

σð∂r0∂a2Þ 0.0018 0.008 0.034 0.056 0.0016

σðMRÞ 0.0008 0.008 0.009 0.039 0.0007
σðSSQMDÞ 0.0027 0.008 0.009 0.005 0.0021
σðδmÞ 0.0007 0.001 0.002 0.004 0.0005
σðchiralÞ 0.0041 0.001 0.018 0.012 0.0006
σðu − dÞ 0.0000 0.001 0.000 0.008 0.0002
σðaÞ 0.0008 0.003 0.004 0.003 0.0006
σðcutÞ 0.0005 0.000 0.001 0.000 0.0007
σðEMÞ 0.0008 0.001 0.003 0.004 0.0006
σðheavyÞ 0.0036 0.018 0.036 0.008 0.0025
σðall sysÞ 0.0068 0.023 0.052 0.070 0.0036
σðallÞ 0.0069 0.044 0.066 0.071 0.0043
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(3) Since the strange quark mass used in the domain-
wall configurations (∼120 MeV for the β ¼ 2.13
ensembles and ∼110 MeV for the β ¼ 2.25 ensem-
bles) are not equal to the physical strange quark
mass, a systematic error is induced.
In Ref. [17], the reweighting of the strange quark

mass is used to correct the values obtained from the
original samples. In view of the fact that the strange
sea quark mass has different values in the two sets of
the ensembles with different lattice spacing, it pro-
vides another way to estimate the systematic error
from the mismatch of the strange sea quark mass.
We can add the strange sea quark mass dependence

terms into the functional form in Eq. (20) with
coefficients A6 and A7,

MðmR
c ;mR

s ;mR
l ; aÞ

¼
�
A0 þA1mR

c þA2mR
s þA3mR

l þA6mR
s;sea

þ ðA4 þA5mR
l þA7mR

s;seaÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mR
c þmR

s þ δm
p

�

× ð1þB0a2 þB1ðmR
c aÞ2 þB2ðmR

c aÞ4Þ
þC1a2: ð24Þ

Since the form of the dependence of the lattice
spacing and the strange sea quark mass are different,
it is possible to distinguish them in the global fit.
After we obtain the coefficients, the condition mR

s ¼
mR

s;sea is applied to predict the Sommer scale r0, the
quark masses, and the other quantities. The χ2 of the
fit with the strange sea quark mass extrapolation is
almost the same as the one in the default case
without such an extrapolation (1.06 vs 1.07), and the
values of each quantity of interest in two ways of fit
are consistent within error. We use the resulting
difference of each quality of interest as the estimate
of this systematic error. This error will be marked
with σðSSQMDÞ.

(4) In Sec. II E, we induce a parameter δm ∼
Oð70Þ MeV since it provides better understanding
of the light vector-pseudoscalar meson mass
differences. In the correlated fit including all the
S-wave related quantities, the value minimizes the χ2

is δm ¼ 68 MeV. To estimate the systematic error
by this global parameter, we repeat the fit with δm ¼
68� 14 MeV (20% uncertainty) which changes the
χ2=d:o:f: by 1% and the changes for the fit value of
each quantity of interest is reported as a systematic
error in Table VII. This error will be marked
with σðδmÞ.

(5) Afterwe obtain the quarkmassmR
c;s andSommer scale

r0, we can do the interpolation on the data points of the
two neighboring charm/strange quark masses, and

plot in Fig. 8 the interpolated values for theMðDsÞ and
MðJ=ψÞ versus the renormalized sea quark mass, for
each ensemble with different β. The error bands of the
correlated fit and linear extrapolation of the sea quark
mass in the different lattice spacings, and the con-
tinuum limit of them (the experimental inputs) are also
plotted in the same figure. Most of the interpolated
values are consistent with the fit, and the few excep-
tional ones reflect the statistical scatter from such a
simple interpolation, compared to a global fit over a
large quark mass region.
Figure 8 shows the sea quark mass dependence of

the interpolated values and that of the global fit, for the
quantities we used as the inputs such as MðDsÞ and
MðJ=ψÞ. It is obvious that the slope of the sea quark
mass dependence is ∼0.5 from Fig. 8 and not
negligible, given the precision of the data points.
Since the low lying meson mass in the charmonium
system does not involve any valence light quark, there
is no chiral perturbation theory available here to
provide a reliable functional form of the sea quark
mass dependence. To estimate the systematic error
from the chiral extrapolation, we added the m2

l term
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FIG. 8 (color online). The interpolated values of the MDs
and

MJ=ψ from the data points of the two charm quark mass values
which bracket the physical one, for each ensemble with different
β, versus the renormalized sea quark mass. The lattice spacing
dependence of all the three quantities is manifest given the
precision of the data. At the same time, the sea quark dependence
of them is not negligible and trends similarly for each β.
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(following the twisted mass work [13]) into the
functional form of the charmonium mass quantities
and repeated the fit, and took the changes for the fit
value of each quantity of interest as a systematic error.
On the other hand, a m3

K term involving valence
strange quark and light sea quark could appear in the
functional form of the Ds or D�

s masses due to the
chiral perturbative theory, like them3

π term in theK or
K� masses. Since the valence strange quark mass is
much heavier than the light sea quark mass, the effect
of this term will not deviate far from a linear
dependence of ml. So we added the m3

K term into
the functional form and took the change as a system-
atic error.
For the decay constant of fDs

, Ref. [30] shows a
partially quenched form for its chiral behavior,

fDs
¼ c0

�
1þ b1m2

sl log
m2

sl

Λ2
QCD

þ b2ðm2
ss −m2

llÞ log
m2

ss

Λ2
QCD

þ c1ms þ c2ml þ � � �
�

ð25Þ

in which mss is the mass of the valence pseudoscalar
s̄s,mll is the pion mass in sea, andmsl is the valence-
sea mixed kaon mass. We use the difference between
this form and the trivial linear form as an estimate of
the systematic error from the chiral extrapolation.
All the estimates of the error due to the chiral

extrapolation form will be marked with σðchiralÞ.
(6) For the possible mu −md effects, if the sea quark

mass dependence of a quantity from the u=d
degenerated ensembles is

AðmlÞ ¼ A0 þ A3ml; ð26Þ
then we can rewrite it into

AðmlÞ ¼ A0 þ Au
3mu þ ðA3 − Au

3Þmd ð27Þ

with a reasonable assumption Au
3 ∈ ð0; A3Þ for the

u=d nondegenerate case. Then the upper bound of
the nondegenerate effect happens at the boundary of
the range of Au

3 , in extrapolating ml to mu (2.079
(94) MeV) ormd (4.73(12) MeV), not the average of
them 3.408(48) MeV [1,7–11]. So the above esti-
mate of the systematic error of the chiral extrapo-
lation also includes the possible mu −md effects.
For all the quantities of interest, these effects are not
larger than the standard estimate 0.2% which comes
from ðmd −muÞ=mp.
As seen in Fig. 8, the slopes are close to each

other, so we can expect that the effect will not be
large. This error will be marked with σðu − dÞ.

(7) Figure. 8 also shows that the lattice spacing depend-
ence (Oða2Þ) based on the functional form with
Oða2Þ correction is obvious. In addition, Oðm4

ca4Þ
dependence is not negligible in the MðJ=ψÞ case.
With the ensembles at only two values of lattice
spacing, we cannot justify the systematic error of
such a lattice spacing dependence before we have the
ensembles at β > 2.25. But, if we change the func-
tional form of the lattice spacing dependence in the
chiral limit into

M0ðaÞ ¼ Að1þB1m2
ca2þ� � �ÞþC0a2þOða4Þ

∼Að1þB1m2
ca2þ �� �Þ=

�
1−

C0a2

A

�
þOða4Þ

∼ Āð1þB1m2
ca2þ �� �Þþ C̄0a2þ

C̄2
0

Ā
a4

þOðm2
ca4ÞÞ ð28Þ

and solve Ā and C̄0 with the continuum limit at two
lattice spacings, we find that the S-wave quantities
are just changed by about 1 MeVand the changes of
the P-wave quantities are a few MeVs. For each of
the quantities of interest, we combine all the changes
of the input quantities and the change of that
quantity itself in quadrature, and treat it as a possible
estimate of the systematic error of the lattice spacing
dependence. This error will be marked with σðaÞ.

(8) Due to the precision of the data, the correlated fit
requires a cutoff for the small eigenvalue of the
correlation matrix of the data points. The cutoff of
the global fit is set to be 10−11, and we changed the
cutoff into 10−11�1, repeated the fit, and took the
changes for the fit value of each quantity of interest as
the systematic error. This effect is very small in the
cutoff region 10−12 − 10−10 and the change of the
χ2=d:o:f is just 0.2%. This error will be marked
with σðcutÞ.

(9) As in Ref. [2], we can estimate the electromagnetic
effect by modifying the mass ofDs by 1 MeV. In our
case, we used MðDsÞ and MðD�

sÞ −MðDsÞ as the
input, so we modified this two quantities by 1 MeV
independently, and combined the changes in quad-
rature to estimate this systematic error. This error
will be marked with σðEMÞ.

(10) Our simulation is based on the 2þ 1 flavor domain-
wall sea configuration which does not have any
charm quark in the sea. Reference [29] shows that
without the disconnected charm diagram of the
correlation function, the hyperfine splitting will
decrease by a few MeV. But this affects only the
mass of ηc which is not the input quantity. So we
think this effect will be negligible.

(11) The mixed action will inevitably introduce partial
quenching. However, the low-energy constant Δmix
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for the overlap on RBC-UKQCD DWF configura-
tions, as calculated by the combined DWF and
overlap proapgators, is very small [31]. As a result,
the mass of the mixed pion involving the light
valence and sea which corresponds to ∼300 MeV
pion is only shifted by ∼10 MeV on the ensembles
we used.
The present work does not involve valence light

quarks; we only calculate charmonium and c̄s
mesons. The only relevant terms from the χPT to
the c̄s mesons are the nonanalytic terms m3

K in the
Ds, D�

s masses and the logðmK=ΛÞ term in fDs
. We

studied the effects of these terms and found that
contributions from these terms in chiral extrapola-
tion are up to one sigma of the statistical error which
are included in the systematic errors as σðchiralÞ in
Table VII and VIII. Since the mixed kaon mass is to
be shifted by 5 MeV only, this gives a deviation of
∼3% in m3

K and 0.15% in log ðmK=ΛÞ. Such small
changes on top of very small contributions from the
χPT terms other than the linear dependence ofml are
not possible to discern and thus they are neglected in
the present work.
The mixed action effect only appears in cases

involving a valence-sea mixed meson such as ex-
ploring a scattering state with a two-valence-quark
interpolation field, which is not relevant to this work,
except for the decay constant of Ds [30].

(12) As shown in Fig. 3, the masses extracted for amc
above 0.7 could be suspicious, even when using the
wall-source propagator. So a possible estimate of
this systematic error is to remove the data points
above 0.7 from the analysis and determine how the
result are affected. It turns out that this does not
change the charm/strange quark mass and Sommer
scale much, but affects other quantities by up to one
sigma of the statistical error.
Another issue related to the amc error is that we

forced the coefficient B0 ¼ 0 for all the quantities
except the hyperfine splittings which we observed
this effect clearly in Fig. 6. So we can turn on this
coefficient in the global fit, repeat it and take the
difference as the estimate of this error. Contrary to
the previous estimate, the change here affects the
charm quark mass and the Sommer scale up to one
sigma of the statistical error, and also slightly affects
the other quantities.
The error combined by the above two estimates in

quadrature will be marked with σðheavyÞ.

B. The charm and strange quark masses and
Sommer scale parameter r0

Our results for mMS
c ð2 GeVÞ, mMS

s ð2 GeVÞ and r0 are
listed in Table VII. The χ2=d:o:f: of the fully correlated fit
including MðDsÞ, ΔHFS;c̄s, MJ=ψ , ΔHFS;c̄c and fDs

is 1.05.

In Fig. 9(a), we plot our results of mMS
s ð2 GeVÞ to

compare with the 2þ 1 flavor ones listed in lattice
averages, and another recent lattice calculation [13]. The
error bar in the plot and the following ones include both
statistical and systematic errors. Since we determine the
strange quark mass by the c̄s spectrum in which the strange
quark mass only has a minor contribution, our result of ms
is not quite precise, but it is consistent with the exper-
imental data and the results of the other groups. Besides the
statistical error, the systematic error from the a2 depend-
ence of the Sommer scale r0, and that from the chiral
extrapolation are as large as the statistical one, and
contribute substantially to the total uncertainty.

Our prediction of the value of mMS
c ð2 GeVÞ is 1.118(6)

(24) GeV. To obtain mMS
c ðmcÞ, we applied the quark mass

running in Refs. [32,33]. Note that the uncertainty of

mMS
c ðmcÞ, indicated by the black band in Fig. 10, is not

just the rescaling of the error at 2 GeV with the running

factor from 2 GeV to the one ofmMS
c ðmcÞ. It means that the

error bar ofmMS
c ðmcÞwill be suppressed by ∼

ffiffiffi
2

p
compared

to the estimate from naively rescaling. We repeat the
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FIG. 9 (color online). The prediction of mMS
s ð2 GeVÞ (upper

panel) and mMS
c ðmcÞ (lower panel) from this work, compared to

those of other works.
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running for the upper/lower band of mMS
c ð2 GeVÞ,

obtain the on-shell scales of them, and average the changes

comparing to the one of the central value ofmMS
c ð2 GeVÞ in

quadrature as the estimate of the error of mMS
c ðmcÞ. The

value of mMS
c ðmcÞ, 1.304(5)(20) GeV, is plotted in

Fig. 9(b) to compare with those of ALPHA [14],
HPQCD [8] and ETMC [13]. Considering the fact that
HPQCD used Oð500Þ configurations per ensemble and
that only Oð50 − 100Þ per ensemble are used in this
work, the difference in precision between the results of
HPQCD and this work reflects the different statistics to
a certain extent.
Note that the results of the strange/charm quark mass are

based on the ensembles at only two lattice spacings and the
systematics of the finite lattice spacing effect are not fully
under control. We still need ensembles at least one more
lattice spacing to access the full Oða4Þ errors.

C. Charmonium spectrum

Having determined the charm quark mass, we can
predict the charmonium spectrum with the J=ψ mass used
as input.
There is a long story regarding the mass of ηc in

experiment and lattice calculation. In experiment, Belle
[34] and BES [35] obtained a value smaller than 2980 MeV
about 10 years ago, while the BABAR result is around
2983 MeV [36,37]. At present, all of their results [38–40]
are consistent with each other in the range 2982–2986, and
the PDG average of the ηc mass is 2983.7(7) [28].
In quenched lattice calculations, the hyperfine splitting

result, namely the mass difference between J=ψ and ηc,
is much smaller than the physical value, only around
50–90 MeV, such as in Refs. [41–44]. Such a difference
is understood to be due to the effects of the shift of the
coupling constant in a quenched simulation [45]. A recent

lattice result [46] shows that the dynamical simulation
could actually get a value close to experiment. At the
same time, Refs. [29,47,48] show that without the dis-
connected charm diagram of the correlation function, the
hyperfine splitting will increase by a few MeV. So the
correct lattice prediction of the hyperfine splitting should
be slightly larger than the physical value for a dynamical
simulation without the disconnected charm diagram. Our
prediction of the value of the hyperfine splitting of
charmonium, 119(2)(7) MeV, is plotted in Fig. 11 to
compare with experiment and other lattice results based
on 2þ 1 flavor configurations.
Figure 12 shows the interpolated values ofΔHFS;c̄c, based

on the data points of the neighboring two charm quark
masses which bracket the physical one, for each ensemble
with different β, versus the renormalized sea quark mass.
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FIG. 10 (color online). The running charm quark mass mcðμÞ
versus the scale μ. Since the mass mcðmcÞ is fully correlated to
that scale, the uncertainty of mcðmcÞ by the running from a given
scale will be suppressed by approximately
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FIG. 11 (color online). The prediction of the hyperfine splitting
of charmonium in this work, compared to these of other works
and experiment. Note the lattice results have not included
the c̄c annihilation diagram which is expected to lower HFS
by 1–5 MeV [29,47,48].
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FIG. 12 (color online). The interpolated values ofΔHFS;c̄c on the
data points of the two charm quark masses which bracket
the physical one, for each ensemble with different β, versus
the renormalized sea quark mass. Note that the Oðm4a4Þ effect is
large so that then the continuum limit based on our functional
form is between the data at the two finite lattice spacings.
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Note that the Oðm4a4Þ effect is large so that the continuum
limit based on our functional form is between the chiral
extrapolation at the two finite lattice spacings. So the
present result would have an additional systematic error
due to the functional form of the continuum extrapolation,
and then would be changed somewhat if we had ensembles
at β > 2.25.
As mentioned in the beginning of Sec. III, we fit

the hyperfine splitting instead of the mass of ηc, and
list it and its statistical and systematic uncertainty in
Table VIII.
Since P-wave charmonium states are very noisy

compared to the S-wave states, including them into
the global fit will make the result quite unstable.
Therefore we do not include them in the global fit.
Rather, we just do the correlated fit for the data points
with different mass parameters, and use the quark mass
and Sommer scale r0 with their correlations as the
inputs. Table VIII also shows results for the mass of the
P-wave charmonium states which are in good agreement
with experiment.
Our prediction of fDs

shown in Table VIII based on the
global fit of the S-wave quantities will be discussed in the
next section.

D. Decay constant of Ds

For a pseudoscalar (PS) meson, its decay constant fPS is
defined through the hadronic matrix element

ih0js̄γμγ5cjPSi ¼ fPSpμ; ð29Þ

with pμ the momentum of the PS meson.
Using the Ward identity of the partially conserved axial

current (PCAC) [49], the decay constant fPS could be also
obtained by

ðmq1 þmq2Þh0js̄γ5cjPSi ¼ M2
PSfPS; ð30Þ

with MPS being the mass of the PS meson.
In a lattice simulation with local operators, the

renormalization of the vector/axial-vector current is
not equal to unity. So the fPS obtained from Eq. (29)
requires the axial-vector renormalization factor to get
the physical result:

ZAh0jψ̄aγ4γ5ψbjPSibare ¼ MPfPS: ð31Þ

On the other hand, the pseudoscalar current and mass
renormalization involved in Eq. (30) are canceled
(ZPSZm ≡ 1). This makes the fDs

from Eq. (30) free of
the renormalization.
In this work, we construct four kinds of correlation

functions

GA4A4
ðtÞ ¼

�X
~x

s̄ðxÞγ4γ5cðxÞc̄ð0Þγ4γ5sð0Þ
�

GPA4
ðtÞ ¼

�X
~x

s̄ðxÞγ5cðxÞc̄ð0Þγ4γ5sð0Þ
�

GA4PðtÞ ¼
�X

~x

s̄ðxÞγ4γ5cðxÞc̄ð0Þγ5sð0Þ
�

GPPðtÞ ¼
�X

~x

s̄ðxÞγ5cðxÞc̄ð0Þγ5sð0Þ
�

ð32Þ

to improve the precision of fDs
. Combining the results of

these four correlation functions, we can get two kinds of
matrix elements h0js̄γμγ5cjDsi and h0js̄γ5cjDsi required in
Eq. (31) and Eq. (30), and then obtain fDs

. The vector/
axial-vector renormalization factor required in Eq. (31)
is 1.111(6) for the β ¼ 2.13 lattice and 1.086(2) for the
β ¼ 2.25 lattice, as given in Ref. [15].
We found that the average of two estimate of fPS (254(2)

(4) MeV) obtained from Eq. (31) and (30) provides a
prediction consistent with those of the fPS obtained from
these two equations separately (253(2)(5) and 255(3)(4)),
while the χ2=d:o:f of the averaged fPS is smaller (0.8 for the
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FIG. 13 (color online). The charm quark mass dependence
(upper panel) and the strange quark mass dependence (lower
panel) of fDs

with the other quark mass close to the physical
point. This plot is based on the β ¼ 2.13 ensemble with lightest
sea quark mass as an illustration.
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averaged case vs. 1.2 for the two separated cases). The final
result is listed in Table VIII.
It is interesting to show the charm/strange quark mass

dependence on the fDs
in Fig. 13, in which the dependence

of the charm quark mass is much stronger than that of the
strange quark mass, when the other quark mass is fixed
around the physical point.
The uncertainty of our prediction of fDs

mostly comes
from the statistical error (about 0.9%); both the systematic
error from the mismatch of strange sea quark mass and its
physical value, and the heavy quark artifact in the ensem-
bles at β ¼ 2.13 are around 0.8%; that from the a2

dependence of the Sommer scale r0 is around 0.6%. The
effects from the other systematic errors are smaller than
0.3%. Note that the systematic error due to the finite lattice
spacing seems to be small based on the functional form of
the continuum we used, but it is not fully under control
since the simulation is based on the ensembles at just two
lattice spacings.
The comparison with other results of fDs

is illustrated
in Fig. 14.

IV. CONCLUSIONS

In this work, we used six ensembles of the 2þ 1 flavor
gauge configurations with the domain wall sea quarks
from RBC-UKQCD Collaboration, which include two
lattice spacings each with three different light sea quark
masses, to do the simulation for the spectrum of c̄s and
c̄c. With the global fit scheme, we can determine the
charm/strange quark masses and Sommer scale r0 using
input from three physical quantities, MD�

s
, MD�

s
−MDs

,
and MJ=ψ . Note that the results are based on the
ensembles at only two lattice spacings and the system-
atics of the finite lattice spacing effect are not fully under
control.
Our prediction of the Sommer scale parameter

r0 ¼ 0.465ð4Þð9Þ fm ð33Þ

is very close to the one obtained by HPQCD (0.4661
(38) fm), and the one determined by RBC-UKQCD (0.48
(1)). With the r0 obtained here, the lattice spacing of the
β ¼ 2.13 and 2.25 ensembles are 0.112(3) and 0.084(2) fm,
respectively [or 1.75(4) and 2.33ð5Þ GeV−1, respectively].
The strange/charm quark masses we obtain are

mMS
s ð2 GeVÞ ¼ 0.101ð3Þð6Þ GeV;
mMS

c ðmcÞ ¼ 1.304ð5Þð20Þ GeV;
mMS

c ð2 GeVÞ ¼ 1.118ð6Þð24Þ GeV;
and;

mMS
c

mMS
s

ð2 GeVÞ ¼ 11.1ð0.8Þ: ð34Þ

Both the strange and charm masses are consistent with their
PDG averages [28] which includes many calculations from
the lattice simulation.
For the charmonium hyperfine splitting, our result

ΔHFS;c̄c ¼ 119ð2Þð7Þ MeV ð35Þ

is consistent the PDG average of 113.7(7) MeV [28].
Considering the possible effect of the disconnected diagram
(∼1 − 5 MeV) [29,47,48], our prediction could be smaller
by one sigma, and thus even better in agreement. Besides
the hyperfine splitting, we also checked the mass spectrum
of the P-wave mesons, Mχc0 ¼ 3.439ð44Þ GeV, Mχc1 ¼
3.524ð66Þ GeV, and Mhc ¼ 3.518ð71Þ GeV. The uncer-
tainty of all of them are at the 2% level and the values are in
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FIG. 14 (color online). The prediction of fDs
in this work,

compared to those of other works.
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FIG. 15 (color online). We list the ratio of our simulation results
to PDG averages. Note that the numbers of PDG averages are in
italic type, and all the numbers are in unit of GeV, except r0. For
r0, we list its value from HPQCD (0.4661(38) fm) and RBC-
UKQCD (0.48(1) fm) for reference. Note that the values of the
renormalized charm and strange quark masses are those at 2 GeV
in MS scheme.
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agreement with experimental results 3.4148(3) GeV,
3.5107(1) GeV and 3.5254(2) GeV, within one sigma.
Another important prediction of this work is that of fDs

.
Our result

fDs
¼ 254ð2Þð4Þ MeV ð36Þ

is in agreement with experiment at 257.5(4.6) MeV, and
other lattice simulations and phenomenology calculations.
The ratio of our results for various quantities to their
corresponding PDG averages [28] are plotted in Fig. 15, to
provide a direct comparison of their consistency.
The calculation in this work is based on configurations at

two lattice spacings. We still need ensembles at least one
more lattice spacing to access the full Oða4Þ errors, and
lighter sea quark masses closer to those of the physical
ones, to confirm their systematic effects. Besides that,
reducing the systematic error from the strange sea quark
being not at the physical point and including the discon-
nected charm diagram, could result in better estimates.
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