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We use lattice formulation of ϕ4 theory in order to investigate nonperturbative features of its continuum
limit in two dimensions. In particular, by means of Monte Carlo calculations, we obtain the critical
coupling constant g=μ2 in the continuum, where g is the unrenormalized coupling. Our final result is
g=μ2 ¼ 11.15� 0.06stat � 0.03syst.
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I. INTRODUCTION

ϕ4 theory plays a phenomenological role as an extremely
simplified model for the Higgs sector of the standard
model. In [1,2] the triviality of ϕ4 theory in more than
four dimensions has been proven, and there are numerous
analytical and numerical results forD ¼ 4 [3–5], indicating
that in this case the theory is trivial as well.
In D ¼ 2 and D ¼ 3 the theory is superrenormalizable:

the coupling constant has positive mass dimensions. In this
paper we will work in D ¼ 2, employing lattice regulari-
zation. In D ¼ 2, ½g� ¼ ½μ20�, where μ0 is the (bare) mass
parameter of the theory. This means that the only physically
relevant dimensionless parameter is the ratio g=μ2, where g
is the bare coupling constant and μ2 is a renormalized
squared mass in some given renormalization scheme. An
additive mass renormalization is required since in the
continuum limit the bare mass parameter diverges like
logðaÞ, where a is the lattice spacing. We do not care about
coupling renormalization, since it amounts to a finite factor.
Despite the simplicity of the model, there is still debate

in the literature about the value of f ≡ g=μ2, where the ratio
is evaluated at the critical point. In particular we are
interested in the value of f, call it f0, computed in the
limit in which both g and μ2 go to zero; this corresponds to
the critical value in the continuum. We decided to tackle
this problem by using the same renormalization scheme
used in [6,7], adopting the simulation technique introduced
in [8], namely the worm algorithm, and using a completely
different strategy to obtain g=μ2 in the infinite volume limit.
In the following we will describe the model and the

renormalization scheme chosen in order to extract μ2 at
fixed g in the infinite volume limit from our simulations.
Then we will give details about the simulations and we will
proceed to the continuum limit extrapolation. In the end we
will compare our results with recent determinations of the
same quantity and we will draw some conclusions.

II. LATTICE FORMULATION

Let us introduce the ϕ4 Lagrangian in the Euclidean
space:

LE ¼ 1

2
ð∂νϕÞ2 þ

1

2
μ20ϕ

2 þ g
4
ϕ4: ð1Þ

In D ¼ 2 the Euclidean action is

SE ¼
Z

d2xLE:

In order to obtain a dimensionless discretized action we put
the system on a 2-dimensional lattice with spacing a and
introduce the following parametrization

μ̂20 ¼ a2μ20; ĝ ¼ a2g: ð2Þ

In this way we have

SE ¼
X
x

�
−
X
ν

ϕxϕxþν̂ þ
1

2
ðμ̂20 þ 4Þϕ2

x þ
ĝ
4
ϕ4
x

�
; ð3Þ

where ϕx�ν̂ are fields at neighbor sites in the�ν directions.
In the following we will omit the “hat” on top of lattice

parameters: all quantities will be expressed in lattice units,
i.e. they become dimensionful when multiplied by appro-
priate powers of the lattice spacing a.
If we take the continuum limit too naively, at fixed

physical quantities, we obtain, in D < 4, the critical
Gaussian model [9]. On the other hand, if we stick to a
fixed value of g (in lattice units) we can search for a value of
μ20 such that we get, in the infinite volume limit, a second
order phase transition point in the plane ðg; μ20Þ.
In order to safely go to the continuum limit, we have to

work out an additive renormalization of the mass param-
eter,z since μ20 in this limit diverges like logðaÞ; in this way
we translate μ20 into μ2, a renormalized squared mass. Of
course several definitions of renormalized mass can be
chosen; in this work we adhere to the same renormalization

*paolo.bosetti01@universitadipavia.it
†barbara.depalma@pv.infn.it
‡marco.guagnelli@pv.infn.it

PHYSICAL REVIEW D 92, 034509 (2015)

1550-7998=2015=92(3)=034509(6) 034509-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.92.034509
http://dx.doi.org/10.1103/PhysRevD.92.034509
http://dx.doi.org/10.1103/PhysRevD.92.034509
http://dx.doi.org/10.1103/PhysRevD.92.034509


procedure as in [6,7]. We refer the reader to these papers for
more details. Here we only remind that in D ¼ 2 there is
only a 1-particle-irreducible divergent diagram (see Fig. 1).
Its expression on a lattice with N × N points is

Aðμ20Þ ¼
1

N2

XN−1

k1¼0

XN−1

k2¼0

1

4ðsin2 πk1
N þ sin2 πk2

N Þ þ μ20
; ð4Þ

and a suitable renormalization condition consists in putting
μ2 equal to the solution, in the infinite volume limit, of the
equation

μ2 ¼ μ20 þ 3gAðμ2Þ: ð5Þ

This condition is equivalent to the introduction of a
proper divergent mass-squared counterterm in the action.
We may finally extrapolate the quantity f ≡ g=μ2 to g → 0
in order to obtain f0, the critical value in the continuum
limit.
Another parametrization of the action is the following:

SE ¼ −β
X
x

X
ν

φxφxþν̂ þ
X
x

½φ2
x þ λðφ2

x − 1Þ2�

¼ SI þ SSite; ð6Þ

where the relations between ðμ20; gÞ and ðβ; λÞ are

ϕx ¼
ffiffiffi
β

p
φ; μ20 ¼ 2

1 − 2λ

β
− 4; g ¼ 4λ

β2
: ð7Þ

In Eq. (6) there is an interaction term between neighbor
sites, SI, with a coupling constant of strength β and a
term related to a single site, SSite. With this parametri-
zation it is easy to recognize the Ising limit for λ → ∞.
In this limit, configurations with φ2 ≠ 1 are completely
suppressed and the fields assume only values φðxÞ ¼ �1.
As a result, the second term of (6) can be disregarded and
the action becomes the well-known Ising action SE ¼
−β

P
x

P
ν φxφxþν̂.

A. Simulations

In this section we outline our general computational
strategy, postponing the discussion of the simulations
details.
We use the worm algorithm [8], using the lattice action

given by (6). We checked our simulation program against
the results of [8,10], obtaining values compatible within

errors, well below one sigma level. In this case and also in
the following, in order to estimate statistical errors we use
the program described in [11].
Considering a fixed value of λ, our aim is to compute the

critical point of the theory, i.e. the critical value of β for that
particular value of λ. We use the physical condition

mL ¼ L=ξ ¼ const ¼ z; ð8Þ

where m is implicitly defined by the condition

Gðp�Þ
Gð0Þ ¼ m2

p�2 þm2
: ð9Þ

GðpÞ is the two-point function in momentum space, and p�
is the smallest possible momentum on a lattice of linear size
L. Details, as before, in [8]. Condition (8) implies that ξ
grows linearly with L, and when L=a → ∞ we arrive at the
critical point. We then simulate several lattices with differ-
ent values of N ≡ L=a; for each couple ðλ; NÞ we obtain a
value of βðλ; NÞ such that mL ¼ z. After this step we
extrapolate our results to a=L → 0 in order to compute
βðλÞ. Now, using relations in (7) we derive gðλ; βÞ and
μ20ðλ; βÞ. Using renormalization condition (5) we finally pin
down μ2ðgÞ and hence the ratio f ≡ g=μ2.
We repeat all this procedure for several values of λ, and

hence of g; in the end we extrapolate our results to g → 0, in

FIG. 1. One–loop self–energy in ϕ4.

FIG. 2 (color online). Linear interpolation (λ ¼ 0.25; L ¼ 256)
to obtain βðz ¼ 4Þ.

TABLE I. λ ¼ 0.25 simulations.

L=a Nmeas Nsweep βcðz ¼ 4Þ
192 1 × 105 15 0.655357(12)
256 5 × 104 15 0.656177(11)
384 5 × 104 15 0.656984(8)
512 3 × 104 20 0.657399(7)
768 2 × 104 25 0.657818(10)
∞ 0.658628(10)
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order to obtain f0. We will now focus on the details of our
simulations.
We choose the condition z ¼ 4. As we will see in the

following, this choice is not as crucial as it may seem.
At a fixed value of λ we simulate the system for five

values of L=a, namely: L=a ¼ 192, 256, 384, 512 and 768.
For each value of L=a few preliminary simulations are
needed to roughly find the value of β leading to z≃ 4. In
few cases (see for example Fig. 2) we have explicitly
checked that using five values of β such that z falls
approximately into the interval [3.8,4.2] we do not observe
any sign of nonlinearity of z as a function of β. The
difference in βðz ¼ 4Þ between the case in which we use 5
points to interpolate and the case in which we use only 3
points is one order of magnitude less than the statistical
error itself. We then decided to use just 3 values of β for the
real simulations to linearly interpolate the results and to
obtain in this way βðλ; NÞ.
A typical full simulation (λ ¼ 0.25) is synthesized in

Table I. Nsweep is the number of worm-sweeps between two
measures, which increases in order to minimize the

simulation time, taking into account autocorrelation time;
the number of thermalization sweeps for all our simulations
is several hundreds times τ, the autocorrelation time ofmL,
which we always keep under control.
ϕ4 theory [12] is in the same universality class of the

Ising model, and we know that in D ¼ 2 the critical
exponent of the correlation length is ν ¼ 1. Thanks to
finite size scaling arguments we expect to be able to
extrapolate βðλ; NÞ to βðλÞ linearly in a=L. This is numeri-
cally very well confirmed for all values of λwe explored. In
Fig. 3 we show a typical extrapolation. For every value of λ
considered, we obtain a very reasonable value of χ2 ≤ 1.
Our final results are reported in Table II.
Now we show that the condition z ¼ 4 is not crucial;

actually, as is well known from general theoretical argu-
ments, we could choose another value of z without
affecting the results in the infinite volume limit. From a
numerical point of view it is nevertheless interesting to
consider other values of z in order to be more confident on
the reliability of the extrapolations. As an example we
show, in Fig. 4, a double extrapolation to a=L ¼ 0 in the
case λ ¼ 1. For z ¼ 4 the extrapolation to a=L ¼ 0 is
steeper than for z ¼ 1, since in the latter case, at finite
volume, we are nearer to criticality, so that βðλ; NÞ is not so
far from the infinite volume value. Nevertheless at z ¼ 4we
obtain a much more clear signal; we can extrapolate to the
a=L ¼ 0 value with a much smaller statistical error even if
the number of measures is (5–10)-times smaller than the
case z ¼ 1. The results in the infinite volume limit coincide
within the statistical errors; βðz ¼ 1Þ ¼ 0.68060ð4Þ, to be
compared with the equivalent value in Table II, βðz ¼ 4Þ ¼
0.680601ð11Þ.

III. RESULTS

In Fig. 5 we plot the results shown in Table II. The plot is
in x–log scale, to emphasize the fact that we covered over
two order of magnitude in g. Blue round points are our

FIG. 3 (color online). Linear extrapolation of β to a=L ¼ 0 for
λ ¼ 0.25.

TABLE II. Final extrapolations to infinite volume limit: g and μ2 are computed at βc using Eqs. (5) and (7).

λ βc g μ2 g=μ2

1.000000 0.680601(11) 8.63523(29) 0.649451(67) 13.2962(18)
0.750000 0.689117(13) 6.31733(24) 0.509730(59) 12.3935(19)
0.500000 0.686938(10) 4.23833(12) 0.367173(31) 11.5431(13)
0.380000 0.678405(11) 3.30267(10) 0.296195(32) 11.1503(15)
0.250000 0.6586276(98) 2.305261(69) 0.214762(27) 10.7340(17)
0.200000 0.6462478(78) 1.915543(46) 0.181077(21) 10.5786(15)
0.125000 0.6190716(52) 1.304633(25) 0.125924(15) 10.3605(15)
0.094000 0.6030936(89) 1.033757(30) 0.100518(23) 10.2843(26)
0.062500 0.5820989(60) 0.737813(15) 0.072073(15) 10.2370(23)
0.030000 0.5516594(71) 0.394311(10) 0.038407(17) 10.2666(48)
0.015625 0.5326936(27) 0.2202547(22) 0.0211916(63) 10.3935(32)
0.007500 0.5187729(29) 0.1114722(12) 0.0105457(67) 10.5704(68)
0.005000 0.5136251(17) 0.07581192(49) 0.0071014(38) 10.6757(57)
0.002000 0.5064230(16) 0.03119343(19) 0.0028637(35) 10.8925(132)
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results taken from Table II. Red triangular points are results
from [7]. We postpone the discussion of the green square
points.
First of all we note that in the intermediate region, i.e.

in the minimum of the curve, our results are in almost
perfect agreement with those of [7]. Note that the infinite
volume limit results of [7] are obtained with a completely
different strategy. The situation starts changing at the
lowest simulated values of g: we see, in the insert shown
in Fig. 5, that our points seem to be a little bit higher. The
blue curve is our final fitting function, which we are now
going to discuss, while the red dashed curve is the fit
function used in [7].
We decided to fit fðgÞ over the entire range at our

disposal with the function

fðgÞ ¼ a0 þ a1gþ a2g2 þ a3g3 þ a4g4

1þ b1gþ b2g2 þ b3g3
: ð10Þ

We can certainly justify the functional form for large values
of g.We know thatϕ4 theory reduces to the Isingmodel in the

limit λ → ∞. In particular in the Ising limit we have

β ¼ βIsingc ¼ logð1þ ffiffi
2

p Þ
2

. Note that βðλÞ, at the critical point,
is a highly nonlinear function of λ itself. In fact at λ ¼ 0,
β ¼ 0.5; then we note a maximum, with a value around 0.69
for intermediate values of λ; in the end βðλÞ has to go
asymptotically to the value 0.44068679…, the critical Ising
value inD ¼ 2. In [13] it is noted that for λ ¼ 10 the value of
β at criticality is already near the asymptotic value. For very
largevalues of λwecan then safely approximate βwith βIsingc ;
if we look at the relations (7), we note that g is going to
infinite linearly with λ, and μ20 diverges proportionally to g.
But this is not true for μ2 due to the renormalization condition
(5). We numerically checked that μ2, using the approxima-
tion β¼βIsingc for g ≥ 104, can be linearly extrapolated in 1=g
to g→∞ (see Fig. 6). We arrive at the value μ2Ising ¼
3.40669ð1Þ; the error is subjectively estimated from the fit.
We simply assume a linear behavior of fðgÞ for g → 0.

Taking into account the Ising limit constraint, we fix the
parameter b3 as a constant times a4. We have in total
7 d.o.f. and we obtain

f0 ¼ 11.179ð62Þ ð11Þ
with a reduced χ2 ¼ 0.73.

FIG. 4 (color online). Extrapolation to a=L ¼ 0 with z ¼ 4
(blue steep curve) and z ¼ 1 (red curve) (λ ¼ 1).

FIG. 5 (color online). Final results for fðgÞ in logarithmic scale.
Error bars, where not visible, are smaller than symbol size.

FIG. 6 (color online). Extrapolation of μ2 at g → ∞, as
described in text.

TABLE III. g ¼ 4 simulations with Metropolis–cluster algo-
rithm.

L=a Nmeas g=μ2

128 1 × 105 11.2631(13)
192 1 × 105 11.3227(9)
256 1 × 105 11.3533(7)
384 1 × 105 11.3826(3)
512 1 × 105 11.3969(3)
∞ 11.4417(5)
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In order to check the validity of the fit function (10), we
decided to compute fðgÞ with the same strategy adopted in
[7], but for two values of g higher than those considered in
[7], namely g ¼ 4 and g ¼ 6. The field configurations are
generated with a mixture of Metropolis steps and single
cluster Wolff steps, used in [7] and presented in [14].
In particular for each L=a we search for the value of

μ20 that maximize the magnetic susceptibility χ ¼ hϕ̄2i−
hjϕ̄ji2; this peak is a signal of the pseudotransition point at
finite volume. ϕ̄ is the average of the field over the whole
lattice. μ20 is then extrapolated to a=L → 0 and the
corresponding μ2 is obtained by means of condition (5).
Details of simulations for g ¼ 4 are given in Table III. As

can be seen in Fig. 5 the two points at g ¼ 4 and g ¼ 6,
represented by squares, lie perfectly on the curve defined
by our fit function. This represent a further confirmation
that our strategy for computing g=μ2, passing through the
limiting procedure described above, works as expected. In
order to better understand the behavior of fðgÞ for all
possible values of g we define a new parameter, η:

η ¼ g
gþ 1

: ð12Þ

It is clear that (12) is a map from g ∈ ½0;∞Þ to η ∈ ½0; 1�.
We hope in this way to obtain a smoother behavior of fðηÞ;
note that the limit fðη → 0Þ is completely equivalent to
fðg → 0Þ. We then define the fit function

fðηÞ ¼ a00 þ a01ηþ a02η
2 þ a03η

3

1þ b01ηþ b02η
2 þ b03η

3
; ð13Þ

where one of the parameters is determined by the Ising
constraint for η ¼ 1.
As shown in Fig. 7, this choice leads us to a smoother

function. With the η parametrization we obtain:

f0 ¼ 11.119ð24Þ; ð14Þ
with a reduced χ2 ¼ 0.95 and 8 d.o.f.

IV. CONCLUSIONS

We decide to quote our final result as:

f0 ¼ 11.15ð6Þð3Þ: ð15Þ
We take as central value the mean of (11) and (14). The first
error is purely statistical, and it is conservatively taken as
the biggest one between the two fits. The second error is an
estimate of the systematic error associated with the par-
ticular functional form used to fit data.
In Table IV we summarize some of the latest results for

f0 derived with different approaches: the works [15–19] are
based on Hamiltonian truncation (variational) methods,
while in [20] lattice theory is simulated by using nonlocal
SLAC derivative.
We note that our result is compatible with the last

four determinations, which come from different methods.
We only observe a discrepancy at a 3σ-level with the
Monte Carlo results in [7], where a region of very small g-
values is reached. For technical reasons, which will be
hopefully overcome in the near future, we could not
reach this region, but thanks to the worm algorithm our
statistical errors are much smaller. We also note that the
result of our second fit (η–parametrization, see Fig. 7) has a
statistical error comparable with that of [18], and the two
results are compatible at 2σ-level. Although we were very
conservative in the error estimations, we believe that this
work is a step toward a more precise Monte Carlo
determination of f0.
Our plans for the near future are to improve this work

towards the g → 0 limit with an extended statistics.
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FIG. 7 (color online). Final plot of fðηÞ with our results.

TABLE IV. Sample of the results for the continuum critical
parameter f0 from the literature. DLCQ stands for discretized
light cone quantization, QSE diagonalization for quasisparse
eigenvector diagonalization and DMRG for density matrix
renormalization group.

Method f0 Year, References

DLCQ 5.52 1988, [15]
QSE diagonalization 10 2000, [16]
DMRG 9.9816(16) 2004, [17]
Monte Carlo cluster 10.80.10.05 2009, [7]
Monte Carlo SLAC derivative 10.92(13) 2012, [20]
Uniform Matrix product states 11.064(20) 2013, [18]
Renormalized Hamiltonian 11.88(56) 2015, [19]
Monte Carlo worm 11.15(6)(3) This work
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