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With the ongoing experimental interest in exploring the excited hadron spectrum, evaluations of the
matrix elements describing the formation and decay of such states via radiative processes provide us with
an important connection between theory and experiment. In particular, determinations obtained via the
lattice allow for a direct comparison of QCD expectation with experimental observation. Here we present
the first light-quark determination of the ρ → πγ transition form factor from lattice QCD using dynamical
quarks. Using the PACS-CS 2þ 1 flavor QCD ensembles we are able to obtain results across a range of
masses, to the near physical value of mπ ¼ 156 MeV. An important aspect of our approach is the use of
variational methods to isolate the desired QCD eigenstate. For low-lying states, such techniques facilitate
the removal of excited state contributions. In principle, the method enables one to consider arbitrary
eigenstates. We find our results are in accord with the nonrelativistic quark model for heavy masses. In
moving towards the light-quark regime we observe an interesting quark mass dependence, contrary to the
quark model expectation. Comparison of our light-quark result with experimental determinations
highlights a significant discrepancy suggesting that disconnected sea-quark loop contributions may play
a significant role in fully describing this process.
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I. INTRODUCTION

In the search for a complete understanding of the hadron
spectrum, hadronic transitions provide a crucial dialogue
between experiment and lattice QCD. Experimental pro-
grams such as those at JLAB and Mainz are producing
large bodies of high-quality data [1] providing valuable
insight into the underlying structure and dynamics of
hadronic excitations. Meanwhile, significant effort by the
lattice community has seen remarkable progress in under-
standing and mapping out the hadron spectrum from the
perspective of QCD [2,3]. Having isolated such states,
evaluations of their transition form factors provide crucial
insight into their production mechanisms allowing for
direct comparison between QCD and the experimental
observations. Another exciting prospect is that lattice
determinations may help in the experimental search for
as yet unseen QCD eigenstates, such as exotic hadron states
being sought by the GlueX experiment [4].
Among the simplest radiative process that can be

examined on the lattice is the radiative decay of the rho
meson into a pion. This process is described by a single
form factor, GM1ðQ2Þ, and as both states are the lowest
lying single particle states in their respective channels,
extraction is relatively simple. Evaluations of this transition
were considered early in the course of lattice structure

calculations, first by Woloshyn [5] and later by Lubicz and
Crisafulli [6]. More recently, our preliminary study [7]
examined both the ρ and K� transition form factors down
to lighter masses (mπ ≃ 300 MeV). However, all of these
studies used quenched gauge field configurations.
Currently the only evaluations in full QCD are those of
Edwards [8] and Shultz [9] in which this transition along
with a range of other elastic and transitions form factors
were considered. However, the parameters considered were
far from physical, particularly the large pion mass. There is
thus a need to examine this transition at light-quark masses
using dynamical quarks.
Recently the issue of excited states has received renewed

focus [10–12] as lattice determinations of several quan-
tities, most notably the nucleon axial charge, gA, and quark
momentum fraction, hxi, continue to differ systematically
from the experimental results despite operating at near
physical quark masses and large lattice volumes. In
Refs. [13,14], we presented a framework for utilizing
variational techniques for the extraction of hadronic matrix
elements. For both the calculation of gA [13] and the
electromagnetic form factors of the π and ρ mesons [14],
we found that the use of correlation matrix methods led to
significantly improved ground state dominance over the
standard single smeared source approach. This in turn
allowed for the use of earlier current insertion times and
subsequently consider earlier fit windows resulting in
improved statistical uncertainties. Furthermore, within*benjamin.owen@adelaide.edu.au
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Ref. [14] we were able to examine the corresponding
matrix elements for both excited pi and rho meson states.
The same techniques were utilized by Shultz et al. [9] to
examine the transition form factors for the lightest π and ρ
excited states. In this work we will make use of such
techniques in our determination of the ρ → πγ transition
form factors across a wide range of quark masses including
the light-quark regime.
The remainder of this investigation is organized as

follows. In Sec. II we present a brief summary of the
use of variational methods in the evaluation of transition
matrix elements. Section III outlines how we intend to
extract the transition form factor, GM1ðQ2Þ and finally a
summary of calculation details in Sec. IV. Our results are
discussed in Sec. V followed by concluding remarks
in Sec. VI.

II. CORRELATION MATRIX METHODS
FOR HADRON TRANSITIONS

The use of variational techniques for the calculation
of hadronic matrix elements has been presented in
Refs. [13,14] and here we present a brief outline to define
our procedure and notation. Similar prescriptions have been
explored in Refs. [15–20]. The variational method [21,22]
is an approach to generating a set of ideal operators, fϕαg,
constructed to have overlap with an individual eigenstate

hΩjϕαjβ; pi ∝ δαβ: ð1Þ

This is achieved by choosing an existing basis of operators,
fχig, and constructing these idealized operators as linear
combinations

ϕαðxÞ ¼
X
i

vαi χiðxÞ; ϕα†ðxÞ ¼
X
j

χ†jðxÞuαj : ð2Þ

Starting from the matrix of two-point correlation functions

Gijð~p; tÞ ¼
X
~x

e−i~p·~xhΩjχiðxÞχ†jð0ÞjΩi;

one can show that bothvαi Gijð~p; tþ δtÞ andGijð~p; tþ δtÞuαj
provide a recurrence relation from which the necessary
vectors, vαi and uαj , are the solutions of the following
generalized eigenvalue equations

vαi Gijð~p; t0 þ δtÞ ¼ e−Eαð~pÞδtvαi Gijð~p; t0Þ ð3aÞ

Gijð~p; t0 þ δtÞuαj ¼ e−Eαð~pÞδtGijð~p; t0Þuαj : ð3bÞ

With the optimized operator for the state jα; pi suitably
defined, one can construct the corresponding correlator by
projecting the matrix of correlators

Gð~p; t; αÞ ¼ ðvð~pÞÞαi Gijð~p; tÞðuð~pÞÞαj :

Here we note that the correlators that feed into Eq. (3a)
and (3b) are functions of the 3-momentum, ~p. Therefore it is
necessary to evaluate eigenvectors for each momentum
considered. This is of particular relevance to three-point
correlators where the incoming and outgoing momenta in
general differ.
To obtain the three-point correlator necessary for

describing a particular transition, it is a simple matter of
projecting the relevant states with the corresponding
eigenvectors for source and sink. In order to do this,
one first evaluates the matrix of three-point correlation
functions required for the transition in question

ðGa→b
O Þijð~p0; ~p; t2; t1Þ
¼

X
~x2;~x1

e−i~p
0·ð~x2−~x1Þe−i~p·~x1hΩjχb;iðx2ÞOðx1Þχ†a;jð0ÞjΩi;

ð4Þ

where O is the current operator through which the
transition takes place and the labels a and b highlight that
the source and sink operators can correspond to different
JPC. In this situation, one must construct ideal operators for
each set of quantum numbers. By performing the varia-
tional analysis with the bases fχa;ig and fχb;ig, we obtain
two sets of eigenvectors: ðvaÞαi , ðuaÞαj and ðvbÞβi , ðubÞβj
which form optimized operators of type a and b, respec-
tively. It is then a simple matter of projecting the necessary
eigenvectors onto the matrix of three-point functions,
where care is taken to ensure that the projection is done
with the correct momenta and operator for source and sink

Ga→b
O ð~p0; ~p; t2; t1; β;αÞ
≡ ðvbð~p0ÞÞβi ðGa→b

O Þijð~p0; ~p; t2; t1Þðuað~pÞÞαj :

Having acquired the projected two and three-point
correlation functions, determination of matrix elements
then follows in the standard way through the construction
of a suitable ratio. For transitions, we choose to work with a
modified form of the ratio presented in Ref. [23]

Rðp0; p; β; αÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hGa→b

O ð~p0; ~p; t2; t1; β; αÞihGb→a
O ð~p; ~p0; t2; t1; α; βÞi

hGað~p; t2; αÞihGbð~p0; t2; βÞi

s
:

ð5Þ

Though this requires the evaluation of both þ~q and −~q
sequential source technique (SST) propagators [24,25], if
one wishes to use both fUg and fU�g configurations as
was done in Refs. [14,26] and will be done here, then these
are required regardless of the choice of ratio [27].
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III. ρ → πγ TRANSITION FORM FACTORS

Having outlined the method for obtaining the projected
correlators and the corresponding ratios, we now consider
how to isolate the form factor describing the radiative
decay of the rho meson. In order to do so we make the
identification that a ¼ π, b ¼ ρ and O ¼ Jμ the electro-
magnetic current. For this discussion we shall work with
the standard Minkowski metric. Starting from the projected
three-point correlation function

ðGρ→πγÞμνð~p; ~p0; t2; t1; α; βÞ
¼

X
~x2;~x1

e−i~p·ð~x2−~x1Þe−i~p0·~x1hΩjϕα;~p
π ðx2ÞJμðx1Þϕβ;~p0 †

ρ;ν ð0ÞjΩi;

ð6Þ

we begin by inserting completeness identities between our
operators in order to obtain the desired matrix element, as
well as operator overlap factors. This matrix element,
which describes the transition, can be parametrized by a
single form factor GM1

hπαð~pÞjJμð0Þjρβð~p0; s0Þi

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eπαð~pÞEρβð~p0Þ

q
�
−ie
mρβ

�
GM1ðQ2Þεμδστp0

δpσϵ
β
τ ðp0; s0Þ;

ð7Þ

where we note that our choice of normalization is that of
Ref. [5]. Furthermore we note the pion overlap can be
expressed as

hΩjϕα;~p
π ð0Þjπβð~pÞi ¼

δαβffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eπαð~pÞ

q Zα
πð~pÞ

and similarly the rho meson overlap

hΩjϕα;~p
ρ;ν ð0Þjρβð~p; sÞi ¼

δαβffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eραð~pÞ

q ϵανðp; sÞZα
ρð~pÞ

where ϵðp; sÞ is a spin polarization vector which satisfies

X
s

ϵμðp; sÞϵ�νðp; sÞ ¼ −
�
gμν −

pμpν

mρα

�
:

Substituting these expressions into Eq. (6) and making use
of the spin-sum identity we arrive at

ðGρ→πγÞμνð~p; ~p0; t2; t1; α; βÞ ¼
e−Eπα ð~pÞðt2−t1Þe−Eρβ

ð~p0Þt1

4Eπαð~pÞEρβð~p0Þ Zα
πð~pÞZβ †

ρ ð~p0Þ
�þie
mρβ

�
GM1ðQ2Þεμδστp0

δpσ

�
gτν −

p0
τp0

ν

m2
ρβ

�
:

Our construction of the ratio of three- and two-point functions in Eq (5) requires the consideration of both ρ → πγ and
πγ → ρ in extracting the form factors. While both time-orderings are considered, the freedom to attribute a unique
momentum to each meson remains. Taking the Hermitian conjugate of Eq. (7), we can obtain the time-reversed matrix
element necessary for Gπγ→ρ. Following the same procedure we arrive at the corresponding expression

ðGπγ→ρÞμνð~p0; ~p; t2; t1; β; αÞ ¼
e−Eρβ

ð~p0Þðt2−t1Þe−Eπα ð~pÞt1

4Eπαð~pÞEρβð~p0Þ Zβ
ρð~p0ÞZα †

π ð~pÞ
�
−ie
mρβ

�
GM1ðQ2Þεμδστp0

δpσ

�
gτν −

p0
τp0

ν

m2
ρβ

�
:

In order to cancel out the time dependence and the overlap
factors, Z, we require the projected two-point functions

Gπð~p; t2; αÞ ¼
X
~x2

e−i~p·~x2hΩjϕα;~p
π ðx2Þϕα;~p †

π ð0ÞjΩi

ðGρÞννð~p0; t2; βÞ ¼
X
~x2

e−i~p
0·~x2hΩjϕβ;~p0

ρ;ν ðx2Þϕβ;~p0 †
ρ;ν ð0ÞjΩi;

where we note that repeated indices are not summed over.
Again applying completeness and replacing spin-sums,
these expressions reduce to

Gπð~p; t2Þ ¼
e−Eπα ð~pÞt2

2Eπαð~pÞ
Zα

πð~pÞZα †
π ð~pÞ

ðGρÞννð~p0; t2Þ ¼ −
e−Eρβ

ð~p0Þt2

2Eρβð~p0Þ Z
β
ρð~p0ÞZβ †

ρ ð~p0Þ

×

�
gνν −

pνpν

m2
ρβ

�
:

Finally, substituting in the explicit form of both two and
three-point correlation functions into Eq. (5), we obtain the
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expression which directly relates our ratio to the form
factor GM1ðQ2Þ

Rμ
νðp0; p; β; αÞ ¼ eεμδσνp0

δpσGM1ðQ2Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eπαð~pÞEρβð~p0Þððp0

νÞ2 −m2
ρβgννÞ

q :

ð8Þ

For our calculation we use SST propagators evaluated
by fixing the current. In particular, we fix the current
3-momentum to ~q ¼ � 2π

L x̂≡�~ξ, the current polarization
μ ¼ 3 and the vector meson polarization to be ν ¼ 2.
Using these kinematics, the term εμδσνp0

δpσ reduces to
ðp0

0p1 − p0p0
1Þ. We choose to refine this further by taking

one of the particles to be at rest. In doing so, we still have
the freedom to choose which of the particles is at rest

giving rise to the distinct kinematics choices: ~p0 ¼ ~ξ, ~p ¼ 0

(~q ¼ þ~ξ) and ~p0 ¼ 0, ~p ¼ ~ξ (~q ¼ −~ξ), each of which gives
distinct values of Q2. Applying these kinematics to Eq. (8)
we arrive at the final expressions used in our evaluation of
the ρ → πγ transition form factor

GM1ðQ2Þ ¼ 2mρβ

ej~qj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eρβð~qÞ
mπα

s
R3
2ð~ξ; 0; β; αÞ

for Q2 ¼ j~qj2 − ðEρβð~qÞ −mπαÞ2;

GM1ðQ2Þ ¼ 2mρβ

ej~qj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eπαð~qÞ
mρβ

s
R3
2ð0; ~ξ; β; αÞ

for Q2 ¼ j~qj2 − ðmρβ − Eπαð~qÞÞ2;

where for the first expression the pion is taken to be at rest
while for the second expression the ρ is at rest.

IV. SIMULATION DETAILS

For this calculation we use the PACS-CS (2þ 1)-flavor
dynamical-QCD gauge field configurations [28] made
available through the ILDG [29]. These ensembles use a
nonperturbatively OðaÞ-improved Wilson fermion action
and Iwasaki gauge action on a 323 × 64 lattice, with
periodic boundary conditions. The value β ¼ 1.9 provides
a lattice spacing of a ¼ 0.0907 fm, yielding a physical box
length of 2.9 fm. We have access to a total of five light-
quark masses, with the strange quark mass held fixed. The
resulting pion masses range from 702 down to 156 MeV.
We note that when quoting results away from the physical
point we set the scale using the Sommer parameter [30]
with r0 ¼ 0.492 fm [28]. Due to the limited number of
configurations at the lighter masses, we make use of
multiple quark sources on each configuration. We also
evaluate the correlators on the fU�g configurations through
the use of the U� trick outlined in Refs. [27,31].

For the evaluation of the three-point correlators we
follow the approach where the SST propagators are
evaluated with the current held fixed. For this we use a
conserved vector current [26,32] with polarization μ ¼ 3

and 3-momentum transfer ~q ¼ � 2π
L x̂. This current is

inserted at time tc ¼ 21 relative to the quark source at
tsrc ¼ 16. We note that for our choice of ratio we require
both þ~q and −~q; however, this is also required for the U�
trick when using SST propagators. Our error analysis is
performed using a second-order jackknife, with the χ2=dof
for our fits is obtained through the covariance matrix.
As was done in Ref. [14], the antiquark contribution is

evaluated through considerations of charge conjugation in
order to avoid the need to evaluate backwards-propagating
SST propagators. In doing so one finds that the quark
sectors for the forward and backwards propagating quark
fields are of equal magnitude, but differ in sign when exact
isospin is present.
For the variational analysis, we use a basis of local

meson operators of varying widths [33]. This is achieved by
applying different levels of gauge-invariant Gaussian
smearing to the quark sources and sinks. By using a variety
of widths, the resulting optimized interpolators appear to
form nodal structures in the radial wave-function [34]. Thus
we expect our operators to have greatest overlap with states
that contain dominant s-wave components. As these states
are strongly peaked at the origin, we would expect these
states to have the largest overlap with standard local
operators and so the dominant source of excited state
contamination for the standard single-source approach.
The local operators we choose to use are

χπðxÞ ¼ d̄ðxÞγ5uðxÞ
χρ;iðxÞ ¼ d̄ðxÞγiuðxÞ;

with four different smearing widths, allowing for the
construction of a 4 × 4 correlation matrix. The correla-
tion-matrix analysis is performed using t0 ¼ 17with δt ¼ 3
for the three heavier masses and δt ¼ 2 for the remaining
two lightest masses.

V. RESULTS

Before we examine the transition form factor, we
examine the isolation of the eigenstates in question. In
Fig. 1 we highlight the improved ground-state dominance
provided by the variational approach for the pion and ρ
meson through a comparison of the time series for the
effective mass extracted through the variational method and
using standard smeared correlator methods. For the ρ
meson the variational approach provides significant
improvement allowing for significantly earlier fits due to
the rapid onset of ground state dominance. In Fig. 2 we
present the masses of the π and ρ mesons extracted from
our variational analysis. For the lightest quark mass, which
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is only slightly heavier than physical, we find that both
states agree well with experimental measurements.
Nonetheless, for the rho meson we must take care to
ensure that the state we have isolated is in fact the single
particle state and not a scattering state. In Ref. [35] it was
found that despite coupling poorly to local operators,
scattering states can still populate the projected correlators.
At early times, the weak operator coupling acts to suppress
their contribution relative to the dominant single particle
state. However, if the single particle state is above thresh-
old, at large Euclidean times its contribution is suppressed

through the exponential behavior of the correlator render-
ing the scattering state the dominant term. There it was
noted that in such a scenario, one could identify a second
region of linear behavior in the logarithm of the projected
correlator. We shall use this signature to identify how far we
can sample the correlator and still guarantee single particle
dominance. We highlight this in Fig. 3 for both the π and ρ
meson, with the state at rest and boosted to ~p ¼ ~q. We have
definite liner behavior before and well after the insertion of
the current.
On these ensembles the ρ meson at rest remains lighter

than the nearest ππ-scattering state; however, this is not the
case for nonzero momentum. As was done in Ref. [14], we
perform a detailed check of our extracted eigenstates to
ensure that we have in fact isolated the single particle state.
To do this we compare the extracted eigenstate energy

16 18 20 22 24 26 28 30 32 34

0.5

1.0

Euclidean time

M
G

eV

FIG. 1 (color online). Comparison of the Euclidean time series
for the effective mass of the pion and ρ meson using the
variational approach and standard single-source method with a
moderate level of smearing (35 sweeps). The blue and green data
sets are for the pion using the variational and standard approach,
respectively, while the red and purple data sets are for the ρmeson
using the variational and standard approach, respectively. In both
cases we can see that the variational approach provides improved
ground-state dominance; however, it is most notable in the case of
the ρ meson where the variational result allows for fits four times
slices earlier than the standard approach.

0.0 0.1 0.2 0.3 0.4
0.0

0.5

1.0

m 2 GeV2

M
G

eV

FIG. 2 (color online). Masses of the π (blue) and ρ (red)
mesons. The lighter data points at the far left are the correspond-
ing PDG averages [1].

16 18 20 22 24 26 28 30 32 34 36 38 40

10.0

0.0

Euclidean time

lo
g

G

(a)

16 18 20 22 24 26 28 30 32 34 36 38 40

10.0

0.0

Euclidean time

lo
g

G

(b)

FIG. 3 (color online). Euclidean time series for logG of the π
(blue) and ρ (red) mesons, obtained using the variational
approach. The solid lines are the lines of best fit highlighting
the timeframe over which single state dominance is observed.
These lines are extended with a dashed line of the same color to
highlight where the data diverges from the single state domi-
nance. The vertical dashed lines indicate the position of the
current insertion. (a) For the states at rest. (b) For the states
boosted to ~p ¼ ~q.
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against the single-particle dispersion expectation, where the
mass used for the dispersion expectation is the energy
extracted from the zero-momentum correlator. In Fig. 4 we
demonstrate this comparison for the second lightest quark-
mass considered, where we overlay the dispersion relation
expectation (blue band) with the energies extracted from
the finite-momentum correlators (blue data points) for a
range of momenta. Here we can see excellent agreement
between the extracted energies and the dispersion result.
This is observed for all quark masses considered.
As a further check, we compare the extracted energies to

the noninteracting ππ states allowed by momentum and
parity conservation, indicated by the red diamonds in
Fig. 4. For one unit of the lattice momentum, utilized in
our form factor determinations, we observe significant
mass separations between our extracted eigenstate energies
and the noninteracting ππ energies. We further note that the
attractive nature of the finite-volume interaction of the ππ
system acts to increase the separation between the single
and multiparticle dominated states on the lattice. Similar
separations are found for all other masses with the
exception of the middle mass where the separation is
somewhat smaller.
For the particular kinematics and parameters considered

in this work, we find that the determinations of GM1 with
the pion at rest all lie below Q2 ¼ 0, while those with the
rho meson at rest lie above. This gives us values forGM1 on
either side of Q2 ¼ 0. In order to compare with experiment
and quark model expectations we require a determination
of GM1ð0Þ. To do this we choose to interpolate between our
extracted values using a monopole ansatz

GM1ðQ2Þ ¼
�

Λ2

Λ2 þQ2

�
GM1ð0Þ: ð9Þ

This choice is motivated by vector meson dominance
(VMD) arguments which suggest the form factor should
exhibit such a behavior in the region of low Q2. In these
models, the pole mass is identified as the vector meson, i.e.
Λ≃mρ. In Ref. [6], it was found that the VMD hypothesis
faired poorly with the data; however, we note that this study
was conducted with rather large values of Q2 stemming
from their small lattice volume. Contrary to this, the results
of Edwards [8] which examined the transition over a range
of Q2 between 0.02 − 0.6 GeV, display behavior consis-
tent with this expectation.
During the extraction of the quark sector contributions to

the form factor, we compared the time series for the ratio
using the correlation matrix approach and the standard
single smeared source and sink correlator. For all masses
and kinematics, we again find that the correlation matrix
method improves the quality of the plateau over the single
level of smearing, but not to the extent observed in previous
works [13,14]. In particular, the ratio sampling in the
timelike region requires significantly more Euclidean time
evolution than the corresponding ratio sampling the space-
like region. We note that in this case the rho meson carries
the momentum and the pion is at rest. Figure 5 highlights
this comparison for a single quark mass.
In Fig. 6 we present our results for the extracted values

for the u-quark sector contribution to the form factor, Gu
M1,

as well as the corresponding interpolations used to extract
Gu

M1ð0Þ. Here we choose to label these as the quark sector
contributions to the positive-charge eigenstate of the
corresponding iso-triplet. That is, the quark contribution
is labelled as the u-quark sector while the antiquark
contribution is labelled as the d-quark sector. As was
mentioned in the previous section, the antiquark contribu-
tion is equal in magnitude with opposite sign,
Gd

M1 ¼ −Gu
M1, and so we choose to show the quark

contribution only. The quark sector contributions are for
quarks of unit-charge. We note that the spread of Q2

sampled is much larger in the timelike region due to the
increasing Q0-component stemming from the Goldstone
nature of the pion. In the spacelike region, we see this effect
is suppressed when the momentum is carried by the pion.
This tight grouping of Q2 values shows a clear decrease in
the value of Gu

M1 as the quark masses become light.
In the timelike region, the most striking feature is the

significantly small value obtained for the lightest mass.
However, examination of the projected two-point function
appears consistent with a single particle state. We shall note
that the plateau for this particular extraction ofGu

M1 differed
in nature to those at heavier masses. Based upon the χ2dof ,
one is able to fit much earlier; however, this is likely the
result of a significant increase in the uncertainty of Gu

M1 at

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

np

E
G

eV

FIG. 4 (color online). An example of our comparison between

the dispersion relation E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ npj~pminj2

q
(blue line), and the

energies extracted from the finite-momentum correlators (blue
circles) for the rho meson over a range of momenta. Here m is
taken from the zero-momentum correlator, j~pminj is the magni-
tude of the lowest nontrivial momentum on the lattice. The red
diamonds provide the corresponding noninteracting ππ-energies
allowed by momentum conservation. Results at the other values
of mπ are similar.
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early time slices. Guided by the fit windows at heavier
masses we choose to fit at later times; however, it is
certainly possible that we simply do not have sufficient
statistics and so obtain a value for Gu

M1 that is suppressed.
Another possibility is that we are sampling too far into the
timelike region for the VMD hypothesis to hold. Therefore
this result may suggest that this process is suppressed at
large timelike momentum transfers. As a check of the
potential impact that this may have on the extracted value of

Gu
M1ð0Þ, we compare our results with the VMD estimate

obtained using spacelike data and the rho meson mass as
the monopole mass. This result is shown as the dashed line
in Fig. 6. In Fig. 7 we show the monopole masses extracted
from our analysis. We also include the corresponding rho
meson masses and find that they compare reasonably well
at large quark masses, but diverge in the light-quark regime.
Indeed, at the lightest mass Λ≃ 0. This draws the monop-
ole ansatz into question deep in the timelike regime. Thus

20 22 24 26 28 30 32 34
1.0

1.5

2.0

t

G
M

1

(a)

20 22 24 26 28 30 32 34
1.0

1.5

2.0

t

G
M

1

(b)

FIG. 5 (color online). A comparison of the u-quark contribution
to the transition form factor, Gu

M1, as a function of Euclidean sink
time for a single level of smearing and our variational approach.
The two data sets are offset for clarity. The upper figure is for the
π meson at rest with the (blue) circles denoting the results from
the variational approach while the (red) squares illustrate tradi-
tional results using the standard single-source method with a
moderate level of smearing (35 sweeps). The lower figure is
for the ρ meson at rest with the (green) triangles denoting the
variational method and the (purple) diamonds denoting
the single-source method. The vertical dashed lines indicate
the position of the current insertion. The fitted value from the
variational approach has been included (shaded band) to highlight
where the single-source approach is consistent with our improved
method. (a) Gu

M1 with the π at rest. (b) Gu
M1 with the ρ at rest.

0.4 0.3 0.2 0.1 0.0 0.1 0.2
0.5

1.0

1.5

2.0

Q2 GeV2

G
M

1
u

Q
2

FIG. 6 (color online). Quark sector results for the transition
form factor, Gu

M1. Each curve corresponds to a different value of
mπ , with the top curve (blue) corresponding to the heaviest and
masses getting lighter as we move down. For each mass we have
access to two values of Q2 stemming from the freedom to choose
which hadron is as rest. The solid line and colored bands are the
resulting monopole parametrization extracted from the two data
points, allowing us to access GM1ð0Þ. We also include a VMD
estimate, dashed line, obtained from using the right positive Q2

data only, with ρ-meson mass used as the monopole mass Λ.

0.0 0.1 0.2 0.3 0.4
0.0

0.5

1.0

m 2 GeV2

G
eV

FIG. 7 (color online). Monopole mass, Λ, (blue) obtained
from applying monopole ansatz to the data. The corresponding
ρ-meson mass (red) is included to test the VMD hypothesis. The
monopole mass for the lightest quark mass is not included due to
the large uncertainty in Λ2 stemming from the similar values for
Gu

M1ðQ2
1Þ and Gu

M1ðQ2
2Þ.
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to connect to experiment we also work with results in the
spacelike regime (Q2 > 0) and employ VMD.
We now consider the full hadronic transition form factor.

As was noted earlier, for this transition the quark and
antiquark sector contributions are of equal magnitude and
opposite sign and so the charge weighted form factor for
ρþ → πþγ is given by

GM1ðQ2Þ ¼ 2

3
Gu

M1ðQ2Þ þ 1

3
ð−Gu

M1ðQ2ÞÞ

¼ 1

3
Gu

M1ðQ2Þ:

Table I summarizes our lattice results. In Fig. 8 we present
our results for GM1ð0Þ. We also include the nonrelativistic
quark model expectation [36] and the available experimen-
tal data. Due to the different choice of normalization for this
matrix element, we match conventions via the decay width.
The relevant expression for the decay width using our
choice of normalization [5] is

Γρ→πγ ¼
1

3
α
j~qj3
m2

ρ
jGM1ð0Þj2; ð10Þ

where the photon 3-momentum is evaluated in the rest
frame for ρ meson

j~qj ¼ m2
ρ −m2

π

2mρ
:

Using this expression we are able to evaluate GM1ð0Þ for
experimental measurements of the decay width. We include
the PDG average [1] as well as the three experimental
measurements [37–39] used in its evaluation. For the quark
model, the choice of normalization used in Ref. [36] results
in the following expression for the decay width

Γρ→πγ ¼
2

3
αj~qj3

�
Eπ

mρ

�X
q

����hρj μqeqσqe
jπi

����
2

:

As discussed in Ref. [36], by using SU(6) quark and
antiquark flavor combinations, the sum evaluates to

X
q

����hρj μqeqσqe
jπi

����
2

¼ 2

9

μ2ud
e2

;

where the light-quark magnetic moment is

μud ¼
e

2mud
:

Matching with Eq. (10), this gives rise to the following
expression

GM1ð0Þ ¼
2

3

ffiffiffiffiffiffiffiffiffiffiffi
mρEπ

p μud
e

:

For the quark moment, μud, we use a constituent quark
mass that varies linearly in m2

π

mud ¼ aþ bm2
π;

with a and b fixed such that the constituent quark has a
mass of 330 MeVat the physical point and 510 MeVat the
SU(3) symmetric point, as determined in Ref. [1] using the
magnetic moments μp, μn and μΛ.
Beginning with our results at the heaviest values of mπ ,

we find that our lattice data is close to the quark model
expectation. Furthermore the observed trend in the data
suggests consistency with increasing quark mass where we

TABLE I. Lattice results for the charge-weighted form factor
GM1 of ρþ → πþγ for the two available Q2-values for each pion
mass.

κ mπ (GeV) mρ (GeV) Q2 ( GeV2) GM1ðQ2Þ
13700 0.6226(9) 0.981(5) −0.042ð5Þ 0.572(12)

0.078(3) 0.498(7)
13727 0.5145(9) 0.917(6) −0.085ð5Þ 0.559(13)

0.070(3) 0.470(6)
13754 0.3884(9) 0.867(6) −0.163ð6Þ 0.572(15)

0.066(3) 0.442(8)
13770 0.2848(11) 0.832(10) −0.246ð10Þ 0.578(35)

0.054(6) 0.401(9)
13781 0.1613(31) 0.793(14) −0.370ð17Þ 0.413(64)

0.050(9) 0.389(15)

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

m 2 GeV2

G
M

1
0

FIG. 8 (color online). Results for the full hadronic transition
moment, GM1ð0Þ, extracted using both space and timelike Q2

values (blue circles) and using the spacelike values only and
invoking the VMD hypothesis (red squares). We include the
available experimental extractions (orange) ordered from left to
right by year of publication [37–39]. We also include the PDG
average (red) obtained from this data [1]. The experimental data
are offset for readability, with the PDG average aligned at the
physical point indicated by the vertical dashed line. The dashed
green line is the nonrelativistic quark model expectation of
Ref. [36] as discussed herein. We also include the result of
Shultz et al. [9] (black) which determines this moment for a
single heavy-quark mass.
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would expect the quark model expectation to hold. The
trend in the data also appears consistent with the determi-
nation of Ref. [9]. As we move down to the lighter masses
there is a clear downwards trend in the lattice data, as was
also observed in our previous quenched study [7,40] In
contrast to this the quark model result shows little variation
with varying mπ . In the light-quark regime, we do not
expect the quark model to necessarily hold for this
transition. Unlike heavier systems such as bottomium
and charmonium decays, the quarks in both the pi and
rho meson systems are highly relativistic. Furthermore, the
pion itself is a goldstone mode of QCD stemming from the
underlying chiral symmetry of the theory. Though we can
in principle treat the quarks relativistically [41,42], the
inability to properly describe the chiral behavior of the pion
is a fundamental shortfall of all constituent quark models
and may certainly lead to deviations in the chiral limit.
Comparison with the experimental determination shows

a notable deviation, with the lattice data sitting around 33%
lower than the experimental value. In Fig. 8 we also include
the values obtained using VMD with the spacelike data
only and find that significant differences persist. However,
we note that our calculation is incomplete. Unlike the
elastic form factors for which disconnected contributions
are necessarily zero [15,31], such contributions are present
for meson transitions that involve a change in G-parity [9].
This is related to the invariance of the QCD action under
charge-conjugation. For disconnected contributions involv-
ing the electromagnetic current, under charge-conjugation
the “C-even” two-point function and the “C-odd” discon-
nected loop give rise to a relative sign between the fUg and
fU�g configurations and so cancel exactly [31] in the
ensemble average. For transitions involving a change in
G-parity, the two-point function is now “C-odd” and so
combining with the disconnected loop gives rise to a
common sign between the fUg and fU�g configurations
resulting in a nonzero quantity [9,15]. Furthermore, if one
neglects disconnected s-quark contributions, the charge
weight factors between the connected contributions and the
disconnected contributions are equal

GM1 ¼ quGcon
M1 þ qd̄ð−Gcon

M1Þ þ quGdis
M1 þ qdGdis

M1

¼
�
2

3
−
1

3

�
Gcon

M1 þ
�
2

3
−
1

3

�
Gdis

M1

¼ 1

3
Gcon

M1 þ
1

3
Gdis

M1:

Thus the discrepancy between our results and the exper-
imental value suggest that disconnected contributions are
likely to play an important role in fully describing this
transition. One would also expect such contributions to
become increasing important with decreasing quark mass.
This expectation complements the observation that our
results are consistent with quark model expectations at

heavier masses and deviate as we move to light-quark
regime.
Another important aspect that warrants further consider-

ation is the fact that the rho meson is ultimately a resonant
state. The nature of resonant states on the lattice is
significantly different to that of continuum due to the lack
of a continuous distribution of momentum modes and so to
properly make connection with the continuum expectation,
one must suitably evolve the lattice determinations to the
infinite volume to properly account for the differences in the
underlying multiparticle interactions. Understanding exactly
how to do this in general is an area of current interest to the
community and only very recently has a framework been
presented to handle 1 → 2 body processes required to
properly describe this transition [43–45]. In fully addressing
this aspect, it is important to also consider the role of ππ
scattering states in the ρ-meson correlation matrix to ensure a
complete isolation of QCD eigenstates on the finite volume.

VI. CONCLUDING REMARKS

In this work we present the first light-quark examination
of the radiative decay of the rho meson. The calculated
transition moment, GM1ð0Þ, was found to be consistent
with quark model expectations at heavy masses. However,
we have discovered an important quark mass dependence.
Our results in the light-quark regime sit low in comparison
with experimental determinations, suggesting important
disconnected contributions to this process.
These results warrant a more comprehensive investiga-

tion of this process. Any future work should aim to focus on
the inclusion of disconnected contributions, multiparticle
contributions and finite volume effects so as to allow for the
proper evolution of the lattice determination to the infinite
volume. Understanding the role these systematics play in
this calculation may provide important insights into topical
transition amplitudes such as N� → Nγ� and Δð�Þ → Nγ�
transitions and those central to the search for exotic hadron
states [4].
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