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We study the renormalization of SUðNcÞ gauge theories on general anisotropic lattices, to one-loop
order in perturbation theory, employing the background field method. The results are then applied in the
context of two different approaches to hadronic high-energy scattering. In the context of the Euclidean
nonperturbative approach to soft high-energy scattering based on Wilson loops, we refine the non-
perturbative justification of the analytic continuation relations of the relevant Wilson-loop correlators,
required to obtain physical results. In the context of longitudinally rescaled actions, we study the
consequences of one-loop corrections on the relation between the SUðNcÞ gauge theory and its effective
description in terms of two-dimensional principal chiral models.
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I. INTRODUCTION

Anisotropic lattices are a standard tool in modern lattice
calculations, and have been used in the study of a large
variety of problems, ranging from glueball [1] and light-
hadron [2] spectroscopy to properties of QCD at finite
temperature [3,4]. Numerical calculations in four dimen-
sions usually employ lattices with 3þ 1 anisotropy, i.e.,
only one of the lattice spacings is different from the others,
while more general anisotropy classes have received much
less attention [5], due to the increasing difficulty in the
scale setting procedure. Indeed, for anisotropy classes
other than 3þ 1, one needs to appropriately tune the action
in order to recover Lorentz invariance in the continuum,
already at the pure-gauge theory level. A better under-
standing of these more general anisotropy classes would be
useful, since they provide a more flexible setting for
varying length scales independently in different directions.
This would allow, for example, to enlarge the range of
momenta accessible to lattice calculation at a reasonable
computational cost, by improving the resolution only in a
single spatial direction [5].
Anisotropic lattices provide, quite obviously, the natural

setting for the nonperturbative study of anisotropic sys-
tems, also beyond numerical applications. An interesting
case is that of longitudinally rescaled actions, which in
recent years have been considered in the context of high-
energy scattering in QCD [6–12]. The basic idea of
Refs. [6–9] is to perform a rescaling of the longitudinal
directions, which appear highly Lorentz-contracted in a
high-energy scattering process, in order to derive an
effective action starting from QCD. In Refs. [6–9] only
the classically rescaled action was considered, while the
important effect of quantum corrections was studied later in

Refs. [10–12], in the framework of Wilsonian anisotropic
renormalization in the continuum. In this context, the use of
a gauge-invariant, anisotropic lattice regularization could
lead to more insight in the structure of quantum corrections.
The relevant anisotropy class here is 2þ 2, with different
lattice spacings in the longitudinal and in the transverse
plane. This is also the case considered in Ref. [5], although
for different purposes.
In Ref. [13] a classical anisotropic rescaling of the

functional integral has been used to justify, on nonpertur-
bative grounds, the analytic continuation from Euclidean
to Minkowski space, required to obtain physical results in
the Euclidean formulation [14–19] of the nonperturbative
approach to soft high-energy scattering [20–27]. This
approach has been recently used in Ref. [28] to obtain a
theoretical estimate of the leading energy dependence of
hadronic total cross sections, resulting in fair agreement
with experiments. As the analytic continuation plays a key
role in this approach, it is important to establish its correct-
ness going beyond the formal argument of Ref. [13], which,
as we have said above, is based only on a classical rescaling
of the QCD action. To this end, quantum corrections to the
effective action must be included to prove that the necessary
analyticity requirements are actually fulfilled. The relevant
anisotropy class in this case is 2þ 1þ 1, with different
lattice spacings in the transverse plane and in the two
longitudinal directions.
The purpose of this paper is to perform the renormaliza-

tion of a SUðNcÞ gauge theory regularized on a general
anisotropic lattice, and to apply the results in the study of
hadronic high-energy scattering through the approaches
mentioned above. To avoid the complications related to the
introduction of fermions on the lattice, we work here in the
quenched approximation, i.e., pure gauge theory.
The plan of the paper is the following. In Sec. II we
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regularization, using the background field method on the
lattice [29–37]. In Sec. III we use the results in the context
of the nonperturbative approach to soft high-energy scat-
tering of Refs. [20–27], refining the argument of Ref. [13]
on the possibility of performing analytic continuation to
Euclidean space. In Sec. IV we discuss the longitudinally
rescaled actions of Refs. [6–12], focusing on the repre-
sentation of the SUðNcÞ gauge theory as a set of coupled
two-dimensional principal chiral models. Finally, Sec. V
contains our conclusions and prospects. Some technical
details are discussed in the Appendixes.

II. ANISOTROPIC RENORMALIZATION

Our aim is to renormalize the Euclidean SUðNcÞ gauge
theory regularized on a 4D orthogonal anisotropic lattice.
More precisely, lattice points are located at x ¼ P

4
μ¼1 xμμ̂,

where μ̂ are four orthogonal unit vectors, and the physical
coordinates xμ¼xμðnÞ in Euclidean space are xμðnÞ¼aμnμ,
nμ ∈ Z. Here aμ ¼ a=λμ is the lattice spacing in direction
μ, with the dimensionless anisotropy parameters λμ ∈ Rþ

being the inverse ratios of aμ to a reference length scale a.
1

Consider the following Wilson-like action,

Streelat ¼ β
X
n

X
μ<ν

Cμν

�
1 − 1

Nc
Re trUμνðnÞ

�

¼ β
X
n

X
μ<ν

CμνPμνðnÞ; ð1Þ

whereUμνðnÞ are the usual plaquette variables built up with
the link variables UμðnÞ ∈ SUðNcÞ,

UμνðnÞ ¼ UμðnÞUνðnþ μ̂ÞU†
μðnþ ν̂ÞU†

νðnÞ; ð2Þ

β ¼ 2Nc=g2 with g the coupling constant, and Cμν, μ ≠ ν,
are the plaquette coefficients,2

Cμν ¼ Cνμ ¼ CμνðλÞ ¼ ðλμλνÞ2J ; J −1 ≡Y4
α¼1

λα: ð3Þ

It is straightforward to show that Eq. (1) yields the correct
naïve continuum limit upon identification of the con-
tinuum, physical gauge fields AμðxÞ through

UμðnÞ ¼ eigaμAμðxðnÞÞ; ð4Þ

as appropriate for an anisotropic lattice. The choice of
plaquette coefficients Cμν is easily understood by noticing

that J a4 is just the volume of an elementary cell, so that J
is the Jacobian for the change of variables from isotropic to
anisotropic coordinates, while aμaν ¼ ðλμλνÞ−1a2 is the
area of the faces of an elementary cell lying in the μν plane.
As is well known, divergencies appear in the continuum

limit when taking into account quantum corrections. These
divergencies need to be subtracted through a suitable
renormalization of the couplings in order to obtain a finite
continuum theory. On the isotropic lattice, the symmetry
under the unbroken hypercubic subgroup of Oð4Þ guaran-
tees that all the plaquette terms in the action need to be
renormalized in the same way, so that a single redefinition
of g is sufficient to reabsorb the divergencies. The form of
the action is therefore unchanged, and one recovers the full
Oð4Þ invariance in the continuum limit.
On a general anisotropic lattice this residual symmetry is

broken, except for reflections through lattice hyperplanes,
and so in general different terms will require a different
renormalization. Since there are six different plaquette
terms and only four lattice spacings, it will not be possible
in the general case to reabsorb completely the quantum
corrections into a redefinition of λμ, keeping at the same
time the same form of the tree-level action [5]. In turn, this
implies that the continuum limit of Eq. (1) cannot be made
into an Oð4Þ-invariant theory by an appropriate, simple
rescaling of the lattice spacings, since in the general case
one will still find different coefficients for the six con-
tinuum field-strength terms. To recover Oð4Þ invariance
one must ensure that these coefficients are equal, and this
requires that we take the action to be of the more general
form

Slat ¼
X
n

X
μ<ν

βμνCμν

�
1 − 1

Nc
Re trUμνðnÞ

�

¼
X
n

X
μ<ν

βμνCμνPμνðnÞ; ð5Þ

where the couplings βμν ¼ βνμ ¼ βμνðλÞ have to be prop-
erly tuned to yield a finite, Oð4Þ-invariant theory in the
continuum limit.
The need for tuning comes, as we have said, from the fact

that there are in general more couplings than anisotropy
parameters. It is however easy to show that one has to tune
at most only two combinations of the couplings to achieve
restoration ofOð4Þ invariance in the continuum limit, while
the other four independent combinations can be interpreted
as the coupling fixing the overall lattice scale, and
renormalizations of the anisotropies aν=aμ ¼ λμ=λν. To
see this, let us remove the redundancy in the set fλμg by
imposing the symmetric condition

Q
μλμ ¼ 1, thus defining

a in terms of the volume of an elementary cell. Any other
equivalent choice (i.e., giving the same aμ) is obtained by a
simple global rescaling of fλμg and of a. The six plaquette
terms can be grouped in pairs of “complementary” μν and

1The five parameters a and fλμg are obviously redundant, and
some condition has to be imposed on fλμg to remove this
redundancy. This notation is however convenient, as we treat
all the directions on the same footing.

2For definiteness, we define also Cμμ ¼ 0.
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μ̄ ν̄ plaquettes, i.e., ðU12; U34Þ, etc., which we denote as
ðμνjμ̄ ν̄Þ ¼ ð12j34Þ; ð13j24Þ; ð14j23Þ. It is also easily

noticed that Cμν ¼ λμλν
λμ̄λν̄

, so that Cμ̄ ν̄ ¼ C−1
μν . This suggests

to parametrize βμν as follows,

βμν ¼ βZðμνjμ̄ ν̄Þ
zμzν
zμ̄zν̄

: ð6Þ

As there are two redundant parameters, we choose to fixQ
μzμ ¼ 1, so that our condition on fλμg is not renormal-

ized,3 and
Q

ðμνjμ̄ ν̄ÞZðμνjμ̄ ν̄Þ ¼ 1. In this way β, zμ and
Zðμνjμ̄ ν̄Þ are unambiguously defined and can be obtained
from βμν as follows,

β ¼
�Y

μ<ν
βμν

�1
6

; zμ ¼
�Y

ν≠μ

βμν
βμ̄ ν̄

�1
8

;

Zðμνjμ̄ ν̄Þ ¼
�

βμνβμ̄ ν̄

ðβμν̄βμ̄νβμμ̄βνν̄Þ12
�1

3

: ð7Þ

This makes it explicit that the restoration or not of Oð4Þ
invariance in the continuum depends only on the values of
the ratios of the couplings βμν. Defining now the bare
anisotropy parameters λBμ ≡ zμλμ, and the bare plaquette
coefficients CB

μν ≡ CμνðλBÞ, one can rewrite Eq. (5) as

Slat ¼ β
X

n;ðμνjμ̄ ν̄Þ
Zðμνjμ̄ ν̄Þ½CB

μνPμνðnÞ þ CB
μ̄ ν̄Pμ̄ ν̄ðnÞ�: ð8Þ

This equation shows that to obtain anOð4Þ-invariant theory
in the continuum limit, one can choose freely λBμ (up to a
constraint to remove the redundancy), and then tune only
the two independent ratios of Zðμνjμ̄ ν̄Þ to the appropriate
values. The physical anisotropy parameters λμ are related to
the bare ones through the renormalization λμ ¼ z−1μ λBμ , and
can be measured ex post.
Using the parametrization Eq. (7), it is possible to set up

a rather simple nonperturbative scheme to achieve restora-
tion of Oð4Þ invariance in the continuum, for an arbitrary
choice of bare anisotropy parameters. The basic idea is to
impose that the string tension, determined from the
asymptotic behavior of large rectangular T × R on-axis
Wilson loopsWαβ ∼ expf−σ̂αβTRg, is the same for all pairs
of directions α; β. Denoting with σ the physical (dimen-
sionful) string tension, this amounts to impose
λαλβσ̂αβ ¼ a2σ, for all pairs of different α; β. Multiplying

the relations for σ̂αβ and its complementary σ̂ᾱ β̄, one obtains
the following consistency conditions,

σ̂12σ̂34 ¼ σ̂13σ̂24 ¼ σ̂14σ̂23; ð9Þ

which have to be imposed to recover Oð4Þ invariance. This
can be done without any prior knowledge of the physical
λα, and requires only to properly tune two of the coef-
ficients Zðμνjμ̄ ν̄Þ (the third one being constrained by our
choice

Q
ðμνjμ̄ ν̄ÞZðμνjμ̄ ν̄Þ ¼ 1). Having done this, the anisot-

ropies can then be obtained from the ratio λμ=λν ¼ σ̂να=σ̂μα
for any α ≠ μ; ν. Imposing

Q
μλμ ¼ 1 one can explicitly

determine all λμ’s, and set the lattice scale a from the
relation a4σ2 ¼ σ̂12σ̂34. While the string tension is known
not to be the best observable for setting the physical scale,
nevertheless it could be useful for the tuning, as it can be
determined to high precision by means of multilevel
algorithms [38]. It is worth mentioning that the tuning
of two parameters is only required when all the lattice
spacings are different: if at least a pair of lattice spacings are
equal, one easily sees that only one parameter has to be
tuned.4

A. Background field method

From the discussion above, we see that our task is to find
the relations among the couplings βμν that will lead to an
Oð4Þ-invariant theory in the continuum limit. We will study
this problem to lowest order in perturbation theory, making
use of the background field method [29–32] on the lattice
[33–37]. The advantage of this method is that it allows us to
keep an exact gauge invariance on the lattice after gauge
fixing, which greatly simplifies the calculations. A full
account on the background field method can be found
elsewhere [39,40]. Here we briefly recall the main points of
the method to fix the notation.
The first step is to introduce a background field UðcÞ

μ in
the gauge action as follows,

SBF½UðcÞ; V�≡ Slat½VUðcÞ�; ð10Þ

where we now denote with V the gauge links, to be
integrated over with the usual Haar measure. As a conse-
quence of the gauge invariance of Slat, the action SBF is
invariant under the background gauge transformation

UðcÞG
μ ðnÞ ¼ GðnÞUðcÞ

μ ðnÞG†ðnþ μ̂Þ;
VG
μ ðnÞ ¼ GðnÞVμðnÞG†ðnÞ; ð11Þ

3Any other choice is of course allowed. If, for example, the
scale a is defined to be one of the lattice spacings by choosing
λμ ¼ 1 for some μ, then it is convenient to choose zμ ¼ 1. The
new values of zν are obtained from those corresponding to the
symmetric condition by replacing zν → zν=zμ, while Zðμνjμ̄ ν̄Þ and
β are unaffected.

4In the 3þ 1 case, where a single lattice spacing differs from
the others, there are only two kinds of plaquette terms and so only
two independent lattice string tensions. In this case there is thus
no consistency condition to be satisfied and no tuning is needed,
as is well known.
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with GðnÞ ∈ SUðNcÞ, as well as under the following gauge
transformation of V alone,

VμðnÞ → GðnÞVμðnÞUðcÞ
μ ðnÞG†ðnþ μ̂ÞUðcÞ†

μ ðnÞ: ð12Þ

The integration measure is also obviously invariant under
the transformations Eqs. (11) and (12). One then proceeds
to set up perturbation theory in the usual way, setting

VμðnÞ ¼ ei
g
λμ
qμðnÞ; UðcÞ

μ ðnÞ ¼ eiaμBμðnÞ; ð13Þ

where5 qμðnÞ ¼ qaμðnÞta and BμðnÞ ¼ Ba
μðnÞta, with ta the

generators of SUðNcÞ in the fundamental representation,
a ¼ 1;…; N2

c − 1, and trftatbg ¼ 1
2
δab. One then changes

variables of integration to q, expressing the Jacobian as a
contribution Smeas½q� to the action. Notice that powers of g
and a are chosen so that q is dimensionless, while B has
dimensions of mass. This distinction is convenient for
bookkeeping purposes [36].
Under the transformation Eq. (11), the background field

B transforms as a gauge field, while the “quantum” field q
transforms as a matter field in the adjoint representation.
The symmetry under the gauge transformation Eq. (12)
requires to impose a gauge condition on q to define the
corresponding propagator. This is done à la Faddeev–
Popov, adding a gauge-fixing term to the action, together
with the corresponding ghost term. The key point is that
there is an appropriate choice of gauge, called the back-
ground field gauge, for which the gauge-fixing and the
ghost terms are invariant under the background gauge
transformation Eq. (11). This gauge-fixing term is
[29,30,37]

Sg:f:½B; q� ¼ J
X
n

tr

�X
μ

D−
μ qμ

�
2

; ð14Þ

where D�
μ are the lattice background covariant differences,

Dþ
μ fðnÞ≡ λμ½UðcÞ

μ ðnÞfðnþ μ̂ÞUðcÞ†
μ ðnÞ − fðnÞ�;

D−
μ fðnÞ≡ λμ½UðcÞ†

μ ðn − μ̂Þfðn − μ̂ÞUðcÞ
μ ðn − μ̂Þ − fðnÞ�;

ð15Þ

in which a factor λμ is also included for convenience. The

usual lattice differencesΔ�
μ are obtained settingUðcÞ

μ ¼ 1 in
the expressions above, where 1 denotes the unit matrix. The
corresponding ghost term is

Sghost½B; q; c; c̄� ¼ 2J
X
n;μ

tr

�
½Dþ

μ c̄ðnÞ�
�
M−1

�
g
λμ

qμðnÞ
�
Dþ

μ

þ iAd

�
g
λμ

qμðnÞ
��

cðnÞ
�
; ð16Þ

where c ¼ cata, c̄ ¼ c̄ata, with ca; c̄a independent
Grassmann variables, and where

MðXÞ≡ 1 − e−iAdðXÞ
iAdðXÞ ; AdðXÞY ≡ ½X; Y�: ð17Þ

It is straightforward to prove invariance of these two terms
under the background gauge transformation, Eq. (11),
supplemented by the transformation laws for the ghost
fields,

cGðnÞ ¼ GðnÞcðnÞG†ðnÞ;
c̄GðnÞ ¼ GðnÞc̄ðnÞG†ðnÞ: ð18Þ

Expanding Eq. (16) up to Oðg0Þ, one finds

Sghost½B; q; c; c̄� ¼ 2J
X
n;μ

trf½Dþ
μ c̄ðnÞ�½Dþ

μ cðnÞ�g þOðgÞ

¼ 2J
X
n;μ

trfc̄ðnÞD−
μDþ

μ cðnÞg þOðgÞ

≡ S0ghost½B; c; c̄� þOðgÞ; ð19Þ

where we have used “integration by parts” on a lattice
(infinite or with periodic boundary conditions),X

n

trf½Dþ
μ fðnÞ�gðnÞg ¼

X
n

trffðnÞ½D−
μ gðnÞ�g: ð20Þ

The starting point for the perturbative analysis is the
generating functional

Z½B; J; η̄; η� ¼
Z

DqDcDc̄e−Stot½B;q;c;c̄�þJ·qþη̄·cþη·c̄

¼ eW½B;J;η̄;η�;

Stot½B; q; c; c̄� ¼ SBF½B; q� þ Smeas½q� þ Sg:f:½B; q�
þ Sghost½B; q; c; c̄�; ð21Þ

where with a small abuse of notation we have written
SBF½B; q� ¼ SBF½Uc; V�, and we have added source terms
for the various fields. Here J ¼ JðnÞ ¼ JaμðnÞta and
J · q≡P

n;μJ
a
μðnÞqaμðnÞ, and similarly for the other terms.

A Legendre transform gives the effective action (generating
functional for 1PI graphs),

Γ½B;Q;C; C̄� ¼ −W½B; J; η̄; η� þ J ·Qþ η̄ · Cþ C̄ · η;

ð22Þ
5Here and in the following, the sum over repeated color indices

is understood.
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where the classical fields Q, C and C̄ are defined as

Qa
μðnÞ ¼

∂W½B; J; η̄; η�
∂JaμðnÞ ;

CaðnÞ ¼ ∂W½B; J; η̄; η�
∂η̄aðnÞ ;

C̄aðnÞ ¼ ∂W½B; J; η̄; η�
∂ηaðnÞ ; ð23Þ

i.e., they are the expectation values of the quantum fields
for prescribed values of B and of the sources.
Defining a background gauge transformation for the

classical fields, imposing that they transform as the
corresponding quantum fields, Eqs. (11) and (18), leads
finally to the identity

Γ½BG;QG; CG; C̄G� ¼ Γ½B;Q;C; C̄� ð24Þ

for the effective action. This is the key relation that
allows us to simplify the calculations. Indeed, setting
Seff ½B�≡ Γ½B; 0; 0; 0� − Γ½0; 0; 0; 0�, as a consequence of
the background gauge invariance, of the discrete sym-
metries of the action (translations and reflections6), and of
the locality of divergencies, to one-loop accuracy and to
lowest order in perturbation theory we are guaranteed to
find in the continuum limit

lim
a→0

Seff ½B� ¼
1

2

X
μ;ν

Z
d4x

�
βμν
2Nc

− Kμν

�
trF 2

μνðxÞ

þ ðnonlocal finite termsÞ þOðg2Þ; ð26Þ

where Kμν ¼ Kνμ ¼ Kμνða; λÞ is Oðg0Þ, and where F μν ¼
∂μBν − ∂νBμ þ i½Bμ;Bν� is the field strength for the con-
tinuum background field BμðxÞ, BμðxðnÞÞ ¼ BðnÞ. For our
purposes it is therefore sufficient to compute the two-point
function of the background field to have enough informa-
tion to renormalize the theory and impose Oð4Þ invariance.
To one-loop accuracy it is enough to set

βμν
2Nc

− Kμν ¼
1

g2
þ δβμν

2Nc
− Kμν ¼

1

g2r
; ð27Þ

where gr is the renormalized, λ-independent coupling.

We notice that Eq. (5), with the couplings chosen
according to Eq. (27), can be interpreted in two ways.
Under the identificationUμðnÞ¼eigaμAμðxðnÞÞ with xα¼aαnα,
it leads in the continuum to the renormalized, isotropic
action for the gauge fields AμðxÞ, for which it provides an
appropriate lattice discretization. On the other hand, iden-
tifyingUμðnÞ ¼ eigaϕμðyðnÞÞwith yα ¼ anα, in the continuum
limit one obtains the following renormalized anisotropic
action,

S →
1

2g2r

X
μ;ν

Cμν

Z
d4y trΦ2

μνðyÞ; ð28Þ

with Φμν the usual field-strength tensor for ϕμ, for which
Eq. (5) provides therefore a lattice discretization. This is the
form of the action obtained by classically rescaling coor-
dinates and fields in the Yang-Mills action, discussed in
Refs. [6–9,13].

B. One-loop calculation

To compute Kμν it is enough to expand the action to
order Oðg0Þ, which in turn means expanding the gauge
action up to second order in q. Contributions from Smeas are
at least Oðg2Þ and can be ignored. Let us expand the action
SBF þ Sg:f: in powers of q,

SBF½B; q� þ Sg:f:½B; q�
¼ Sc½B� þ Sg1½B; q� þ Sg2½B; q� þ � � � ; ð29Þ

where Sc½B� ¼ SBF½B; 0� is the classical action, Sg1½B; q� is
linear in q, Sg2½B; q� is quadratic and so on, and set

S2½B; q; c; c̄� ¼ Sg2½B; q� þ S0ghost½B; c; c̄�

¼
X

n;m;μ;ν

1

2
qaμðnÞðΠ½B�Þabnm;μνq

b
νðmÞ

þ
X
n;m

c̄aðnÞðΠ̂½B�ÞabnmcbðmÞ: ð30Þ

A straightforward calculation then shows that

Seff ½B�jOðg0Þ ¼ SBF½B; 0� þ
1

2
log

detΠ½B�
detΠ½0�

− log
det Π̂½B�
det Π̂½0�

: ð31Þ

Terms linear in q play no role and can be ignored.7

Equation (31) can be conveniently written as

6Reflections Πα act as follows on the coordinates, Παnμ ¼ nμ
for μ ≠ α, Παnα ¼ −nα. The corresponding transformation laws
for B and q are the following,

BΠα
μ ðnÞ ¼

�
BμðΠαnÞ μ ≠ α;

−BαðΠαn − α̂Þ;

qΠα
μ ðnÞ ¼

� qμðΠαnÞ μ ≠ α;

−UðcÞ
α ðΠαn − α̂ÞqαðΠαn − α̂ÞUðcÞ

α ðΠαn − α̂Þ:
ð25Þ 7These terms are usually discarded by requiring B to satisfy the

equations of motion, but this is actually not necessary.
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e−Seff ½B�jOðg0Þ ¼ e−Sc½B�he−ðS2−SfreeÞi0; ð32Þ

where Sfree½q; c; c̄� ¼ S2½0; q; c; c̄� is the free action with no
background field, and h…i0 denotes the corresponding
expectation value,

hO½B; q; c; c̄�i0 ¼ Z−1
free

Z
DqDcDc̄e−Sfree½q;c;c̄�O½B; q; c; c̄�;

Zfree ¼
Z

DqDcDc̄e−Sfree½q;c;c̄�: ð33Þ

For future utility, we define the connected correlation
function hO1O2i0c ≡ hO1O2i0 − hO1ihO2i0. Since we
are interested only in the two-point function for B, only
terms up to OðB2Þ will be kept in S2.

1. The quadratic action

The gauge action in a background field can be conven-
iently written as follows,

SBF½B; q� ¼ Slat½VUðcÞ�

¼
X
n;μ<ν

βμνCμν

�
1 − 1

Nc
Re trfVμνðnÞUðcÞ

μν ðnÞg
�
;

ð34Þ
where the “quantum” and the “background” plaquette are
given respectively by

VμνðnÞ≡ e−ig
1
λμ
ð 1λνD

þ
ν qμðnÞþqμðnÞÞe−ig

1
λν
qνðnÞeig

1
λμ
qμðnÞ

× eig
1
λν
ð 1
λμ
Dþ

μ qνðnÞþqνðnÞÞ;

UðcÞ
μν ðnÞ≡UðcÞ

μ ðnÞUðcÞ
ν ðnþ μ̂ÞUðcÞ†

μ ðnþ ν̂ÞUðcÞ†
ν ðnÞ: ð35Þ

A standard application of the Baker-Campbell-Hausdorff
formula gives

UðcÞ
μν ðnÞ ¼ exp

�
i
a2

λμλν
fμνðnÞ þOða3B∂B; a4ð∂BÞ2Þ

þOða3B3Þ
�
; ð36Þ

with8

fμν ¼ a−1ðΔþ
μ Bν − Δþ

ν BμÞ þ i½Bμ; Bν�; ð37Þ

which in the continuum limit reduces to the usual field
strength tensor for the background field.9 For Vμν we have
instead

VμνðnÞ ¼ exp

�
ig

1

λμλν
½FμνðnÞ þ gRμνðnÞ� þOðg3Þ

�
;

ð38Þ
where

Fμν ¼ Dþ
μ qν −Dþ

ν qμ;

Rð1Þ
μν ¼ i

2λμλν
½Dþ

μ qν; Dþ
ν qμ� þ i½qμ; qν�;

Rð2Þ
μν ¼ i

2

�
1

λμ
½qμ; Dþ

ν qμ� − 1

λν
½qν; Dþ

μ qν�
�
; ð39Þ

and Rμν ¼ Rð1Þ
μν þ Rð2Þ

μν . Expanding up to quadratic terms in
B and q we find

SBF½B; q� ¼ Sc½B� þ Sq½B; q� þ ðlinear in qÞ þOðq3Þ;
ð40Þ

where Sc is the classical action, already defined above,

Sc ¼ J a4
X
n;μ;ν

βμν
2Nc

1

2
trf2μνðnÞ→

a→0

1

2

Z
d4x

X
μ;ν

βμν
2Nc

trF 2
μνðxÞ;

ð41Þ
while the “quantum” piece Sq is given by

Sq½B; q� ¼ J
X
n;μ;ν

1

2
trfF2

μνðnÞ þ 2a2RμνðnÞfμνðnÞg

− 1

4

a4

ðλμλνÞ2
trfF2

μνðnÞf2μνðnÞg: ð42Þ

The gauge-fixing term is quadratic in q, and can be
conveniently rearranged as follows,

Sg:f: ¼ Sð1Þg:f: þ Sð2Þg:f: þ ST0 ; ð43Þ

where

Sð1Þg:f: ¼ J
X
n;μ;ν

trfDþ
ν qμðnÞDþ

μ qνðnÞg;

Sð2Þg:f: ¼ J a2
X
n;μ;ν

trfR̄ð1Þ
μν ðnÞfμνðnÞg;

R̄ð1Þ
μν ¼ i

�
½qμ; qν� þ

1

λμ
½qμ; Dþ

μ qν� − 1

λν
½qν; Dþ

ν qμ�

þ 1

λμλν
½Dþ

ν qμ; Dþ
μ qν�

�
;

ST0 ¼ J a4
X
n;μ;ν

trR̄ð2Þ
μν ðnÞ

R̄ð2Þ
μν ¼ i

2λμλν

�
fμν;

1

λμ
Dþ

μ qν þ qν

��
fμν;

1

λν
Dþ

ν qμ þ qμ

�
:

ð44Þ

8In the following equations we will sometimes drop the
dependence on the lattice site n to make the expressions more
readable.

9In principle, also the higher-order terms of order
Oða3B∂B; a4ð∂BÞ2Þ appearing in Eq. (36) could contribute to
the two-point function in the continuum. This however is not the
case, as we will see below (see footnotes 10 and 11).
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Finally, the ghost term is independent of q toOðg0Þ. Putting
all the terms together, one obtains for the quadratic lattice
action

S2 ¼ Sc þ Sfree þ Sintgluon þ Sintghost þ SA þ SB þ ST þ ST0 ;

ð45Þ

where the terms have been grouped so that each quantity
in the equation above is separately invariant under a
background gauge transformation [36]. Here Sfree ¼
Sfreegluon þ Sfreeghost, with

Sfreegluon ¼ J
X
n;μ;ν

tr½Δþ
μ qνðnÞ�2;

Sfreeghost ¼ 2J
X
n;μ;ν

trfc̄ðnÞΔ−
μΔþ

μ cðnÞg; ð46Þ

being the free actions for gluons and ghosts, respectively, in
terms of which the propagators are defined, while the
interaction terms are given by

Sintgluon ¼ Sq þ Sð1Þg:f: − Sfreegluon

¼ J
X
n;μ;ν

trf½Dþ
μ qνðnÞ�2 − ½Δþ

μ qνðnÞ�2g;

Sintghost ¼ S0ghost − Sfreeghost

¼ 2J
X
n;μ

trfc̄ðnÞ½D−
μDþ

μ − Δ−
μΔþ

μ �cðnÞg: ð47Þ

Moreover, extra vertices come from the terms

SA ¼ J a2
X
n;μ;ν

trfRð1Þ
μν ðnÞfμνðnÞg þ Sð2Þg:f:

¼ J a2
X
n;μ;ν

trf½Rð1Þ
μν ðnÞ þ R̄ð1Þ

μν ðnÞ�fμνðnÞg;

SB ¼ J a2
X
n;μ;ν

trfRð2Þ
μν ðnÞfμνðnÞg;

ST ¼ −J a4
X
n;μ;ν

1

ð2λμλνÞ2
trfF2

μνðnÞf2μνðnÞg: ð48Þ

Explicitly, we have for SA and SB the expressions10

SA ¼ J a2
X
n;μ;ν

1

2
trfAμνðnÞfμνðnÞg;

Aμν ¼ 2i

�
2½qμ; qν� þ

1

λμ
½qμ; Dþ

μ qν� − 1

λν
½qν; Dþ

ν qμ�

− 1

2λμλν
½Dþ

μ qν; Dþ
ν qμ�

�
;

SB ¼ J a2
X
n;μ;ν

1

2
trfBμνðnÞfμνðnÞg;

Bμν ¼ i

�
1

λμ
½qμ; Dþ

ν qμ� − 1

λν
½qν; Dþ

μ qν�
�
: ð49Þ

Notice that the termsSA andST0 are odd in a given component
qμ of the gluon field, while the other terms are even. Since
the propagator is diagonal, this implies [33,35,36]
that11 hSAi0¼hST0 i0¼0, and also that hSintgluonSAi0c¼
hSASBi0c¼0.

2. The effective action

Expanding now Eq. (32) up to terms quadratic in the
background field, we obtain the following expression for
Seff ½B�,

Seff jOðB2Þ;Oðg0Þ ¼ Sc þ
1

2

�
hSintgluoni0 − 1

2
hðSintgluonÞ2i0c

�

− 1

2
hðSAÞ2i0c −

1

2
hðSBÞ2i0c þ hSTi0

þ ðhSBi0 − hSintgluonSBi0cÞ
≡ Sc þ ΔSg þ ΔSA þ ΔSB þ ΔST þ ΔSgB:

ð50Þ

Here we have taken into account the remarks after Eq. (49),
and the fact that in four dimensions the ghost contribution
exactly cancels half of the gluon contribution from Sintgluon

[33–36]. Terms have been grouped so that each contribu-
tion is separately gauge-invariant [36].
The evaluation of the various terms is performed general-

izing the techniques developed in [36] to the anisotropic
case. Since such a generalization is straightforward, here
we simply list the results, giving in Table I the contribution
ΔKμν of each term to the quantity Kμν [see Eqs. (26) and
(27)] in front of 1=2

R
d4x trF 2

μνðxÞ. The relevant technical

10In these quantities one should in principle include also the
higher-order terms mentioned above in footnote 9, by properly
redefining fμν.

11This clearly remains true also if higher-order terms neglected
in Eq. (36) are included in the definition of fμν, see footnotes 9
and 10. Since Sintgluon is OðBÞ, the only contribution of a higher-
order term which should still be considered is that of the
Oða3B∂BÞ term in Eq. (36) to hSBi0 ∝

P
trfhBμνi0tagfaμν;

however, (global) background gauge invariance implies that
trfhBμνi0tag ∝ Ba, and so higher-order terms can be safely
ignored.
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details can be found in the appendix of Ref. [36]. Summing
up, one obtains

Kμνða; λÞ ¼ KdivðaÞ þKμνðλÞ ¼ β0 log
1

ðaMÞ2 þKμνðλÞ;

ð51Þ

withM amass scalewhich sets the renormalization point, β0
the first coefficient of the Yang-Mills β-function [41–43],

β0 ¼
11

3

Nc

ð4πÞ2 ; ð52Þ

and with Kμν finite, a-independent coefficients,

KμνðλÞ ¼
11

3

Nc

ð4πÞ2
�
−γ þ 64

33

�

þ Nc

�
2

3
GμνðλÞ − 5

3
ðGμðλÞ þ GνÞðλÞ þ

11

3
GðλÞ

�

þ Nc

4

�
ZðλÞ

�
1

λ2ν
þ 1

λ2μ

�
− ZμðλÞ

λ2ν
− ZνðλÞ

λ2μ

�

þ N2
c − 1

2Nc

�
ZμðλÞ
λ2ν

þ ZνðλÞ
λ2μ

�
; ð53Þ

where γ ≃ 0.5772 is the Euler–Mascheroni constant, and
Gμν, Gμ, G, Zμ and Z are functions of fλμg defined in terms
of integrals involving the modified Bessel functions of the
first kind. Their precise form is not needed for the analysis of
the present section, and can be found in Appendix A,
Eqs. (A1) and (A3).
To renormalize the theory and recoverOð4Þ invariance in

the continuum limit it is enough to set

1

g2
¼ 1

g2rðMÞ þ β0 log
1

ðaMÞ2 ¼ β0 log
1

ðaΛÞ2 ;
δβμν
2Nc

¼ Kμν: ð54Þ

Here Λ ¼ M expf−1=ð2β0g2rðMÞÞg is a renormalization-
group-invariant mass scale, whose value can be determined
by comparing lattice results with experiments. Since a shift
δβμν → δβμν þ ~β can always be reabsorbed in a redefinition
ofg, any choice satisfying the set of conditionsδβμν − δβρσ ¼
Kμν −Kρσ will actually lead to restoration ofOð4Þ invariance
at one-loop accuracy.12 As we show in Appendix A, under a
global rescaling λμ→ζλμ,Z andZμ get a factor ζ2,Gμν andGμ

are unchanged, and G → Gþ 1
ð4πÞ2 log ζ

2, so that overall

Kμν → Kμν þ β0 log ζ2. Since the additive term can be
canceled by a → ζa, this means that the couplings βμν
depend on a and λμ only through the combinations provided
by the lattice spacings aμ, as they should. As we have already
remarked, to avoid redundancy one has to impose a condition
on the λμ’s, like, e.g., setting λα ¼ 1 for some α, so using one
of the lattice spacings as reference length, or imposing the
symmetric condition

Q
αλα ¼ 1, thus using the volume of the

elementary cell to define a.
We have compared our results with the ones available

in the literature for the isotropic [33,34,36], 3þ 1
[5,35,44,45] and 2þ 2 [5] anisotropic cases.13 In particular,
we have successfully checked that in the isotropic case we
recover the result of [36], and we have compared the
differences of δβμν with the ones reported in Ref. [5] for the
3þ 1 and 2þ 2 cases. While there is full agreement for
the 3þ 1 case, we found a discrepancy in the analytic
expression of one of the two independent differences in the
2þ 2 case.14 On the other hand, the numerical values also
reported in Ref. [5] agree with ours. It has to be noted that
the analytic result reported in Ref. [5] for that difference
does not vanish when there is no anisotropy, as it should, so
most likely it contains some misprint.
For future utility, we report the lowest-order approxi-

mation for the expectation value hPμνi of the plaquette

terms. Setting UμðnÞ ¼ ei
g
λμ
qμ and expanding in g, one finds

hPμνi ¼
g2

2Nc

1

λ2μλ
2
ν
htrF2

μνi0 þOðg3Þ; ð55Þ

where Fμν ¼ Δþ
μ qν − Δþ

ν qμ [see Eq. (39)], and h…i0 has
been defined in Eq. (33). A straightforward calculation
yields

TABLE I. Contribution of the various terms in Eq. (50) to Kμν

in the effective action, Eq. (26).

Term ΔKμν

ΔSg − Nc

3ð4πÞ2 ½−γ þ log 1
ðaMÞ2 þ 8

3
�

− Nc
3
½GμνðλÞ − GμðλÞ − GμðλÞ þ GðλÞ�

ΔSA 4Nc

ð4πÞ2 ½−γ þ log 1
ðaMÞ2 þ 2�

þNc½GμνðλÞ − 2GμðλÞ − 2GνðλÞ þ 4GðλÞ�
ΔSB Nc

4
½ZðλÞð 1

λ2μ
þ 1

λ2ν
Þ − ZμðλÞ

λ2ν
− ZνðλÞ

λ2μ
�

ΔST N2
c−1
2Nc

½ZμðλÞ
λ2ν

þ ZνðλÞ
λ2μ

�
ΔSgB 0

12More generally, it is the ratios βμν=βρσ that will be con-
strained by the request of restoration of Oð4Þ invariance, see the
discussion in Sec. II.

13In the 3þ 1 anisotropy class one lattice spacing differs from
the other three, e.g., λ4 ≠ λ1 ¼ λ2 ¼ λ3, while in the 2þ 2 class
the lattice spacings are equal pairwise, e.g., λ4 ¼ λ1 ≠ λ2 ¼ λ3.

14In the notation of Ref. [5], the discrepancy is in ηð1Þff − ηð1Þcf , in
particular in the coefficients of the quantities Bc

ξð2; 1Þ and

Bf
ξ ð2; 1; 1Þ, for which we find respectively Nc

2
ð 1
ξ2
þ 5

3ξ4
Þ and

Nc
6
ð1
2
þ 1

ξ2
Þ.
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hPμνi ¼ g2
N2

c − 1

2Nc

�
ZμðλÞ
λ2ν

þ ZνðλÞ
λ2μ

�
þOðg3Þ: ð56Þ

III. ANALYTIC CONTINUATION IN THE
NONPERTURBATIVE APPROACH TO SOFT

HIGH-ENERGY SCATTERING

In this section we use the results of Sec. II in the context
of the nonperturbative approach to soft high-energy scat-
tering. After a brief review of this approach (the interested
reader can confer Refs. [20–27] for a more detailed
discussion), we discuss its formulation on a Euclidean
anisotropic lattice, and we refine the arguments of Ref. [13]
on the analytic continuation back to Minkowski spacetime.

A. Euclidean approach to soft high-energy scattering

Soft high-energy scattering is characterized by small
transferred momentum squared t, jtj≲ 1 GeV2, and very
large total center-of-mass energy squared s, s ≫ 1 GeV2. In
the approach of Ref. [20], hadronic scattering amplitudes in
the soft high-energy regime can be obtained from partonic
scattering amplitudes after foldingwith appropriate hadronic
wave functions. In particular, formeson-meson scattering the
basic quantity is the scattering amplitude of two colorless
transverse dipoles, which in the soft high-energy regime is
given in impact-parameter space by the correlation function
of two rectangular Minkowskian Wilson loops [21,22].
These Wilson loops are computed on the paths described
by the classical trajectories of the dipoles, so forming a large
hyperbolic angle χ in the longitudinal plane, and are cut at
proper times �T for infrared regularization purposes [6]. In
turn, their (Minkowskian) correlation function is obtained
after analytic continuation in the angular variable and in the
length of the loops from the correlation function of two
Euclidean Wilson loops of length 2T forming an angle θ in
the longitudinal Euclidean plane [13–19]. This approach can
be generalized to describe scattering processes involving
baryons [20–26,46]. As the constructions and the arguments
of this section are easily adapted to this case, we restrict the
discussion to meson-meson (dipole-dipole) scattering for
simplicity.
The relevant Euclidean correlator is given by15

GEðθ; T; ~z⊥; ~R1⊥; f1; ~R2⊥; f2Þ ¼
hWðTÞ

1 WðTÞ
2 iE

hWðTÞ
1 iEhWðTÞ

2 iE
− 1;

ð57Þ

where h…iE denotes the expectation value in the sense
of the Euclidean functional integral, ~z⊥ is the impact-
parameter distance between the dipoles, and ~Ri⊥ and fi are

the transverse size of the dipoles and the longitudinal
momentum fraction of the quarks in the two mesons,

respectively (“dipole variables”). The Wilson loops WðTÞ
1;2

are computed on the following paths (see Fig. 1),

CðTÞ1 ∶ X�
E1ðτÞ ¼ �u1τ þ zþ f�1 R1 ¼ �u1τ þ d�1 ;

CðTÞ2 ∶ X�
E2ðτÞ ¼ �u2τ þ f�2 R2 ¼ �u2τ þ d�2 ; ð58Þ

with τ ∈ ½−T; T�, and closed by straight-line paths in the
transverse plane at τ ¼ �T. The four-vectors u1;2 are

chosen to be u1;2 ¼ ð� sin θ
2
; ~0⊥; cos θ2Þ, θ being the angle

formed by the two trajectories, i.e., u1 · u2 ¼ cos θ.
Moreover, Ri¼ð0; ~Ri⊥;0Þ, z¼ð0;~z⊥;0Þ and fþi ≡ 1 − fi,
f−i ≡−fi, with fi ∈ ½0; 1�. The Minkowskian correlation
function is obtained from Eq. (57) by means of analytic
continuation as follows [13,17],

GMðχ; T; ~z⊥; ~R1⊥; f1; ~R2⊥; f2Þ
¼ GEð−iχ; iT; ~z⊥; ~R1⊥; f1; ~R2⊥; f2Þ: ð59Þ

Physical amplitudes are finally obtained from GM in the
limit T → ∞, and for asymptotically large χ ∼ log s. It is
worth mentioning that combining Eq. (59) with the Oð4Þ
symmetry of the Euclidean theory one obtains the follow-
ing crossing-symmetry relations [18,19],

GMðχ; T; ~z⊥; ~R1⊥; f1;−~R2⊥; 1 − f2Þ
¼ GMðiπ − χ; T; ~z⊥; ~R1⊥; f1; ~R2⊥; f2Þ; ð60Þ

which allow us to relate the scattering amplitudes in the
direct (meson-meson) and crossed (meson-antimeson)
channels.

FIG. 1. The Euclidean Wilson loops WT
1 and WT

2 , defined in
Eq. (58).

15Here and in the following we denote by ~v⊥ a two-
dimensional vector in the transverse plane.
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The analytic continuation relation, Eq. (59), has allowed
studies of the correlators through nonperturbative Euclidean
techniques [28,47–56]. For a brief review of the older results
and a comparison to lattice data cf. [53–55].

B. Anisotropic lattice formalism

It is well known that the functional integral needs to be
regularized to become a well-defined mathematical object.
Furthermore, the analytic continuation relation Eq. (59) is
meaningful only if a sufficiently wide analyticity domain
exists. The first issue can be dealt with by discretizing the
theory on a lattice, so that the relevant Wilson loop
correlator can then be computed nonperturbatively, for
example by means of numerical simulations, using off-axis
operators to approximate the continuum Wilson loops.
Numerical simulations using an isotropic lattice have been
reported in Refs. [53–55]. Unfortunately, only a discrete set
of angles is accessible in this case; furthermore, for each
angle one has to use a different off-axis Wilson loop, which
makes the angular dependence even less analytically
controllable. Since our purpose here is to study the analytic
dependence on θ and T, it is more convenient to use an
appropriate anisotropic lattice keeping fixed the Wilson-
loop operator, which allows us to expose the dependence on
the relevant variables in the action. In this way we make the
functional integral a well-defined object, and at the same
time we can study the analyticity domain of the correlator.
To avoid complications related to the well-known

difficulties in treating fermions on the lattice, in this study
we consider the quenched approximation of QCD, i.e., the
pure-gauge theory case. We hope to return in a future paper
on the inclusion of fermionic effects, which may be more
important than usually expected for soft high-energy
processes (see Refs. [28,56]).
A good choice is to use the anisotropic action discussed

previously, Eq. (5), taking the anisotropy parameters to be
such that the long sides of the Wilson loops lie in a lattice
plane at 45° from two of the lattice axes, and are of fixed
length. This amounts to set

λ4ðθ; T̄Þ ¼
1ffiffiffi

2
p

T̄ cos θ
2

; λ1ðθ; T̄Þ ¼
1ffiffiffi

2
p

T̄ sin θ
2

;

λ2ðθ; T̄Þ ¼ λ3ðθ; T̄Þ ¼ 1; ð61Þ

where T̄ ≡ T=T0 with T0 some fixed length, and θ is
restricted to θ ∈ ð0; πÞ without loss of generality [18]. This
yields for the plaquette coefficients

C41ðθ; T̄Þ ¼
1

C23ðθ; T̄Þ
¼ 1

T̄2 sin θ
;

C42ðθ; T̄Þ ¼ C43ðθ; T̄Þ ¼
1

C12ðθ; T̄Þ
¼ 1

C13ðθ; T̄Þ
¼ tan

θ

2
:

ð62Þ

Notice that the following relations hold,

λ24ðθ; T̄Þ ¼
C42ðθ; T̄Þ
C23ðθ; T̄Þ

; λ21ðθ; T̄Þ ¼
C12ðθ; T̄Þ
C23ðθ; T̄Þ

;

J ðθ; T̄Þ ¼ T̄2 sin θ ¼ C23ðθ; T̄Þ: ð63Þ

The action defined by Eq. (5), with anisotropy parameters
Eq. (61), will be denoted by S½U; θ; T̄�, and the correspond-
ing expectation value will be denoted by h…iθ;T̄.
The lattice Wilson loops are defined as

WðT0Þ
Li ¼ 1

Nc
trfWþ

i H
þ
i W

−†
i H−†

i g; ð64Þ

where the “tilted” Wilson lines W�
i are defined as (see

Fig. 2)

W�
i ¼

Yt0−1
j¼−t0

UðiÞðjv1;2 þ d�LiÞ; ð65Þ

where v1;2 ¼ ð�1; 0; 0; 1Þ, t0 ¼ T0

a
ffiffi
2

p with t0 ∈ N, and d�Li ¼
d�i =a denotes the transverse position in lattice units, see
Eq. (58), while H�

i are the appropriate Wilson lines made
of the usual link variables in the transverse plane, closing
the loops.16 It is clear that

ffiffiffi
2

p
t0 ¼ T0

a is the distance in
lattice units between the center of a long side of the loop
and its endpoints, i.e., loosely speaking, the half-length in
lattice units of the Wilson loops. The tilted links UðiÞðnÞ are
appropriate functionals UðiÞ½U; n� of the lattice links, which
in the continuum limit have to satisfy17 [see Eq. (4)]

Uð1ÞðnÞ ¼ 1þ iaT̄
ffiffiffi
2

p �
cos

θ

2
A4ðxðnÞÞ þ sin

θ

2
A1ðxðnÞÞ

�
þOða2Þ;

Uð2ÞðnÞ ¼ 1þ iaT̄
ffiffiffi
2

p �
cos

θ

2
A4ðxðnÞÞ − sin

θ

2
A1ðxðnÞÞ

�
þOða2Þ; ð66Þ

and which under a gauge transformation behave as

16One can properly choose λ2;3 and use tilted links also in the
transverse plane. This would however leave the discussion and
the conclusions of this section unchanged.

17The factor in front of the square brackets takes into account
that the diagonal of a plaquette in the longitudinal plane has
length

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a24 þ a21

p
¼ ffiffiffi

2
p

aT̄. Notice that we are using path-ordered
Wilson loops, as it is customary on the lattice, rather than the time-
ordered Wilson loops appearing in the formulas for the scattering
amplitudes (see, e.g., Refs. [27,53]). This has no consequence on
the results, as the theory is invariant under charge conjugation, and
so under reversing the loop orientation.
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Uð1ÞðnÞ → GðnÞUð1ÞðnÞG†ðnþ 4̂þ 1̂Þ;
Uð2ÞðnÞ → GðnÞUð2ÞðnÞG†ðnþ 4̂ − 1̂Þ: ð67Þ

The simplest possibility in building Uð1;2Þ is obviously to
use a combination of the gauge transporters along the two
shortest paths connecting opposite corners of an elementary
plaquette, namely

Uð1Þ
1 ðnÞ¼U4ðnÞU1ðnþ 4̂Þ; Uð1Þ

2 ðnÞ¼U1ðnÞU4ðnþ 1̂Þ;
Uð2Þ

1 ðnÞ¼U4ðnÞU†
1ðnþ 4̂− 1̂Þ;

Uð2Þ
2 ðnÞ¼U†

1ðn− 1̂ÞU4ðn− 1̂Þ: ð68Þ

It is convenient to adopt a definition of UðjÞ which is

symmetric under the exchange UðjÞ
1 ðnÞ ↔ UðjÞ

2 ðnÞ. A
viable choice is (see Fig. 3)

UðjÞðnÞ ¼ ProjSUðNcÞ½U
ðjÞ
1 ðnÞ þ UðjÞ

2 ðnÞ�; ð69Þ

with ProjSUðNcÞ denoting the projection on SUðNcÞ. This
symmetry requirement comes out naturally if we want that
the Wilson loop correlator satisfies on the lattice the same
“crossing property” [18,19] that it satisfies in the con-
tinuum. It is easy to show that in the continuum the

correlation function of the two Wilson loops WðTÞ
1;2 , defined

in Eq. (58), at angle π − θ is equal to the correlation

function of WðTÞ
1;2 at angle θ but with the orientation of one

of the loops being reversed. In formulas,

hWðTÞ
1 WðTÞ

2 iEjθ¼π−ϑ ¼ hWðTÞ
1 WðTÞ�

2 iEjθ¼ϑ

¼ hWðTÞ�
1 WðTÞ

2 iEjθ¼ϑ: ð70Þ

In order to impose this symmetry on the lattice, let us first
notice that the anisotropic lattice action defined by Eqs. (5)
and (61) is invariant under the transformation U ¼ ΞUΞ

acting on the links, defined by

U4ðnÞ¼UΞ
1 ðnΞÞ; U1ðnÞ¼UΞ

4 ðnΞÞ; U2;3ðnÞ¼UΞ
2;3ðnΞÞ;

nΞ4 ¼n1; nΞ1 ¼n4; nΞ2;3¼n2;3; ð71Þ

if at the same time one also sends θ → π − θ. Indeed, it
suffices to verify that C42ðπ − θ; T̄Þ ¼ C12ðθ; T̄Þ and
C41ðπ − θ; T̄Þ ¼ C41ðθ; T̄Þ [see Eq. (62)]. Consequently,
the one-loop corrections Kμν will transform in the same
way as Cμν, as can be also verified explicitly. We have then
S½ΞU; θ; T̄� ¼ S½U; π − θ; T̄�, and since the integration
measure is clearly invariant, the expectation value of some
observable O½U� satisfies hO½U�iπ−θ;T̄ ¼ hO½ΞU�iθ;T̄ . In
order to maintain the crossing property also on the lattice,
the tilted links must therefore transform as

Uð1Þ½ΞU; nΞ� ¼ Uð1Þ½U; n�;
Uð2Þ½ΞU; nΞ� ¼ Uð2Þ†½U; n − 4̂þ 1̂�: ð72Þ

One can then readily show that the definition Eq. (69)
satisfies the properties Eq. (66), Eq. (67) and Eq. (72). In
Appendix B we show that using Eq. (69) in the case of the
compact Uð1Þ gauge theory one correctly recovers the
continuum result of Ref. [17] in the weak-coupling limit.
One can then define the relevant Euclidean correlator as

the continuum limit of the appropriate lattice correlator,

GEðθ; T ¼ T0T̄Þ ¼ lim
a→0;V→∞

GLðθ; T0; T̄; a; VÞ;

GLðθ; T0; T̄; a; VÞ≡ hWðT0Þ
L1 WðT0Þ

L2 iθ;T̄
hWðT0Þ

L1 iθ;T̄hWðT0Þ
L2 iθ;T̄

− 1; ð73Þ

where V is the lattice volume, and we have dropped the
dependence on the impact parameter and on the dipole
variables, since they play no role in the following.

C. Analytic continuation

We now argue that GEðw; TÞ is analytic in a complex
domain D which makes the analytic continuation relations
Eq. (59) meaningful. Here w and T are now complex
variables, which we parametrize as w ¼ θ − iχ, with real
θ; χ, and T ¼ T0T̄ ¼ T0jT̄jei

φ
2, with φ ∈ ð−2π; 2π�. Since

one has to take two possibly dangerous limits, i.e., the
infinite-volume limit and the continuum limit, which
currently are not under full theoretical control, our argu-
ment is not rigourous. Nevertheless, a few reasonable
technical assumptions are sufficient to complete the proof.
The first thing to check is that the couplings, βμνðw; T̄Þ,

and the plaquette coefficients, Cμνðw; T̄Þ, are analytic
functions of w and T̄ ¼ jT̄jeiφ2 . This is obvious at tree
level, since βμν ¼ 2Nc=g2 and the only singular points of
Cμν are w ¼ nπ with n ∈ Z, and T̄ ¼ 0. Analyticity of the
one-loop corrections Kμνðw; T̄Þ, and so of βμνðw; T̄Þ at the
one-loop level, is studied in Appendix A.
The next step is to require that the theory has the desired

continuum limit. This requires positivity of the real part of
the action to guarantee convergence. The tree-level con-
vergence conditions have been discussed in Ref. [13], and
read

ReCμνðw; T̄Þ > 0 ∀ μ; ν: ð74Þ

These conditions define a complex domain D which has
been fully worked out in Ref. [13]. Although its detailed
form will not be used here, it is worth mentioning that D
is defined only in terms of the complex angle w and of φ,
i.e., jT̄j is not restricted (except for asking jT̄j ≠ 0). The
Euclidean region corresponds to θ ∈ ð0; πÞ, χ ¼ 0, φ ¼ 0.
The Minkowskian region θ ¼ 0, χ > 0, φ ¼ π lies at the
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boundary of D, and so does also the “crossed”
Minkowskian region θ ¼ π, χ < 0, φ ¼ π; we will refer
to these as the “physical” boundaries ofD. Notice that both
in the Euclidean and in the Minkowskian regions the
restrictions on the angular variables do not lead to any
loss of information [18]. As it is shown in details in
Appendix A, the one-loop corrections Kμνðw; T̄Þ are
analytic in D. For small enough lattice spacing, the one-
loop corrections will therefore not spoil the positivity of the
real part of the action enforced at tree level, for any choice
of parameters in a compact subdomain of D.
At finite volume and finite lattice spacing, and at one-

loop accuracy, we have therefore proved that the relevant
correlators are analytic functions in a domain D, within
which positivity of the real part of the action is guaranteed.
This domain of analyticity will survive the infinite volume
limit if the convergence is uniform. Proving this is currently
out of reach. However, if a lattice system has short-range
interactions, then correlation functions of operators local-
ized in some finite region R of spacetime will become
insensitive to the lattice size when this exceeds the size of
R by a few correlation lengths. Notice that T0 is fixed, so
that our operators are indeed localized. If interactions
remain short-ranged throughout D, then it is enough to
take the lattice size required by the largest correlation
length (within some compact subdomain of D) to make
finite-size corrections uniformly negligible. This essen-
tially amounts to assuming that the theory remains con-
fining as one moves in D. Although we cannot prove this,
we find it plausible: for example, it is easy to see that it is
true at strong coupling by means of a character expansion.
At this point one has to take the continuum limit. This

limit is expected to exist and be finite within D (again, a
rigorous proof is out of question). In particular, Wilson-
loop operators renormalize multiplicatively [57,58], so that
the normalized correlation function appearing in Eq. (73)
does not require any further renormalization on top of the
renormalization of the couplings in the action, discussed in
the previous section. A rigorous proof of uniform con-
vergence is currently out of reach; however, deviations
from the continuum limit are expected to be of order OðaÞ,
independently of w and T̄, and in this case it is possible to
make them uniformly negligible.
The conclusion, within the present accuracy, is thatGE is

analytic in the complex domain D, which, as shown in
Ref. [13], is sufficiently wide to make the analytic
continuation relation Eq. (59) and the crossing-symmetry
relations Eq. (60) fully meaningful.
As it was implicit in the discussion above, singularities in

the correlator may develop at the boundaries of D. As the
analytic continuation Eq. (59) is formally equivalent to the
usual definition of the Minkowskian correlator making use
of the “−iε” prescription [18], no singularities are expected
at the physical boundaries of the domain. The anisotropic
action itself is singular at θ ¼ 0; π, χ ¼ 0 and θ ¼ 0; π,

χ ¼ ∞, but as this is an artifact of the construction it is not
clear if true singularities are present there. At finite T (i.e.,
for Wilson loops of finite physical length), no singularity is
expected in the Euclidean correlator (χ ¼ 0) also at
θ ¼ 0; π; however, as T → ∞, a true singularity is expected
to appear there, which has its physical origin in the relation
between the correlator Eq. (57) at θ ¼ 0; π and the static
dipole-dipole potential [59–62]. This is also supported by
numerical results [53,54]. On the other hand, the points
θ ¼ 0, χ ¼ ∞ and θ ¼ π, χ ¼ −∞, in the limit T → ∞, are
the ones actually relevant to soft scattering at asymptoti-
cally high energy, where the approach initiated by Ref. [20]
applies. A better understanding of the correlator near these
points would help in the study of the asymptotic high-
energy behavior of scattering amplitudes and total cross
sections. In particular, in order to establish that the
expressions for the scattering amplitudes derived in this
approach satisfy unitarity, it is crucial to show that for
vanishing θ and large χ the correlator is a properly bounded
function of the impact parameter and of the dipole
variables. Furthermore, the existence (or not) of the strict
χ → ∞ limit at fixed impact parameter, and the properties
of the correlator in this limit, are closely connected to the
issue of universality of hadronic total cross sections
observed in experiments (see, e.g., Refs. [63,64] and
references therein). For more details on these problems,
we invite the interested reader to confer Ref. [28].
Other singularities could appear when jTj → 0 or

jTj → ∞. Working at fixed T0, this corresponds to
jT̄j → 0 or jT̄j → ∞, which are again singular points of
the anisotropic action. However, since the analytic con-
tinuation to the physical boundaries requires only the phase
of T̄ to be changed, one can take as well T0 ¼ jTj and
T̄ ¼ expfi φ

2
g, and study the two limits above by changing

the length of the tilted Wilson loops.18 The above limits
therefore correspond to the limit of tilted Wilson loops of
vanishing or infinite length. In the first case no singularity
is expected; in any case this limit is irrelevant for our
purposes. On the other hand, the limit of infinite length is
the one entering the physical scattering amplitudes. In this
case, the short-ranged nature of strong interactions (which
is assumed to remain unchanged throughout the analyticity
domain) implies that distant parts of the two Wilson loops
do not “feel” each other, i.e., those parts of the loops that lie
beyond a certain distance from the centers interact mutually
only very weakly, and essentially contribute only to the
self-interaction of the loops. These contributions are
canceled by the normalization factors, so that the correlator
becomes basically insensitive to the length of the loops
beyond some critical value, and a finite limit jTj → ∞ is
therefore expected. In the Euclidean case, this has already
been checked on the lattice, although in an isotropic setting

18In the continuum limit the choice of T0 should be irrelevant,
as long as it is compensated by the appropriate choice of T̄.
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[53]. As discussed in Ref. [13], the boundedness and the
analyticity properties of the correlator as a function of T
imply through the Phragmén-Lindelöf theorem (see, e.g.,
Ref. [65]) that the analytic continuation to Minkowski
spacetime and the infinite-length limit commute. Setting
CE;M ¼ limT→∞GE;M, this means that one can obtain the
physical correlator by means of an analytic continuation in
the angular variable only, i.e.,

CMðχ;~z⊥; ~R1⊥;f1; ~R2⊥;f2Þ¼ CEð−iχ;~z⊥; ~R1⊥;f1; ~R2⊥;f2Þ:
ð75Þ

The analyticity domain for CEðw ¼ θ − iχÞ, already dis-
cussed in Ref. [13], is clearly not changed by one-loop
corrections, and it is simply the strip θ ∈ ð0; πÞ, χ ∈ R,
shown in Fig. 4.

IV. LONGITUDINALLY RESCALED ACTION

The results of Sec. II can be used to obtain some insight
in the approach to high-energy scattering based on longi-
tudinally rescaled actions [6–12]. The physical idea behind
this approach is that in high-energy scattering processes the
longitudinal directions appear highly Lorentz-contracted,
so that it should be possible to achieve an effective
description through an appropriately rescaled action.
While initially only a classical rescaling was considered
[6–9], in recent years the effects of quantum corrections
have been computed by means of anisotropic renormaliza-
tion in the continuum theory [10–12]. Here we will
consider the same problem in the lattice approach, which
will allow us to clarify, to some extent, the structure of the
action in the limit of large anisotropy. Notice that the
anisotropy class (2þ 2) is the same considered in Ref. [5].
On the lattice, the tree-level anisotropic action is given

by Eq. (1) with the following anisotropy parameters,

λðLRÞ4 ðξÞ ¼ λðLRÞ1 ðξÞ ¼ ξ; λðLRÞ2 ðξÞ ¼ λðLRÞ3 ðξÞ ¼ 1: ð76Þ

In the following, the superscript LR is used to specify that
this particular choice has been made. We will refer to
directions 4 and 1 as longitudinal, and directions 2 and 3 as
transverse, and use the notation n∥¼ðn4;n1Þ, n⊥¼ðn2;n3Þ,
a∥ ¼ a4 ¼ a1 ¼ a=ξ, a⊥ ¼ a2 ¼ a3 ¼ a. The plaquette

coefficients CðLRÞ
μν in the anisotropic action read

CðLRÞ
23 ðξÞ ¼ 1

ξ2
;

CðLRÞ
24 ðξÞ ¼ CðLRÞ

21 ðξÞ ¼ CðLRÞ
34 ðξÞ ¼ CðLRÞ

31 ðξÞ ¼ 1;

CðLRÞ
41 ðξÞ ¼ ξ2: ð77Þ

The interesting case is that of large ξ. Taking naïvely
the limit ξ → ∞ in the tree-level action, the transverse-
transverse plaquette term drops from the action, while the

FIG. 2. The “tilted” lattice Wilson loops WðT0Þ
L1 and WðT0Þ

L2 ,
Eqs. (64) and (65), projected on the longitudinal plane.

FIG. 3. The tilted links of Eq. (69), built from the shortest paths
connecting opposite corners of a plaquette.

FIG. 4 (color online). Analyticity domain of the Wilson-loop
correlator with the infrared cutoff removed, CE [see Eq. (75)]. The
solid black lines indicate the boundaries of the domain, and
crosses signal the singularities.
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longitudinal-longitudinal term yields essentially a “delta
function” forcing the longitudinal links to be trivial. The
resulting effective action would read

Streelat →
ξ→∞

Sð2DÞ ¼
X
n⊥

Sð2Þχ ðn⊥Þ þ Sð3Þχ ðn⊥Þ;

SðμÞχ ðn⊥Þ ¼
β

2Nc

X
n∥

X
α¼4;1

trf½Δþ
αUμðnÞ�½Δþ

αUμðnÞ�†g;

ð78Þ

which describes a set of independent 2D principal chiral
models involving the transverse link variables, each one
living in the longitudinal plane at a given point n⊥ in the
transverse plane. Here Δþ

α has been redefined by omitting
the λα factor [see Eq. (15)]. Taking into account quantum
corrections, however, a different coupling has to be used for
each of the three different kinds of plaquette terms, namely

βðLRÞ∥∥ ¼ βðLRÞ41 for the longitudinal-longitudinal term,

βðLRÞ⊥⊥ ¼ βðLRÞ23 for the transverse-transverse term and βðLRÞ∥⊥ ¼
βðLRÞ42 ¼βðLRÞ43 ¼βðLRÞ12 ¼βðLRÞ13 for the longitudinal-transverse
terms. Recall that the quantum corrections are of the form

KðLRÞ
μν ðξÞ ¼ 11

3

Nc

ð4πÞ2
�
−γ þ 64

33

�
þ ΔGðLRÞ

μν ðξÞ þ ΔZðLRÞ
μν ðξÞ

¼ −β0 log c2 þ ΔGðLRÞ
μν ðξÞ þ ΔZðLRÞ

μν ðξÞ; ð79Þ

with ΔGðLRÞ
μν and ΔZðLRÞ

μν containing respectively the
contributions of the G- and Z-integrals, Eqs. (A1) and

(A3). Obviously, ΔGðLRÞ
42 ¼ΔGðLRÞ

43 ¼ΔGðLRÞ
12 ¼ΔGðLRÞ

13 , and

similarly for ΔZðLRÞ
μν . Using the large-ξ behavior of these

integrals, derived in Appendix A, one gets

βðLRÞ⊥⊥ ða;ξÞ
2Nc

¼ β0 log
1

ðaΛcÞ2þ2
N2

c−1

2Nc

1

4π
logξ2

þΔGðLRÞ;fin
⊥⊥ ðξÞþΔZðLRÞ;fin

⊥⊥ ðξÞ;
βðLRÞ∥∥ ða;ξÞ

2Nc
¼ β0 log

1

ðaΛcÞ2þΔGðLRÞ;fin
∥∥ ðξÞþΔZðLRÞ;fin

∥∥ ðξÞ;

βðLRÞ∥⊥ ða;ξÞ
2Nc

¼ β0 log
1

ðaΛcÞ2þ
Nc

4

1

4π
logξ2

þΔGðLRÞ;fin
∥⊥ ðξÞþΔZðLRÞ;fin

∥⊥ ðξÞ; ð80Þ

where the superscript fin on a quantity indicates that it is
finite in the limit ξ → ∞. If we keep the transverse spacing
a⊥ ¼ a fixed, then taking ξ → ∞ means taking a∥ ¼ a⊥=ξ
to zero, i.e., taking the continuum limit in the longitudinal
plane only. One then sees that in general it is not allowed to
discard the transverse-transverse plaquette term, sinceP

n∥
β⊥⊥
2Nc

ξ−2P23¼
P

n∥
β⊥⊥
2Nc

ða∥a⊥Þ2P23 contains the right power

of a∥ to become the two-dimensional integral over the
longitudinal plane in the limit a∥ → 0.
The action can now be recast in a form appropriate for a

set of coupled two-dimensional principal chiral models. To
this end, it is convenient to introduce the following
couplings,

βð2DÞða∥;a⊥Þ¼
βðLRÞ∥⊥ ða;ξÞ

2Nc

				
Oðξ0Þ

¼Nc

2

1

4π
log

1

a∥Λð2DÞða⊥Þ
;

~βð2DÞða∥;a⊥Þ¼
βðLRÞ⊥⊥ ða;ξÞ

2Nc

				
Oðξ0Þ

¼N2
c−1

2Nc

1

π
log

1

a∥ ~Λ
ð2DÞða⊥Þ

;

β̂ð2DÞða⊥Þ¼
βðLRÞ∥∥ ða;ξÞ

2Nc

				
Oðξ0Þ

¼β0 log
1

ða⊥ΛcÞ2
; ð81Þ

where the a⊥-dependent scales Λð2DÞ and ~Λð2DÞ are given in
terms of the original Λ-scale as follows,

Λð2DÞða⊥Þ¼Λcða⊥ΛcÞ
16πβ0
Nc

−1e−
8π
Nc
½ΔGðLRÞ;fin

∥⊥ ð∞ÞþΔZðLRÞ;fin
∥⊥ ð∞Þ�;

~Λð2DÞða⊥Þ¼Λcða⊥ΛcÞ
4πβ0Nc
N2
c−1

−1
e
−2πNc

N2
c−1

½ΔGðLRÞ;fin
⊥⊥ ð∞ÞþΔZðLRÞ;fin

⊥⊥ ð∞Þ�
:

ð82Þ

The action can be equivalently written as follows,

Slat ¼
X
n⊥

Sð2Þχ ðn⊥Þ þ Sð3Þχ ðn⊥Þ þ Sint1ðn⊥Þ þ Sint2ðn⊥Þ;

ð83Þ

where SðμÞχ correspond to principal chiral models,

SðμÞχ ðn⊥Þ ¼ βð2DÞða∥; a⊥Þ
×
X
n∥

X
α¼4;1

trf½Δþ
αUμðnÞ�½Δþ

αUμðnÞ�†g; ð84Þ

and the interaction terms read

Sint1ðn⊥Þ ¼ ~βð2DÞða∥; a⊥Þ
X
n∥

a2∥
a2⊥

P23ðnÞ;

Sint2ðn⊥Þ ¼ βð2DÞða∥; a⊥Þ
X
μ¼2;3

X
n∥

X
α¼4;1

½2NcPμαðnÞ

− trf½Δþ
αUμðnÞ�½Δþ

αUμðnÞ�†g�

þ β̂ð2DÞða⊥Þ
X
n∥

2Nc
a2⊥
a2∥

P41ðnÞ: ð85Þ

The only approximation made here is to discard oðξ0Þ terms
in the couplings, so that this is just a rewriting of the
original action in the limit of large ξ. Nevertheless, this
expression displays a remarkable feature: the coupling
βð2DÞ is precisely the one appropriate for a 2D principal

MATTEO GIORDANO PHYSICAL REVIEW D 92, 034514 (2015)

034514-14



chiral model with lattice spacing a∥, to one-loop accuracy
(see, e.g., Ref. [66]). The principal chiral models are clearly
not independent, with the precise form of the interaction
dictated by the full 4D action. Notice that identifying the
longitudinal links with Uμ ¼ expfia∥qμg and expanding in
powers of a∥, the summands in the interaction term Sint2 are
of orderOða2∥Þ, as appropriate to obtain an integral over the
longitudinal plane in the naïve a∥ → 0 limit, so there is no
reason to discard these contributions.19 It is not surprising
that the interaction terms cannot be neglected a priori: after
all, no matter how anisotropic the lattice is made, by
construction the action has to describe QCD in the con-
tinuum limit. The possibility or not to neglect the interaction
terms will depend on the properties of the specific observ-
ables relevant to the study of high-energy processes.
The expectation values of the different plaquette terms

can be used to estimate the range of applicability of the
expressions above. Using Eq. (56) one gets to lowest order
[see Eq. (A37)]

hP41i¼ g2
N2

c−1

Nc

ZðLRÞ
∥ ðξÞ
ξ2

≃g2
N2

c−1

Nc

z10
ξ2

;

hP42i¼ g2
N2

c−1

2Nc

�
ZðLRÞ

∥ ðξÞþZðLRÞ
⊥ ðξÞ
ξ2

�
≃g2

N2
c−1

2Nc
z10;

hP23i¼ g2
N2

c−1

Nc
ZðLRÞ

⊥ ðξÞ≃g2
N2

c−1

Nc

1

4π
logξ2; ð86Þ

with z10 a constant defined in Eq. (A21), so that in order to
have small fluctuations one needs g2 log ξ ≪ 1. Together
with the basic assumption g2 ≪ 1, and the fact that we
work here at ξ ≫ 1, the requirement hP23i ≪ 1 defines the
range of applicability of perturbation theory, which in terms
of the lattice spacings reads

1 ≫ a⊥Λ ≫ a∥Λ ≫ ða⊥ΛÞ
1þ4πβ0Nc

N2
c−1 ≥ ða⊥ΛÞ2: ð87Þ

The important fact is that Eq. (87) does not allow us to
strictly take the continuum limit in the longitudinal plane
before taking a⊥ to zero. This was already suggested in
Ref. [10], although there it is claimed that perturbation
theory makes sense only for ξ slightly larger than 1;
according to our results, a much larger region seems to
be accessible.
A comparison of our results with those of Refs. [10–12]

is not straightforward. First of all, since we use a different
regularization, we expect different finite contributions to
the renormalization of the couplings in the limit a → 0

(at fixed ξ); ultraviolet divergences, on the other hand, have
to be the same. Indeed, to account for a change in the cutoff,
Orland and collaborators integrate over an anisotropic
ellipsoidal shell in momentum space, while on the lattice
a change in the cutoff requires us to integrate over an
anisotropic parallelepipedal shell. It would be interesting to
compare the divergent terms in the limit ξ → ∞, but in
Refs. [10–12] only the case ξ≳ 1 is studied.
We conclude by noticing that a similar recasting of the

action can be done also in the case discussed in Sec. III,
considering the limit of large T̄. The results are briefly
discussed in Appendix C.

V. CONCLUSIONS

In this paper we have performed the renormalization of
SUðNcÞ gauge theories on a general four-dimensional
anisotropic lattice, with different lattice spacings in the
four directions, using perturbation theory to one-loop order
and the background field method on the lattice (Sec. II). To
avoid the complications related to the introduction of
fermions on the lattice, we have discussed here the pure-
gauge case only. For general anisotropy, the various
couplings in the gauge action need to be properly tuned
in order to recover Oð4Þ invariance in the continuum limit,
as already observed in Ref. [5]. In practice, however, only
two parameters need to be tuned for this purpose, which
reduce to one if there is at least a pair of equal lattice
spacings (and to none in the 3þ 1 case). A simple non-
perturbative scheme for this tuning, based on the string
tensions obtained in different lattice planes, has also been
proposed.
In Sec. III, the possibility to vary continuously the

anisotropy parameters has been exploited in the context of
the nonperturbative approach to soft high-energy
hadron-hadron scattering based on Wilson loops [20–27],
in order to refine the arguments ofRef. [13] on the analyticity
propertiesof therelevantWilson-loopcorrelators.Theresults
reported here give further support to the possibility of
performing the desired analytic continuation between
Euclidean and Minkowski space, and thus on the very
possibility of using Euclidean techniques to study
soft high-energy processes. This is particularly important
in the light of recent progresson theproblemofhadronic total
cross sections [28,56], which is based on the possibility of
recovering the physical amplitudes starting from Euclidean
space.
In Sec. IV we have applied our results to the longitu-

dinally rescaled actions considered in Refs. [6–12] to study
high-energy scattering in QCD. At the classical level, in the
limit of large anisotropy the action reduces to that of a set of
coupled two-dimensional principal chiral models, living in
the longitudinal plane at each point of the transverse plane.
Our main result in this context is that this interpretation
holds also at the one-loop level, as the bare coupling
resulting in the free part of each principal chiral model

19We notice that working in the axial gauge U1 ¼ 1 and
expanding Sint2 to Oða2∥Þ, the resulting expression is quadratic in
q4 and the corresponding integration can be carried out. This
leads to the appearance of complicated, nonlocal interaction
terms involving the transverse link variables.
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behaves appropriately as a function of the longitudinal
lattice spacing. The precise form of the interactions among
the principal chiral models is dictated by the full gauge
action. However, the limit of large anisotropy cannot be
taken independently of the continuum limit, at least in the
perturbative approach. Indeed, the requirement of small
gauge field fluctuations defines a range of validity of the
form 1 ≫ a⊥Λ ≫ a∥Λ ≫ ða⊥ΛÞ1þγ for the longitudinal
and transverse lattice spacings a∥ and a⊥, where Λ is the
QCD scale and γ > 0. Nevertheless, our findings suggest
that there may be a deeper relation between gauge theories
and principal chiral models than just at the classical level.
There are several open directions for future studies. An

obvious possibility is the inclusion of fermions in the
analysis. This is particularly relevant to the nonperturbative
approach to soft high-energy scattering, since the presence
or not of dynamical fermions seems to have large effects on
total cross sections [28,56]. It would be interesting to
extend the perturbative analysis to nonorthogonal lattices,

which would allow us to use on-axis Wilson loops in the
relevant lattice correlator. However, in this case more terms
appear in the action, so leading to a more intricate
calculation.
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APPENDIX A: THE G- AND Z-INTEGRALS

In the expression for the one-loop contributions Kμν,
Eq. (53), there appear a few integrals involving the
modified Bessel functions of the first kind InðzÞ, which
are special cases of the integrals

GnðλÞ ¼

8>>>>><
>>>>>:

Z
∞

0

dρρ

"Y4
α¼1

λα~I
ðnαÞ
0 ð2λ2αρÞ

#
; n ≠ ð0; 0; 0; 0Þ;

Z
∞

0

dρρ

("Y4
α¼1

λα~I0ð2λ2αρÞ
#
− Θðρ − 1Þ 1

ð4πρÞ2
)
; n ¼ ð0; 0; 0; 0Þ;

ZnðλÞ ¼
Z

∞

0

dρ

"Y4
α¼1

λα~I
ðnαÞ
0 ð2λ2αρÞ

#
; ðA1Þ

defined for a general four-vector of integers n, where

~InðzÞ≡ e−zInðzÞ; ~IðmÞ
n ðzÞ≡ ð−∂=∂zÞm~InðzÞ ðA2Þ

and ΘðzÞ is the step function. In particular, in Eq. (53) we
have denoted as follows the relevant cases,

Gμν ¼ Gnjnα¼δαμþδαν
; Gμ ¼ Gnjnα¼δαμ

; G ¼ Gnjnα¼0;

Zμ ¼ Znjnα¼δαμ
; Z ¼ Znjnα¼0: ðA3Þ

These integrals are not all independent; in particular, the
following sum rules hold,

X4
μ¼1

2λ2μZμ ¼
Y4
μ¼1

λμ ¼ J −1;
X4
μ¼1

2λ2μGμ ¼ Z;

2λ2μGμ þ
X
ν≠μ

2λ2νGμν ¼
X
ν≠μ

2λ2νGν: ðA4Þ

A global rescaling λα → ζλα (ζ > 0) of the anisotropy
parameters can be essentially reabsorbed inZn and in Gn by
changing variables to ρ0 ¼ ζ2ρ, which brings about a

multiplicative factor for Zn, and an additive contribution
proportional to log ζ to G0. More precisely, we find

ZnðζλÞ ¼ ζ2ZnðλÞ;

GnðζλÞ ¼
�GnðλÞ; n ≠ 0;

G0ðλÞ þ 1
ð4πÞ2 log ζ

2; n ¼ 0.
ðA5Þ

1. Analyticity properties

We discuss now the analyticity properties of Kμν. It is
clear that for λα ≠ 0∀ α these depend only on the analy-
ticity properties of the G- and Z-integrals defined in
Eq. (A4). Since these are integrals of analytic functions
of ρ and fλαg, it suffices to show that they converge
uniformly in fλαg within some complex domain. In turn, a
sufficient condition for this is that we can bound the
modulus of the integrand uniformly in fλαg by some
function f, whose integral is also convergent. To do this,
we need the following inequalities,

j~I0ðzÞj ≤ ~I0ðRe zÞ; j~I1ðzÞj ≤ ~I0ðRe zÞ;
j~I0ðzÞj ≤ 1 if Re z ≥ 0; ðA6Þ
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which are easily proved using the integral representation for
InðzÞ. We also need the monotonicity property

∂
∂x ~I0ðxÞ ≤ 0; ∀ x ∈ R; ðA7Þ

and the asymptotic behavior of ~I0ðzÞ,

~I0ðzÞ ∼
1ffiffiffiffiffiffiffiffi
2πz

p
�
1 − 1

8z
þOðz−2Þ

�
; ðA8Þ

valid for jarg zj < π (see, e.g., Ref. [67]).
(a) The quantities Z and Zμ are given by the product of

the analytic factor J −1 ¼ Q
αλα and an integral of the

product of functions ~I0 and, in the case of Zμ, also
~I0 − ~I1, so that we may write

ZðfλαgÞ ¼ J −1 ~Zðfλ2αgÞ;
ZμðfλαgÞ ¼ J −1 ~Zμðfλ2αgÞ: ðA9Þ

For fλαg such that for every α one has Reλ2α ∈ ½uα; vα�,
with uα; vα ∈ R, 0 < uα < vα < ∞, the first two
inequalities in Eq. (A6) and the monotonicity property
Eq. (A7) tell us that a possible choice for fðρÞ to
bound the modulus of the integrands both in ~Z and ~Zμ

is fðρÞ ¼ 2
Q

αfαðρÞ, fαðρÞ ¼ ~I0ð2uαρÞ. In particular,
this shows that ~Z and ~Zμ are analytic functions
of fλ2αg.

(b) To study G we split the integral into two parts,R∞
0 ¼ R

1
0 þ

R∞
1 . For the first piece, the third inequality

in Eq. (A6) indicates that we can take fðρÞ ¼ ρ.
The integrand of the second piece is conveniently
written as

ρ

�Y4
α¼1

λα~I0ð2λ2αρÞ − 1

ð4πρÞ2
�

¼ 1

ð4πρÞ2
~fðfλαg; ρÞ;

ðA10Þ

where ~f is analytic ∀λ and ρ ≠ 0, and furthermore it is
certainly bounded for Re λ2α ∈ ½uα; vα� and ρ ∈ ½0;∞Þ,
since it has a finite limit as ρ → ∞, see Eq. (A8). In
this case we can then take fðρÞ ¼ M=ð4πρÞ2 for a
properly chosen constant M.

(c) Finally, analyticity properties of Gμ and Gμν are
inherited from Z and Zμ. Indeed, since one can bring
derivatives under the sign of integral due to uniform
convergence, one shows immediately that

λμ
∂
∂λμ ZðλÞ ¼ ZðλÞ − 4λ2μGμðλÞ;

λν
∂
∂λν ZμðλÞ ¼ ZμðλÞ − 4λ2νGμνðλÞ ðν ≠ μÞ: ðA11Þ

Notice that Gμ and Gμν are of the form

GμðfλαgÞ ¼ J −1 ~Gμðfλ2αgÞ;
GμνðfλαgÞ ¼ J −1 ~Gμνðfλ2αgÞ; ðA12Þ

with ~Gμ and ~Gμν analytic in fλ2αg.
In conclusion, Kμν are analytic in any compact domain

with Reλ2α > 0, ∀α. For our purposes, it is convenient to
extend further the domain of analyticity. To this end, notice
that for real positive λα, one can rewrite Z, Zμ, Gμ and Gμν

as follows by exploiting their behavior under global
rescaling, Eq. (A5),

ZðfλαgÞ¼ ~ZðfJ λ2αgÞ; ZμðfλαgÞ¼ ~ZμðfJ λ2αgÞ;
GμðfλαgÞ¼J ~GμðfJ λ2αgÞ; GμνðfλαgÞ¼J ~GμνðfJ λ2αgÞ;

ðA13Þ

where Eqs. (A9) and (A12) have been used. The domain of
analyticity of these quantities can thus be straightforwardly
extended to ReðJ λ2αÞ > 0. Furthermore, for real positive
λα, one has

G ¼
Z

dρρ

�
J
�Y

α

~I0ð2J λ2αρÞ
�
− Θðρ − 1Þ 1

ð4πρÞ2
�

− 1

ð4πÞ2 logJ ; ðA14Þ

where we have used Eq. (A5) again. By the same token
used above in point (b), the first term in Eq. (A14) is
analytic for ReJ λ2α > 0. The logarithmic term is an analytic
function in the cut complex plane for jargJ j < π, so we
conclude that Kμν are analytic also in the domain defined
by ReðJ λ2αÞ > 0, jargJ j < π.
We now analyze the specific case discussed in Sec. III,

corresponding to the following choice of anisotropy
parameters,

λ4ðθ; T̄Þ ¼
1ffiffiffi

2
p

T̄ cos θ
2

; λ1ðθ; T̄Þ ¼
1ffiffiffi

2
p

T̄ sin θ
2

;

λ2ðθ; T̄Þ ¼ λ3ðθ; T̄Þ ¼ 1; ðA15Þ

which, in the light of the extension of the analyticity
domain discussed above, can be recast more conveniently
as follows,
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J ðθ; T̄Þλ24ðθ; T̄Þ ¼ C42ðθ; T̄Þ;
J ðθ; T̄Þλ21ðθ; T̄Þ ¼ C12ðθ; T̄Þ;

J ðθ; T̄Þ ¼ J ðθ; T̄Þλ22ðθ; T̄Þ
¼ J ðθ; T̄Þλ23ðθ; T̄Þ ¼ C23ðθ; T̄Þ: ðA16Þ

As functions of complex angle and length, Cμνðw; T̄Þ
are analytic everywhere, except at w ¼ nπ with n ∈ Z,
and jT̄j ¼ 0. Since the domain D considered in Sec. III
is defined by ReCμνðw; T̄Þ > 0, in D one has that
jargJ ðw; T̄Þj < π

2
and ReðJ ðw; T̄Þλ2αðw; T̄ÞÞ > 0, so that

the G- and Z-integrals are analytic there, and in conclusion
the one-loop corrections Kμνðw; T̄Þ are analytic in D.

2. Large-T̄ behavior

We now determine, for real T̄, the large-T̄ behavior of the
Z- and G-integrals for the choice of anisotropy parameters
of Eqs. (61) and (A15). To this end, it is convenient to
define the following auxiliary quantities,

Bnðθ; T̄Þ ¼
Z

∞

0

dρ

�Y
α

λα~Inαð2λ2αρÞ
�
;

Dnðθ; T̄Þ ¼
Z

∞

0

dρρ

�Y
α

λα~Inαð2λ2αρÞ − Θðρ − 1Þ 1

ð4πρÞ2
�
;

ðA17Þ

where fλαg are chosen according to Eq. (61). It is
straightforward to show that

Z ¼ Bnjnα¼0; Zμ ¼ Bnjnα¼0 − Bnjnα¼δαμ
;

G ¼ Dnjnα¼0; Gμ ¼ Dnjnα¼0 −Dnjnα¼δαμ
;

Gμν ¼ Dnjnα¼δαμþδαν
þDnjnα¼0 −Dnjnα¼δαμ

−Dnjnα¼δαν
:

ðA18Þ

A rather simple calculation shows that at large T̄

Bnðθ; T̄Þ ¼
1

T̄2 sin θ

�
1

4π
~In4ð0Þ~In1ð0Þ log T̄2 þ bnðθÞ þ oðT̄0Þ

�
;

bnðθÞ ¼ ~In4ð0Þ~In1ð0Þ
Z

1

0

dρ~In2ð2ρÞ~In3ð2ρÞ þ
1

4π

Z
∞

0

dρ
ρ

�
~In4

�
ρ

cos2 θ
2

�
~In1

�
ρ

sin2 θ
2

�
− Θð1 − ρÞ~In4ð0Þ~In1ð0Þ

�
;

Dnðθ; T̄Þ ¼ −
1

ð4πÞ2 log T̄
2 þ dnðθÞ þ oðT̄0Þ;

dnðθÞ ¼
1

4π

Z
∞

0

dρ

�
1

sin θ
~In4

�
ρ

cos2 θ
2

�
~In1

�
ρ

sin2 θ
2

�
− Θðρ − 1Þ 1

4πρ

�
: ðA19Þ

It is now straightforward to obtain the large-T̄ behavior of the relevant quantities. For the Z-integrals we have

Zðθ; T̄Þ ¼ 1

T̄2 sin θ

�
1

4π
log T̄2 þ z00 þ ~z00ðθÞ þ oðT̄0Þ

�
;

Z4ðθ; T̄Þ ¼
1

T̄2 sin θ

�
1

4π
log T̄2 þ z00 þ ~z10ðθÞ þ oðT̄0Þ

�
;

Z1ðθ; T̄Þ ¼
1

T̄2 sin θ

�
1

4π
log T̄2 þ z00 þ ~z01ðθÞ þ oðT̄0Þ

�
;

Z2ðθ; T̄Þ ¼ Z3ðθ; T̄Þ ¼
1

T̄2 sin θ
fz10 þ oðT̄0Þg; ðA20Þ

where we have introduced the following quantities,

znm ¼
Z

1

0

dρ~IðnÞ0 ð2ρÞ~IðmÞ
0 ð2ρÞ;

~znmðθÞ ¼
1

4π

Z
∞

0

dρ
ρ

�
~IðnÞ0

�
ρ

cos2 θ
2

�
~IðmÞ
0

�
ρ

sin2 θ
2

�
− ~IðnÞ0 ð0Þ~IðmÞ

0 ð0ÞΘð1 − ρÞ
�
: ðA21Þ

For the G-integrals we find
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Gðθ; T̄Þ ¼ −
1

ð4πÞ2 log T̄
2 þ ~g00ðθÞ þ oðT̄0Þ; G41ðθ; T̄Þ ¼ ~g11ðθÞ þ oðT̄0Þ;

G4ðθ; T̄Þ ¼ ~g10ðθÞ þ oðT̄0Þ; G1ðθ; T̄Þ ¼ ~g01ðθÞ þ oðT̄0Þ; ðA22Þ

where we have introduced the following quantities,

~gnmðθÞ ¼
1

4π

Z
1

0

dρ
1

sin θ
~IðnÞ0

�
ρ

cos2 θ
2

�
~IðmÞ
0

�
ρ

sin2 θ
2

�
; ðn;mÞ ≠ ð0; 0Þ;

~g00ðθÞ ¼
1

4π

Z
∞

0

dρ

�
1

sin θ
~I0

�
ρ

cos2 θ
2

�
~I0

�
ρ

sin2 θ
2

�
− Θðρ − 1Þ 1

4πρ

�
; ðA23Þ

while the remaining integrals are all oðT̄0Þ. One can now easily determine the contributions of both kinds of terms to Kμν,
namely

ΔGμνðθ; T̄Þ ¼ Nc

�
2

3
Gμνðθ; T̄Þ − 5

3
ðGμðθ; T̄Þ þ Gνðθ; T̄ÞÞ þ

11

3
Gðθ; T̄Þ

�

¼ β0 log
1

T̄2
þ ΔGfin

μν ðθ; T̄Þ; ðA24Þ

where β0 is defined in Eq. (52), and

ΔGfin
41 ðθ; T̄Þ ¼ Nc

�
11

3
~g00ðθÞ − 5

3
ð~g10ðθÞ þ ~g01ðθÞÞ þ

2

3
~g11ðθÞ

�
þ oðT̄0Þ;

ΔGfin
42 ðθ; T̄Þ ¼ ΔGfin

43 ðθ; T̄Þ ¼ Nc

�
11

3
~g00ðθÞ − 5

3
~g10ðθÞ

�
þ oðT̄0Þ;

ΔGfin
12 ðθ; T̄Þ ¼ ΔGfin

13 ðθ; T̄Þ ¼ Nc

�
11

3
~g00ðθÞ − 5

3
~g01ðθÞ

�
þ oðT̄0Þ;

ΔGfin
23 ðθ; T̄Þ ¼ oðT̄0Þ; ðA25Þ

and

ΔZμνðθ; T̄Þ ¼
Nc

4

�
Zðθ; T̄Þ

�
1

λ2νðθ; T̄Þ
þ 1

λ2μðθ; T̄Þ
�
− Zμðθ; T̄Þ

λ2νðθ; T̄Þ
− Zνðθ; T̄Þ

λ2μðθ; T̄Þ
�
þ N2

c − 1

2Nc

�
Zμðθ; T̄Þ
λ2νðθ; T̄Þ

þ Zνðθ; T̄Þ
λ2μðθ; T̄Þ

�
; ðA26Þ

where ΔZμν can be split into a divergent and a finite part,

ΔZ41ðθ; T̄Þ ¼ ΔZdiv
41 ðθ; T̄Þ þ ΔZfin

41 ðθ; T̄Þ;
ΔZ42ðθ; T̄Þ ¼ ΔZ43ðθ; T̄Þ ¼ ΔZdiv

4⊥ ðθ; T̄Þ þ ΔZfin
4⊥ ðθ; T̄Þ;

ΔZ12ðθ; T̄Þ ¼ ΔZ13ðθ; T̄Þ ¼ ΔZdiv
1⊥ ðθ; T̄Þ þ ΔZfin

1⊥ ðθ; T̄Þ;
ΔZ23ðθ; T̄Þ ¼ ΔZfin

23 ðθ; T̄Þ ¼ oðT̄0Þ; ðA27Þ

with divergent parts given by

ΔZdiv
41 ðθ; T̄Þ ¼

N2
c − 1

2Nc

2

sin θ
1

4π
log T̄2;

ΔZdiv
4⊥ ðθ; T̄Þ ¼ cot

θ

2

Nc

4

1

4π
log T̄2; ΔZdiv

1⊥ ðθ; T̄Þ ¼ tan
θ

2

Nc

4

1

4π
log T̄2; ðA28Þ

and finite parts given by
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ΔZfin
41 ðθ; T̄Þ ¼

N2
c − 1

2Nc

�
2

sin θ
z00 þ cot

θ

2
~z01ðθÞ þ tan

θ

2
~z10ðθÞ

�
þ Nc

4

�
2

sin θ
~z00ðθÞ − cot

θ

2
~z01ðθÞ − tan

θ

2
~z10ðθÞ

�
þ oðT̄0Þ;

ΔZfin
4⊥ ðθ; T̄Þ ¼ cot

θ

2

�
Nc

4
ðz00 þ ~z00ðθÞÞ þ

N2
c − 2

4Nc
z10

�
þ oðT̄0Þ;

ΔZfin
1⊥ ðθ; T̄Þ ¼ tan

θ

2

�
Nc

4
ðz00 þ ~z00ðθÞÞ þ

N2
c − 2

4Nc
z10

�
þ oðT̄0Þ; ðA29Þ

from which one can easily reconstruct the behavior of
Kμνðθ; T̄Þ up to oðT̄0Þ.
The results above allow us to easily derive the large-ξ

behavior of the couplings when the anisotropy parameters
are chosen appropriately for the longitudinally rescaled

action of Sec. IV, i.e., λðLRÞ4 ¼λðLRÞ1 ¼ξ and λðLRÞ2 ¼λðLRÞ3 ¼
1, see Eq. (76). This is accomplished through the following

steps. First of all, notice that λðLRÞμ are just a particular case of

λμðθ; T̄Þ, namely λðLRÞμ ðξÞ ¼ λμðπ2 ; 1ξÞ. Next, it is straightfor-
ward to show that

Bn

�
π

2
;
1

ξ

�
¼ ξ2B ~n

�
π

2
; ξ

�
;

Dn

�
π

2
;
1

ξ

�
¼ 1

ð4πÞ2 log ξ
2 þD ~n

�
π

2
; ξ

�
; ðA30Þ

where ~nμ ¼ n ~μ with f ~μg¼f~1; ~2; ~3; ~4g¼f3;4;1;2g. Finally,
one easily shows that

ξ2

½λμðπ2 ; 1ξÞ�2
¼ 1

½λ~μðπ2 ; ξÞ�2
: ðA31Þ

Putting these results together one finds that

ΔZðLRÞ
μν ðξÞ¼ΔZμν

�
π

2
;
1

ξ

�
¼ΔZ ~μ ~ν

�
π

2
;ξ

�
;

ΔGðLRÞ
μν ðξÞ¼ΔGμν

�
π

2
;
1

ξ

�
þ 1

ð4πÞ2 logξ
2¼ΔGfin

~μ ~ν

�
π

2
;ξ

�
:

ðA32Þ

Explicitly,

ΔGðLRÞ
23 ðξÞ¼ΔGðLRÞ

⊥⊥ ðξÞ

¼Nc

�
11

3
~g00

�
π

2

�
−10

3
~g10

�
π

2

�
þ2

3
~g11

�
π

2

��
þoðξ0Þ;

ΔGðLRÞ
42 ðξÞ¼ΔGðLRÞ

43 ðξÞ¼ΔGðLRÞ
12 ðξÞ¼ΔGðLRÞ

13 ðξÞ¼ΔGðLRÞ
∥⊥ ðξÞ

¼Nc

�
11

3
~g00

�
π

2

�
−5

3
~g10

�
π

2

��
þoðξ0Þ;

ΔGðLRÞ
41 ðξÞ¼ΔGðLRÞ

∥∥ ðξÞ¼oðξ0Þ; ðA33Þ

for the contributions ΔGðLRÞ
μν , and

ΔZðLRÞ
23 ðξÞ ¼ ΔZðLRÞ;div

⊥⊥ ðξÞ þ ΔZðLRÞ;fin
⊥⊥ ðξÞ;

ΔZðLRÞ
42 ðξÞ ¼ ΔZðLRÞ

43 ðξÞ ¼ ΔZðLRÞ
12 ðξÞ ¼ ΔZðLRÞ

13 ðξÞ
¼ ΔZðLRÞ;div

∥⊥ ðξÞ þ ΔZðLRÞ;fin
∥⊥ ðξÞ;

ΔZðLRÞ
41 ðξÞ ¼ ΔZðLRÞ

∥∥ ðξÞ ¼ oðξ0Þ; ðA34Þ

for the contributions ΔZðLRÞ
μν , with divergent parts

ΔZðLRÞ;div
⊥⊥ ðξÞ ¼ N2

c − 1

2Nc

1

2π
log ξ2;

ΔZðLRÞ;div
∥⊥ ðξÞ ¼ Nc

4

1

4π
log ξ2; ðA35Þ

and finite parts

ΔZðLRÞ;fin
⊥⊥ ðξÞ¼N2

c−1

Nc

�
z00þ ~z10

�
π

2

��

þNc

2

�
~z00− ~z10

�
π

2

��
þoðξ0Þ;

ΔZðLRÞ;fin
∥⊥ ðξÞ¼Nc

4

�
z00þ ~z00

�
π

2

��
þN2

c−2

4Nc
z10þoðξ0Þ:

ðA36Þ

We also report the values of the Z-integrals,

ZðLRÞ
∥ ðξÞ ¼ ZðLRÞ

4 ðξÞ ¼ ZðLRÞ
1 ðξÞ ¼ z10 þ oðξ0Þ;

ZðLRÞ
⊥ ðξÞ ¼ ZðLRÞ

2 ðξÞ ¼ ZðLRÞ
3 ðξÞ

¼ 1

4π
log ξ2 þ z00 þ ~z10

�
π

2

�
þ oðξ0Þ: ðA37Þ

APPENDIX B: ABELIAN CASE

In this Appendix we compute the Wilson-loop corre-
lator considered in Sec. III in the compact Uð1Þ lattice
theory and in the weak-coupling limit. The starting point
is the 4D anisotropic lattice formulation for the Uð1Þ
gauge group,
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SUð1Þ
lat ¼ 1

e2
X
n;μ<ν

Cμνð1 − ReUμνðnÞÞ: ðB1Þ

Here the plaquettes are built with the Uð1Þ links UμðnÞ ¼
expfiϕμðnÞg, and can bewritten asReUμνðnÞ ¼ cosΦμνðnÞ,
with ΦμνðnÞ ¼ ϕμðnÞ þ ϕνðnþ μ̂Þ − ϕμðnþ ν̂Þ − ϕνðnÞ.
The Haar measure is simply

R
dUμðnÞ ¼

Rþπ−π
dϕμðnÞ
2π . Setting

Uð1Þ
1 ðnÞ ¼ U4ðnÞU1ðnþ 4̂Þ ¼ ei½ϕ4ðnÞþϕ1ðnþ4̂Þ� ¼ eiφ

ð1Þ
1
ðnÞ;

Uð1Þ
2 ðnÞ ¼ U1ðnÞU4ðnþ 1̂Þ ¼ ei½ϕ4ðnþ1̂Þþϕ1ðnÞ� ¼ eiφ

ð1Þ
2
ðnÞ;

Uð2Þ
1 ðnÞ ¼ U4ðnÞU�

1ðnþ 4̂ − 1̂Þ
¼ ei½ϕ4ðnÞ−ϕ1ðnþ4̂−1̂Þ� ¼ eiφ

ð2Þ
1
ðnÞ;

Uð2Þ
2 ðnÞ ¼ U�

1ðn − 1̂ÞU4ðn − 1̂Þ
¼ ei½ϕ4ðn−1̂Þ−ϕ1ðn−1̂Þ� ¼ eiφ

ð2Þ
2
ðnÞ; ðB2Þ

the analogue of Eq. (69) is here

UðjÞðnÞ ¼ eiφ
ðjÞ
1
ðnÞ þ eiφ

ðjÞ
2
ðnÞ

jeiφðjÞ
1
ðnÞ þ eiφ

ðjÞ
2
ðnÞj

¼ exp

�
i
2
ðφðjÞ

1 ðnÞ þ φðjÞ
2 ðnÞÞ

�
sign

�
cos

ΦðjÞðnÞ
2

�
;

ðB3Þ

where Φð1ÞðnÞ ¼ Φ41ðnÞ and Φð2ÞðnÞ ¼ Φ41ðn − 1̂Þ. The
Wilson loops are written asWLk ¼ eiΩkσkTk, k ¼ 1; 2, with

Ωk ¼
1

2

Xt0−1
j¼−t0

ðφðkÞ
1 ðjvk þ dkþÞ þ φðkÞ

2 ðjvk þ dkþÞ

− φðkÞ
1 ðjvk þ dk−Þ − φðkÞ

2 ðjvk þ dk−ÞÞ; ðB4Þ
σk the product of the sign factors appearing in Eq. (B3), and
Tk the contribution from the transverse links.
The calculation is greatly simplified if we take the limit

T̄ → ∞ first.20 Discarding the longitudinal-longitudinal
plaquette term, enforcing the triviality of the transverse
links, and using 1−ReUμα¼1

2
jΔþ

αUμj2 for trivial Uα links,
one ends up with

SUð1Þ
lat →

T̄→∞

1

2e2
X
μ¼4;1

cðμÞ
X
n∥;n⊥

X
α¼2;3

jΔþ
αUμðnÞj2;

cð4Þ ¼ tan
θ

2
; cð1Þ ¼ cot

θ

2
; ðB5Þ

where n∥ ¼ ðn4; n1Þ and n⊥ ¼ ðn2; n3Þ. The Wilson loops
simplify to WLk → eiΩkσk. Since there is no interaction

between link variables living at different sites of the
longitudinal plane, and between U4 and U1 variables,
one easily sees that the tilted links of Eq. (B3) interact
with each other only if they are separated by at most one
lattice spacing in the longitudinal plane, which leads to
factorization of the Wilson-loop correlation function and
expectation values.
It is convenient now to rescale the phases as ϕμðnÞ ¼

eϕ̄μðn∥; xÞwith x ¼ en⊥ (notice that x is dimensionless), in
order to take the weak-coupling limit. One then obtains for
the action

SUð1Þ
lat →

T̄→∞;e→0

X
μ¼4;1

cðμÞ
X
n∥

Z
d2x

X
α¼2;3

1

2
½∂αϕ̄μðn∥; xÞ�2;

ðB6Þ

and the integration measure in the weak-coupling limit
becomes

Z þπ

−π
dϕμðnÞ
2π

→
Z þ∞

−∞
dϕ̄μðn∥; xÞ; ðB7Þ

where we have omitted a factor e=ð2πÞ since it gets
canceled in expectation values. We passed to the continuum
notation for simplicity: as the action is quadratic, the
resulting continuum Gaussian integrals are fully under
control. The propagator is readily obtained,

Dμνðn∥; m∥; x; yÞ≡ hϕ̄μðn∥; xÞϕ̄νðm∥; yÞi

¼ δμνδn∥m∥

1

cðμÞ
Dðx − yÞ; ðB8Þ

where DðxÞ is the 2D scalar propagator,

DðxÞ ¼ − 1

2π
log jxj: ðB9Þ

From here on angular brackets without subscripts denote
the expectation value with respect to the action Eq. (B6). In
the weak-coupling limit, cosΦμν ¼ 1þOðe2Þ and we can
neglect the sign factors in the expression for the Wilson
loops, i.e., WLk → eiΩk . Since the action is quadratic, one
has for the relevant correlation function as e → 0

lim
T̄→∞

hW1W2iθ;T̄
hW1iθ;T̄hW2iθ;T̄

¼ e−1
2
hðΩ1þΩ2Þ2i

e−1
2
hΩ2

1
ie−1

2
hΩ2

2
i ¼ e−hΩ1Ω2i: ðB10Þ

Using now the explicit expression forΩk, see Eqs. (B2) and
(B4), and exploiting the fact that the propagator is diagonal
in the link directions and in the longitudinal coordinates, a
straightforward calculation gives

20Since there is actually no continuum limit to be taken, in this
case the complications of the non-Abelian case are absent.
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hΩ1Ω2i ¼
e2

2π
cot θ log

j~z⊥ þ ~R1⊥
2
þ ~R2⊥

2
jj~z⊥ − ~R1⊥

2
− ~R2⊥

2
j

j~z⊥ þ ~R1⊥
2
− ~R2⊥

2
jj~z⊥ − ~R1⊥

2
þ ~R2⊥

2
j
;

ðB11Þ

which agrees with the known result for CE in the 4D Uð1Þ
pure gauge theory in the continuum limit [17]. Here we
have set f1 ¼ f2 ¼ 1

2
for convenience, without any loss of

information [54].

APPENDIX C: LARGE-T̄ LIMIT OF
THE ðθ;T̄Þ-DEPENDENT ACTION

For completeness, in this Appendix we report on the
large-T̄ limit of the anisotropic action with anisotropy
parameters Eq. (61), discussed in Sec. III. The idea is that
there could be some useful simplification if one takes
T̄ → ∞, corresponding to the limit of loops of infinite
length, before taking the continuum limit. In full analogy
with the discussion of Sec. IV, in this limit the action can be
recast as that of a set of interacting principal chiral models,
which however live now in the transverse plane at every site
of the longitudinal plane. This is natural since the limit
T̄ → ∞ corresponds to taking the continuum limit in the
transverse plane at fixed longitudinal spacing a∥ ≡ T̄a, i.e.,
the same situation of Sec. IV but reversing the roles of the
longitudinal and the transverse planes. In the large-T̄ limit,
the longitudinal-transverse couplings can be rewritten as
follows,

βð4Þ2Dða⊥;a∥;θÞ¼
β42
2Nc

C42¼
β43
2Nc

C43

¼1

2

Nc

4π
log

1

a⊥Λ
ð4Þ
2Dða∥;θÞ

;

Λð4Þ
2Dða∥;θÞ¼Λce−

8π
Nc

tanθ
2
ðΔGfin

4⊥ ð∞ÞþΔZfin
4⊥ ð∞ÞÞða∥ΛcÞ

16πβ0
Nc

tanθ
2
−1;

βð1Þ2Dða⊥;a∥;θÞ¼
β12
2Nc

C12¼
β13
2Nc

C13

¼1

2

Nc

4π
log

1

a⊥Λ
ð1Þ
2Dða∥;θÞ

;

Λð1Þ
2Dða∥;θÞ¼Λce−

8π
Nc

cotθ
2
ðΔGfin

1⊥ ð∞ÞþΔZfin
1⊥ ð∞ÞÞða∥ΛcÞ

16πβ0
Nc

cotθ
2
−1;

ðC1Þ

which is precisely the form of the bare coupling as a
function of the lattice cutoff a⊥ ¼ a in the two-dimensional
SUðNcÞ principal chiral model, to one-loop accuracy (see,
e.g., Ref. [66]). Here we have neglected oðT0Þ terms. The
remaining couplings read, in the same limit and in the same
approximation,

β41
2Nc

C41¼
1

T̄2 sinθ
N2

c−1

2Nc

1

π sinθ
log

1

a⊥ ~Λ2Dða∥;θÞ

≡ 1

T̄2
~β2Dða⊥;a∥;θÞ;

~Λ2Dða∥;θÞ¼Λcða∥ΛcÞ
4πβ0Nc sinθ

N2
c−1

−1
e
−2πNc sinθ

N2
c−1

ðΔGfin
41

ð∞ÞþΔZfin
41

ð∞ÞÞ
;

β23
2Nc

C23¼ T̄2 sinθβ0 log
1

ða∥ΛcÞ2
≡ T̄2β̂2Dða∥;θÞ: ðC2Þ

The action can be recast as follows,

Sð2DÞ ¼
X
n∥

Sð4Þχ ðn∥Þ þ Sð1Þχ ðn∥Þ þ Sint1ðn∥Þ þ Sint2ðn∥Þ;

ðC3Þ

where SðμÞχ correspond to principal chiral models,

SðμÞχ ðn∥Þ ¼ βðμÞ2Dða∥; a⊥; θÞ
×
X
n⊥

X
α¼2;3

trf½Δþ
αUμðnÞ�½Δþ

αUμðnÞ�†g; ðC4Þ

and the mutual interactions are given by the remaining
terms,

Sint1ðn∥Þ ¼ ~β2Dða∥; a⊥; θÞ
X
n⊥

a2⊥
a2∥

P41ðnÞ;

Sint2ðn∥Þ ¼
X
μ¼4;1

βðμÞ2Dða∥; a⊥; θÞ
X
n⊥

X
α¼2;3

½2NcPμαðnÞ

− trf½Δþ
αUμðnÞ�½Δþ

αUμðnÞ�†g�

þ β̂2Dða⊥; θÞ
X
n⊥

2Nc

a2∥
a2⊥

P23ðnÞ: ðC5Þ

The two-dimensional scales Λð4;1Þ
2D and ~Λ2D have prescribed

values that depend on Λ, which is set in the 4D theory, and
on a∥, which has to be taken to zero at the end of the
calculation. However, the average plaquette terms to lowest
order and for large T̄ read [see Eqs. (56) and (A20)]

hP41i≃g2
N2

c−1

Nc

log T̄2

4π sinθ
; hP23i≃g2

N2
c−1

Nc

z10
T̄2 sinθ

;

hP4⊥i≃g2
N2

c−1

2Nc
cot

θ

2
z10; hP1⊥i≃g2

N2
c−1

2Nc
tan

θ

2
z10;

ðC6Þ

so that the range of applicability of perturbation theory is
limited by g2 log T̄ ≪ 1; more precisely, besides a∥ ≫ a⊥
one needs a∥Λ ≪ ða⊥ΛÞ1−γ for some θ-dependent γ, which
prevents from taking the continuum limit in the transverse
plane independently from the longitudinal plane.
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