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We present unquenched lattice QCD results for the matrix elements of four-fermion operators
relevant to the description of the neutral K and D mixing in the standard model and its extensions.
We have employed simulations with Nf ¼ 2þ 1þ 1 dynamical sea quarks at three values of
the lattice spacings in the interval 0.06–0.09 fm and pseudoscalar meson masses in the range
210–450 MeV. Our results are extrapolated to the continuum limit and to the physical pion mass.
Renormalization constants have been determined nonperturbatively in the RI-MOM scheme. In
particular, for the kaon bag parameter, which is relevant for the K̄0 − K0 mixing in the standard
model, we obtain BRGI

K ¼ 0.717ð24Þ.
DOI: 10.1103/PhysRevD.92.034516 PACS numbers: 12.38.Gc, 11.10.Gh, 11.15.Ha

I. INTRODUCTION

Lacking experimental data above production thresh-
old, flavor physics offers the unique possibility for an
indirect discovery of new physics (NP) effects through
virtual exchanges of yet-to-be-discovered heavy par-
ticles in loop suppressed processes. This approach,
which is particularly promising for processes that are
highly suppressed within the standard model (SM),
proved to be very successful in the past, allowing for
the indirect determination of the charm and top quark
mass [1–3].
Moreover, flavor physics data play a major role in

providing stringent tests of the Cabibbo-Kobayashi-
Maskawa (CKM) paradigm and allowing the deter-
mination of the magnitude of the mixing matrix
elements. In particular, ΔS ¼ 2 and ΔB ¼ 2 flavor-
changing neutral current processes are crucial to the
unitarity triangle analysis. They are also quite valuable
in constraining NP models; see, e.g., [4–11] with data
on ΔS ¼ 2 oscillations providing the most stringent
constraints [4–6,12].
Of special interest are the ΔC ¼ 2 transitions occur-

ring in D̄0 −D0 oscillations [13–15] and [16,17], as this
is the only SM process in which mixing involves up-
type quarks. CP violation through these mixings is
expected to be strongly suppressed within the SM,

because they are dominated by light ðd; sÞ quark
exchange, also entailing important long range inter-
actions. Thus any experimental signal of CP violation
in the neutral D meson sector would be a strong
indication for the existence of NP [18–22]. Even in
the absence of CP violation, our determination of ΔC ¼
2 operator matrix elements allows to put constraints on
models beyond the standard model (BSM).
In this paper we present a determination of the bag

parameters relevant for the description of the ΔS ¼ 2
and ΔC ¼ 2 transitions. We compute meson-antimeson
matrix elements of the whole basis of dimension-six
four-fermion operators contributing the most general
form of the effective ΔF ¼ 2 Hamiltonian [23–26].
Beyond the “left-left” operator, relevant for the SM,
flavor-changing extra terms appear. The full effective
ΔF ¼ 2 Hamiltonian reads

HΔF¼2
eff ¼

X5
i¼1

CiðμÞÔiðμÞ þ
X3
i¼1

~CiðμÞ ~̂OiðμÞ; ð1:1Þ

where Ci and ~Ci are the Wilson coefficients and the bare
operators, Oi and ~Oi, corresponding to renormalized
operators appearing in Eq. (1.1), are
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O1 ¼ ½h̄αγμð1 − γ5Þlα�½h̄βγμð1 − γ5Þlβ�; ~O1 ¼ ½h̄αγμð1þ γ5Þlα�½h̄βγμð1þ γ5Þlβ�;
O2 ¼ ½h̄αð1 − γ5Þlα�½h̄βð1 − γ5Þlβ�; ~O2 ¼ ½h̄αð1þ γ5Þlα�½h̄βð1þ γ5Þlβ�;
O3 ¼ ½h̄αð1 − γ5Þlβ�½h̄βð1 − γ5Þlα�; ~O3 ¼ ½h̄αð1þ γ5Þlβ�½h̄βð1þ γ5Þlα�;
O4 ¼ ½h̄αð1 − γ5Þlα�½h̄βð1þ γ5Þlβ�;
O5 ¼ ½h̄αð1 − γ5Þlβ�½h̄βð1þ γ5Þlα�; ð1:2Þ

where α; β are color indices. The operators ~O1–3 are
obtained from O1–3 with the replacement of ð1 − γ5Þ →
ð1þ γ5Þ. Since ~O1–3 and O1–3 have identical parity
conserving parts, parity invariance of QCD allows to
restrict our attention to only the set of operators
Oi; i ¼ 1;…; 5. In the present work we focus on the cases
ðh;lÞ≡ ðs; dÞ and ðh;lÞ≡ ðc; uÞ.
The Wilson coefficients describe short-distance effects.

Accordingly, they will also depend on the heavy degrees of
freedom possibly circulating in loops. The low-energy
dynamics is incorporated in the matrix element of the
operators Ôi. The renormalization scale μ gets compen-
sated between the Wilson coefficients and the matrix
elements of the renormalized operators.
Lattice QCD provides a first principles determination of

the bag parameters Bi. These are dimensionless quantities
defined as the ratio of the nonperturbatively computed four-
fermion matrix element over the value this matrix element
takes in the vacuum saturation approximation. The reason
for working with ratios is that they offer the advantage of a
substantial cancellation of systematic and statistical uncer-
tainties between the numerator and the denominator. Their
definitions are (see, for example, Ref. [27])

hP̄0jO1ðμÞjP0i ¼ ξ1B1ðμÞm2
P0f2P0

hP̄0jOiðμÞjP0i ¼ ξiBiðμÞ
m4

P0f2P0

ðmlðμÞ þmhðμÞÞ2
for i ¼ 2;…; 5; ð1:3Þ

where ξi ¼ f8=3;−5=3; 1=3; 2; 2=3g and P0 stands for
either a K0 or aD0 pseudoscalar meson. The corresponding
mass and decay constant are denoted by1 mP0 and fP0 ,
respectively. The quantities mlðμÞ and mhðμÞ are the light
and heavy quark masses of the neutral K and D pseudo-
scalar mesons, renormalized at the scale μ.
We see from Eq. (1.3) that, while the matrix element

hP̄0jO1ðμÞjP0i vanishes as the pseudoscalar mass goes to
zero, the four other matrix elements do not. We recall that

B1 parametrizes the SM operator while Bi; i ≥ 2, para-
metrizes the BSM ones.
The computations presented in this paper have been

performed making use of the Nf ¼ 2þ 1þ 1 dynamical
quark gauge configurations generated by the European
Twisted Mass Collaboration (ETMC) [28,29] at three
values of the lattice spacing, a≃ 0.06–0.09 fm, with the
lightest pseudoscalar mass values in the range Mps∼
210–450 MeV.Spatial lattice sizes areL≃ 2.1–3.0 fmwith
MpsL≃ 3.1–4.5. Operator renormalization has been per-
formed nonperturbatively in the regularization independent
with momentum subtraction (RI-MOM) scheme [30].

A. Results

For the reader’s convenience we immediately summarize
our main results for K0 and D0 meson bag parameters.
We collect in Table I the values of the five bag parameters

that are required to describe the neutral kaon mixing in the
SM and beyond. We give the numbers in the MS renorm-
alization scheme of Ref. [31] and in the RI0 scheme at the
scale of μ ¼ 3 GeV. For results given in the MS scheme the
second quoted error provides our estimates for the sys-
tematic uncertainty coming from the perturbative matching
between RI0 and MS schemes, which range from 0.5% to
about 4%. The uncertainties on the central values stemming
exclusively from our lattice computations are given by the
first error and range from about 3.3% to 7.5%.
Neglecting the tiny over-unquenching error due to the

presence of the charm in the sea (see discussion below) we
adopt the continuum limit results in the MS scheme at μ ¼
3 GeV as our best estimate of the desired kaon mixing bag
parameters in QCD with u, d and s active flavors for the
same scheme and scale. Then for BK ≡ B1 we find in the
renormalization group invariant (RGI) scheme the value2

B
RGIðNf¼3Þ
K ¼ 0.717ð24Þ; ð1:4Þ

with a total uncertainty of about 3.4%.
In Table II we summarize the results for the bag

parameters relevant for the case of the D̄0 −D0 oscillations.

1In our formulas we use the notation for a neutral pseudoscalar
meson although we work in the isospin symmetric limit; so in
practice we make no distinction between the masses and decay
constants of the neutral and charged pseudoscalar mesons.

2If for converting our continuum limit B1 in the MS scheme
at μ ¼ 3 GeV to its RGI counterpart we had taken Nf ¼ 4, we

would have obtained B
RGIðNf¼4Þ
K ¼ 0.728ð24Þ.
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For results given in the MS scheme the second error we
quote represents our estimate of the systematic uncertainty
coming from the perturbative matching between RI0 and
MS schemes. The uncertainties stemming only from our
lattice computations are given by the first quoted error and
range from about 4% to 8%.
The results of this paper are compared with the existing

unquenched determinations3 in Figs. 1, 2 and 3.
In Fig. 1 we present a compilation of recent (unquenched)

RGI values of BK . Lattice computations are quite accurate
with a total uncertainty of only a few percent. It is worth
noting the rather weak dependence ofBRGI

K on the number of
dynamical flavors. Our current BRGI

K value compares well
with Nf ¼ 2þ 1 and Nf ¼ 2 lattice computations.
Our result is also found to be in agreement with the

estimate obtained using a model based on the dual
representation of QCD as a theory of weakly interacting
mesons for large N, which predicts negative sign correc-
tions to the large N limit estimate given by the value BK ¼
0.75 [44,45].
A comparison of recent determinations of the K̄0 − K0

bag parameters Bi; i ¼ 2;…; 5 is presented in Fig. 2.4 The
ETM, RBC/UKQCD and SWME collaborations give
for B2 and B3 results that are well compatible within the
errors. A tension of up to 3 standard deviations is visible,
instead, in the case of B4 and B5 after the updated
(preliminary) work of SWME [40].
Finally, in Fig. 3 we show the comparison of the

available results for the D0 bag parameters coming from
ETMC computations with Nf ¼ 2 and Nf ¼ 2þ 1þ 1

gauge configurations.5

Comparing the results for the bag parameters col-
lected in Tables I and II with the ETMC results
published in Refs. [12] and [43], the latter obtained
with Nf ¼ 2 dynamical quark simulations, we notice
that they are all compatible among themselves and have
similar total uncertainties. Therefore, ceteris paribus, the
main conclusions presented in these works concerning
model-independent constraints on the NP scale from
ΔS ¼ 2 and ΔC ¼ 2 operators within the unitarity
triangle analysis remain unchanged.
Before concluding this discussion, we find it useful

to comment further about the dependence of BK and
of the other B-parameters for K̄0 − K0 mixing on the
number of dynamical quarks. As known, the standard
theoretical formula that provides the indirect CP viola-
tion parameter ϵK is obtained, through the low-energy
effective weak Hamiltonian, after integrating out the
heavy degrees of freedom including the charm quark.
The reason is that it is only when the charm quark is
integrated out, i.e., at scales μ ∼mc, that the imaginary
part of the effective Hamiltonian for K̄0 − K0 mixing
becomes local (at the leading order in the 1=mc expan-
sion). The advantage of this approach is that the long-
distance contributions to the amplitude, being related to
the matrix elements of local operators, are more easily
accessible to lattice computations. The price to pay,
however, is that perturbation theory is uncertain at scales
around the charm mass and, in addition, subleading
corrections proportional to powers of p2

K=m
2
c [where

pK ¼ OðmK;ΛQCDÞ] may not be negligible, particularly
when aiming at a theoretical prediction for ϵK with percent
precision.
In the standard approach, both short-distance Wilson

coefficient and long-distance matrix elements of the
effective Hamiltonian have to be computed in the
presence of three active quarks. In this respect, there-
fore, the lattice computation of B-parameters for K̄0 −
K0 mixing presented in this paper, being based on

TABLE I. Continuum limit results for the bag parameters Bi (i ¼ 1;…; 5) relevant to the K̄0 − K0 mixing
renormalized in the MS scheme of Ref. [31] and in the RI0 scheme at the scale of μ ¼ 3 GeV. For results given in the
MS scheme the second error indicates an estimate for the systematic uncertainty owing to the perturbative matching
of RI0 and MS schemes.

K̄0 − K0

MS (3 GeV) 0.506(17)(3) 0.46(3)(1) 0.79(5)(1) 0.78(4)(3) 0.49(4)(1)
RI0 (3 GeV) 0.498(16) 0.62(3) 1.10(7) 0.98(5) 0.66(5)

TABLE II. Same as in Table I for the D̄0 −D0 mixing.

D̄0 −D0

MS (3 GeV) 0.757(27)(4) 0.65(3)(2) 0.96(8)(2) 0.91(5)(4) 0.97(7)(1)
RI0 (3 GeV) 0.744(27) 0.87(5) 1.34(11) 1.14(6) 1.39(9)

3For recent reviews, see Refs. [32,33].
4For older quenched computations of the BSM Bi, see

Refs. [46,47].
5Work in progress of an unquenched Nf ¼ 2þ 1 computation

for the D-mixing is reported in Ref. [48]. For older works using
quenched simulations, see Refs. [49,50].
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simulations performed with Nf ¼ 2þ 1þ 1 dynamical
quarks, introduces a systematic error. Previous experi-
ence with Nf ¼ 2þ1þ1 lattice calculations suggests
that the effect of the dynamical charm quark is pre-
sumably tiny, so that its impact in the determination of
physical observables, which is undesired in this par-
ticular case, is likely too small to be detected at the level
of the current precision.

It should be also noted that a similar source of
systematic error is introduced in the lattice calculations
of BK performed with only Nf ¼ 2þ 1 dynamical
quarks. In the latter case, indeed, the effect of the
dynamical charm, which properly is not introduced in
the determination of the matrix elements, is missing
however in the lattice computation of the hadronic
observables which are needed to fix the action

FIG. 1 (color online). A compilation of unquenched lattice results for the RGI value of the BK parameter. From top to bottom results
are taken from Refs. [12,32,34–39]. Circle, squares, and triangle correspond to Nf ¼ 2, Nf ¼ 2þ 1, and Nf ¼ 2þ 1þ 1 dynamical
quark computations, respectively. The full blue square indicates the FLAG average [32] over Nf ¼ 2þ 1 data. For reader’s convenience
some information on the basic features of each computation is also given.

FIG. 2 (color online). A compilation of K0 meson bag parameters Bi, i ¼ 2;…; 5. From top to bottom data have been taken from
Refs. [12,40,41]. The work reported in Ref. [40] is an updated computation of Ref. [37]. The label “CL” stands for continuum limit
computation. Work in progress by the RBC/UKQCD has been reported in [42].
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parameters. Therefore, the determination of the lattice
scale as well as of the strange and light quark masses
within any Nf ¼ 2þ 1 lattice calculation is affected by
the systematic error due to the quenching of the charm
quark. This error then propagates into the calculation of
BK . These effects, namely the latter one and the error
introduced in the Nf ¼ 2þ 1þ 1 calculations of BK ,
have the same physical origin and are presumably
comparable in size. As already noted, both effects are
likely to be currently negligible, as also indicated,
a posteriori, by the good consistency observed in
Fig. 1 among the lattice determinations of BK based
on different numbers of active quarks.
In order to bypass this error, the theoretical determi-

nation of ϵK should be performed by keeping an active
charm in the calculation. With the advances of the
lattice technique, the computation of the matrix elements
of nonlocal operators has becoming feasible and a first,
exploratory lattice calculation of the real part of the
effective Hamiltonian for K̄0 − K0 mixing has been
presented in Refs. [51,52]. The same technique can
be also applied to the calculation of the imaginary part
of the Hamiltonian, which is relevant for ϵK. While
these lattice studies are not yet as accurate as the
standard computations of local operator matrix elements,
they are opening a new perspective and are likely to
allow, in the near future, a significant improvement in

the accuracy of the theoretical predictions of ϵK , for
both the long-distance and short-distance contributions.

B. Plan of the paper

In Sec. II we review the simulation details and discuss
our computational and analysis setup. Final results and a
full account of the error budget are given in Sec. III. Finally,
in the Appendixes A and B we discuss the procedure we
employed to determine in RI-MOM the full 5 × 5 renorm-
alization constants (RCs) matrix for the four-fermion
operators.

II. COMPUTATIONAL DETAILS

In this work we have employed the mixed action
twisted mass/Osterwalder-Seiler setup proposed in
Ref. [53] which provides automatic OðaÞ-improvement
and a continuumlike renormalization pattern for the
four-fermion operators, with only O(a2) unitarity
violations.

A. Lattice setup

For the action of the light mass-degenerate sea quark
doublet we have used the expression of Ref. [54]
which reads

Sl ¼ a4
X
x

ψ̄lðxÞ
�
1

2
γμð∇μ þ∇�

μÞ − iγ5τ3
�
Mcr −

a
2

X
μ

∇�
μ∇μ

�
þ μsea

�
ψlðxÞ; ð2:1Þ

where it is intended that the untwisted mass has been tuned to its critical value, Mcr. As usual, the symbols ∇μ and ∇�
μ

represent the nearest neighbor forward and backward covariant derivatives, we define the quark doublet ψl ¼ ðψuψdÞT , and
μsea is the (light) sea twisted quark mass.

FIG. 3 (color online). Results for the D0 meson bag parameters Bi, i ¼ 1;…; 5 obtained by the ETMC with Nf ¼ 2þ 1þ 1 (this
paper) and Nf ¼ 2 [43] dynamical flavor lattice simulations.
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With similar notations we take the action for the strange and charm quark doublet in the sea [55] to be

Sh ¼ a4
X
x

ψ̄hðxÞ
�
1

2
γμð∇μ þ∇�

μÞ − iγ5τ1
�
Mcr −

a
2

X
μ

∇�
μ∇μ

�
þ μσ þ μδτ

3

�
ψhðxÞ; ð2:2Þ

where μσ and μδ are the bare twisted-mass parameters fromwhich the renormalized strange and charmmasses can be derived.
Pauli matrices in Eqs. (2.1) and (2.2) act in flavor space. For more details on the twisted-mass setup see Refs. [28,29,54–58].
Valence quarks are introduced via Osterwalder-Seiler (OS) fermions [59]. The valence action is written as the sum of the

individual quark flavor contributions in the form

SOS ¼ a4
X
x

X
f¼l;l0;h;h0

q̄f

�
1

2
γμð∇μ þ∇�

μÞ − iγ5rf

�
Mcr −

a
2

X
μ

∇�
μ∇μ

�
þ μf

�
qfðxÞ; ð2:3Þ

where the label f is allowed to run over the different
valence flavors f ¼ l;l0; h; h0. In the neutral K case light
(l) and heavy (h) flavors denote down and strange quarks,
respectively, while in the neutral D-case they stand for up
and charm quarks. With the choice rh ¼ rl ¼ rh0 ¼ −rl0
one can prove [53] that at maximal twist automatic OðaÞ
improvement and absence of wrong chiral mixings [60] is
guaranteed. Flavor by flavor bare valence and sea quark
masses are set equal to each other which is enough to keep
unitarity violations to Oða2Þ. The multiplicative mass
renormalization constant is ZP for all fermions.
The lattice setup described above has been already

successfully applied to determine the full set of four-
fermion operator matrix elements relevant for the K̄0 − K0,
D̄0 −D0 and B̄0

ðsÞ − B0
ðsÞ oscillations in Refs. [12,43,61–63].

B. Simulation details

We have used Nf ¼ 2þ 1þ 1 gauge configuration
ensembles, produced with the Iwasaki gluon action [64]

and maximally twisted Wilson fermions, generated by the
ETM Collaboration [28,29].
In Table III we summarize the main simulation details

relevant for the sea and valence sector. Simulation data
have been taken at three values of the lattice spacing,
namely, a ¼ 0.0885ð36Þ, 0.0815(30), and 0.0619(18) fm,
corresponding to β ¼ 1.90, 1.95, and 2.10, respectively
(see Ref. [65]).
As we said, light valence and sea quark masses are set

equal, leading to pion masses in the range between 210 and
450 MeV. Strange and charm sea quark masses are chosen
close to their physical value. To allow for a smooth
interpolation to the physical values of the strange and
charm quark mass, we have inverted the heavy valence
Dirac matrix for three values, μ“s”, of the strange quark
mass and three values, μ“c”, of the charm mass, around the
corresponding physical mass values.
The lattice scale has been fixed using fπ . The u=d,

strange, and charm quark masses have been determined by
comparing them with the experimental values of the pion,

TABLE III. Details of the simulation setup. Sea and valence fermion actions are displayed in Eqs. (2.1), (2.2), and (2.3).

β L3 × T aμl ¼ aμsea aμ“s” aμ“c”

1.90 (a−1 ∼ 2.19 GeV) 243 × 48 0.0040 0.0145 0.0185 0.0225 0.21256 0.25 0.29404
μσ ¼ 0.15 μδ ¼ 0.19 0.0060

0.0080
0.0100

323 × 64 0.0030 0.0145 0.0185 0.0225 0.21256 0.25 0.29404
0.0040
0.0050

1.95 (a−1 ∼ 2.50 GeV) 243 × 48 0.0085 0.0141 0.0180 0.0219 0.18705 0.22 0.25875

μσ ¼ 0.135 μδ ¼ 0.17 323 × 64 0.0025 0.0141 0.0180 0.0219 0.18705 0.22 0.25875
0.0035
0.0055
0.0075

2.10 (a−1 ∼ 3.23 GeV) 483 × 96 0.0015 0.0118 0.0151 0.0184 0.14454 0.17 0.19995
μσ ¼ 0.12 μδ ¼ 0.1385 0.0020

0.0030
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K, and DðsÞ meson masses, respectively. Further details of
our simulation setup can be found in Ref. [65].
Valence light and strange quark propagators have been

computed by employing spatial stochastic sources at a
randomly chosen time slice, adopting the “one-end” trick
stochastic method of Refs. [66,67]. In correlators where the
charm quark is involved, Gaussian smeared interpolat-
ing quark fields [68] are used in order to suppress the
contribution of excited states. This allows ground state
identification at precocious Euclidean time separations.
For the values of the smearing parameters we take the

kG ¼ 4 and NG ¼ 30 Gaussian. In addition, we apply APE

smearing to the gauge links [69] in the interpolating fields
with parameters αAPE ¼ 0.5 and NAPE ¼ 20.

C. Lattice operators and bag
parameters

A detailed account of the lattice operators entering two-
and three-point correlation functions was presented in
Appendix A of Ref. [62]. For the reader’s convenience
and to fix the notation we recall here some basic informa-
tion. In our mixed action setup one needs to consider the
following set of four-fermion operators:

OMA
1½�� ¼ 2fð½q̄αhγμqαl�½q̄βh0γμqβl0 � þ ½q̄αhγμγ5qαl�½q̄βh0γμγ5qβl0 �Þ � ðl ↔ l0Þg

OMA
2½�� ¼ 2fð½q̄αhqαl�½q̄βh0qβl0 � þ ½q̄αhγ5qαl�½q̄βh0γ5qβl0 �Þ � ðl ↔ l0Þg

OMA
3½�� ¼ 2fð½q̄αhqβl�½q̄βh0qαl0 � þ ½q̄αhγ5qβl�½q̄βh0γ5qαl0 �Þ � ðl ↔ l0Þg

OMA
4½�� ¼ 2fð½q̄αhqαl�½q̄βh0qβl0 � − ½q̄αhγ5qαl�½q̄βh0γ5qβl0 �Þ � ðl ↔ l0Þg

OMA
5½�� ¼ 2fð½q̄αhqβl�½q̄βh0qαl0 � − ½q̄αhγ5qβl�½q̄βh0γ5qαl0 �Þ � ðl ↔ l0Þg; ð2:4Þ

where α and β are color indices, the square parentheses
denote spin covariant operator factors and the label “MA”
stands for “mixed action.”
We have set periodic boundary conditions for

all fields, except for the quark fields which obey
antiperiodic boundary conditions in the time direction.
Two “wall” operators with P0-meson quantum numbers
(recall P0 can be either K0 or D0) are introduced at time
slices y0 and y0 þ Tsep=2. The first operator is con-
structed in terms of ql and qh quark fields and the
second in terms of ql0 and q0h quark fields. Explicitly
they are given by

Plh
y0 ¼

�
a
L

�
3X

~y

q̄lð~y; y0Þγ5qhð~y; y0Þ

Pl0h0
y0þTsep

¼
�
a
L

�
3X

~y

q̄l0 ð~y; y0 þ TsepÞγ5qh0 ð~y; y0 þ TsepÞ:

ð2:5Þ

In terms of them, the correlation functions we need to
calculate are

Ciðx0Þ ¼
�
a
L

�
3X

~x

hPl0h0
y0þTsep

OMA
i½þ�ð~x; x0ÞPlh

y0 i;

i ¼ 1;…; 5; ð2:6Þ

CXPðx0Þ ¼
�
a
L

�
3X

~x

hXhlð~x; x0ÞPlh
y0 i; ð2:7Þ

C0
XPðx0Þ ¼

�
a
L

�
3X

~x

hPl0h0
y0þTsep

Xh0l0 ð~x; x0Þi; ð2:8Þ

where X can be either the axial current, A0, or the
pseudoscalar density, P.
For three-point correlation functionswithheavy (charmor

heavier) quarks we can achieve reduced statistical uncer-
tainties by decreasing the time separation between the two
sources and using smearing techniques (see Refs. [43,63]).
Therefore, while in the K̄0 − K0 case we have set
Tsep ¼ T=2, in the D̄0 −D0 case we have instead produced
correlation functions setting Tsep=a ¼ 18 at β ¼ 1.9,
Tsep=a ¼ 20 at β ¼ 1.95, and Tsep=a ¼ 26 at β ¼ 2.10.
Estimators for the bare bag parameters are extracted from

the asymptotic time behavior of the ratios of the three- to
two-point correlators

RðbÞ
1 ðx0Þ ¼

C1ðx0Þ
CAPðx0ÞC0

APðx0Þ
;

RðbÞ
i¼2;…;5ðx0Þ ¼

Ci¼2;…;5ðx0Þ
CPPðx0ÞC0

PPðx0Þ
; ð2:9Þ

which for large time separations, y0 ≪ x0 ≪ y0 þ Tsep,
tend to the desired (bare) bag parameters

RðbÞ
1 ðx0Þ ―!y0≪x0≪y0þTsep hP̄0jOMA

1½þ�jP0i
hP̄0jAhl

0 j0ih0jAh0l0
0 jP0i

����
ðbÞ

≡ BðbÞ
1

ð2:10Þ
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RðbÞ
i ðx0Þ ―!y0≪x0≪y0þTsep hP̄0jOMA

i½þ�jP0i
hP̄0jPhlj0ih0jPh0l0 jP0i

����
ðbÞ

≡ BðbÞ
i ;

i ¼ 2;…; 5: ð2:11Þ

Figures 4 and 5 refer to the neutral K and D meson
cases, respectively. They illustrate the quality of the
plateaux from which the estimates for the bare Bi
(i ¼ 1;…; 5) bag parameters are extracted. The three
panels correspond to three values of the lattice spacing
at which simulations were performed.
We note that our plateau choices are rather

conservative and by reasonably varying the plateau
interval (e.g., considering a plateau’s length as long
as double the size of our principal choice) we find that

the maximal systematic uncertainty is at the subpercent
level (with maximal estimates being 0.2% for B2 and
0.5% for B3 for the neutral kaon and D cases,
respectively). We therefore conclude that this systematic
uncertainty is so much smaller than the statistical one,
indicated by the label “Stat þ fitþ RCs” in Tables IV
and V (see below for details), that it can be safely
neglected.

D. Computation of the renormalized
bag parameters

The renormalization pattern of the bag parameters in our
mixed action setup has been discussed in detail in
Refs. [12,53,62]. The renormalized bag parameters are
given by

(a) (b) (c)

FIG. 4 (color online). RðbÞ
i ðx0Þ ði ¼ 1;…; 5Þ simulation points plotted against x0=Tsep for the K̄0 − K0 case: (a) β ¼ 1.90,

ðaμl; aμsÞ ¼ ð0.0030; 0.0185Þ, volume ¼ 323 × 64; (b) β ¼ 1.95, ðaμl; aμsÞ ¼ ð0.0025; 0.0180Þ, volume ¼ 323 × 64; (c) β ¼ 2.10,

ðaμl; aμsÞ ¼ ð0.0015; 0.0151Þ, volume ¼ 483 × 96. The dotted lines delimit the plateau region. Points for RðbÞ
1 ;…;RðbÞ

4 at β ¼ 2.10
have been slightly shifted upward by þ0.05 for accommodating data from all three β’s in the same plotting scale.

(a) (b) (c)

FIG. 5 (color online). RðbÞ
i ðx0Þ ði ¼ 1;…; 5Þ simulation points plotted against x0=Tsep for the D̄0 −D0 case: (a) β ¼ 1.90,

ðaμl; aμcÞ ¼ ð0.0030; 0.25Þ, volume ¼ 323 × 64; (b) β ¼ 1.95, ðaμl; aμcÞ ¼ ð0.0025; 0.22Þ, volume ¼ 323 × 64; (c) β ¼ 2.10,

ðaμl; aμcÞ ¼ ð0.0015; 0.17Þ, volume ¼ 483 × 96. The dotted lines delimit the plateau region. Points for RðbÞ
1 and RðbÞ

2 at β ¼ 2.10
have been slightly shifted upward by þ0.1 for accommodating data from the three β’s in the same plotting scale.
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B1 ¼
Z11

ξ1ZAZV
BðbÞ
1 ;

Bi ¼
Zij

ξiZPZS
BðbÞ
j i; j ¼ 2;…; 5; ð2:12Þ

where ðξ1; ξ2; ξ3; ξ4; ξ5Þ ¼ ð8=3;−5=3; 1=3; 2; 2=3Þ. The
RCs of bilinear operators, namely, ZV , ZA, ZP, and ZS,
have been determined nonperturbatively in the RI0-MOM
scheme in Ref. [65]. The four-fermion RCs, Zij, have also
been computed nonperturbatively in the same scheme. The
calculation is presented in the Appendixes A and B.
At each value of the light quark mass μl ¼ μsea our

estimates of the bag parameters are linearly interpolated to
the physical strange (for neutral K-mixing) or charm (for
neutral D-mixing) quark mass. In both cases the interpo-
lation turns out to be very smooth. A simultaneous chiral
and lattice spacing extrapolation to the physical value of the
pion mass and the continuum limit is finally performed.
The u=d, strange and charm quark masses have been
evaluated in the continuum limit in Ref. [65].
Both for neutral K and D meson mixing studies and for

all the Bi’s, we have employed a linear fit Ansatz of the
general form

TABLE IV. Full error budget of the B1;…;5 estimates for the
neutral K-mixing.

K̄0 − K0

Source of uncertainty (%) B1 B2 B3 B4 B5

Statþ fitþ RCs 2.5 2.4 2.7 2.7 5.4
Syst. chiral 0.8 1.3 1.1 1.8 2.6
Syst. discr. 2.0 4.7 5.8 3.8 4.1
RI0-MS matching 0.5 2.5 1.8 3.9 2.3
Total 3.4 6.0 6.7 6.3 7.6

TABLE V. Full error budget of the B1;…;5 estimates for the
neutral D-mixing.

D̄0 −D0

Source of uncertainty (%) B1 B2 B3 B4 B5

Statþ fitþ RCs 2.9 2.9 4.4 3.5 5.1
Syst. chiral 0.2 0.4 0.6 2.3 2.6
Syst. discr. 2.1 4.3 6.7 3.8 3.3
RI0-MS matching 0.5 2.5 1.7 3.9 1.1
Total 3.6 5.8 8.2 6.9 6.7

FIG. 6 (color online). Combined chiral and continuum extrapolation for the five Bi’s of the K̄0 − K0 case. Bag parameters are
renormalized in the MS scheme of [31] at the scale of 3 GeV. Left and right panels correspond to M1-type and M2-type four-fermion
RCs, respectively, following the nomenclature of Ref. [73]. In each panel open circles and stars represent the value at the physical point
corresponding to the linear and NLO ChPT fits, respectively.
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Bi ¼ Bχ
i þ biμ̂l þDia2; ð2:13Þ

which in all cases nicely fits the data. In our notation the hat (̂ ) symbol denotes renormalization in the MS scheme at the
3 GeV scale. We have also considered fit Ansätze based on NLO ChPT [70] for the K bag parameters, of the kind

Bi ¼ B̄χ
i

�
1þ b̄iμ̂l∓ 2B̂0μ̂l

16π2f20
log

2B̂0μ̂l
16π2f20

�
þ D̄ia2 ð2:14Þ

and for the D bag parameters the NLO HMChPT fit Ansätze [71]

B1 ¼ ~Bχ
1

�
1þ ~b1μ̂l −

ð1 − 3ĝ2Þ
2

2B̂0μ̂l
16π2f20

log
2B̂0μ̂l
16π2f20

�
þ ~D1a2

Bi ¼ ~Bχ
i

�
1þ ~biμ̂l∓ ð1∓3ĝ2YÞ

2

2B̂0μ̂l
16π2f20

log
2B̂0μ̂l
16π2f20

�
þ ~Dia2 i ¼ 2; 4; 5: ð2:15Þ

In Eq. (2.14) the sign in front of the logarithm is minus for i ¼ 1; 2; 3 and plus for i ¼ 4; 5, whereas in the second of the
Eqs. (2.15) the sign is minus for i ¼ 2 and plus for i ¼ 4; 5. In the fit procedure we use the determinations of B̂0 and f0
reported in Ref. [65]. We also make use of the value Y ¼ 1 derived in Ref. [71] and of the estimate ĝ ¼ 0.53ð4Þ obtained
from the lattice measurement of the gD�Dπ coupling [72]. In heavy quark effective theory (HQET) the bag parameter B3 is
related to B1 and B2. In particular, by setting Y ¼ 1, B3 and B2 acquire identical logarithmic terms.

FIG. 7 (color online). Combined chiral and continuum extrapolation for the five D̄0 −D0 bag parameters, Bi, renormalized in the MS
scheme of [31] at the scale of 3 GeV. Left and right panels correspond to M1-type and M2-type four-fermion RCs, respectively,
following the nomenclature of Ref. [73]. In each panel open circles and stars represent the value at the physical point corresponding to
the linear and NLO HMChPT fit, respectively. For B1; B2, and B3 the polynomial (linear) and the HMChPT fits are practically
indistinguishable.
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In Figs. 6 and 7 we display the combined chiral and
continuum fit of the Bi (i ¼ 1;…; 5) neutral K and D
meson bag parameters renormalized in the MS scheme of
Ref. [31] at the scale of 3 GeV. We report in left and right
panels, respectively, data corresponding to the two ways,
namely, M1 and M2, of determining the RCs proposed in
Ref. [73], differing in the manner Oða2Þ lattice artifacts
are treated. More details will be given in the Appendixes A
and B. For each Bi the results using either the polynomial
or the chiral fit Ansätze defined in Eqs. (2.13), (2.14),
and (2.15) are compatible among themselves within less
than 1 standard deviation. We also notice that the use of
M1- and M2-type RCs, though leading to rather different
discretization effects, provide compatible continuum limit
determinations for the bag parameters within 1–2 standard
deviations. Moreover, by comparing results from two
lattice volumes, 243 × 48 and 323 × 64, at β ¼ 1.90 at
one value of the sea quark mass (aμsea ¼ 0.0040), we
notice no systematic finite volume effect on the values of
the bag parameters. The results for Bi agree within at most
1 standard deviation in the worst case, while for the
majority of the cases they are practically indistinguishable.

III. FINAL RESULTS AND ERROR BUDGET

In this section we present the final results for the bag
parameters and we discuss the error budget of statistical and
systematic uncertainties.
In our analysis we combine results obtained by using

several possible ways to account for systematic effects
related to the RCs determination, chiral extrapolation, and
discretization uncertainties. We have analyzed a number of
32 estimates for B1 and 64 estimates for Bi with i > 1; see
below for details.
In particular, we have examined in detail the impact on

the final values of the bag parameters of various possible
sources of systematic error related to the computation of the
RCs. We would like to mention that a large part of the
uncertainties in the RI-MOM calculation of the RCs affects
the cutoff systematics in the error budget.
As described in Appendix B, we have computed the 5 ×

5 four-fermion RCs in the RI0-MOM scheme using two
different methods to deal with cutoff effects, which
following Ref. [73] we label M1 and M2. The M1 method
consists of removing Oðða ~pÞ2Þ effects in the matrix
elements used to extract the RCs by performing a fit in
an appreciably large fixed window of the ða ~pÞ2 momentum
variable. In the M2 method the RCs are determined as
weighted averages of RC estimators over a ~p2-interval
(fixed in physical units) and common to all the gauge
configuration ensembles. To control possible systematic
effects due to the choice of the momentum interval two sets
of momentum intervals have been compared, leading to
fully compatible results.

Note that in the mixed action setup of [53] the off-
diagonal wrong chirality mixing elements of the 5 × 5

renormalization matrix are only Oða2Þ cutoff effects. If the
latter are ignored, the lattice RCs matrix shows the same
mixing pattern as in the formal continuum theory. To check
to what extent discretization systematics can affect the final
values of the bag parameters, we compared the numbers
obtained by simply ignoring the off-diagonal RC matrix
elements with what one gets by including Oða2Þ mixing
effects.
The analysis of systematic uncertainties due to the use of

polynomial and (HM)ChPT fit Ansätze [see Eqs (2.13)–
(2.15)] is performed with reference to the so-called
“golden” bag combinations [37]

G23 ¼
B2

B3

; G45 ¼
B4

B5

G24 ¼ B2B4; G21 ¼
B2

B1

: ð3:1Þ

Since these quantities are constructed in a way that chiral
logarithmic terms cancel up to NLO,6 they are expected to
follow an almost linear behavior as a function of μ̂l. Using
the parametrization (3.1), we obtain additional estimates for
B2;…;5 without having to fit chiral logarithmic behaviors.
Finally, in order to estimate systematic uncertainties due

to cutoff effects for B2;…;5, we have also carried out the
scaling analysis of quantities which are found, empirically,
to be affected by reduced discretization errors. Therefore, if
the M1-type RCs are employed, in the K case we consider

B1 × B2; B2=B3; B3=B4; B4=B5; ð3:2Þ
see the panels of Fig. 8, while in the D case we take

B2=B1; B2=B3; B3=B4; B4=B5: ð3:3Þ
If the M2-type RCs are employed, in the K case they are

B1 × B2; B1 × B3; B1 × B4; B1=B5; ð3:4Þ

while in the D case we take

B1 × B2; B1 × B3; B1 × B4; B1 × B5:

ð3:5Þ
Naturally in this kind of analysis all the BSM bag
parameters will eventually turn out to be expressed in
terms of B1 which, however, among all the others is the
quantity that is least affected by discretization effects.

6Strictly speaking in the case of D this is not so for the
combination G24 as the NLO logarithmic terms do not cancel out
completely. However, since the G24 data show anyway a good
linear behavior vs the light quark mass, we tried a linear fit Ansatz
even in this case.
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To summarize we have carried out7 32 kinds of analysis
for B1 and 64 for the BSM bag parameters, B2;…;5.
Statistical errors have been evaluated using the jackknife

method. We have verified that for all the gauge configu-
ration ensembles 16 jackknife bins are enough to have
autocorrelations well under control. Fit cross correlations
are taken into account by generating 1000 bootstrap
samples for each gauge configuration ensemble. The RC
computation has been performed on a different set of
Nf ¼ 4 gauge configuration ensembles. The error on each
RC has been propagated assuming RCs to be Gaussian
distributed with the central values and the standard devia-
tions reported in Tables VII and IX.
Our total statistical uncertainty includes the statistical

errors on the bare matrix elements, the statistical uncer-
tainty of the RCs, and the propagated error coming from the
combined continuum and chiral fit extrapolation.
For each bag parameter the central value is determined

by the average over the corresponding set of results. Note
that, since all our analyses are characterized by comparable

fit quality, we combine the results from different analyses
assuming the same weight for all of them. Therefore for the
final central values as well as for the statistical and
systematic uncertainties, we make use of the formulas
(as already done in Ref. [65])

x̄ ¼ 1

N

XN
i¼1

xi; ð3:6Þ

σ2 ¼ 1

N

XN
i¼1

σ2i þ
1

N

XN
i¼1

ðxi − x̄Þ2; ð3:7Þ

where xi and σi are the central value and the variance of the
ith analysis and N is the total number of analyses, i.e.,
N ¼ 32 for B1 and N ¼ 64 for B2;…;5. From the first term
of the rhs of Eq. (3.7) we read off the statistical error while
the second, which represents the spread among the results
of different analyses, provides an estimate for the total
systematic uncertainty.
In Tables I and II we have collected our final results

for Bi ði ¼ 1;…; 5Þ evaluated in the MS and RI0
schemes. The final uncertainty is given by summing
in quadrature the statistical and the systematic errors
following Eq. (3.7).
In Figs. 9 and 10 we illustrate the distribution of the

results for each Bi in the K and D case, respectively. Had
we chosen the median of the results to represent the central
value, we would have obtained numbers fully compatible
(within better than 1 statistical standard deviation) with the
results collected in Tables I and II. It has also been checked
that the width of the interval which selects the 68% of the
area around the average (or the median) is in all cases very

FIG. 8 (color online). Combined chiral and continuum extrapolation in the K̄0 − K0 case of the combinations defined in Eq. (3.2). We
use M1-type RCs in the MS scheme of [31] at 3 GeV. For the combinations shown in the right panels the polynomial (linear) and the
NLO ChPT fit Ansätze coincide.

7The total number of different analyses for the SM bag
parameter B1 we have considered is given by the product
32 ¼ 2 × 4 × 2 × 2. These numbers refer to the two fit Ansätze
for the chiral extrapolation, the four ways of combining the M1
and M2 kinds of RC estimates needed for the renormalization of
the four- and two-fermion operators, the two choices of the p2-
interval, and finally a factor of 2 for including the off-diagonal
scale-independent Oða2Þ matrix elements Δij in the construction
of the renormalized operators or setting them equal to zero. As for
the number of BSM bag-parameter analyses, owing to the
alternative ways of parametrizing chiral [Eq. (3.1)] and lattice
spacing fit Ansätze [Eqs. (3.2), (3.4) and Eqs. (3.3), (3.5)], the
above number must be multiplied by 2, thus giving in total 64
kinds of analysis.
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close to the value provided by Eq. (3.7). We consider this a
nice test of the validity and usefulness of our way of
estimating the total error.8

In Tables IVand V we report the detailed error budget of
our determination of the K and D bag parameters. The
numbers represent the percentage of the main sources of
uncertainty in our calculation. The total percentage error is
reported in the last rows of Tables IV and V.
Under the label “Statþ fitþ RCs” we lump together the

error coming from the statistical uncertainties of correla-
tors, the interpolation/extrapolation of the simulated quark
masses to the physical values, the extrapolation to the
continuum limit, and the statistical uncertainties of the RCs.
Under the label “Syst. chiral” we give our estimates of

the chiral fit uncertainty. This has been determined using
the different ways we have used to perform the chiral

FIG. 9 (color online). Distribution of B1;…;5 results for the neutralK-mixing renormalized in the MS scheme of Ref. [31] at the scale of
3 GeV. The solid vertical line marks the central value (average) while the gray band indicates the systematic error determined
from Eq. (3.7).

FIG. 10 (color online). Same as in Fig. 9 but for the neutral D-mixing.

8The fit quality for the vast majority of the 32 analyses for B1

and the 64 analyses for Bi¼2;…;5 is good, while only for a small
number of cases—in particular, 6 (7) out of 64 analyses for B2 and
10 (11) out of 64 analyses for B4 for the neutral kaon (D) case—
did we notice poor fit quality. Nevertheless, we decided to attribute
to the results of all analyses the sameweight since this choice led to
somewhat more conservative estimates of the systematic uncer-
tainties. In fact if we had opted for a χ2-weighted analysis strategy,
the shifts of the central values for all Bi would have been minimal
and the final estimated systematic errors would have been smaller
(by a few percent for Bi¼1;2;4 up to almost 30% for Bi¼3;5) than the
ones presented in Tables IV and V.
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extrapolation, namely, comparing results coming from the
use of Eqs. (2.13), (2.14), and (2.15) as well as Eqs. (3.1).
In the row labeled “Syst. discr.” we give our final

estimate of the systematic uncertainties related to the
choice of the fit Ansatz of discretization artifacts. The
uncertainty is taken as the spread of the bag parameter
results obtained with the use of Eqs. (3.2) to (3.5) and of the
different ways (M1 or M2) of computing the relevant RCs.
Finally, in the last row of each table we quote our

estimate for the systematic uncertainty due to the pertur-
bative matching of the RI0 and MS schemes. We recall that
anomalous dimensions of the four-fermion operators are
known up to NLO. Our associated systematic error has
been estimated by considering the difference between the
values obtained at NLO and LO at the scale of 3 GeV for
each one of the bag parameters and multiplying it with the

value (∼0.25) that αMS
s ð3 GeVÞ takes at the same scale.

Finite volume effects, as mentioned in the previous
section, are practically negligible at the level of our
precision.
In Figs. 11 and 12 we graphically show the error budget

associated to the lattice computation, i.e., without including
the systematic error due to the perturbative conversion from
the RI0 to MS scheme; see Tables IV and V.
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APPENDIX A: COMPUTATIONAL SETUP
FOR THE RCs

As we use a mass-independent renormalization scheme,
the calculation of the RCs of two- and four-fermion
operators and in particular of operators with nonvanishing
anomalous dimension must be performed in the massless
quark limit.
For this purpose we have produced dedicated sets of

Nf ¼ 4 Wilson twisted-mass degenerate dynamical quark
gauge configurations with the same gluon action as the one
used in the nondegenerate case and for a number of
moderately light sea masses. For each ensemble with given
sea quark mass parameters we have also computed the RC
estimators at several values of the valence parameters.
Naturally the RCs computed with either Nf ¼ 2þ 1þ 1 or
Nf ¼ 4 ensembles would yield identical numbers in the
chiral limit.
The Nf ¼ 4 ensembles are generated at values of the

twist angle somewhat different from π=2 (maximal twist),
i.e., at m0 ≠ mcr. The reason is that for small values of
m0 −mcr large autocorrelation times have been noticed for
simulations performed at two out of the three values of the
inverse gauge coupling (β ¼ 1.90 and 1.95) that we use.
Although an off-maximal-twist setup does not lead to
automatic OðaÞ improvement, one can prove [54] that
for any hadronic observable the average over results
obtained at opposite values of the PCAC quark mass is
actually OðaÞ improved. Naturally, the need for performing

stat+fit+RCs

syst. chiral

syst. discr

FIG. 11 (color online). Graphical representation of the error budget owing to the lattice computation (i.e., without including the
estimate for the systematic uncertainty due to the perturbative matching between the RI0 and MS schemes) for the K bag parameters, as
reported in Table IV.

stat+fit+RCs

syst. chiral

syst. discr

FIG. 12 (color online). Same as in Fig. 11 for the D bag parameters.
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the average leads to doubling the CPU time cost of the
calculation, which however remains quite affordable as we
are dealing with simulations at nonzero standard Wilson
and twisted mass.
In Appendix A of Ref. [65] we have presented in detail the

Nf ¼ 4 operator renormalization procedure for the cases of
quark field and quark bilinears. Nevertheless, for the reader’s
convenience and to fix our notations, we briefly summarize
here the main parts of our Nf ¼ 4 computational setup.
We employ the Iwasaki action for the gluons while the

Nf ¼ 4 fermionic action in the so-called twisted basis reads

Sseatm ¼ a4
X
x;f

χ̄seaf ½γ · ~∇þWcr þ ðmsea
0;f −mcrÞ

þ irseaf μseaf γ5�χseaf ; ðA1Þ

where f ¼ u; d; s; c; γ · ~∇ ¼ γμð∇μ þ∇�
μÞ=2; and Wcr ¼

−ða=2Þ∇�
μ∇μ þmcr. We have also set

rsead ¼ −rseau ; rseac ¼ −rseas

μseau ¼ μsead ¼ μseas ¼ μseac ≡ μsea: ðA2Þ

Note that the form of the action (A2) guarantees the
positivity of the fermion determinant. The valence fermion
action takes the form

Sval ¼ a4
X
x;f

χ̄valf ½γ · ~∇ −
a
2
∇�

μ∇μ þmval
0;f þ irvalf μvalf γ5�χvalf :

ðA3Þ

In our notations the sea and valence sectors of the various
rval;seaf -Wilson parameters take values equal to �1 and the

twisted masses aμval;seaf are non-negative quantities.
In Table VI we report the simulation details and the

quark mass parameters relevant for the Nf ¼ 4 gauge
ensembles defined above. For each value of the sea
(twisted) quark mass, aμsea, we have generated two gauge
ensembles which are denoted by the letter “m” or “p” added
to their label, and correspond to (nearly) opposite values of
the PCAC quark mass, amsea

PCAC.
Moreover, for each of the sea gauge ensembles, quark

propagators have been computed for a number of valence
quark twisted masses, aμval. The measured value of the

TABLE VI. Simulation details and quark mass parameters of the Nf ¼ 4 gauge ensembles employed in the RC computation.

aμsea amsea
PCAC amsea

0 θsea aμval amval
PCAC

β ¼ 1.90 (L ¼ 24, T ¼ 48)
A4m 0.0080 −0.0390ð01Þ 0.0285(01) −1.286ð01Þ {0.0060, 0.0080, 0.0120, −0.0142ð02Þ
A4p 0.0398(01) 0.0290(01) þ1.291ð01Þ 0.0170, 0.0210, 0.0260} þ0.0147ð02Þ
A3m 0.0080 −0.0358ð02Þ 0.0263(01) −1.262ð02Þ {0.0060, 0.0080, 0.0120, −0.0152ð02Þ
A3p 0.0356(02) 0.0262(01) þ1.260ð02Þ 0.0170, 0.0210, 0.0260} þ0.0147ð03Þ
A2m 0.0080 −0.0318ð01Þ 0.0237(01) −1.226ð02Þ {0.0060, 0.0080, 0.0120, −0.0155ð02Þ
A2p þ0.0310ð02Þ 0.0231(01) þ1.218ð02Þ 0.0170, 0.021 0, 0.0260} þ0.0154ð02Þ
A1m 0.0080 −0.0273ð02Þ 0.0207(01) −1.174ð03Þ {0.0060, 0.0080, 0.0120, −0.0163ð02Þ
A1p þ0.0275ð04Þ 0.0209(01) þ1.177ð05Þ 0.0170, 0.021 0, 0.0260} þ0.0159ð02Þ

β ¼ 1.95 (L ¼ 24, T ¼ 48)
B1m 0.0085 −0.0413ð02Þ 0.0329(01) −1.309ð01Þ {0.0085, 0.0150, 0.0203, −0.0216ð02Þ
B1p þ0.0425ð02Þ 0.0338(01) þ1.317ð01Þ 0.0252, 0.02 98} þ0.0195ð02Þ
B7m 0.0085 −0.0353ð01Þ 0.0285(01) −1.268ð01Þ {0.0085, 0.0150, 0.0203, −0.0180ð02Þ
B7p þ0.0361ð01Þ 0.0285(01) þ1.268ð01Þ 0.0252, 0.02 98} þ0.0181ð01Þ
B8m 0.0020 −0.0363ð01Þ 0.0280(01) −1.499ð01Þ {0.0085, 0.0150, 0.0203, −0.0194ð01Þ
B8p þ0.0363ð01Þ 0.0274(01) þ1.498ð01Þ 0.0252, 0.02 98} þ0.0183ð02Þ
B3m 0.0180 −0.0160ð02Þ 0.0218(01) −0.601ð06Þ {0.0060, 0.0085, 0.0120, 0.0150, −0.0160ð02Þ
B3p þ0.0163ð02Þ 0.0219(01) þ0.610ð06Þ 0.0180, 0.0203, 0.0252, 0.0298} þ0.0162ð02Þ
B2m 0.0085 −0.0209ð02Þ 0.0182(01) −1.085ð03Þ {0.0085, 0.0150, 0.0203, −0.0213ð02Þ
B2p þ0.0191ð02Þ 0.0170(02) þ1.046ð06Þ 0.0252, 0.02 98} þ0.0191ð02Þ
B4m 0.0085 −0.0146ð02Þ 0.0141(01) −0.923ð04Þ {0.0060, 0.0085, 0.0120, 0.0150, −0.0146ð02Þ
B4p þ0.0151ð02Þ 0.0144(01) þ0.940ð07Þ 0.0180, 0.0203, 0.0252, 0.0298} þ0.0151ð02Þ

β ¼ 2.10 (L ¼ 32, T ¼ 64)
C5m 0.0078 −0.00821ð11Þ 0.0102(01) −0.700ð07Þ {0.0048, 0.0078, 0.0119, −0.0082ð01Þ
C5p þ0.00823ð08Þ 0.0102(01) þ0.701ð05Þ 0.0190, 0.0242, 0.0293} þ0.0082ð01Þ
C4m 0.0064 −0.00682ð13Þ 0.0084(01) −0.706ð09Þ {0.0039, 0.0078, 0.0119, −0.0068ð01Þ
C4p þ0.00685ð12Þ 0.0084(01) þ0.708ð09Þ 0.0190,0.0242, 0.0293} þ0.0069ð01Þ
C3m 0.0046 −0.00585ð08Þ 0.0066(01) −0.794ð07Þ {0.0025, 0.0046, 0.0090, 0.0152, −0.0059ð01Þ
C3p þ0.00559ð14Þ 0.0064(01) þ0.771ð13Þ 0.0201, 0.0249, 0.0297} þ0.0056ð01Þ
C2m 0.0030 −0.00403ð14Þ 0.0044(01) −0.821ð17Þ {0.0013, 0.0030, 0.0080, 0.0143, −0.0040ð01Þ
C2p þ0.00421ð13Þ 0.0045(01) þ0.843ð15Þ 0.0195, 0.0247, 0.0298} þ0.0042ð01Þ
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valence PCAC quark mass, amval
PCAC, for each sea ensemble

of the “m” or “p” type is given in the last column of
Table VI.
Based on Ref. [53] the definition of the renormalized

quark mass parameters in our partially quenched setup is

Msea;val ¼ Z−1
P Msea;val

0 ¼ Z−1
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZAm

sea;val
PCAC Þ2 þ ðμsea;valÞ2

q
;

tgθsea;valf ¼ ZAm
sea;val
PCAC

rsea;valf μsea;val
; ðA4Þ

where ZA is the RC of the (flavor nonsinglet) axial
current and msea;val

PCAC denotes the PCAC quark mass com-
puted from correlators in the sea and valence sector,
respectively. The angles θseaf and θvalf are determined

from the formulas Msea=val cosðθsea=valf Þ ¼ rsea=valf μsea=val

andMsea=val sinðθsea=valf Þ ¼ ZAm
sea=val
PCAC , respectively. If con-

venient, quark mass parameters in the valence sector may
be chosen to be different from their sea counterparts.
Our RC estimators are evaluated at the values pμ ¼

ð2π=LμÞnμ of the momenta, where

nμ ¼ ð½0; 2�; ½0; 2�; ½0; 2�; ½0; 3�Þð½2; 3�; ½2; 3�; ½2; 3�; ½4; 7�Þ; for β ¼ 1.95;

nμ ¼ ð½0; 2�; ½0; 2�; ½0; 2�; ½0; 3�Þð½2; 5�; ½2; 5�; ½2; 5�; ½4; 9�Þ; for β ¼ 1.90 and 2.10 ðA5Þ

with Lμ the lattice size along the direction μ (with L4 ≡ T
and L1;2;3 ≡ L). Quark fields obey antiperiodic time
boundary conditions implemented by a constant shift,
Δp4 ¼ π=L4, in the time component of the four-
momentum. Notice also that our final analysis of the
RC estimators has been carried out using “democratic”
four-momentum values that satisfy the condition

Δ4ðpÞ≡
P

μ ~p
4
μ

ðPμ ~p
2
μÞ2

< 0.29; ðA6Þ

with

~pμ ≡ 1

a
sinðapμÞ: ðA7Þ

In order to come up with smoother discretization errors we
have subtracted from the Green’s functions entering the RI-
MOM computation the perturbative cutoff effects up to
order Oða2g2Þ (see Refs. [74,75]).
As it has been stated above, following the general proof

given in Ref. [54], which in Appendix A. 2 of Ref. [65] has
been exemplified for the case of quark bilinear RC
estimators, the average over RC estimators computed on
ensembles produced with opposite values of the sea and
valence PCAC quark mass enables us to remove all the odd
integer power cutoff effects and hence the OðaÞ discretiza-
tion errors.9 Based on the definition of the angle θ in terms
of the PCAC quark mass given in Eq. (A4), we generally
refer to this procedure as θ-average OðaÞ improvement.
The evaluation of the RCs for the quark bilinear

operators, namely, ZA, ZV , ZP, and ZS, as well as the
RC of the quark wave function, Zq, has been done in

Ref. [65]. Our final numbers at each value of β have been
labeled as M1 or M2 RCs. As explained in detail in [65],
they correspond to different ways in which the cutoff
effects are treated. For convenience all the results are again
reported in Table VII of Appendix B of the present work.
Note that as for ZV, in the present analysis we have made
use of the much more precise Ward-Takahashi identity
determination [73].

APPENDIX B: RI-MOM COMPUTATION
OF RCs OF THE FOUR-FERMION

OPERATORS

The RI0-MOM renormalization procedure we used for
the four-fermion operators has been explained in
Appendixes A and B of Ref. [12]. From the conceptual
and operational point of view, a great part of the
computational details are very similar between the Nf ¼
2 case of Ref. [12] and the present Nf ¼ 4 case, except
for the fact that in the latter one has to compute RC
estimators in the “m” and “p” ensembles separately
before taking their θ-average. In this section we will
fix our notations by making extensive use of the
description of Ref. [12]. We will however recall some
essential points of the computation in order to make it
easier for the reader to follow the presentation of the
analysis and our results.
In computing RCs it is convenient to work in a basis

where the operators OMA
i½��, with i ¼ 2;…; 5 defined in

Eq. (2.4), are Fierz transformed as suggested in Ref. [76].
Using here a generic labeling [that can be obviously
adapted to the case of interest ð1; 2; 3; 4Þ → ðh;l; h0;l0Þ]
the operator basis now reads10

9The proof for the case of the RCs of the four-fermion
operators required in our mixed action setup (see Sec. II C) is
closely analogous to the one for the case of quark bilinear RCs.

10The quark fields q1; q2; q3, and q4 are valence fields with the
lattice action specified in Eq. (2.3); i.e., they are written in the
physical basis of maximally twisted LQCD.
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QMA
1½�� ¼ 2fð½q̄1γμq2�½q̄3γμq4� þ ½q̄1γμγ5q2�½q̄3γμγ5q4�Þ � ð2 ↔ 4Þg

QMA
2½�� ¼ 2fð½q̄1γμq2�½q̄3γμq4� − ½q̄1γμγ5q2�½q̄3γμγ5q4�Þ � ð2 ↔ 4Þg

QMA
3½�� ¼ 2fð½q̄1q2�½q̄3q4� − ½q̄1γ5q2�½q̄3γ5q4�Þ � ð2 ↔ 4Þg

QMA
4½�� ¼ 2fð½q̄1q2�½q̄3q4� þ ½q̄1γ5q2�½q̄3γ5q4�Þ � ð2 ↔ 4Þg

QMA
5½�� ¼ 2fð½q̄1σμνq2�½q̄3σμνq4�Þ � ð2 ↔ 4Þg ðfor μ > νÞ; ðB1Þ

where color indices are meant to be contracted within each square parenthesis, “MA” stands for “mixed action,” and
σμν ¼ ½γμ; γν�=2. The transformation matrix between the two operator bases [Eqs. (2.4) and (B1)] is given by

OMA
i½�� ¼ Λ½��

ij QMA
j½��; Λ½�� ¼

0
BBBBBB@

1 0 0 0 0

0 0 0 1 0

0 0 0 ∓1=2 �1=2

0 0 1 0 0

0 ∓1=2 0 0 0

1
CCCCCCA
. ðB2Þ

To simplify the notation, in the rest of the Appendix we
drop the superscript “MA” and subscript “�” and denote
the operators (B1) simply with the symbol Qi. Then in a
self-evident matrix notation the renormalization pattern of
the bare operators QðbÞ takes the form

Qren ¼ ZQ½Iþ Δ�QðbÞ; ðB3Þ

where ZQ is a scale-dependent renormalization matrix
which has the same block-diagonal form as the formal
continuum one. The wrong chirality mixings are para-
metrized by Δ which is a sparse off-diagonal and UV-finite
matrix with the structure

Δ ¼

2
6666664

0 Δ12 Δ13 Δ14 Δ15

Δ21 0 0 Δ24 Δ25

Δ31 0 0 Δ34 Δ35

Δ41 Δ42 Δ43 0 0

Δ51 Δ52 Δ53 0 0

3
7777775
: ðB4Þ

The renormalization pattern (B3) can be proved (following
Appendix A of Ref. [12]) for the renormalization of Q
defined out of maximal twist, for both positive and negative
mPCAC masses—we refer to the ensembles “p” and “m”
discussed in the previous appendix. At this level of course
lattice artifacts are still OðaÞ. By the θ-averaging procedure
discussed above, however, we obtain OðaÞ improved RC
estimators for which Eq. (B3) holds with only Oða2Þ lattice
artifacts. These RC estimators are used for renormalizing
the bare matrix element we computed at maximal twist.
For completeness we summarize the main technical

points of the RC calculations. We start by computing in
the Landau gauge the four-point Green’s function of the

operators, Qi, between external quark states with the
momenta given in Eqs. (A5)–(A7).
The RI0-MOM renormalization condition is imposed by

requiring the projected amputated functions be equal to
their tree-level value. This last step is conveniently and
compactly implemented with the construction of the so-
called dynamic matrix defined by the equation D ¼ PΛ,
where P and Λ are the matrices of the spin projectors and
the amputated Green’s functions, respectively; see also
Appendix B. 1 of Ref. [12].
The further steps of the analysis are the following.
(i) We subtract from the dynamic matrix and the quark

form factor (relevant for Zq) the perturbative
Oða2g2boostÞ corrections computed in the massless
theory [74,75]. The boosted coupling is defined as
g2boost ¼ 6=ðβhPiÞ, where hPi is the average pla-
quette value.

(ii) We subtract from the projected amputated four-
fermion correlators the contribution of the Goldstone
boson (GB) pole at each value of the momenta
defined in Eqs. (A5)–(A7). This step is performed by
carrying out the chiral limit extrapolation in the
valence sector. The GB pole contribution is realized
by the presence of terms that go as11 ð1=m2

psÞn, each
one of them being suppressed by corresponding
powers of the inverse square momentum, ð1= ~p2Þn.
For each sea quark ensemble and for each value of
the momentum, we fit each one of the dynamic
matrix elements in terms of the pseudoscalar mass in
the valence sector, using the Ansatz

11For each combination of two valence quark masses in each
gauge ensemble of Table VI we have computed and used the
corresponding value of the pseudoscalar mass, mps.
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Dijða2 ~p2;m2
psÞ ¼ Aða2 ~p2Þ þ Bða2 ~p2Þm2

ps

þ Cða2 ~p2Þ=m2
ps

þDða2 ~p2Þ=ðm2
psÞ2: ðB5Þ

In Fig. 13 we show the GB pole subtraction of the
block-diagonal elements of the dynamic matrix
corresponding to the continuumlike matrix elements
in the case of the coarsest lattice (β ¼ 1.90) at
relatively small momenta where systematic effects
are expected to be larger. We observe, as it is also
expected, that the GB pole contribution is getting
suppressed as the value of the momentum increases.
This feature can be noticed while comparing Figs. 13
and 14, as both refer to β ¼ 1.90 at two different

values of the momentum. Moreover, typical GB pole
subtraction fits in the finest lattice are given in the
panels of Fig. 15.

Important information concerning the double
GB pole subtraction can be revealed from plots
as, for example, those presented in the panels of
Fig. 16, which refer to the ensembles A1p and
A1m of the coarsest lattice spacing (β ¼ 1.90). We
form the product of ða2 ~p2Þ2 with the fit parameter,
Dða2 ~p2Þ, of the double GB pole term [cf. Eq. (B5)]
and then plot it against ða2 ~p2Þ. Two observations
are in order. First, we notice that the product
Dða2 ~p2Þ × ða2 ~p2Þ2 takes almost constant value for
large enough values of momentum that lie in the
momentum intervals we have used in order to

FIG. 13 (color online). Fitting procedure for the GB pole subtraction on the block-diagonal elements of the dynamic matrix. We show
two examples from the coarsest lattice, in particular for the ensembles A2m (left) and A2p (right), at a relatively small value of
momentum, namely, ða ~pÞ2 ≃ 1.57.

FIG. 14 (color online). Same as in Fig. 13 but at a larger value of momentum, namely, ða ~pÞ2 ≃ 2.19.
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extract our RC estimates. This finding also serves
as a confirmation of the good fit quality in
analyzing the double GB pole term. Second,
we find that the double GB pole contribution
is negligible for the case of D11, in nice agree-
ment with theoretical expectations (see Ref. [62]),
whereas it is different from zero for several of
the Dij with i; j > 1. So in our final analysis we
have adopted single GB pole subtraction [i.e., set
D ¼ 0 in the fit Ansatz of Eq. (B5)] for the

former, single and double GB pole subtraction
[cf. Eq. (B5)] for the latter cases.

(iii) After applying the θ-average of the RC estimators
at each β and at each value of momentum defined
by Eqs (A6) and (A7), which is required in order to
achieve OðaÞ-improvement, we carry out the sea
chiral limit for each element of the 5 × 5 renorm-
alization matrix. A simple polynomial (linear) fit
Ansatz fits the data smoothly. In Fig. 17 we
illustrate an example of the chiral extrapolation

FIG. 15 (color online). Same as in Fig. 13 at β ¼ 2.10, for the ensembles C2m (left) and C2p (right) and ðapÞ2 ≃ 1.57.

FIG. 16 (color online). For each of block-diagonal matrix element we form the product of ða2 ~p2Þ2 with the fit parameter Dða2 ~p2Þ that
is associated to the term of the double GB pole [cf. Eq. (B5)] and we plot it against ða2 ~p2Þ for the ensembles A1p and A1m of β ¼ 1.90.
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in the sea using almost the same value of momen-
tum at the three β’s.

(iv) Having performed the chiral limit extrapolations
our estimates for the RCs take the form
ZRI0
ij ð ~p2; ða ~pÞ2Þ ≡ ZRI0

ij ð ~p2; ða ~pÞ2; aMsea;val ¼ 0Þ,
where the first argument refers to the scale. More-
over we obtain the scale-independent off-diagonal
elements, namely, ΔRI0

ij ðða ~pÞ2Þ ≡ ΔRI0
ij ðða ~pÞ2;

aMsea;val ¼ 0Þ. The estimators ZRI0
ij ð ~p2; ða ~pÞ2Þ

can be evolved to a common scale p0 using the
running formula for the operators Qi known up to
NLO [31,77], obtaining thus estimates of the form
ZRI0
ij ðp2

0; ða ~pÞ2Þ. To be able to carry out a controlled

study of the systematic discretization errors on the
renormalized bag parameters, we apply the two
methods proposed in Ref. [73]. We recall that each
of these two methods, called M1 and M2, prescribes
a different treatment of the cutoff effects. Method
M1 consists of fitting ZRI0

ij ðp2
0; ða ~pÞ2Þ to the linear

Ansatz

ZRI0
ij ðp2

0; ða ~pÞ2Þ ¼ ZRI0
ij ðp2

0Þ þ λij × ða ~pÞ2 ðB6Þ

in some large momentum region. For better con-
trolling the systematics we have made two choices,
namely, ða ~pÞ2 ∈ ½1.5; 2.2� and ða ~pÞ2 ∈ ½1.8; 2.2�.

FIG. 17 (color online). Example of the sea chiral extrapolation of the RC estimators at three values of β computed at ða ~pÞ2 ≃ 1.57.

FIG. 18 (color online). Best linear fits [cf. Eq. (B6)] in the momentum interval ða ~pÞ2 ∈ ½1.8∶2.2� for the block-diagonal RCs, Zij, at
each value of β, renormalized in the MS scheme at the scale of 3 GeV.
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As expected, thanks to subtraction of the perturba-
tive Oða2g2Þ effects, the slopes λij show very
smooth dependence on β. In fact we parametrize

the slopes in Eq. (B6) as λij ¼ λð0Þij þ λð1Þij g
2 and we

perform a simultaneous linear extrapolation to
ða ~pÞ2 ¼ 0 at all values of β. Then we may convert
the extrapolated results ZRI0

ij ðp0Þ to any scale and

scheme as for example the MS scheme using NLO
running. In Fig. 18 we show the best linear fits of
Zij (in the MS scheme at the scale of 3 GeV) using

Eq. (B6). The M2 method works in a quite different
way from M1. It consists of getting the average RC
value in a narrow window of momenta which is
fixed in physical units for all values of β. We have
carried out the M2-type analysis for two choices of
momentum interval, namely, ~p2 ∈ ½10∶13� GeV2

and ~p2 ∈ ½11∶14� GeV2. These rather high values
of momentum offer the possibility to gain more
confidence in the absence of hadronic state con-
taminations and in the validity of the RC evolution
using the NLO anomalous dimension at the price,

FIG. 19 (color online). B1;…;5 estimates computed at the physical strange quark value and at a fixed reference quark mass μrefl ¼
12.0 MeV plotted against a2 for the three values of the lattice spacing. We compare the scaling behavior of the bag-parameter estimates
computed with the four possible combinations of M1 and M2 type for the four- and two-fermion RCs. The best linear fit in a2 and the
corresponding C.L. value for each RC combination is also shown.

FIG. 20 (color online). The behavior of the off-diagonal mixing coefficients Δij as a function of ða ~pÞ2 for β ¼ 2.10.
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however, of taking no special care to end up with
reduced Oða2Þ cutoff effects.
In order to get an immediate view of the impact

of the RC cutoff effects on the continuum limit
estimates for the bag parameters, we have per-
formed a scaling test for all Bi (i ¼ 1;…; 5) which,
for the case of the neutral K-mixing, is illustrated in
Fig. 19. By using M1- or M2-type RCs we get the
bag parameter estimates at some fixed reference
value of the light quark mass and then we extrapo-
late them linearly in a2 to the continuum limit.
From the relevant panels of Fig. 19 it can be noticed
that for both RC types12 the a2-scaling behavior is
good and the extrapolated continuum limit results
are compatible within 1 or 2 standard deviations,
depending on the case.
The situation presented in Fig. 19 has to be

considered as purely indicative but representative
of the fact that at some arbitrary reference value of
the light quark mass, using all four possible
combinations of the RCs, the results for Bi¼1;…;5

converge to continuum limit values that are com-
patible within each other. We find this result very

reassuring since M1- and M2-type RCs are com-
puted in such a way that the corresponding cutoff
effects are much different, though of Oða2Þ. In this
sense, by using two types of RCs we gain con-
fidence that systematic effects due to the RC RI-
MOM computation and discretization effects are
under control. We also recall that for our final
results we do not rely on plots like the ones
presented in Fig. 19, but we perform combined
chiral and continuum limit fits as those described
by the fit Ansätze of Eqs. (2.13)–(2.15).
Finally, in Fig. 20 we depict the behavior of the

scale-independent off-diagonal matrix elements Δij

for β ¼ 2.10, while in Fig. 21 we plot the final
estimates for Δij against a2. We note that in all cases
Δij’s get small values around zero. For the reader’s
convenience, we collect in the last row of Fig. 21 the
Δij’s for which we observe relatively larger values.
As we have anticipated in Sec. III, in order to

take into account possible residual cutoff effects, in
our final set of analyses we have included results
for the bag parameters computed both with Δij ¼ 0

and Δij ≠ 0.
We collect for convenience the RCs for the bilinear quark

operators, calculated in Ref. [65], in Table VII, while in
Tables VIII and IX we summarize the RC values for the
four-fermion operators.

FIG. 21 (color online). Δij computed with the M2 method against a2.

12Notice that we have considered four cases corresponding to
all possible combinations of taking M1- and M2-type RCs for the
four- and two-fermion operators.
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TABLE VIII. Typical values for the four-fermion operator RCs at three values of β. For the M1 method, linear extrapolation to ða ~pÞ2
has been performed using data in the interval ða ~pÞ2 ∈ ½1.8; 2.2�, while for method M2 we have used data from the narrow momentum
window determined by ~p2 ∈ ½11∶14� GeV2. RCs are expressed in the RI0 scheme at the scale of 3 GeV.

RI0 (3 GeV) β ¼ 1.90 β ¼ 1.95 β ¼ 2.10

Zij M1 M2 M1 M2 M1 M2

Z11 0.373(07) 0.383(03) 0.395(05) 0.398(05) 0.454(04) 0.455(03)
Z22 0.450(07) 0.450(04) 0.474(06) 0.469(05) 0.536(07) 0.528(04)
Z23 0.200(07) 0.073(03) 0.222(05) 0.122(05) 0.236(03) 0.175(02)
Z32 0.015(02) 0.009(01) 0.015(01) 0.010(01) 0.015(00) 0.013(00)
Z33 0.247(11) 0.382(04) 0.237(07) 0.337(05) 0.285(06) 0.335(02)
Z44 0.277(08) 0.368(03) 0.277(06) 0.344(04) 0.333(05) 0.362(02)
Z45 −0.012ð01Þ −0.010ð00Þ −0.012ð01Þ −0.010ð01Þ −0.012ð01Þ −0.011ð00Þ
Z54 −0.146ð05Þ −0.054ð02Þ −0.166ð04Þ −0.090ð03Þ −0.187ð03Þ −0.141ð02Þ
Z55 0.435(07) 0.403(03) 0.471(05) 0.439(05) 0.552(07) 0.533(04)

TABLE VII. Bilinear RCs published in Ref. [65]. The scale-independent ZV , ZA and the scale-dependent ZP, ZS, and Zq are obtained
with the methods M1 and M2. The scale-dependent RCs are expressed in the MS scheme at the scale of 3 GeV. ZV is also obtained by
performing a very accurate computation employing the Ward-Takahashi identity (WTI); for details see Sec. 2.3 of Ref. [73].

β Method ZV ZA ZP ZS Zq

M1 0.587(04) 0.731(08) 0.587(08) 0.830(14) 0.705(05)
1.90 M2 0.608(03) 0.703(02) 0.637(06) 0.974(04) 0.720(02)

WTI 0.5920(04)
M1 0.603(03) 0.737(05) 0.566(05) 0.812(09) 0.719(04)

1.95 M2 0.614(02) 0.714(02) 0.606(03) 0.913(03) 0.727(01)
WTI 0.6095(03)
M1 0.655(03) 0.762(04) 0.572(02) 0.777(06) 0.759(04)

2.10 M2 0.657(02) 0.752(02) 0.605(02) 0.832(04) 0.760(02)
WTI 0.6531(02)

TABLE IX. Same as in Table VIII, but in the MS scheme of [31] at the scale of 3 GeV.

MS (3 GeV) β ¼ 1.90 β ¼ 1.95 β ¼ 2.10

Zij M1 M2 M1 M2 M1 M2

Z11 0.379(07) 0.389(03) 0.402(05) 0.404(06) 0.462(04) 0.462(03)
Z22 0.440(07) 0.440(03) 0.463(06) 0.458(05) 0.524(07) 0.516(04)
Z23 0.182(08) 0.050(03) 0.204(05) 0.101(05) 0.216(03) 0.153(02)
Z32 0.020(02) 0.013(01) 0.020(02) 0.014(01) 0.021(01) 0.017(00)
Z33 0.293(13) 0.453(04) 0.281(08) 0.399(06) 0.339(07) 0.398(03)
Z44 0.304(09) 0.405(03) 0.303(07) 0.378(05) 0.364(06) 0.397(03)
Z45 −0.006ð01Þ −0.004ð00Þ −0.006ð01Þ −0.004ð01Þ −0.005ð01Þ −0.003ð00Þ
Z54 −0.143ð06Þ −0.042ð02Þ −0.163ð04Þ −0.081ð03Þ −0.183ð03Þ −0.134ð02Þ
Z55 0.460(08) 0.426(04) 0.497(06) 0.464(06) 0.584(08) 0.564(05)
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