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We propose the pure sea-quark contributions to the magnetic form factors of Σ baryons,Gu
Σ− and Gd

Σþ , as
priority observables for the examination of sea-quark contributions to baryon structure, both in present lattice
QCD simulations and possible future experimental measurement. Gu

Σ− , the u-quark contribution to the
magnetic form factor of Σ−, andGd

Σþ , the d-quark contribution to the magnetic form factor of Σþ, are similar
to the strange-quark contribution to the magnetic form factor of the nucleon, but promise to be larger by an
order of magnitude. We explore the size of this quantity within chiral effective field theory, including both
octet and decuplet intermediate states. The finite range regularization approach is applied to deal with
ultraviolet divergences. Drawing on an established connection between quenched and full QCD, this
approach makes it possible to predict the sea-quark contribution to the magnetic form factor purely from the
meson loop. In the familiar convention where the quark charge is set to unityGu

Σ− ¼ Gd
Σþ. We find a value of

−0.38þ0.16
−0.17 μN , which is about seven times larger than the strange magnetic moment of the nucleon found in

the same approach. Including quark charge factors, the u-quark contribution to the Σ− magnetic moment
exceeds the strange-quark contribution to the nucleon magnetic moment by a factor of 14.

DOI: 10.1103/PhysRevD.92.034508 PACS numbers: 12.39.Fe, 13.40.Gp, 14.20.Jn

It is well known that a complete characterization of
baryon substructure must go beyond three valence quarks.
For example, there is significant interest in the role of five-
quark admixtures. This began with suggestions that there
might be an intrinsic charm [1,2] or an intrinsic strange
component [3,4] of the nucleon sea originating in non-
perturbative QCD, rather than the familiar perturbative
QCD evolution. Such configurations are widely believed to
play a role in the famous d̄ − ū asymmetry of the nucleon
[5–8], first discovered by the New Muon Collaboration
(NMC) [9]. Nonperturbative strange-quark contributions to
the properties of the nucleon, which necessarily involve
five-quark configurations, also attracted considerable inter-
est because of the puzzling European Muon Collaboration
(EMC) results concerning the proton spin [10–13].
One of the most powerful tools currently available for the

investigation of the nonperturbative structure of hadrons is
lattice QCD. There terms such as the strange or charm quark
sea or the strange form factors of the nucleon necessarily
involve so-called “disconnected graphs,” that is, quark loops
which are connected only by gluons to the valence quarks.
With very few exceptions, the form factor studies in lattice
QCD, which complement the recent experimental efforts at
facilities such as Jefferson Lab, deal with so-called con-
nected contributions, in which the external current acts on a
quark line running directly from the hadronic source to sink.
Only a few studies have directly addressed the disconnected

contributions, the best-known example of which is the
strange-quark contribution to the nucleon elastic form
factors [14–22], which is analogous to the vacuum polari-
zation contribution to the Lamb shift. Despite enormous
effort [23], only two direct lattice QCD calculation have
produced a nonzero result [24,25].
On the experimental side, under the assumption of

charge symmetry, one can deduce these strange electric
and magnetic form factors (Gs

E;MðQ2Þ) from measurements
of the proton and neutron electromagnetic form factors and
the neutral-weak vector form factor of the proton, through
its contribution to parity violating electron scattering
(PVES). While PVES measurements are very challenging,
a number of groups have succeeded, starting with
SAMPLE at Bates [26] and then A4 at Mainz [27,28]
and G0 [29] and HAPPEX [30–32] at Jefferson Lab. Up to
now, the experiments have not provided an unambiguous
confirmed answer to the sign of the strange form factors,
although global analyses do tend to suggest thatGs

Mð0Þ < 0

is favored [33,34], in agreement with indirect lattice
calculations [16–22].
In this paper, we propose that the quantity Gu

Σ−, the
u-quark contribution to the magnetic form factor of Σ− (or
equivalently Gd

Σþ, the d quark contribution to the magnetic
form factor of Σþ), presents an ideal opportunity for lattice
QCD to unabiguously provide vital information on the
existence of these intrinsic five quark components in
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baryon wave functions. Because the light quark mass of the
u or d quark may be expected to govern the magnitude of
the contribution, it is expected to be larger and therefore
less difficult to measure in lattice QCD. It can only arise
from the “disconnected” sea-quark contributions explained
earlier. By investigating Gu

Σ− in the framework of effective
field theory (EFT), where it is generated by a π meson loop,
we show that it is indeed much larger than the strange form
factor, which within EFT is generated by aK meson loop. If
the lattice QCD study which we propose were to produce a
result for Gd

Σþ significantly different from the result we
obtain, it would provide profound new information on so
far poorly understood aspects of QCD dynamics, such as
colored diquark configurations [35].
Chiral effective field theory (EFT) is a useful tool with

which to study hadron properties at low energy. There has
been some work on strange form factors with heavy baryon
chiral EFT [36,37]. However, there is an unknown low
energy constant appearing in the chiral Lagrangian, which
has limited the capacity to calculate the strange magnetic
form factor. In other words, the quantity one wishes to
predict—the strangeness vector current matrix element—is
the same quantity one needs to know in order to make a
prediction [38,39]. While this is the case in conventional
chiral EFT, experience with finite-range regularization
(FRR), has shown that by varying the regulator parameter,
one can model the shift in strength from the loop con-
tributions into the core. This suggests that within FRR
χ-EFT one might identify the core contribution with the
tree level contribution and make the approximation that, for
Λ in the region of 0.8 GeV, the sea-quark content of the core
is negligible. In this way, full QCD results have been
obtained rather successfully from quenched lattice data
[16–19,40,41]. We should emphasize that unquenching
only works for the particular choice of regulator mass, Λ
around 0.8 GeV, because only then does one define a core
contribution that is approximately invariant between
quenched and full QCD.
We will apply heavy baryon chiral effective field theory

with finite range regularization to study the pure sea-quark
contribution to the magnetic form factors of Σ baryons. In
presenting the formalism, we choose to focus on the
d-quark contribution to Σþ form factors. This channel is
very similar to the s-quark contribution to the proton. In the
standard convention where the quark charge is set to
unity Gu

Σ− ¼ Gd
Σþ.

In heavy baryon chiral EFT, the lowest-order chiral
Lagrangian for the baryon-meson interaction which will be
used in the calculation of the magnetic form factor,
including the octet and decuplet baryons, is expressed as

Lv ¼ 2DTrB̄vS
μ
vfAμ; Bvg þ 2FTrB̄vS

μ
v½Aμ; Bv�

þ CðT̄μ
vAμBv þ B̄vAμT

μ
vÞ; ð1Þ

where Sμ is the covariant spin-operator defined as

Sμv ¼ i
2
γ5σμνvν: ð2Þ

Here, vν is the baryon four velocity [in the rest frame, we
have vν ¼ ð1; 0Þ] and D, F and C are the usual SU(3)
coupling constants. The chiral covariant derivative, Dμ, is
written as DμBv ¼ ∂μBv þ ½Vμ; Bv�. The pseudoscalar
meson octet couples to the baryon field through the vector
and axial vector combinations

Vμ ¼
1

2
ðζ∂μζ

† þ ζ†∂μζÞ; Aμ ¼
1

2
ðζ∂μζ

† − ζ†∂μζÞ;
ð3Þ

where

ζ ¼ eiϕ=f; f ¼ 93 MeV: ð4Þ

As explained above, following earlier successful studies
of the connection between quenched and full QCD, our
working hypothesis is that the d quark contribution to the
magnetic form factor of the Σþ comes purely from the
meson loop diagrams, which are shown in Fig. 1. There are
two types of diagrams. Figure 1(a) is the leading-order
contribution, where the external field couples to the meson.
Figure 1(b) is the next-to-leading-order contribution, where
the external field couples to the baryon. That the K meson
loop provides a very small contribution to the magnetic
form factor was shown in the previous study of the strange
magnetic form factor [21]. Here we consider the π loop
contribution. Both octet and decuplet intermediate states
are included. The contribution from the process shown in
Fig. 1(a) is expressed as

Gdð1aÞ
Σþ ¼ PπþΣ0 þ PπþΛ þ PπþΣ�0 ; ð5Þ

where the respective terms correspond to the intermediate
Σ0, Λ and Σ�0 states. PπþΣ0 can be obtained as

PπþΣ0 ¼ −
mΣF2

12π3f2π

Z
d3k

k2u1u2
ω2
1ω

2
2

: ð6Þ

In the now standard notation, u1 (u2) is the regulator
introduced in the finite range regularization with

(b)(a)

X

X

FIG. 1. Feynman diagrams for the calculation of the magnetic
form factor of the Σþ. Diagrams (a) and (b) correspond to the
leading- and next-to-leading-order diagrams, respectively.
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momentum ~k1 ¼ ~kþ ~q=2 (~k2 ¼ ~k − ~q=2). ω1 (ω2) is the

energy of a pion with momentum ~k1 (~k2). The charge of the
d quark has been set to unity, consistent with the universal
convention when discussing the strange-quark form factors
of the proton.
The intermediate Λ contribution in Fig. 1(a) has the

following relationship with the Σ0:

PπþΛ ¼ D2

3F2
PπþΣ0 : ð7Þ

For the decuplet part, the contribution is written as

PπþΣ�0 ¼ mΣC2

432π3f2π

Z
d3k

k2u1u2ð1þ Δ=ðω1 þ ω2ÞÞ
ω1ω2ðω1 þ ΔÞðω2 þ ΔÞ ;

ð8Þ

where Δ is the mass difference between the Σ�0 and Σ0.
For the strange magnetic form factor of the nucleon,

similar leading-order contributions are encountered.
Compared with the formulas in Ref. [21], the coupling
constants in front of the momentum integrals are different.
For example, for the Λ and Σ intermediate states herein, the
coupling constants are D2=3 and F2, respectively. For the
strange magnetic form factor of the nucleon, the corre-
sponding coupling constants are ðDþ 3FÞ2=12 and
3ðD − FÞ2=4, respectively. Using the standard values of
D ¼ 0.76 and F ¼ 0.50 (gA ¼ Dþ F ¼ 1.26), one finds
the Σ intermediate state to be enhanced by a factor of five
for Gd

ΣþðQ2Þ. However suppression in the coupling of the Λ
intermediate state leaves the combined coupling to Λ and Σ
intermediate states for the Σ and nucleon similar in
magnitude, differing by 7%. Thus, the quantity ω in the
denominator is the crucial element in comparing the
magnitude of pure sea-quark contributions in the nucleon
and in Σ. For pure sea-quark contributions in Σ baryons, ω
is the energy of the pion instead of the energy of a kaon. As
a result, the value of the leading-order contribution to
Gd

ΣþðQ2Þ is much larger than that for the strange magnetic
form factor of the nucleon.
The next-to-leading-order contribution of Fig. 1(b) is

Gdð1bÞ
Σþ ¼ PΣ0μdΣ0 þ PΣ�0μdΣ�0 þ PΣ�0Σ0ðΛÞμd: ð9Þ

This includes octet, decuplet and octet-decuplet transition
contributions in Fig. 1(b). The octet contribution arising
from the Σ0 is written as

PΣ0 ¼ F2

16π3f2π

Z
d3k

k2u2k
ω3
k

; ð10Þ

corresponding to the Σ0 state appearing in the configuration
πþΣ0. The decuplet contribution from the Σ�0 is obtained as

PΣ�0 ¼ −
5C2

864π3f2π

Z
d3k

k2u2k
ωkðωk þ ΔÞ2 : ð11Þ

The Σ�0Σ0ðΛÞ transition contribution to the magnetic form
factor is written as

PΣ�0Σ0ðΛÞ ¼ −
ðD − FÞC
36π3f2π

Z
d3k

k2u2k
ω2
kðωk þ ΔÞ : ð12Þ

Here μdB is the d quark contribution to the magnetic moment
of the baryon B at tree level, i.e.

μdΣ0 ¼ 2

3
μdΣ�0 ¼ 2

3
μd: ð13Þ

For the last term in Eq. (9), the following transition
moments is applied

μdΣ0Σ�0 ¼
ffiffiffi
3

p

3
μdΛΣ�0 ¼

ffiffiffi
2

p

3
μd ð14Þ

Again, the next-to-leading-order contribution to the
nucleon magnetic form factor also has terms similar to
those above with different coupling constants. As in the
case of the nucleon strange magnetic form factor, we will
see that this next-to-leading-order contribution is much
smaller than the leading-order contribution for Gd

ΣþðQ2Þ.
In the numerical calculations, the parameters are chosen

as D ¼ 0.76 and F ¼ 0.50 (gA ¼ Dþ F ¼ 1.26). The
coupling constant C is chosen to be −2D. The form of
the regulator function, uðkÞ, could be chosen to be a
monopole, dipole or Gaussian function, any of which
would give similar results [42]. In our calculations, a
dipole form is chosen because that is the empirical shape
of the nucleon axial form factor [43]

uk ¼
1

ð1þ k2=Λ2Þ2 ; ð15Þ

with Λ ¼ 0.8� 0.2 GeV.
As we explained earlier, this choice has been widely

applied in the extrapolation of lattice data for hadron mass,
moments, form factors, radii, first moments of GPDs, etc.
[21,42,44–50]. With this choice it has been shown that
reasonable physical results can be obtained from the
quenched lattice data at both leading and next-to-leading
order [16–19,21,40–42,44]. Λ around 0.8 GeV is the value
required to identify a core contribution that is invariant
between quenched and full QCD. This invariance of the
core is based upon the assumption that the 3-quark core of
the Σþ contains no d quark component.
While our calculation is motivated by chiral effective

field theory with the same chiral Lagrangian, our calcu-
lation with FRR is at a physically motivated scale, where
earlier work has suggested that the residual series of
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analytic terms best describes the three-quark core contri-
butions. From the previous extrapolation of quenched
lattice data, it is found that this preferred value of Λ in
the dipole regulator is around 0.8 GeV. The variation of Λ
from 0.6 to 1 GeV provides an estimate of the degree of
model dependence of our result.
The contribution of the pure sea-quark contribution to

the Σ magnetic moment at leading and next-to-leading
order is shown in Table I. The leading-order diagram shown
in Fig. 1(a) gives a negative contribution to the magnetic
form factor. The contributions from the next-to-leading
order diagrams are much smaller than the leading contri-
bution. They depend on the parameter μd. Assuming SU(3)
symmetry, one has μd ¼ μs ¼ − 1

2
μu ¼ − 1

3
μD. In fact, this

relation was applied in our previous investigation of
nucleon magnetic form factors [41,45]. In the previous
extrapolation of nucleon magnetic form factors, we found
μD equal 2.55 μN and 2.34 μN for full QCD and quenched
QCD extrapolations, respectively [41,45]. Therefore,
μd ¼ −0.8 μN should be a good estimate.
In Fig. 2, we show the magnetic form factor Gd

ΣþðQ2Þ
versus Q2 at Λ ¼ 0.6, 0.8 and 1.0 GeV. One can see that

Gs
ΣþðQ2Þ decreases in magnitude with the increasing Q2. It

is obvious that the magnetic form factor does not change
sign for any of the choices of Λ when Q2 increases. This is
just like the strange magnetic form factor of the nucleon.
However, the absolute value of Gd

ΣþðQ2Þ is about one order
of magnitude larger than Gs

NðQ2Þ. Since its absolute value
decreases with the increasing Q2, it would be preferable to
attempt to measure the magnetic form factor at low Q2. For
example, when Q2 is less than 0.2 GeV2, the absolute
central value of Gd

Σþ is larger than 0.2 μN .
At Q2 ¼ 0, the d quark contribution to the magnetic

moment of the Σþ is μdΣþ ¼ Gd
Σþð0Þ ¼ −0.38 μN . If we vary

Λ from 0.6 to 1 GeV, μdΣþ will change from −0.22 μN to
−0.55 μN . Numerical results show that μdΣþ remains neg-
ative over a large parameter range. Compared with the
strange magnetic moment of the proton, the value of μdΣþ is
about 7 times larger [16,21].
For unit charge sea quarks, Gd

Σþ ¼ Gu
Σ− . Thus the

magnitude of the sea-quark contribution further doubles
in an experimental measurement of the contribution of the u
quark to the form factor of Σ−.
Motivated by the importance of establishing the proper-

ties of disconnected contributions to physical quantities in
lattice QCD, we have shown that Gu

Σ−ðQ2Þ and Gd
ΣþðQ2Þ

have the practical advantage that their values are much
larger than the strange magnetic form factor of the nucleon.
Since the absolute value of Gd

ΣþðQ2Þ is nearly one order of
magnitude larger than the strange magnetic form factor of
the nucleon, it would clearly be better to simulate this
quantity in place of the strange form factor of the nucleon.
Since the lattice simulations will almost certainly be

made over a range of light quark masses, we have
investigated the pion mass dependence of Gd

Σþð0Þ. The
results are shown in Fig. 3, where the upper, middle and
lower lines are for Λ ¼ 0.6, 0.8 and 1 GeV, respectively.
From the figure, one can see that with increasing quark
mass the absolute value of μdΣþ decreases. However, even at
m2

π ¼ 0.2 GeV2, μdΣþ is still much larger than the strange
magnetic moment of the nucleon at the physical pion mass.
An additional feature of the Σ baryon is the presence of a

strange quark in the two-point correlation function. In
calculating the disconnected sea-quark contribution, one
multiplies the disconnected loop by the standard two-point
function in creating the full three-point function. The
presence of a strange quark in the two-point function will
assist in reducing statistical noise in the three-point
correlation function for the pure sea-quark contribution.
Given that Gd

ΣþðQ2Þ is dominated by the contribution of
a π meson loop and having strange quarks in the two-point
correlation function is advantageous, one might also con-
sider the d quark contribution to the magnetic form factor
of the Ξ0 or the u quark contribution to the magnetic form
factor of the Ξ−. These quantities are also determined by a π

TABLE I. Pure sea-quark contributions to the magnetic mo-
ments of Σ baryons, Gu

Σ− or Gd
Σþ. Values are for unit charge sea

quarks in μN . The dependence of the results on the finite-range
regulator parameter, Λ is presented.

Λ (GeV) 0.6 0.7 0.8 0.9 1.0

LO −0.21 −0.27 −0.34 −0.42 −0.49
NLO −0.017 −0.025 −0.035 −0.045 −0.057
Gu

Σ− or Gd
Σþ −0.22 −0.30 −0.38 −0.46 −0.55

0 0.2 0.4 0.6 0.8 1

–0.5

–0.4

–0.3

–0.2

–0.1

0

2Q   (GeV  )2

G
d Σ

+

FIG. 2. The Q2 dependence of the d-quark contribution to the
magnetic form factor of Σþ. The upper, middle and lower lines
are for Λ ¼ 0.6, 0.8 and 1.0 GeV, respectively. In the standard
convention Gd

Σþ ¼ Gu
Σ− .
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meson loop. However, the coupling of π and Ξ0 is much
smaller resulting in a very small value of Gd

Ξ0ðQ2Þ.
Thus Gd

Σþ has unique advantages with respect to studies
of the contributions to the structure of baryons through
disconnected sea-quark terms.
In summary, we have argued the importance of

studying the pure sea-quark contributions to Σ-baryon form
factors, Gu

Σ−ðQ2Þ and Gd
ΣþðQ2Þ. Because of the significant

enhancement associated with the light u or d quarks, these
observables have distinct quantitative advantages over the
strange form factors of the nucleon. This enhancement
arises because the pure light sea-quark contribution to the
magnetic form factors of Σ baryons is dominated by the
π-meson cloud contribution. This is much larger than
the nucleon strange magnetic form factor which originates
in the K-meson cloud.
We calculated Gu

Σ−ðQ2Þ and Gd
ΣþðQ2Þ within heavy

baryon chiral effective field theory including both octet
and decuplet intermediate states. The pure sea-quark
contribution to the magnetic moment is Gu

Σ−ðQ2Þ ¼
Gd

ΣþðQ2Þ ¼ −0.38þ0.16
−0.17 μN , which is about seven times

larger than the nucleon strange magnetic moment and 14
times larger for Gu

Σ−ðQ2Þ in experiment.
We also calculated the pion mass dependence of the pure

sea-quark contributions. When the pion mass is about 300–
400 MeV, the absolute value of μdΣþ is still around 0.2 μN . It
seems likely that future lattice simulations may be able to
determineGd

Σþ directly with more accuracy than the strange
form factor of the nucleon, Gs

N . The value or even the sign
of Gd

ΣþðQ2Þ would be very helpful in pinning down the size
and origin of five-quark configurations in baryons.
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