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We study the renormalization of SU(N,) gauge theories on general anisotropic lattices, to one-loop
order in perturbation theory, employing the background field method. The results are then applied in the
context of two different approaches to hadronic high-energy scattering. In the context of the Euclidean

nonperturbative approach to soft high-energy scattering based on Wilson loops, we refine the non-

perturbative justification of the analytic continuation relations of the relevant Wilson-loop correlators,

required to obtain physical results. In the context of longitudinally rescaled actions, we study the

consequences of one-loop corrections on the relation between the SU(N.) gauge theory and its effective

description in terms of two-dimensional principal chiral models.
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I. INTRODUCTION

Anisotropic lattices are a standard tool in modern lattice
calculations, and have been used in the study of a large
variety of problems, ranging from glueball [1] and light-
hadron [2] spectroscopy to properties of QCD at finite
temperature [3,4]. Numerical calculations in four dimen-
sions usually employ lattices with 3 + 1 anisotropy, i.e.,
only one of the lattice spacings is different from the others,
while more general anisotropy classes have received much
less attention [5], due to the increasing difficulty in the
scale setting procedure. Indeed, for anisotropy classes
other than 3 4 1, one needs to appropriately tune the action
in order to recover Lorentz invariance in the continuum,
already at the pure-gauge theory level. A better under-
standing of these more general anisotropy classes would be
useful, since they provide a more flexible setting for
varying length scales independently in different directions.
This would allow, for example, to enlarge the range of
momenta accessible to lattice calculation at a reasonable
computational cost, by improving the resolution only in a
single spatial direction [5].

Anisotropic lattices provide, quite obviously, the natural
setting for the nonperturbative study of anisotropic sys-
tems, also beyond numerical applications. An interesting
case is that of longitudinally rescaled actions, which in
recent years have been considered in the context of high-
energy scattering in QCD [6-12]. The basic idea of
Refs. [6-9] is to perform a rescaling of the longitudinal
directions, which appear highly Lorentz-contracted in a
high-energy scattering process, in order to derive an
effective action starting from QCD. In Refs. [6-9] only
the classically rescaled action was considered, while the
important effect of quantum corrections was studied later in
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Refs. [10-12], in the framework of Wilsonian anisotropic
renormalization in the continuum. In this context, the use of
a gauge-invariant, anisotropic lattice regularization could
lead to more insight in the structure of quantum corrections.
The relevant anisotropy class here is 2 + 2, with different
lattice spacings in the longitudinal and in the transverse
plane. This is also the case considered in Ref. [5], although
for different purposes.

In Ref. [13] a classical anisotropic rescaling of the
functional integral has been used to justify, on nonpertur-
bative grounds, the analytic continuation from Euclidean
to Minkowski space, required to obtain physical results in
the Euclidean formulation [14-19] of the nonperturbative
approach to soft high-energy scattering [20-27]. This
approach has been recently used in Ref. [28] to obtain a
theoretical estimate of the leading energy dependence of
hadronic total cross sections, resulting in fair agreement
with experiments. As the analytic continuation plays a key
role in this approach, it is important to establish its correct-
ness going beyond the formal argument of Ref. [13], which,
as we have said above, is based only on a classical rescaling
of the QCD action. To this end, quantum corrections to the
effective action must be included to prove that the necessary
analyticity requirements are actually fulfilled. The relevant
anisotropy class in this case is 2+ 1 4 1, with different
lattice spacings in the transverse plane and in the two
longitudinal directions.

The purpose of this paper is to perform the renormaliza-
tion of a SU(N,.) gauge theory regularized on a general
anisotropic lattice, and to apply the results in the study of
hadronic high-energy scattering through the approaches
mentioned above. To avoid the complications related to the
introduction of fermions on the lattice, we work here in the
quenched approximation, i.e., pure gauge theory.

The plan of the paper is the following. In Sec. II we
study renormalization for a general anisotropic lattice
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regularization, using the background field method on the
lattice [29-37]. In Sec. III we use the results in the context
of the nonperturbative approach to soft high-energy scat-
tering of Refs. [20-27], refining the argument of Ref. [13]
on the possibility of performing analytic continuation to
Euclidean space. In Sec. IV we discuss the longitudinally
rescaled actions of Refs. [6—-12], focusing on the repre-
sentation of the SU(N,.) gauge theory as a set of coupled
two-dimensional principal chiral models. Finally, Sec. V
contains our conclusions and prospects. Some technical
details are discussed in the Appendixes.

II. ANISOTROPIC RENORMALIZATION

Our aim is to renormalize the Euclidean SU(N,) gauge
theory regularized on a 4D orthogonal anisotropic lattice.
More precisely, lattice points are located at x = Zﬁ:l Xy fh,s
where 1 are four orthogonal unit vectors, and the physical
coordinates x, = x,(n) in Euclidean space are x,,(n) = a,n,,
n, € Z. Here a, = a/J, is the lattice spacing in direction
u, with the dlmenswnless anisotropy parameters 4, € IR+
being the inverse ratios of a, to a reference length scale a.

Consider the following W1lson like action,

st = #503 Co (1 5 Rewt )

n  u<v

:ﬂzzcyypyv(n)’ (1)

n pu<v

where U, (n) are the usual plaquette variables built up with
the link variables U,(n) € SU(N,),

Up(n) = Uy(m)U,(n + @) Ui(n +2)Uj(n),  (2)

f = 2N./g* with g the coupling constant, and C s I F U,
are the plaquette coefficients,

Cn=Cy

4
= Cﬂu(ﬂ) = (ﬂ”/lb)zj, jil = Hﬂa'

a=1
It is straightforward to show that Eq. (1) yields the correct
naive continuum limit upon identification of the con-

tinuum, physical gauge fields A, (x) through

Uy

(n) = el9uAux(n) (4)
as appropriate for an anisotropic lattice. The choice of
plaquette coefficients C,, is easily understood by noticing

'The five parameters a and {4} are obviously redundant, and
some condition has to be 1mposed on {4,} to remove this
redundancy. This notation is however convenient, as we treat
all the directions on the same footing.

*For definiteness, we define also Cu=0.

PHYSICAL REVIEW D 92, 034514 (2015)

that Ja* is just the volume of an elementary cell, so that 7
is the Jacobian for the change of variables from isotropic to
anisotropic coordinates, while a,a, = (4,4,)"'a* is the
area of the faces of an elementary cell lying in the pv plane.

As is well known, divergencies appear in the continuum
limit when taking into account quantum corrections. These
divergencies need to be subtracted through a suitable
renormalization of the couplings in order to obtain a finite
continuum theory. On the isotropic lattice, the symmetry
under the unbroken hypercubic subgroup of O(4) guaran-
tees that all the plaquette terms in the action need to be
renormalized in the same way, so that a single redefinition
of g is sufficient to reabsorb the divergencies. The form of
the action is therefore unchanged, and one recovers the full
O(4) invariance in the continuum limit.

On a general anisotropic lattice this residual symmetry is
broken, except for reflections through lattice hyperplanes,
and so in general different terms will require a different
renormalization. Since there are six different plaquette
terms and only four lattice spacings, it will not be possible
in the general case to reabsorb completely the quantum
corrections into a redefinition of 4,, keeping at the same
time the same form of the tree-level action [5]. In turn, this
implies that the continuum limit of Eq. (1) cannot be made
into an O(4)-invariant theory by an appropriate, simple
rescaling of the lattice spacings, since in the general case
one will still find different coefficients for the six con-
tinuum field-strength terms. To recover O(4) invariance
one must ensure that these coefficients are equal, and this
requires that we take the action to be of the more general
form

Slat - Z Zﬂﬂl/ ;u/(

Re trUm,(n)>
n o u<v

= Z Zﬂﬂbcﬂupﬂb(n)’ (5)

nop<v

where the couplings $,, = f,, = f,,(4) have to be prop-
erly tuned to yield a finite, O(4)-invariant theory in the
continuum limit.

The need for tuning comes, as we have said, from the fact
that there are in general more couplings than anisotropy
parameters. It is however easy to show that one has to tune
at most only two combinations of the couplings to achieve
restoration of O(4) invariance in the continuum limit, while
the other four independent combinations can be interpreted
as the coupling fixing the overall lattice scale, and
renormalizations of the anisotropies a,/a, = 4,/4,. To
see this, let us remove the redundancy in the set {4,} by
imposing the symmetric condition [ [,4, = 1, thus defining
a in terms of the volume of an elementary cell. Any other
equivalent choice (i.e., giving the same a,,) is obtained by a
simple global rescaling of {4, } and of a. The six plaquette
terms can be grouped in pairs of “complementary” uv and
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A plaquettes, i.e., (Uj,, Usy), etc., which we denote as
(uvlpo) = (12]34), (13]24), (14]23). It is also easily
noticed that C,,, = j;j so that Cj;; = C;,}. This suggests
to parametrize 3, as follows,

2,2y

Buw = PZ v (6)

11807

As there are two redundant parameters, we choose to fix
[,z = 1, so that our condition on {4,} is not renormal-
ized,” and [owzn)Zuazy = 1. In this way f, z, and
Z () are unambiguously defined and can be obtained
from f3,, as follows,

% B\t
ﬂ: (Hﬂ<l/ﬁ”b> ’ Zﬂ - <H1/;ﬁﬂﬂﬁy> )
BBz 3

2wl = {—’w —| (7)
(ﬁyﬁﬁﬁvﬁyﬁﬁuﬁ)z
This makes it explicit that the restoration or not of O(4)
invariance in the continuum depends only on the values of
the ratios of the couplings f,,. Defining now the bare
anisotropy parameters A, = z,4,, and the bare plaquette
coefficients C5, = C,,(A#), one can rewrite Eq. (5) as

Slat = ﬂ Z Z(;wlﬁﬁ) [C;lfuPyu(”) + ngppv(”ﬂ- (8)

n,(pv|p o)

This equation shows that to obtain an O(4)-invariant theory
in the continuum limit, one can choose freely /15 (uptoa
constraint to remove the redundancy), and then tune only
the two independent ratios of Z,,z5) to the appropriate
values. The physical anisotropy parameters 4, are related to
the bare ones through the renormalization 1, = z;lﬂf , and
can be measured ex post.

Using the parametrization Eq. (7), it is possible to set up
a rather simple nonperturbative scheme to achieve restora-
tion of O(4) invariance in the continuum, for an arbitrary
choice of bare anisotropy parameters. The basic idea is to
impose that the string tension, determined from the
asymptotic behavior of large rectangular 7 x R on-axis
Wilson loops W3 ~ exp{—6,4TR}, is the same for all pairs
of directions a, . Denoting with ¢ the physical (dimen-
sionful) string tension, this amounts to impose
AoApOop = a’o, for all pairs of different a, 8. Multiplying

3Any other choice is of course allowed. If, for example, the
scale a is defined to be one of the lattice spacings by choosing
A, = 1 for some y, then it is convenient to choose z, = 1. The
new values of z, are obtained from those corresponding to the
symmetric condition by replacing z, = z,/z,, while Z and
p are unaffected.

(uulaiD)
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the relations for 6,4 and its complementary 6, j» One obtains
the following consistency conditions,

012034 — 013024 = 014023, (9)

which have to be imposed to recover O(4) invariance. This
can be done without any prior knowledge of the physical
Aq» and requires only to properly tune two of the coef-
ficients Z(,,|z5) (the third one being constrained by our
choice H(uvlﬁ 5)Z(uwjap) = 1). Having done this, the anisot-
ropies can then be obtained from the ratio 4, /4, = 6,4/6,4
for any @ # p,v. Tmposing [],4, = 1 one can explicitly
determine all 1,’s, and set the lattice scale a from the
relation a*6? = 6,,634. While the string tension is known
not to be the best observable for setting the physical scale,
nevertheless it could be useful for the tuning, as it can be
determined to high precision by means of multilevel
algorithms [38]. It is worth mentioning that the tuning
of two parameters is only required when all the lattice
spacings are different: if at least a pair of lattice spacings are
equal, one easily sees that only one parameter has to be
tuned.

A. Background field method

From the discussion above, we see that our task is to find
the relations among the couplings f,, that will lead to an
O(4)-invariant theory in the continuum limit. We will study
this problem to lowest order in perturbation theory, making
use of the background field method [29-32] on the lattice
[33—37]. The advantage of this method is that it allows us to
keep an exact gauge invariance on the lattice after gauge
fixing, which greatly simplifies the calculations. A full
account on the background field method can be found
elsewhere [39,40]. Here we briefly recall the main points of
the method to fix the notation.

The first step is to introduce a background field U,(f) in
the gauge action as follows,

Sgr[U), V] = S [VU], (10)

where we now denote with V the gauge links, to be
integrated over with the usual Haar measure. As a conse-
quence of the gauge invariance of Sj,, the action Sgg is
invariant under the background gauge transformation

UL (n) = G(n) U (0)GT (n + ).
VG(n) = G(n)V,(n)G' (n), (11)

“In the 3 + 1 case, where a single lattice spacing differs from
the others, there are only two kinds of plaquette terms and so only
two independent lattice string tensions. In this case there is thus
no consistency condition to be satisfied and no tuning is needed,
as is well known.
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with G(n) € SU(N,), as well as under the following gauge
transformation of V alone,

V,(n) = GV, () U ()G (n+ U (n).  (12)

H"

The integration measure is also obviously invariant under
the transformations Eqs. (11) and (12). One then proceeds
to set up perturbation theory in the usual way, setting

V,(n) = 5 Ul (n) = elaBin)(13)

where’ q,(n) = q;(n)t* and B, (n) = Bj(n)t", with ¢ the
generators of SU(N,.) in the fundamental representation,
a=1,...,N2—1, and tr{r*s"} = 15°. One then changes
variables of integration to g, expressing the Jacobian as a
contribution S,,..s[¢] to the action. Notice that powers of g
and a are chosen so that ¢ is dimensionless, while B has
dimensions of mass. This distinction is convenient for
bookkeeping purposes [36].

Under the transformation Eq. (11), the background field
B transforms as a gauge field, while the “quantum” field ¢
transforms as a matter field in the adjoint representation.
The symmetry under the gauge transformation Eq. (12)
requires to impose a gauge condition on ¢ to define the
corresponding propagator. This is done a la Faddeev—
Popov, adding a gauge-fixing term to the action, together
with the corresponding ghost term. The key point is that
there is an appropriate choice of gauge, called the back-
ground field gauge, for which the gauge-fixing and the
ghost terms are invariant under the background gauge
transformation Eq. (11). This gauge-fixing term is
[29,30,37]

Sl oY (Y 05a,) . v

where fo are the lattice background covariant differences,

D} f(n) = AU () f(n + UL (n) = f(n)].
D; f(n) = 4,[UL" (n = ) f(n — U (n — 1) — f(n)].

(15)

in which a factor ﬂ” is also included for convenience. The

usual lattice differences A are obtained setting U = 1in
the expressions above, where 1 denotes the unit matrix. The
corresponding ghost term is

Here and in the following, the sum over repeated color indices
is understood.
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SunalB.g.0.6] =275 D] M1 (4,000 ) 2

nu
. g
+ iAd </1—qﬂ(n)>} c(n)}, (16)
U
where ¢ = ct*, ¢=c%" with c¢% ¢* independent

Grassmann variables, and where

1 — o—iAd(X)

M(X)EW’

AdX)Y=[X.Y]. (17)

It is straightforward to prove invariance of these two terms
under the background gauge transformation, Eq. (11),
supplemented by the transformation laws for the ghost
fields,

¢b(n) = G(n)e(n)G'(n). (18)
Expanding Eq. (16) up to O(¢°), one finds

Sanost[B. g ¢, 8] = 27y _uw{[De(n)][Djfe(n)]} + O(g)

n.p

=27 uw{e(n)DyDjc(n)} + O(g)

— Q0
= Sghost

[B,c.c]+ O(g), (19)

where we have used “integration by parts” on a lattice
(infinite or with periodic boundary conditions),

>l D f(m)]g(n)} =D uwl{f(n)[Dyg(m)]}.  (20)

The starting point for the perturbative analysis is the
generating functional

Z[B,J,f], ’ﬂ _ /’Dq’Dc’DEe—S[m[B,CI,C,E]+J'!]+7I'C+'7‘5
= eW[BJJ_%W]’

Stot[B’ q,¢, E} = SBF[B’ CI} + Smeas [C]} + Sg.f. [B’ C]]
+Sghost[3747cv E‘]’ (21)

where with a small abuse of notation we have written
Sge[B, q] = Sgp[U., V], and we have added source terms
for the various fields. Here J = J(n) = Jj(n)t" and
J-q=3,,J5(n)q;(n), and similarly for the other terms.
A Legendre transform gives the effective action (generating
functional for 1PI graphs),

I'[B,0,C,Cl =—-W[B,J.ii.n] +J-Q+1ij-C+C-n,
(22)
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where the classical fields Q, C and C are defined as

OW[B. J. 1. 7]

Qi(n) = W

L OW[B, i1

0=y
Ca(n) :%{;j”ﬂ, (23)

i.e., they are the expectation values of the quantum fields
for prescribed values of B and of the sources.

Defining a background gauge transformation for the
classical fields, imposing that they transform as the
corresponding quantum fields, Eqgs. (11) and (18), leads
finally to the identity

['[BY, Q¢,CY C° =T[B,Q,C,C] (24)
for the effective action. This is the key relation that
allows us to simplify the calculations. Indeed, setting
Seit[B] =T7[B,0,0,0] —T'[0,0,0,0], as a consequence of
the background gauge invariance, of the discrete sym-
metries of the action (translations and reﬂections6), and of
the locality of divergencies, to one-loop accuracy and to
lowest order in perturbation theory we are guaranteed to
find in the continuum limit

2zl/f[mv_

+ (nonlocal finite terms) + O(¢?), (26)

hm S, eft

K W} trF, (x)

where K, = K,, = K, (a, 1) is O(¢°), and where F,, =
d,B, — 0,8, + i[B,. B,] is the field strength for the con-
tinuum background field B, (x), B,(x(n)) = B(n). For our
purposes it is therefore sufficient to compute the two-point
function of the background field to have enough informa-
tion to renormalize the theory and impose O(4) invariance.
To one-loop accuracy it is enough to set

B Bu o 1
g, =L
2N, N, g

1
- K/,w = 9_2 + (27)

where g, is the renormalized, A-independent coupling.

®Reflections I1, act as follows on the coordinates, 1,1, = n,
for u # a, I1,n, = —n,. The corresponding transformation laws
for B and ¢ are the following,

M, \ B,(Il,n) u#a,
Bﬂ (n) a { _Ba(Han - a)’
() — {qﬂ(ﬂan) p#a

q . (25)
! ~U (Myn — &) g, (T,n — &)

U (Mn — &).

PHYSICAL REVIEW D 92, 034514 (2015)

We notice that Eq. (5), with the couplings chosen
according to Eq. (27), can be interpreted in two ways.
Under the identification U, (n) = ™94« ) with x, = a,n,,
it leads in the continuum to the renormalized, isotropic
action for the gauge fields A, (x), for which it provides an
appropriate lattice discretization. On the other hand, iden-
tifying U, (n) = '99¢.(y(") with y, = an,, inthe continuum
limit one obtains the following renormalized anisotropic
action,

5= 2 G

v )
9r uv

with @, the usual field-strength tensor for ¢, for which
Eq. (5) provides therefore a lattice discretization. This is the
form of the action obtained by classically rescaling coor-
dinates and fields in the Yang-Mills action, discussed in
Refs. [6-9,13].

B. One-loop calculation

To compute K, it is enough to expand the action to
order O(¢°), which in turn means expanding the gauge
action up to second order in g. Contributions from S, are
at least O(¢?) and can be ignored. Let us expand the action
Sgr + Sg . in powers of ¢,

Sgr[B., q] + Sg1.[B. q]
= Sc[B] + Sui[B. gl + Sp[B.q] + -+, (29)

where S [B] = Sgp[B. 0] is the classical action, S,;[B, q] is
linear in ¢, Sy (B, ¢g] is quadratic and so on, and set

$1[B.q. ¢, t] = Sp[B.q] + SO ulB. c. ]

ghost

= Y L)L)

nmpuv

+ > "e(n)(TI[B))h c? (m). (30)

n,m

A straightforward calculation then shows that

eff [ ”O SBF [B O] : 1 cjlettll:ll[[ﬁ]]
o det 1[B]
log detI1[0] G

Terms linear in g play no role and can be ignored.’
Equation (31) can be conveniently written as

"These terms are usually discarded by requiring B to satisfy the
equations of motion, but this is actually not necessary.
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e eff |O eiS('[B]<ei(527Sﬁcc>>0’ (32)

where S™¢[g, ¢, ¢] = 5,0, ¢, c, €] is the free action with no
background field, and (...), denotes the corresponding
expectation value,

(O[B. q.c.])o =

free

/DchDce‘Sm[q”](’)[B q,c,¢cl,

Ziree = /DC]DCDE‘BS“CC[%C-E]. (33)

For future utility, we define the connected correlation
function (O0,0,)(. = (010,)¢ — (01)(O,),. Since we
are interested only in the two-point function for B, only
terms up to O(B?) will be kept in S,.

1. The quadratic action

The gauge action in a background field can be conven-
iently written as follows,

SBE [37 61] = Slat[VU<C)]

= 3 A (1= Rew V)0 ) ).

npu<v
(34)

where the “quantum” and the “background” plaquette are
given respectively by
V,(n) = o~ 9 G0 au(m)+ 4 (n) ,—igg, (n) ,ig7du(n)

ia (1t
x &Il a(mFa, ()

U (n) = UL (U (n + UL (n + ) U (). (35)

A standard application of the Baker-Campbell-Hausdorff
formula gives

Ui,i,)(n) :exp{ Py —fu(n) +0O(a *BOB, a*(0B)?)

; o<a3B3>}, (36)
with®

fuw=a"(AfB,— ASB,) +i[B,.B,], (37)
which in the continuum limit reduces to the usual field

strength tensor for the background field.” For V., we have
instead

In the following equations we will sometimes drop the
dependence on the lattice site n to make the expressions more
readable.

In principle, also the higher-order terms of order
O(a*BOB, a*(0B)?*) appearing in Eq. (36) could contribute to
the two-point function in the continuum. This however is not the
case, as we will see below (see footnotes 10 and 11).
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Vil = exp {ig (£ 0) + R ()] + O |

(38)
where
F,uu = D+qu -

(I _
e 2,1 A

<2J_i(1 N ! .
R =5\ 19u.DSayl — 59, Dia ). (39)
2 lﬂ H H ly H

DI;‘FQ;I’

D} q,. D} q,] +ilq, q.].

and R, = R,(;,) + R,(ﬁ,). Expanding up to quadratic terms in

B and g we find

Sgr[B. q] = S.[B] + S,[B. q] + (linear in q) + O(q?),
(40)

where S, is the classical action, already defined above,

ﬂ;w

ﬁ v
) 4 u 2
22N, 2 ) 02/d N, i)
(41)
while the “quantum” piece S, is given by
=J Z tr{Fg (n) +2a°R,,(n)f,.(n)}
n, I./
et ) ) (42)
(/1 A)? '

The gauge-fixing term is quadratic in ¢, and can be
conveniently rearranged as follows,

Ser. = Sup + S + Sy, (43)
where
St =T u{D}q,(n)D;fq,(n)}.
n,u.v
Set. = Ja?y (R (n)fu(m)}.
npuv

. 1 1
R/(ux) = l([Qw ('Iy] +/1_[q/uD;FLID] _A_[QU’DZ-QM]
u

v

+ o Di g Dial)
v
Sp = Ja*> R (n)
NTRZ
s 1
RLV):Z/IA |: ;un 61u+%][ /41/7A_Dj—q#+q;4:|'

(44)
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Finally, the ghost term is independent of g to O(g"). Putting
all the terms together, one obtains for the quadratic lattice
action

SZ _ Sc + Sfree Smt

gluon

+ S+ Sa + Sp + St + St
(45)

where the terms have been grouped so that each quantity
in the equation above is separately invariant under a

background gauge transformation [36]. Here S =
Sgon T Sehost> With
Seroeon = J Ztr ,
nuv
gﬁggt—ZJZtr{c JA A fe(n)}, (46)

n.uv

being the free actions for gluons and ghosts, respectively, in
terms of which the propagators are defined, while the
interaction terms are given by

Siton = Sq + Ser Sgli%n
=Ty _w{[D} — [Afq,(n)]*},
npv
Sggost = Sghost Sg}?&t

=27 w{e(n)[DyDf — A7 A le(n)}.  (47)

nu
Moreover, extra vertices come from the terms

Sp = TaS w{RY (1), (n)} + 50

nuv

= jazztr{ 0

nuv

Sg = Ja®Y _w{RE (n

nuy

L ey AT AT

n;u/

)+ R ()] (m)},

n)fu(n)},

Explicitly, we have for S, and Sy the expressions'’

"In these quantities one should in principle include also the
higher-order terms mentioned above in footnote 9, by properly
redefining f,.
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Sa = TaY S0l AW (),

Y
_ 1 1
A;w =2i (2[Q;ﬂ qzx] + ﬂ_ [qll’ D;lLQV] - ﬂ_ [QM D:rqy]
m v
1
— Dtg, , Df
Z/WV[ e pq,,]),
1
SB = jGZZEtr{B/w(n)fm/(n)}’
Ny
N U T
Bﬂv =1 ,I_[Qﬂ’Dv ‘Zﬂ] _/1_ [qv’Dﬂ qb] : (49)
u v

Notice that the terms S, and St are odd in a given component
qu of the gluon field, while the other terms are even. Since
the propagator is diagonal, this implies [33,35,36]
that'' (Sx)o=(St)o=0, and also that (ShtonSa)oc=
(SaSB)o.=0.

2. The effective action

Expanding now Eq. (32) up to terms quadratic in the
background field, we obtain the following expression for
Scff [B]’

eff|(9 B?),0

2= Se+ 5 ( (5B = 5 (SN

B % ((S4))oc = % ((S8)*)oc + (S1)o

+ ((SB)o — (ShuonSe)oc)
= SC —|— ASg + ASA + ASB + AST —|— ASgB.
(50)

Here we have taken into account the remarks after Eq. (49),
and the fact that in four dimensions the ghost contribution

exactly cancels half of the gluon contribution from Sgifm

[33-36]. Terms have been grouped so that each contribu-
tion is separately gauge-invariant [36].

The evaluation of the various terms is performed general-
izing the techniques developed in [36] to the anisotropic
case. Since such a generalization is straightforward, here
we simply list the results, giving in Table I the contribution
AK,, of each term to the quantity K, [see Egs. (26) and

(27)] in front of 1/2 [ d*x trF2,(x). The relevant technical

"This clearly remains true also if higher-order terms neglected
in Eq. (36) are included in the definition of f,,, see footnotes 9
and 10. Since $™ _is O(B), the only contribution of a higher-

gluon
order term Wthh should still be considered is that of the
O(a’BOB) term in Eq. (36) to (Sg)g o > tr{(B,,)o1"}f4,;
however, (global) background gauge invariance implies that
tr{(B,,)ot"} « B?, and so higher-order terms can be safely

ignored.
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TABLE L. Contribution of the various terms in Eq. (50) to K,
in the effective action, Eq. (26).
Term AK,,
N,
AS, — 5y -7 +log i + ]
- A;” [g/w (’1) g;l(/l) - g/l (’1) =+ g(/l)}
ASA G )[ v +log )2+2]
+N[Gw(A) —2G,(4) —2G,(4) +4G(2)]
, Z,0) 2,0
A% HEDEEPIES
A N 12,4 | 2,
St 2N, ﬁz + 2 ]
AS,p 0

details can be found in the appendix of Ref. [36]. Summing
up, one obtains

Koula.2) = K(a) 1 K,u() = folog [y n 1)2+K o
(51)

with M a mass scale which sets the renormalization point,
the first coefficient of the Yang-Mills S-function [41-43],

11 N,
ﬁo—§(47)29 (52)
and with /C,, finite, a-independent coefficients,
11 N, 64
5uld) =3 G |7+ 53
2 5 11
FN 30000 =3 G0 + 6)(@) + 5 60)
N 1 1 Z,4)  Z,4)
S ZW) |5+ | -5 —-=
o) -5
N%_l Zﬂ(l) Zl/(’l)
+ N, {/15 + 2 } (53)

where y = 0.5772 is the Euler—Mascheroni constant, and
Guw» Gu» G, Z,, and Z are functions of {4, } defined in terms
of integrals involving the modified Bessel functions of the
first kind. Their precise form is not needed for the analysis of
the present section, and can be found in Appendix A,
Egs. (A1) and (A3).

To renormalize the theory and recover O(4) invariance in
the continuum limit it is enough to set

1 1 1 1
o logs—— — B.log ———
7~ 2o Thlee g =hloe
OB
ﬁ — Kl”" (54)
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Here A = Mexp{—1/(2Byg?(M))} is a renormalization-
group-invariant mass scale, whose value can be determined
by comparing lattice results with experiments. Since a shift
Py — P + f can always be reabsorbed in a redefinition
of g, any choice satisfying the set of conditions 56, — 6f,, =
Ky — K6 will actually lead to restoration of O(4) invariance
at one- loop accuracy.' ? As we show in Appendix A, under a
globalrescaling 4, — {4, Z and Z getafactor(?,G,, and G,

are unchanged, and g g + log £?, so that overall

Ky = K, + Bologé?. Since the additive term can be
canceled by a — {a, this means that the couplings f,,
depend on a and 4, only through the combinations provided
by the lattice spacings a,, as they should. As we have already
remarked, to avoid redundancy one has to impose a condition
onthe 4,’s, like, e.g., setting 4, = 1 for some a, so using one
of the lattice spacings as reference length, or imposing the
symmetric condition [ [, 4, = 1, thus using the volume of the
elementary cell to define a.

We have compared our results with the ones available
in the literature for the isotropic [33,34,36], 3+ 1
[5.35,44,45] and 2 + 2 [5] anisotropic cases.”> In particular,
we have successfully checked that in the isotropic case we
recover the result of [36], and we have compared the
differences of §f,,, with the ones reported in Ref. [5] for the
3+ 1 and 2 4 2 cases. While there is full agreement for
the 3+ 1 case, we found a discrepancy in the analytic
expression of one of the two independent differences in the
2 + 2 case."* On the other hand, the numerical values also
reported in Ref. [5] agree with ours. It has to be noted that
the analytic result reported in Ref. [5] for that difference
does not vanish when there is no anisotropy, as it should, so
most likely it contains some misprint.

For future utility, we report the lowest-order approxi-

mation for the expectation value (P,,) of the plaquette

terms. Setting U, (n) = ¢" and expanding in g, one finds

2

9 1
<7),uu> 2N /12}42 <trF;2w>0 + 0(93)’ (55)
where F,, = Afqg, —Afq, [see Eq. (39)], and (...), has
been defined in Eq. (33). A straightforward calculation
yields

More generally, it is the ratios f,,/f,, that will be con-
strained by the request of restoration of O(4) invariance, see the
discussion in Sec. II.

BIn the 3 + 1 anisotropy class one lattice spacing differs from
the other three, e.g., 14 # 1; = 4, = A3, while in the 2 + 2 class
the lattice spacings are equal pairwise, e.g., 44 = A1 # 1, = 43.

“In the notation of Ref. [5], the discrepancy is in n}lf) — 115? ,in

particular in the coefficients of the quantities B£(2,1) and

Bé(2,l,l), for which we find respectively NT(?ZJQS?) and

N,
TGt
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= 2 [0, 20

Tl ]+(’)(g3). (56)

III. ANALYTIC CONTINUATION IN THE
NONPERTURBATIVE APPROACH TO SOFT
HIGH-ENERGY SCATTERING

In this section we use the results of Sec. II in the context
of the nonperturbative approach to soft high-energy scat-
tering. After a brief review of this approach (the interested
reader can confer Refs. [20-27] for a more detailed
discussion), we discuss its formulation on a Euclidean
anisotropic lattice, and we refine the arguments of Ref. [13]
on the analytic continuation back to Minkowski spacetime.

A. Euclidean approach to soft high-energy scattering

Soft high-energy scattering is characterized by small
transferred momentum squared ¢, |¢| <1 GeV?, and very
large total center-of-mass energy squared s, s > 1 GeV?2. In
the approach of Ref. [20], hadronic scattering amplitudes in
the soft high-energy regime can be obtained from partonic
scattering amplitudes after folding with appropriate hadronic
wave functions. In particular, for meson-meson scattering the
basic quantity is the scattering amplitude of two colorless
transverse dipoles, which in the soft high-energy regime is
given in impact-parameter space by the correlation function
of two rectangular Minkowskian Wilson loops [21,22].
These Wilson loops are computed on the paths described
by the classical trajectories of the dipoles, so forming a large
hyperbolic angle y in the longitudinal plane, and are cut at
proper times 7" for infrared regularization purposes [6]. In
turn, their (Minkowskian) correlation function is obtained
after analytic continuation in the angular variable and in the
length of the loops from the correlation function of two
Euclidean Wilson loops of length 27 forming an angle € in
the longitudinal Euclidean plane [13—-19]. This approach can
be generalized to describe scattering processes involving
baryons [20-26,46]. As the constructions and the arguments
of this section are easily adapted to this case, we restrict the
discussion to meson-meson (dipole-dipole) scattering for
simplicity.

The relevant Euclidean correlator is given by15

W
T 9

95(9, T; EL;ku,fﬁku,fz) = T T (D
M) e W)
(57)

where (...); denotes the expectation value in the sense
of the Euclidean functional integral, 7, is the impact-

parameter distance between the dipoles, and i?,» L and f; are

“Here and in the following we denote by 7, a two-
dimensional vector in the transverse plane.

PHYSICAL REVIEW D 92, 034514 (2015)

FIG. 1. The Euclidean Wilson loops WIT and Wg , defined in
Eq. (53).

the transverse size of the dipoles and the longitudinal
momentum fraction of the quarks in the two mesons,
respectively (“dipole variables™). The Wilson loops WgTz)
are computed on the following paths (see Fig. 1),

C<1T): X7 (7) = fuyt + 2+ fTR, = ftu 7 + df,
CéT): X%z(‘i) = :I:MzT +f§tR2 = :I:MQT + di, (58)

with 7 € [-T, T}, and closed by straight-line paths in the
transverse plane at v = £7. The four-vectors u;, are

chosen to be u;, = (£ sing,()l, cos%), 6 being the angle
formed by the two trajectories, i.e., u;-u, = cosé.
Moreover, Ri:(O,kil,O), z=(0,z,,0) and ff =1-f,,
fi =—f;, with f; € [0,1]. The Minkowskian correlation
function is obtained from Eq. (57) by means of analytic
continuation as follows [13,17],

Ou(r. T:23R 1. f13 Ry, f2)
= Gp(—ix. iT;Z 3Ry 1, f13 Ry [a). (59)

Physical amplitudes are finally obtained from G, in the
limit 7 — oo, and for asymptotically large y ~logs. It is
worth mentioning that combining Eq. (59) with the O(4)
symmetry of the Euclidean theory one obtains the follow-
ing crossing-symmetry relations [18,19],

G, T5Z05R s f15—Rau, 1= f2)
=Gylin — 3. T2 R L f13 Ry, f2), - (60)
which allow us to relate the scattering amplitudes in the

direct (meson-meson) and crossed (meson-antimeson)
channels.
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The analytic continuation relation, Eq. (59), has allowed
studies of the correlators through nonperturbative Euclidean
techniques [28,47-56]. For a brief review of the older results
and a comparison to lattice data cf. [53-55].

B. Anisotropic lattice formalism

It is well known that the functional integral needs to be
regularized to become a well-defined mathematical object.
Furthermore, the analytic continuation relation Eq. (59) is
meaningful only if a sufficiently wide analyticity domain
exists. The first issue can be dealt with by discretizing the
theory on a lattice, so that the relevant Wilson loop
correlator can then be computed nonperturbatively, for
example by means of numerical simulations, using off-axis
operators to approximate the continuum Wilson loops.
Numerical simulations using an isotropic lattice have been
reported in Refs. [53-55]. Unfortunately, only a discrete set
of angles is accessible in this case; furthermore, for each
angle one has to use a different off-axis Wilson loop, which
makes the angular dependence even less analytically
controllable. Since our purpose here is to study the analytic
dependence on € and T, it is more convenient to use an
appropriate anisotropic lattice keeping fixed the Wilson-
loop operator, which allows us to expose the dependence on
the relevant variables in the action. In this way we make the
functional integral a well-defined object, and at the same
time we can study the analyticity domain of the correlator.

To avoid complications related to the well-known
difficulties in treating fermions on the lattice, in this study
we consider the quenched approximation of QCD, i.e., the
pure-gauge theory case. We hope to return in a future paper
on the inclusion of fermionic effects, which may be more
important than usually expected for soft high-energy
processes (see Refs. [28,56]).

A good choice is to use the anisotropic action discussed
previously, Eq. (5), taking the anisotropy parameters to be
such that the long sides of the Wilson loops lie in a lattice
plane at 45° from two of the lattice axes, and are of fixed
length. This amounts to set

- 1 - 1
MO, T) = ————, LWO,T)=——,
4(0.7) \/§Tcos§ 1(6.7) \/§Tsin§
L0, T) = 15(0.T) = 1, (61)
where T =T/T, with T, some fixed length, and € is

restricted to 8 € (0, z) without loss of generality [18]. This
yields for the plaquette coefficients

1 1
Ca(0.7) Cy(0.T) T2sing
C42(6,T):C43(6,T): ! == = ! = :tang.
CIQ(Q’ T) Cl3(9’ T) 2
(62)
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Notice that the following relations hold,

sy Can(0.7) sy C(0.7)
40.1) = Cx»(0.T)’ A0.1) = Cxu(0.T)’
J(0.T) = Tsin0 = Cyy (0. 7). (63)

The action defined by Eq. (5), with anisotropy parameters
Eq. (61), will be denoted by S[U; @, T}, and the correspond-
ing expectation value will be denoted by (...), 7

The lattice Wilson loops are defined as

1
W = Wi H WU (o)

c

where the “tilted” Wilson lines Wi are defined as (see
Fig. 2)

wE = T uGvia+di), (65)

where v, = (£1,0,0, 1), 7, = aT—\;iwith fo €N, and df, =
d¥/a denotes the transverse position in lattice units, see
Eq. (58), while Hi are the appropriate Wilson lines made
of the usual link variables in the transverse plane, closing
the loops.]6 It is clear that v/2f, = % is the distance in
lattice units between the center of a long side of the loop
and its endpoints, i.e., loosely speaking, the half-length in
lattice units of the Wilson loops. The tilted links ¢/(") (n) are

appropriate functionals /") [U; n] of the lattice links, which
in the continuum limit have to satisfyl7 [see Eq. (4)]

U (n) =1+ iaT V2 cos§A4(x(n)) + singAl(x(n))

+0(a?),

UD(n) =1+ iaT V2 -COS§A4(X(I’Z)) — singAl (x(n))

+ O(a?), (66)
and which under a gauge transformation behave as

'®One can properly choose A>3 and use tilted links also in the
transverse plane. This would however leave the discussion and
the conclusions of this section unchanged.

"The factor in front of the square brackets takes into account
that the diagonal of a plaquette in the longitudinal plane has
length \/aj + a? = V/2aT. Notice that we are using path-ordered
Wilson loops, as it is customary on the lattice, rather than the time-
ordered Wilson loops appearing in the formulas for the scattering
amplitudes (see, e.g., Refs. [27,53]). This has no consequence on
the results, as the theory is invariant under charge conjugation, and
so under reversing the loop orientation.
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U (n) > GmUD ()G (n+4+1),
U (n) > GnUD (n)GT(n+4—1). (67)

The simplest possibility in building 2/(!?) is obviously to
use a combination of the gauge transporters along the two
shortest paths connecting opposite corners of an elementary
plaquette, namely

D) =Us(n)Uy(n+3),  US) () = U, (n)Uy(n+1),
P (n) = Usy(n)Uj(n+4-1),
P n)=Uj(n—1)Uy(n—1). (68)

It is convenient to adopt a definition of U} which is
symmetric under the exchange UY(n) < UY(n). A
viable choice is (see Fig. 3)

U (n) = Projsyqu, [UY (n) + U5 (m)].  (69)
with Projgyy,) denoting the projection on SU(N,). This
symmetry requirement comes out naturally if we want that
the Wilson loop correlator satisfies on the lattice the same
“crossing property” [18,19] that it satisfies in the con-
tinuum. It is easy to show that in the continuum the
correlation function of the two Wilson loops W(IT;, defined
in Eq. (58), at angle 7 — 6 is equal to the correlation
function of WgTz) at angle @ but with the orientation of one
of the loops being reversed. In formulas,

>E|€:19
W plos.  (70)

T)yzoT T)yxo(T)x
W elos = VW

="

In order to impose this symmetry on the lattice, let us first
notice that the anisotropic lattice action defined by Egs. (5)

and (61) is invariant under the transformation U = EU=
acting on the links, defined by

UF(n%). Uy(n)=Us(n%). Ups(n)=U3;(n").

ny, ny=ny, n§’3=n2,3, (71)

Uy(n

n

||
'—‘[I]

(1 \_/

if at the same time one also sends § — 7 — 6. Indeed, it
suffices to verify that Cy(z—60,T) = C»(0,T) and
Cy(n—0,T) = Cy4y(0,T) [see Eq. (62)]. Consequently,
the one-loop corrections K, will transform in the same
way as C,,, as can be also verified explicitly. We have then
S[EU;0,T) = S|U;z — 6, T], and since the integration
measure is clearly invariant, the expectation value of some
observable O[U] satisfies (O[U]), o7 = (O[EU])p7. In
order to maintain the crossing property also on the lattice,
the tilted links must therefore transform as

PHYSICAL REVIEW D 92, 034514 (2015)
UDEU; n®] = UD[U; n),
UDEU; nZ] = UD U n — 4 +1]. (72)

One can then readily show that the definition Eq. (69)
satisfies the properties Eq. (66), Eq. (67) and Eq. (72). In
Appendix B we show that using Eq. (69) in the case of the
compact U(1) gauge theory one correctly recovers the
continuum result of Ref. [17] in the weak-coupling limit.
One can then define the relevant Euclidean correlator as
the continuum limit of the appropriate lattice correlator,

QE(Q, T = T()T) = lim gL (9 To, T a, V)

a—0,V—>o00
w (To)

oy, 7 |
To) (To) - b (73)
wﬁm<2>

where V is the lattice volume, and we have dropped the
dependence on the impact parameter and on the dipole
variables, since they play no role in the following.

gL (69 TO? T; a, V) =

C. Analytic continuation

We now argue that Gg(w, T) is analytic in a complex
domain D which makes the analytic continuation relations
Eq. (59) meaningful. Here w and 7 are now complex
variables, which we parametrize as w = 6 — iy, with real
0.y, and T = T,T = Ty|T|e', with ¢ € (—2x,2z]. Since
one has to take two possibly dangerous limits, i.e., the
infinite-volume limit and the continuum limit, which
currently are not under full theoretical control, our argu-
ment is not rigourous. Nevertheless, a few reasonable
technical assumptions are sufficient to complete the proof.

The first thing to check is that the couplings, f,, (w, T),
and the plaquette coefficients, C,,(w,T), are analytic

functions of w and T = |T|es. This is obvious at tree
level, since B, =2N./ ¢* and the only singular points of
C,, are w = nz with n € Z, and T = 0. Analyticity of the
one-loop corrections K, (w, T), and so of f,,(w, T) at the
one-loop level, is studied in Appendix A.

The next step is to require that the theory has the desired
continuum limit. This requires positivity of the real part of
the action to guarantee convergence. The tree-level con-
vergence conditions have been discussed in Ref. [13], and
read

ReC,,(w.T) >0 V p,v. (74)

These conditions define a complex domain D which has
been fully worked out in Ref. [13]. Although its detailed
form will not be used here, it is worth mentioning that D
is defined only in terms of the complex angle w and of ¢,
i.e., |T| is not restricted (except for asking |T'| # 0). The
Euclidean region corresponds to 6 € (0,7), y =0, ¢ = 0.
The Minkowskian region 8 =0, y > 0, ¢ = 7 lies at the

034514-11



MATTEO GIORDANO

boundary of D, and so does also the ‘“crossed”
Minkowskian region 8 =z, y <0, ¢ = 7; we will refer
to these as the “physical” boundaries of D. Notice that both
in the Euclidean and in the Minkowskian regions the
restrictions on the angular variables do not lead to any
loss of information [18]. As it is shown in details in
Appendix A, the one-loop corrections K, (w,T) are
analytic in D. For small enough lattice spacing, the one-
loop corrections will therefore not spoil the positivity of the
real part of the action enforced at tree level, for any choice
of parameters in a compact subdomain of D.

At finite volume and finite lattice spacing, and at one-
loop accuracy, we have therefore proved that the relevant
correlators are analytic functions in a domain D, within
which positivity of the real part of the action is guaranteed.
This domain of analyticity will survive the infinite volume
limit if the convergence is uniform. Proving this is currently
out of reach. However, if a lattice system has short-range
interactions, then correlation functions of operators local-
ized in some finite region R of spacetime will become
insensitive to the lattice size when this exceeds the size of
‘R by a few correlation lengths. Notice that 7, is fixed, so
that our operators are indeed localized. If interactions
remain short-ranged throughout D, then it is enough to
take the lattice size required by the largest correlation
length (within some compact subdomain of D) to make
finite-size corrections uniformly negligible. This essen-
tially amounts to assuming that the theory remains con-
fining as one moves in D. Although we cannot prove this,
we find it plausible: for example, it is easy to see that it is
true at strong coupling by means of a character expansion.

At this point one has to take the continuum limit. This
limit is expected to exist and be finite within D (again, a
rigorous proof is out of question). In particular, Wilson-
loop operators renormalize multiplicatively [57,58], so that
the normalized correlation function appearing in Eq. (73)
does not require any further renormalization on top of the
renormalization of the couplings in the action, discussed in
the previous section. A rigorous proof of uniform con-
vergence is currently out of reach; however, deviations
from the continuum limit are expected to be of order O(a),
independently of w and 7, and in this case it is possible to
make them uniformly negligible.

The conclusion, within the present accuracy, is that G is
analytic in the complex domain D, which, as shown in
Ref. [13], is sufficiently wide to make the analytic
continuation relation Eq. (59) and the crossing-symmetry
relations Eq. (60) fully meaningful.

As it was implicit in the discussion above, singularities in
the correlator may develop at the boundaries of D. As the
analytic continuation Eq. (59) is formally equivalent to the
usual definition of the Minkowskian correlator making use
of the “—ige” prescription [18], no singularities are expected
at the physical boundaries of the domain. The anisotropic
action itself is singular at 6 = 0,7z, y =0 and 6 = 0, z,
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y = oo, but as this is an artifact of the construction it is not
clear if true singularities are present there. At finite 7" (i.e.,
for Wilson loops of finite physical length), no singularity is
expected in the Euclidean correlator (y = 0) also at
0 = 0, z; however, as T — oo, a true singularity is expected
to appear there, which has its physical origin in the relation
between the correlator Eq. (57) at & = 0,z and the static
dipole-dipole potential [59-62]. This is also supported by
numerical results [53,54]. On the other hand, the points
0=0,y =oc0and @ =z, y = —o0, in the limit T — oo, are
the ones actually relevant to soft scattering at asymptoti-
cally high energy, where the approach initiated by Ref. [20]
applies. A better understanding of the correlator near these
points would help in the study of the asymptotic high-
energy behavior of scattering amplitudes and total cross
sections. In particular, in order to establish that the
expressions for the scattering amplitudes derived in this
approach satisfy unitarity, it is crucial to show that for
vanishing € and large y the correlator is a properly bounded
function of the impact parameter and of the dipole
variables. Furthermore, the existence (or not) of the strict
x — oo limit at fixed impact parameter, and the properties
of the correlator in this limit, are closely connected to the
issue of universality of hadronic total cross sections
observed in experiments (see, e.g., Refs. [63,64] and
references therein). For more details on these problems,
we invite the interested reader to confer Ref. [28].

Other singularities could appear when |T| — 0 or
|T| > o0. Working at fixed T,, this corresponds to
|T| - 0 or |T| — oo, which are again singular points of
the anisotropic action. However, since the analytic con-
tinuation to the physical boundaries requires only the phase
of T to be changed, one can take as well T, = |T| and
T = exp{i%}, and study the two limits above by changing
the length of the tilted Wilson loops.18 The above limits
therefore correspond to the limit of tilted Wilson loops of
vanishing or infinite length. In the first case no singularity
is expected; in any case this limit is irrelevant for our
purposes. On the other hand, the limit of infinite length is
the one entering the physical scattering amplitudes. In this
case, the short-ranged nature of strong interactions (which
is assumed to remain unchanged throughout the analyticity
domain) implies that distant parts of the two Wilson loops
do not “feel” each other, i.e., those parts of the loops that lie
beyond a certain distance from the centers interact mutually
only very weakly, and essentially contribute only to the
self-interaction of the loops. These contributions are
canceled by the normalization factors, so that the correlator
becomes basically insensitive to the length of the loops
beyond some critical value, and a finite limit |7'| - oo is
therefore expected. In the Euclidean case, this has already
been checked on the lattice, although in an isotropic setting

®In the continuum limit the choice of T should be irrelevant,
as long as it is compensated by the appropriate choice of 7.
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Wiy Wi
e
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FIG. 2. The “tilted” lattice Wilson loops W(LT1°> and W<LT2°),
Egs. (64) and (65), projected on the longitudinal plane.

n

= Projsu,

g n n

*——0
% = PrOjSU(N{;) J +

FIG. 3. The tilted links of Eq. (69), built from the shortest paths
connecting opposite corners of a plaquette.

N\

physical crossed region

Euclidean region

w=40-—1x

physical region
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—00 +oo
X

FIG. 4 (color online). Analyticity domain of the Wilson-loop
correlator with the infrared cutoff removed, Cy; [see Eq. (75)]. The
solid black lines indicate the boundaries of the domain, and
crosses signal the singularities.
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[53]. As discussed in Ref. [13], the boundedness and the
analyticity properties of the correlator as a function of T
imply through the Phragmén-Lindel6f theorem (see, e.g.,
Ref. [65]) that the analytic continuation to Minkowski
spacetime and the infinite-length limit commute. Setting
Cgy = limy_, Gg y, this means that one can obtain the
physical correlator by means of an analytic continuation in
the angular variable only, i.e.,

Cu(:ZR L f 1Ry f2) =Cr(=ixsZ iRy L f13 Ry 1L f2).
(75)

The analyticity domain for Cp(w = 0 — iy), already dis-
cussed in Ref. [13], is clearly not changed by one-loop
corrections, and it is simply the strip 6 € (0,7), y € R,
shown in Fig. 4.

IV. LONGITUDINALLY RESCALED ACTION

The results of Sec. II can be used to obtain some insight
in the approach to high-energy scattering based on longi-
tudinally rescaled actions [6—12]. The physical idea behind
this approach is that in high-energy scattering processes the
longitudinal directions appear highly Lorentz-contracted,
so that it should be possible to achieve an effective
description through an appropriately rescaled action.
While initially only a classical rescaling was considered
[6-9], in recent years the effects of quantum corrections
have been computed by means of anisotropic renormaliza-
tion in the continuum theory [10-12]. Here we will
consider the same problem in the lattice approach, which
will allow us to clarify, to some extent, the structure of the
action in the limit of large anisotropy. Notice that the
anisotropy class (2 + 2) is the same considered in Ref. [5].

On the lattice, the tree-level anisotropic action is given
by Eq. (1) with the following anisotropy parameters,

o= =¢ 5V0=4"9=1 (0

In the following, the superscript LR is used to specify that
this particular choice has been made. We will refer to
directions 4 and 1 as longitudinal, and directions 2 and 3 as
transverse, and use the notation ny = (n4,n,), n, =(ny,n3),
ay=a4=a, =a/, a, =a,=az=a. The plaquette

(LR)

coefficients C,,;” in the anisotropic action read

1
C%R)(é:) = ?,
CiP () = i) = P = P ) =1,
CltR () = &, (77)

The interesting case is that of large &£ Taking naively
the limit £ — oo in the tree-level action, the transverse-
transverse plaquette term drops from the action, while the
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longitudinal-longitudinal term yields essentially a ‘“delta
function” forcing the longitudinal links to be trivial. The
resulting effective action would read

St =, 5C” ZS

Z Z tr{[AF U, (

Cl’l||0!41

D+ 870,

m)][AG U ()]},

(78)

which describes a set of independent 2D principal chiral
models involving the transverse link variables, each one
living in the longitudinal plane at a given point n, in the
transverse plane. Here A} has been redefined by omitting
the A, factor [see Eq. (15)]. Taking into account quantum
corrections, however, a different coupling has to be used for
each of the three different kinds of plaquette terms, namely

LR LR
ﬂl(lll ) = ﬂé(u ) for the
ﬂiLf) = ﬂ%R) for the transverse transverse term and ﬁl(lLlR) =

ﬂféR) = ﬂfn = ﬁ12 = ﬁm ) for the longitudinal-transverse
terms. Recall that the quantum corrections are of the form

longitudinal-longitudinal term,

LR () — 1L Ne [ +64] 1 AGER () + AZIR ()

3 (4n)? 33
= —polog? + AGL (&) + AZEM(e),  (79)

with AQ,%R) and AZ,(,,Ijm containing respectively the
contributions of the G- and Z-integrals, Eqgs. (Al) and

(A3). Obviously, AG® =AGER =AGERY =AG\ER) and

similarly for AZE,ﬁR). Using the large-¢ behavior of these
integrals, derived in Appendix A, one gets

2N, 07 (aAc) 2N, 4z

+AgJ_J_ fzn(§)+AZ(LR)fm(§)’

2—1—2 log &2

'B<LR> ’5 1 in in
”“méf )—ﬁolog( aae T AGT e Az ),
ﬂ|(|LLR)(a,§) 1 N 1 )
2N, ﬁolg( AR 4 an 47088
+Ag”ﬁ_R fln<§) +AZ|(|6_R)J;H(§)’ (80)

where the superscript fin on a quantity indicates that it is
finite in the limit £ — oo. If we keep the transverse spacing
a, = afixed, then taking £ — co means taking a = a /&
to zero, i.e., taking the continuum limit in the longitudinal
plane only. One then sees that in general it is not allowed to
discard the transverse-transverse plaquette term, since

2o %5*27323 =, glivi (“” )>P,3 contains the right power
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of a; to become the two-dimensional integral over the
longitudinal plane in the limit a; — 0.

The action can now be recast in a form appropriate for a
set of coupled two-dimensional principal chiral models. To

this end, it is convenient to introduce the following

couplings,

Pep)(ay.a.)= ﬂHLZI\(JC: = 0(&) A; 4lzr1 ganA(ﬂl))(cu)’

Bam)(ay.a) = ﬂllzl\(/ = o<§°>:I\fl\zlzlrloga||fi(2;)(al)’
Pov)(ar)= ﬁunz]\(: : o<¢0>:ﬂologm’ (81)

where the a | -dependent scales A??) and A*?)
terms of the original A-scale as follows,

are given in

AP (a )= Ac(a LAC)%}L FEAG " () +AZ " 0]

APPN(a,)=Ac(a lAc)Kl}opjc 16,;%N<] (A" (co) + A2 o)
(82)

The action can be equivalently written as follows,

Stae = ZS;(KZ)(M) + 87 (1) + St (1) + i (1),
(83)

where S)((” ) correspond to principal chiral models,

57 (n1) = Bp) (ay. a1)

XY > w{[AfUL(n

ny a=4,1

NAZUL(m)]'}. (84)

and the interaction terms read

2D 6l||, aL E 7323

|

2D a”,aL ZZZ 2N7D

—te{[AFU,(n)][AFU,(n)]T}]

Sintl (’M)

SimZ(nL)

+ Bony(ar) > 2N, a L Pa(n). (85)

ny ”

The only approximation made here is to discard o(£°) terms
in the couplings, so that this is just a rewriting of the
original action in the limit of large £. Nevertheless, this
expression displays a remarkable feature: the coupling
Pp) 1s precisely the one appropriate for a 2D principal
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chiral model with lattice spacing aj, to one-loop accuracy
(see, e.g., Ref. [66]). The principal chiral models are clearly
not independent, with the precise form of the interaction
dictated by the full 4D action. Notice that identifying the
longitudinal links with U, = exp{iq g, } and expanding in
powers of a, the summands in the interaction term S;,, are
of order O (aﬁ), as appropriate to obtain an integral over the
longitudinal plane in the naive a; — 0 limit, so there is no
reason to discard these contributions.'® It is not surprising
that the interaction terms cannot be neglected a priori: after
all, no matter how anisotropic the lattice is made, by
construction the action has to describe QCD in the con-
tinuum limit. The possibility or not to neglect the interaction
terms will depend on the properties of the specific observ-
ables relevant to the study of high-energy processes.

The expectation values of the different plaquette terms
can be used to estimate the range of applicability of the
expressions above. Using Eq. (56) one gets to lowest order
[see Eq. (A37)]

LR
_ 2N3—13|(| )(‘f)N 2 Ne—1zi0
(Pa)=g =g
N, & N, &’
N2=1( ary,  ZV0@N _ 82—
(Pa)=¢" 2N, (ZI(I >(5)+lT :QZZ—NCZIO’
NZ—1 N -11
—2c Z(LR) ~2¢ —1 2 86
(Pya)=g N, 1) =g N, 4z 0g&”, (86)

with z; a constant defined in Eq. (A21), so that in order to
have small fluctuations one needs ¢”log ¢ < 1. Together
with the basic assumption g> < 1, and the fact that we
work here at £ > 1, the requirement (P,3) < 1 defines the
range of applicability of perturbation theory, which in terms
of the lattice spacings reads

4npoNe

V> (a A2 (87)

I>a,A>aA> (a )

The important fact is that Eq. (87) does not allow us to
strictly take the continuum limit in the longitudinal plane
before taking a, to zero. This was already suggested in
Ref. [10], although there it is claimed that perturbation
theory makes sense only for & slightly larger than 1;
according to our results, a much larger region seems to
be accessible.

A comparison of our results with those of Refs. [10-12]
is not straightforward. First of all, since we use a different
regularization, we expect different finite contributions to
the renormalization of the couplings in the limit a — 0

We notice that working in the axial gauge U; = 1 and
expanding Sj,, to (’)(aﬁ), the resulting expression is quadratic in
q4 and the corresponding integration can be carried out. This
leads to the appearance of complicated, nonlocal interaction
terms involving the transverse link variables.
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(at fixed &); ultraviolet divergences, on the other hand, have
to be the same. Indeed, to account for a change in the cutoff,
Orland and collaborators integrate over an anisotropic
ellipsoidal shell in momentum space, while on the lattice
a change in the cutoff requires us to integrate over an
anisotropic parallelepipedal shell. It would be interesting to
compare the divergent terms in the limit £ — oo, but in
Refs. [10—-12] only the case £ = 1 is studied.

We conclude by noticing that a similar recasting of the
action can be done also in the case discussed in Sec. III,
considering the limit of large 7. The results are briefly
discussed in Appendix C.

V. CONCLUSIONS

In this paper we have performed the renormalization of
SU(N,) gauge theories on a general four-dimensional
anisotropic lattice, with different lattice spacings in the
four directions, using perturbation theory to one-loop order
and the background field method on the lattice (Sec. II). To
avoid the complications related to the introduction of
fermions on the lattice, we have discussed here the pure-
gauge case only. For general anisotropy, the various
couplings in the gauge action need to be properly tuned
in order to recover O(4) invariance in the continuum limit,
as already observed in Ref. [5]. In practice, however, only
two parameters need to be tuned for this purpose, which
reduce to one if there is at least a pair of equal lattice
spacings (and to none in the 3 + 1 case). A simple non-
perturbative scheme for this tuning, based on the string
tensions obtained in different lattice planes, has also been
proposed.

In Sec. III, the possibility to vary continuously the
anisotropy parameters has been exploited in the context of
the nonperturbative approach to soft high-energy
hadron-hadron scattering based on Wilson loops [20-27],
in order to refine the arguments of Ref. [ 13] on the analyticity
properties of the relevant Wilson-loop correlators. The results
reported here give further support to the possibility of
performing the desired analytic continuation between
Euclidean and Minkowski space, and thus on the very
possibility of wusing Euclidean techniques to study
soft high-energy processes. This is particularly important
in the light of recent progress on the problem of hadronic total
cross sections [28,56], which is based on the possibility of
recovering the physical amplitudes starting from Euclidean
space.

In Sec. IV we have applied our results to the longitu-
dinally rescaled actions considered in Refs. [6—12] to study
high-energy scattering in QCD. At the classical level, in the
limit of large anisotropy the action reduces to that of a set of
coupled two-dimensional principal chiral models, living in
the longitudinal plane at each point of the transverse plane.
Our main result in this context is that this interpretation
holds also at the one-loop level, as the bare coupling
resulting in the free part of each principal chiral model
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behaves appropriately as a function of the longitudinal
lattice spacing. The precise form of the interactions among
the principal chiral models is dictated by the full gauge
action. However, the limit of large anisotropy cannot be
taken independently of the continuum limit, at least in the
perturbative approach. Indeed, the requirement of small
gauge field fluctuations defines a range of validity of the
form 1> a;A> ayA > (a;A)'*7 for the longitudinal
and transverse lattice spacings a; and a,, where A is the
QCD scale and y > 0. Nevertheless, our findings suggest
that there may be a deeper relation between gauge theories
and principal chiral models than just at the classical level.

There are several open directions for future studies. An
obvious possibility is the inclusion of fermions in the
analysis. This is particularly relevant to the nonperturbative
approach to soft high-energy scattering, since the presence
or not of dynamical fermions seems to have large effects on
total cross sections [28,56]. It would be interesting to
extend the perturbative analysis to nonorthogonal lattices,
|

/ dpp [ﬁ Aoy (225p ]

a=1

4
dpp{ [ 2.do(222p) ]

a=1

Z,(4) = A dp lH iaié"“)(%%p)] :

Gn(4) =

defined for a general four-vector of integers n, where

L) =e?1,),  I/"(2)=(-0/92)"1,(z)  (A2)

and O(z) is the step function. In particular, in Eq. (53) we
have denoted as follows the relevant cases,

g;u/ =G, ‘nazé{,wtﬁm,’
Z/’ = Zn |na:§a/,4 ’

gﬂ = gn'na:zsm"
zZ = Zn|n(,:0'

g= gnlna:O’
(A3)

These integrals are not all independent; in particular, the
following sum rules hold,

zwz = Hli,, =J",

212G, + szgg,w = 212G,

Za v#u

4
> 222G, = Z.
p=1

(A4)
A global rescaling 4, - {1, ({ > 0) of the anisotropy

parameters can be essentially reabsorbed in Z, and in G, by
changing variables to p’ = {%p, which brings about a
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which would allow us to use on-axis Wilson loops in the
relevant lattice correlator. However, in this case more terms
appear in the action, so leading to a more intricate
calculation.
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APPENDIX A: THE G- AND Z-INTEGRALS

In the expression for the one-loop contributions /C,,,
Eq. (53), there appear a few integrals involving the
modified Bessel functions of the first kind 7,(z), which
are special cases of the integrals

n # (0,0,0,0),

=(0,0,0,0),

(A1)

I
multiplicative factor for Z,, and an additive contribution
proportional to log ¢ to G,. More precisely, we find

Z,(C2) = 22,(2),

Gu(2). n#0,
%“”:{%um- n=0.

1. Analyticity properties

(AS)

We discuss now the analyticity properties of /C,,. It is
clear that for 4, # 0V a these depend only on the analy-
ticity properties of the G- and Z-integrals defined in
Eq. (A4). Since these are integrals of analytic functions
of p and {4,}, it suffices to show that they converge
uniformly in {4,} within some complex domain. In turn, a
sufficient condition for this is that we can bound the
modulus of the integrand uniformly in {4,} by some
function f, whose integral is also convergent. To do this,
we need the following inequalities,

Io(z)] <To(Rez).  [1,(2)| < Tp(Rez),

Ip(z)| <1 if Rez >0, (A6)
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which are easily proved using the integral representation for
I,(z). We also need the monotonicity property

d -
D1 <0, VxeR (A7)

and the asymptotic behavior of io(z),

io<z)~¢21_ﬂ<1—§+0( )) (AS8)

valid for |arg z| < = (see, e.g., Ref. [67]).

(a) The quantities Z and Z, are given by the product of
the analytic factor 7! = [],4, and an integral of the
product of functions I, and, in the case of Z,, also

Iy —1,, so that we may write

Z({A}) = T Z({22}).
Z,({}) = T 2,13} (A9)

For {4, } such that for every @ one has Re2 € [u, v,],
with u,, v, €R, 0 <u, <v, < oo, the first two
inequalities in Eq. (A6) and the monotonicity property
Eq. (A7) tell us that a possible choice for f(p) to

bound the modulus of the integrands both in Z and Z

i5 £(p) = 201ufulp)s £ulp) = To(2uop). n partcular,
this shows that Z and Z are analytic functions
of {12}.

(b) To study G we split the integral into two parts,
J&° = [+ [{°. For the first piece, the third inequality
in Eq. (A6) indicates that we can take f(p)=p.
The integrand of the second piece is conveniently
written as

4
p((:xl_‘[lllai()(zﬂgp) - (47:/))2) = (47:p)2]?({la}7p),
(A10)

where ]N‘ is analytic VA and p # 0, and furthermore it is
certainly bounded for Re 12 € [u,, v,] and p € [0, o),
since it has a finite limit as p — oo, see Eq. (AS8). In
this case we can then take f(p) = M/(4zp)?* for a
properly chosen constant M.

(c) Finally, analyticity properties of G, and G, are
inherited from Z and Z " Indeed, since one can bring
derivatives under the sign of integral due to uniform
convergence, one shows immediately that
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0
g 200 = 20 422G, (1),
bl 3,0) = 2,(0) ~43G,2) (v#4). (AL

Notice that G, and G,, are of the form

gﬂ({ﬂa}) = j_léﬂ({/’{g})’
Gw({A}) = TG ({A2}). (A12)

with @ﬂ and Q,w analytic in {12}.

In conclusion, KC,, are analytic in any compact domain
with Red2 > 0, Va. For our purposes, it is convenient to
extend further the domain of analyticity. To this end, notice
that for real positive 4,, one can rewrite Z, Z,, G, and G,
as follows by exploiting their behavior under global
rescaling, Eq. (AY),

Z({)=20T8). 2,2} =Z,({T%}).
Gu({2}) =TG,({T%}).  Gu{da}) = TGu({T2}).
(A13)
where Egs. (A9) and (A12) have been used. The domain of
analyticity of these quantities can thus be straightforwardly

extended to Re(J42) > 0. Furthermore, for real positive
Aq» ONe has

G= / dpp [J (E[io(zﬂ,%m) —0(p—1) (4,[1,))2

log 7, (A14)

1
 (4n

where we have used Eq. (AS5) again. By the same token
used above in point (b), the first term in Eq. (Al4) is
analytic for Re 742 > 0. The logarithmic term is an analytic
function in the cut complex plane for |arg J| < 7, so we
conclude that K, are analytic also in the domain defined
by Re(J12) > 0, |arg J| < 7.

We now analyze the specific case discussed in Sec. III,
corresponding to the following choice of anisotropy
parameters,

- 1 - 1
40, T) = ————, M(OT) =———,
4 ) \/ETcosg ! ) \/ETsing
12(9, T) — /13(9, T) — 1, (A]S)
which, in the light of the extension of the analyticity

domain discussed above, can be recast more conveniently
as follows,
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J(0.T)25(0.T) = Cy(0,T), 0.7) dp| [ Thaln, 222
J0.7)4(6.T) = Cn(6,7), o A ’ [H aﬂ)] |
J0O.T) = J(0.7)72(0,T) D,(0.T) = / dpp {mezz%,p) —0(p—1) % ’
= J0.T)2(0.T) = C»s(0.T).  (A16) 0 @ ( 7217)

As functions of complex angle and length, C,, (w,T)
are analytic everywhere, except at w = nz with n € Z,
and |T| = 0. Since the domain D considered in Sec. III _
is defined by ReC,,(w,T) >0, in D one has that straightforward to show that
larg 7(w. T)| <% and Re(J(w,T)A3(w,T)) > 0, so that

the G- and Z-integrals are analytic there, and in conclusion Z = Bn|nu:0, Z,=8B, |n,,
the one-loop corrections /C,,(w, T) are analytic in D.

where {4,} are chosen according to Eq. (61). It is

5(1;4 ’

g:Dn|n =0> g :Dn|na=0_Dn|na:6W’
=84, 16, +D |n* -D

au av

)

ap a=Oav

2. Large-T behavior G = 15

We now determine, for real 7, the large-T behavior of the (A18)
Z- and G-integrals for the choice of anisotropy parameters
of Egs. (61) and (A15). To this end, it is convenient to
define the following auxiliary quantities, A rather simple calculation shows that at large T
|

B,(0.T) = — {Lan(O)inl(O)logTz+bn(6’)+0(T°)},

52(0) = 1,00, [ a1, o o)+ [* [1,( L)1 (5) — 001 =011, 00,0

P cos” 5 sin®§
- 1 - -
D,(0.T) = ———log T? + d,(0) + o(T°),
(47)
I [o I - P\~ p 1
d,(0) =— dp|—1 I, BOp—1 A19
(0) 4z A pLinG " ((:052 g) <sm2 g) % )47'L'p:| (A19)
It is now straightforward to obtain the large-T behavior of the relevant quantities. For the Z-integrals we have
20.7) = =L L 10g T2 4 209 + Z00(0) + 0(T9)
) == . o o )
YA 200 + Z00
- 1 1 -
Z,0.7T) = —log T 7°
0.1) =g L ton T 420+ 20(0) + (1)},
- 1 -
2,(0.7T) = T sind {ElogT + 200 + Z01(0) + O(TO)}’
- - 1 -
Z,(0.T) = 25(6.T) = = 9}, A20
2(0.T) 3(0.7) 72 sinQ{Z10+O< )} (A20)

where we have introduced the following quantities,
1.
2o = A I o1 2p),

@) = 3 [ L0 (L)1 (52 ) T O 01001 =) . (a21)

2

For the G-integrals we find
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G(0.T) = - log 72 + oo (0) + o(T°), Ga1(0.T) = 311(0) + o(T°),

1
4r)?
G4(0.T) = §10(0) + o(T7), Gi(0.T) = §01(0) + o(T°), (A22)

where we have introduced the following quantities,

- I L=y P \sm[ P
0) = — I I m) # (0,0),
Gam (0) 4ﬂA dp sing " * (cos2 Q) 0 \sin?¢)’ (n.m) #(0.0)

2 2
- 1 [o I - P2\~ p 1
=— 1 1 —0O(p-—-1 A23
oo (0) 4r A dp{sin 6" <cos2 g) 0 <sin2 g) (p=1) 47rp} (a23)

while the remaining integrals are all o(7°). One can now easily determine the contributions of both kinds of terms to /C,,,
namely

AG,,(0.T) = N, F

3 gﬂl/(g’ T) -

2(G,0.1)+6,0.1) + 5 60.7)

1 -
= Pologz + AGw 0.7), (A24)

where f, is defined in Eq. (52), and

AGE0.1) = N[ S 000) =3 50(0) + 5 (0) + 33, 0)] + o1,
131 oo (0) — %910(9)} +o(T°),
5.

AGI(0.T) = AG[Y(0.1) = N[5 3(0) 37 (0)] + o(T),

AGL(6.T) = o(T°), (A25)

AGI(0.T) = AL (0.T) = N, [

and

AZ,(0.T) =

N, 1 1 2,0.7) Z,0.7)] N2—1[2,0.T) Z,6.7)
s [3(6’ D (zzw, 7 " 2. T)) “Ze.T) 2. TJ oW, [

where AZ,, can be split into a divergent and a finite part,

(0.7) = AZ4(0,T) + AZ (0. T),

AZ;(0.T) = AZ4,(0,T) = AZ4(0,T) + AZI7(0,T),
6,7) . T) 0.7 0.7
(0.7)

~—  ~—

0 = AZ{(6.T) + AZ]7(0.T),
0.7) = AZJZ‘;'"(H, T) = o(T9), (A27)

with divergent parts given by

‘ 9N . - ON. 1 =
AZ§Y(0.T) = 00t574—10g T2, AZI(0.T) = tanzTalog 7%, (A28)

and finite parts given by

034514-19



MATTEO GIORDANO

i _ N2 —1 2
aziron =N

2N, |sind 2 2

I 0[N, _
AZ{2(0.1) = oty [ (a + F(0)

AZIT(07 T)=

0N, .
an [T (zoo0 + Z0o(0)) +

from which one can easily reconstruct the behavior of
K,.(6.T) up to o(T°).

The results above allow us to easily derive the large-&
behavior of the couplings when the anisotropy parameters
are chosen appropriately for the longitudinally rescaled
action of Sec. 1V, i.e., /1 =¢& and /1 (L) =/, (LR) _

1, see Eq. (76). This is accomphshed through the followmg

steps. First of all, notice that /1,(, R) are justa particular case of

2,(6,T), namely 2% (&) = 4, (%,
ward to show that

T 1 _wop (7
Bn(§7g>_§Bn<2’§>y

1N _ 1 e (E
. (5¢) = ree + 24 5:4)

where 7i, = n; with {fi}={1,2,3,4}={3,4,1,2}. Finally,
one easily shows that

%) Next, it is straightfor-

(A30)

g 1
A& G OF (A31)

Putting these results together one finds that

stig-se (1) 55,39
AGHR (&) =AG,, <” é) T 1) log& = AGLY (’2”§>
(A32)

Explicitly,
AGER (6)=ag P (¢)
11_ 10_ 2.
[ (2) -0 )+ (2] ot
AGER (6 =26 =260 @) =ad5P @ =26 )

o () )]

AgzLLlR (&)= Ag|||| ():0(50)’ (A33)

0 0.
Zoo + cot=Zg (0) + tan=Z10(0)

2 _
Z101| +o(T°),
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N[ 2 0. 0. -
+T Lmezoo(g) - COtEZm(H) —tanizlo(e) + o(TY),

22 .
+—Z1():| + 0(T0)7

(A29)
|
for the contributions AQI%R) , and
AziR () = AT () + AP (@),
Az = azE0 @) = 42509 = az(50(©)
div in
= AZ[P () + Az P e),
Az (@) = AZ[iP(8) = o(&), (A34)
for the contributions AZ,(,,IJR), with divergent parts
2
(LR).div Nc —11 2
AZ = —1 ,
1L (&) 2N, 2z 0gé
div Nc 1
BZ () =T tog £, (A35)

and finite parts

LR).fin N
Azil),f (5) _

in oy Ne N2-2
AZ|(|J_ M (5):T<ZOO+ZOO (E) AN 110—1—0(50)

2
(A36)
We also report the values of the Z-integrals,
2108 = 20 = 20 (©) = 20 + o(&),
210 =25 = 217 ()
= 4—10g5 + 200 + Z10 <2> +0(&°). (A37)

APPENDIX B: ABELIAN CASE

In this Appendix we compute the Wilson-loop corre-
lator considered in Sec. III in the compact U(1) lattice
theory and in the weak-coupling limit. The starting point
is the 4D anisotropic lattice formulation for the U(1)

gauge group,
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lat 2 Z C;w

nu<v

—ReU,,(n)). (B1)

Here the plaquettes are built with the U(1) links U, (n) =
exp{ig,(n)},and canbe written asReU,, (n) = cos <I> (1),
with - @, (n) = ¢, (n) + . (n +ﬁ) ff)ﬂ(n + V) by (n).

The Haar measure is simply [ dU,(n) = [©7 d(/) ") . Setting

U (1) = Us(n)Uy (n +8) = W8] = i),
U (n) = Uy (n)Us(n + 1) = estrsdemo) = gin’n)
U (n) = Uy(n)Uj(n +4 - 1)

= e’[</’4(”)*(/11(”+‘1*1>] = e”/’?)(")

U (n) =

— pilta(n=1)-

Ui(n = D)Us(n - 1)
hi(n=D)] — gios (), (B2)
the analogue of Eq. (69) is here

e ) o ied) (n)

U (n) =
(n) |ewi~'><n>+em;>< )|

—exp (5 (6 ) + o (n) Jsgn cos

where @) (n) = ®,,(n) and ®@(n) = &y (n—1). The
Wilson loops are written as W, ; = e™*6, Ty, k = 1,2, with

’

|~

(B3)

=

QkZEZ((”g)

k), . k), .
(og + di) + o (og + diy)
Jj==1o

(k)

— o1 (Jux + di) (B4)

0, .
- (Pg >(J1)k +di—)),

oy the product of the sign factors appearing in Eq. (B3), and
T, the contribution from the transverse links.

The calculation is greatly simplified if we take the limit
T - oo first® Discarding the longitudinal-longitudinal
plaquette term, enforcing the triviality of the transverse
links, and using 1—ReU,,,=3|Af U, |* for trivial U, links,
one ends up with

lat = 262 ZC Z Z |A+U

n"nla 2’;

4 = tan—, ¢ = cot =

(
¢ 2 2’

(BS)

where n = (n4,n;) and n, = (n,, n3). The Wilson loops

simplify to W, — ¢"*a,. Since there is no interaction

Since there is actually no continuum limit to be taken, in this
case the complications of the non-Abelian case are absent.
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between link variables living at different sites of the
longitudinal plane, and between U, and U; variables,
one easily sees that the tilted links of Eq. (B3) interact
with each other only if they are separated by at most one
lattice spacing in the longitudinal plane, which leads to
factorization of the Wilson-loop correlation function and
expectation values.

It is convenient now to rescale the phases as ¢,(n) =
e, (ny. x) with x = en | (notice that x is dimensionless), in
order to take the weak-coupling limit. One then obtains for
the action

Sllit(l)T Z/a{zx a(ﬁﬂ(n”, )] s
a= 23

—00, e—»O
i

(B6)

and the integration measure in the weak-coupling limit

becomes
+r d¢ (n) 400 _
[l

where we have omitted a factor e/(2z) since it gets
canceled in expectation values. We passed to the continuum
notation for simplicity: as the action is quadratic, the
resulting continuum Gaussian integrals are fully under
control. The propagator is readily obtained,

(B7)

Dy (nymys x, ) = (B (ny; ), (my; )
= 3,0n,m, ﬁD(x —vy), (Bg)
where D(x) is the 2D scalar propagator,
D(x) = — - log . (B9)
2n

From here on angular brackets without subscripts denote
the expectation value with respect to the action Eq. (B6). In
the weak-coupling limit, cos ®,, = 1 + O(e?) and we can
neglect the sign factors in the expression for the Wilson
loops, i.e., W, — e™*. Since the action is quadratic, one
has for the relevant correlation function as e — 0

I W Wy o7 3 Qi+
1m :

= (1)
T—o0 <W1>9,7‘~<W2>97T _7< > H3)

= e

(B10)

Using now the explicit expression for €, see Egs. (B2) and
(B4), and exploiting the fact that the propagator is diagonal
in the link directions and in the longitudinal coordinates, a
straightforward calculation gives
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2 4 ku_ ku P ku_ ku
e A
(ngz):—cot010g| 2 2 2 22 |
|ZL+R%—R§L||ZL—R%+R%|
(B11)

which agrees with the known result for Cy in the 4D U(1)
pure gauge theory in the continuum limit [17]. Here we
have set f| = f, = % for convenience, without any loss of
information [54].

APPENDIX C: LARGE-T LIMIT OF
THE (0,T)-DEPENDENT ACTION

For completeness, in this Appendix we report on the
large-T limit of the anisotropic action with anisotropy
parameters Eq. (61), discussed in Sec. III. The idea is that
there could be some useful simplification if one takes
T — oo, corresponding to the limit of loops of infinite
length, before taking the continuum limit. In full analogy
with the discussion of Sec. IV, in this limit the action can be
recast as that of a set of interacting principal chiral models,
which however live now in the transverse plane at every site
of the longitudinal plane. This is natural since the limit
T — oo corresponds to taking the continuum limit in the
transverse plane at fixed longitudinal spacing a; = Ta,ie.,
the same situation of Sec. IV but reversing the roles of the
longitudinal and the transverse planes. In the large-T limit,
the longitudinal-transverse couplings can be rewritten as
follows,

ﬁ42 ﬁ43

ﬂzD(aJ_’all 9) 2NCC42:WCC43
:lNclog 1 ’
247" a, A5 (ay.0)
Agg(a” 0)=Ace™ —Stang(AG) ' (o0 )+A2§T(oo>)(a”Ac I(;:,rfotang—I’
ﬂélp)(abanﬁ):zﬂ]i; fﬁccm
:lNC1 1

og 1 ’
24rx CuAéD)(a” 0)
Aéll;(all ) Ace™ Necoty( (AG] T (00)+AZ] T (oo ))(a”AC)I(’”ﬂocotﬂ—l’

(C1)

which is precisely the form of the bare coupling as a
function of the lattice cutoff a;, = a in the two-dimensional
SU(N,) principal chiral model, to one-loop accuracy (see,
e.g., Ref. [66]). Here we have neglected o(7°) terms. The
remaining couplings read, in the same limit and in the same
approximation,

PHYSICAL REVIEW D 92, 034514 (2015)

Bl 1 N2-1 1 1
N, T T26in6 2N, zsind S, A
c sin ¢ Tsin aJ_AZD(a||79>
1 -
Eﬁﬁw(aiaauﬁ),

N dnfoNesing ZnN[ sin, x Afin 2 (oo
Ayp(ay.0) =Ac(ayhc) " e Mo (Ao

X =T?sin6p,lo =T2Bop(ay.0). (C2)

N, 0 g( ”A )2— 2o\ 4,

The action can be recast as follows,

4 1
2D) = ZS;(( Yny) + S57 () + S () + Sinia (1)),

)

(C3)
where S)((” ) correspond to principal chiral models,
s (my) = By (ay. a.0)
x> w{[ALU,m][A U]} (C4)

n; a=23

and the mutual interactions are given by the remaining
terms,

Sinu (1) = Pon( ay, a0 Z P41

Zﬂw ay,ay,0 Z > NPy,

u=41 n; a=273
— w{[AT U, ()][AT U, (n)]}]

p
A~ a
+ popla,.0) E 2Nca—2”7723(”)-
1

ny

Sine2 n”

(C5)

(4.1)

The two-dimensional scales A, and Ayp have prescribed
values that depend on A, which is set in the 4D theory, and
on a, which has to be taken to zero at the end of the
calculation. However, the average plaquette terms to lowest
order and for large T read [see Egs. (56) and (A20)]

N2—1 logT? N2—1 2z
~ 2_C ~ c
<P41> g Nc 477.'Si1‘19’ <,Pz3> 92 NC Tzsine,
N—1 0 N2—1
(Pa1)=¢* N cot 21p, (Pi1)=¢ N tan> 21,
(Co)

so that the range of applicability of perturbation theory is
limited by ¢*log T < 1; more precisely, besides a; > a
one needs a; A < (a; A)'~7 for some 6-dependent y, which
prevents from taking the continuum limit in the transverse
plane independently from the longitudinal plane.
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