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One intriguing beyond-the-Standard-Model particle is the QCD axion, which could simultaneously
provide a solution to the StrongCP Problem and account for some, if not all, of the dark matter density in the
Universe. This particle is a pseudo-Nambu–Goldstone boson of the conjectured Peccei–Quinn symmetry of
the Standard Model. Its mass and interactions are suppressed by a heavy symmetry-breaking scale, fa, the
value of which is roughly greater than 109 GeV (or, conversely, the axion mass, ma, is roughly less than
104 μeV). The density of axions in the Universe, which cannot exceed the relic dark matter density and is a
quantity of great interest in axion experiments likeADMX, is a result of the early Universe interplay between
cosmological evolution and the axionmass as a function of temperature. The latter quantity is proportional to
the second derivative of the temperature-dependent QCD free energywith respect to theCP-violating phase,
θ. However, this quantity is generically nonperturbative, and previous calculations have only employed
instanton models at the high temperatures of interest (roughly 1 GeV). In this and future works, we aim to
calculate the temperature-dependent axion mass at small θ from first-principle lattice calculations, with
controlled statistical and systematic errors. Once calculated, this temperature-dependent axion mass is input
for the classical evolution equations of the axion density of the Universe, which is required to be less than or
equal to the dark matter density. Due to a variety of lattice systematic effects at the very high temperatures
required, we perform a calculation of the leading small-θ cumulant of the theta vacua on large volume
lattices for SU(3) Yang–Mills with high statistics as a first proof of concept, before attempting a full QCD
calculation in the future. From these pure glue results, the misalignment mechanism yields the axion mass
bound ma ≥ ð14.6� 0.1Þ μeV when Peccei–Quinn breaking occurs after inflation.
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I. INTRODUCTION

Despite overwhelming experimental and theoretical
evidence that QCD is the underlying theory of interactions
between quarks and gluons, one puzzle has eluded explan-
ation for over 30 years: the Strong CP Problem [1–3]. QCD
allows for aOð1Þ combined CP-violating phase θ, and, yet,
this phase is found experimentally to be consistent with
zero to within one part in ten billion [4].
Other than attributing this result to an appreciable fine-

tuning, there have been three proposed explanations
explored at length: the possibility of a zero up-quark mass
[5], spontaneous CP breaking [6–12], and an additional
“hidden” chiral symmetry. After taking into account the up-
to-date Standard Model flavor-changing constraints [13]
and lattice QCD calculations [14], the most feasible
proposal is the last. The additional chiral symmetry
proposed, also referred to as Peccei–Quinn (PQ) symmetry
[15,16], is such that upon spontaneous symmetry breaking
the effective potential naturally gives a zero CP-violating
phase.1 As with any spontaneous breaking of a continuous

symmetry, one would expect a resulting (pseudo-)Nambu–
Goldstone particle to be present in the Universe; this
particle is known as the axion2 [15,16,21,22].
The original proposals focused on axions masses at or

below the electroweak scale [15,16], but collider [23,24]
and astrophysical constraints [25–27] now require the
axion to have a mass below 104 μeV. A suitable class of
axion models, named “invisible axions,” could allow for
light axions with interactions that are suppressed by very
high energy scales [28–31]. In these models the large
density of light axions could potentially account for some,
if not all, of the dark matter density in the Universe [32–34].
For this reason, dedicated experiments such as ADMX
[35–37] search for the axion coupling to two photons
directly. With the next generation of axion experiments
underway [37] along with increased constraints on inflation
[38], a great deal is expected to be learned about potential
axion interactions in the next few years.
There has been a wealth of research on axion cosmology

and the related axion energy density over the past 30 years
[32–34,39–56]. One particular constraint, the “overclosure

1Even this explanation for a small θ has limitations, since PQ-
violating Plank-scale operators up to dimension 10 can reintro-
duce the Strong CP Problem [17,18].

2For some general reviews on the subject of axions, see
Refs. [19,20].
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bound,” requires that the axion density today not be greater
than the total observed present-day dark matter abundance.
This bound requires accounting for the evolution of the
axion mass through cosmological history and its conse-
quences for axion production. Depending on when PQ
breaking occurs relative to inflation, the overclosure bound
gives different relations. If PQ breaking occurs during or
before inflation, the bound is on a relation of two variables,
the initial value for the CP-violating phase inside our
cosmic horizon and the axion decay constant, fa. If PQ
breaking occurs after inflation, the bound is solely on fa.
After inflation, there are three stages to this early Universe,
high-temperature evolution: the postinflation evolution to a
time when the axion mass is comparable to the inverse
horizon of the Universe (i.e. the Hubble constant), the
subsequent evolution in the chirally symmetric phase, and
the time period before and after the chiral transition of
QCD. In the first stage, the axion mass depends greatly on
the QCD free energy which is a function of the CP-
violating phase, θ, and temperature, T. To date, the only
methods employed for estimating this QCD free energy
dependence as related to the axion mass are the dilute
instanton gas model (DIGM) [57] and the interacting
instanton liquid model (IILM) [58]. The DIGM is expected
to be valid only for high temperatures, while the IILM
models strong interactions between instantons around the
QCD phase transition. In the context of axions, both of
these scenarios have been explored in detail [54,59]. While
the desired characteristic temperatures are indeed large
(∼1 GeV), one open question is to what extent the DIGM
and IILM are valid (i.e. to what extent nonperturbative
physics plays a role at these temperatures and is modeled
properly) and how accurate the overall scale is (the free
energy scales as the confinement scale, ΛQCD, to a large
power). Another related issue is that neither the DIGM nor
the IILM yield controlled uncertainties from first princi-
ples. The only known approach that can address these two
quandaries3 quantitatively is lattice gauge theory, which is
what we apply in this work.
There have been ample lattice studies of QCD vacuum

properties at high temperature, highlighted by recent work
verifying the QCD critical temperature (Tc) with 2þ 1
quarks at physical pion masses in a chiral discretization
[60], and controlled continuum limits for the QCD equa-
tion of state [61,62] with temperatures as large as
T ∼ 600 MeV. Unfortunately, simulating higher temper-
atures becomes computationally more expensive due to
unphysical systematic finite-volume effects (for a fixed
number of lattice sites, the physical volume decreases as the
temperature increases). However, simulations of pure
Yang–Mills with three colors is appreciably cheaper, and
high-temperature θ ¼ 0 studies spanning T ∼ ð5–1000ÞTc

suggest that nonperturbative effects can still be appreciable
at T ∼ 1 GeV [63]. Appreciably more difficulty ensues
when exploring θ ≠ 0 quantities, as the topological term in
the Lagrangian has an associated sign problem that renders
standard lattice Monte Carlo techniques intractable.4

However, techniques do exist for extracting quantities at
small θ, such as the leading θ2 dependence of the free
energy which is proportional to the topological suscep-
tibility.5 While topological fluctuations are a topic of active
focus for lattice calculations at zero temperature [67–70],
there have only been a handful of studies at finite temper-
ature; first for Yang–Mills [71–74] and more recently in full
QCD using chiral discretizations [75].
In this work, we aim to extend and improve the finite-

temperature results in Ref. [72] with the express purpose of
comparing with the DIGM and IILM and, within the
capability of this calculation, quote a first-principles bound
for the axion mass with controlled uncertainties. It is
important to note that this work is only an initial step
toward the full QCD problem, and it contains two primary
inadequacies due to limited resources and lattice technology.
The first inadequacy is that our calculations are per-

formed for a three-color pure Yang–Mills theory without
the dynamical fermions of QCD. Ultimately, this may not
prove to be too far from the physical result, as effects of
fermion loops are expected to be suppressed at high
temperatures [76]. For topological quantities, however,
this may not be the case [77] and full QCD calculations
should be pursued in the future. The reasoning for studying
a purely gluonic theory at this stage is twofold. First, Yang–
Mills theories are over ten times cheaper to simulate than
full QCD due to the ability to employ the heatbath
algorithm for entirely bosonic theories. This extra gain
in computational efficiency will allow us to go to higher
temperatures and larger volumes and to directly estimate
systematic effects for topological quantities. The second
advantage is that heatbath Monte Carlo calculations have
appreciably shorter autocorrelations in extracting topologi-
cal quantities than the hybrid Monte Carlo algorithm used
for dynamical fermions. This will allow us to extract the
high level of independent statistics required to address the
problem at hand.
The second inadequacy in our present calculation is

that reaching the large values of T=Tc ∼ 5 with controlled
volume systematics is still beyond our current computa-
tional resource limitations.6 Summarizing our calculation,
we aim to test the validity and overall scale of the
DIGM/IILM for a SU(3) Yang–Mills theory for

3For these reasons, the use of lattice QCD was suggested in
Ref. [54].

4For progress in solving the sign problem for actions with
nonzero θ, see Ref. [64,65].

5For a review on lattice calculations of topological suscep-
tibilities, see Ref. [66].

6The computational cost of future calculations of topological
quantities might be reduced by using anisotropic lattices, as long
as discretization effects stay minimal.
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T ∼ 372–710 MeV (or, alternatively, T=Tc ∼ 1.31–2.50,
remembering that Tc for SU(3) Yang–Mills is
≈ 284 MeV [78]) with high statistics and controlled vol-
ume and discretization uncertainties. From these results, we
extrapolate our results to extract the characteristic temper-
ature when the axion mass and Hubble constant are
comparable and proceed to evaluate what this result would
imply for the axion mass in the present-day Universe with
propagated uncertainties.
The next section is a brief review of the cosmological

evolution of axions, while Sec. III describes the free energy
of QCD in the presence of a θ term and a finite temperature.
The paper then continues with a detailed description of the
lattice simulations in Sec. IV, lattice results in Sec. V, and
lattice error budget in Sec. VI. Based on first-principles
lattice results, we derive a bound on the axion mass from
the aforementioned overclosure argument in Secs. VII and
VIII before our concluding remarks.

II. BRIEF REVIEW OF AXION COSMOLOGY

The theory of quarks and gluons, QCD, supports a term
in its action SQCD which violates the combined charge-
conjugation and parity symmetry (CP),

SQCD ∋ θQ Q ¼
Z

d4x
g2

32π2
trF ~F; ð1Þ

whereQ is the topological charge, F ( ~F) is the (dual) gauge
field strength tensor, and g the QCD gauge coupling
constant. The Strong CP Problem is the observation that
the parameter θ could in principle take any value between
the maximally CP-violating values of −π and π but is
measured to be consistent with the CP-conserving value of
zero to one part in ten billion [4]. An elegant explanation of
the small value of θ was proposed by Peccei and Quinn: it is
possible to promote θ to a dynamical variable in such a way
that it is controlled by a (pseudo-)Nambu–Goldstone boson
called the axion. The PQ symmetry makes the axion
naturally light and creates a potential for θ which favors
small θ. The QCDþ axion Lagrangian is given by

L ¼ − 1

4
Fa
μνFaμν þ 1

2
∂μa∂μaþ

X
q

q̄ðiD −mqÞq

þ g2

32π2

�
θ þ a

fa

�
Fa
μν
~Faμν; ð2Þ

where fa is proportional to the vacuum expectation value
that breaks PQ symmetry. This quantity is the one free
parameter of standard QCD axion theories, and it is this
scale which ultimately determines the axion mass and its
couplings to two photons that experiments are actively
searching for [35–37].
While fa is the primary parameter for both the axion

mass and axion energy density given the QCD Lagrangian,

nonperturbative QCD effects lead to nontrivial cosmologi-
cal consequences, especially for the axion number density.
At low temperatures, after chiral symmetry has been
broken, the axion mass ma and coupling obey a relatively
simple relation [21,32–34],

mafa ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
mumd

p
mu þmd

fπmπ; ð3Þ

where mπ and fπ are the pion mass and pion decay
constant, respectively. The axion mass at temperatures in
the chirally symmetric phase of QCD will be the primary
focus of this work.
One significant constraint on axions is that their present

energy density does not exceed the dark matter density of
the Universe (the overclosure bound). To determine the
relevant energy density today, one must explore the inter-
play between the axion mass and cosmological evolution
by solving the equations of motion. However, the initial
question in this evolution is to place the moment PQ
symmetry breaks along the cosmic timeline. There are two
options:
(1) PQ symmetry breaks before or during inflation.
(2) PQ symmetry breaks after inflation.
While the final energy density comes down to one (or

effectively two) free parameters, there are many nontrivial
calculations and subtleties that need to be understood from
both cosmology and nonperturbative field theory. It is
useful to give a brief summary on how the energy density
arises in each of these PQ-breaking scenarios7:
(1) For PQ symmetry breaking before or during infla-

tion, the field θ ¼ a=fa would be homogenized over
large distances. In other words, the causally dis-
connected regions of spacetime that have different
initial values of the field (angle) before inflation
stretch to cosmic scales, so that our Universe has a
uniform initial θ. Any excited axion mode or
topological defect (e.g. strings) will be diluted away,
leaving only the zero-mode contributions to the
energy density. The resulting axion density arises
from this “misalignment mechanism” and has a large
dependence on this initial theta angle (often referred
to as the misalignment angle, θ1, which can take any
value between 0 and 2π). Ultimately, the final energy
density will be proportional to roughly θ21, which is
effectively a free parameter along with fa. Thus, the
overclosure bound can only bound fa as a function
of θ1. Also, due to large fluctuations during infla-
tion, isocurvature density perturbation bounds from
cosmic microwave background observations can put
important constraints on θ1 as a function of the
Hubble scale during inflation [56,79–84].

7For detailed reviews on axion cosmology, see Ref. [52,54,56].
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(2) For PQ symmetry breaking after inflation, the
misalignment angle θ1 is (effectively) averaged over,
since all values ∈ ½0; 2π� are equally probable in
small regions of our Universe. Moreover, there are
several additional effects that must be accounted for
in addition to the misalignment mechanism in this
case. First, nonzero-momentum modes can contrib-
ute, and their effect is discussed in Refs. [45,52].
Second, when PQ symmetry is broken, global
topological defects called axionic strings will form
and decay to axions, introducing an efficient process
for energy loss and effectively increasing the total
axion number density. It is currently debated as to
how much these decays will increase the total axion
number, with some claiming between 1 and 2 orders
of magnitude more than the misalignment mecha-
nism [40,42,47,50,85], while other claim it is on the
same order [41,49,86]. The third effect is the axion
strings can be connected to one or more domain
walls [87] which correspond to different minima of
the axion potential. The decay of these domain walls
also leads to additional axions but is believed to be
subdominant to string decay [44–46,55]. Overall,
the energy density can be calculated in terms of one
free parameter, fa, and as a result, an overclosure
bound on fa can be derived.

Our goal in this and future work is to improve the
nonperturbative QCD input that goes into the axion density
calculations. In particular, we aim to provide a controlled
calculation of the temperature-dependent axion mass from
first-principle lattice calculations.8 The axion mass in the
chirally symmetric phase is given by

m2
aðTÞf2a ¼

∂2Fðθ; TÞ
∂θ2

����
θ¼0

≡ χðTÞ; ð4Þ

where Fðθ; TÞ is the QCD free energy as a function of CP-
violating phase and temperature, while χ is the topological
susceptibility. In each of the energy density scenarios
discussed above, the temperature-dependent axion mass
maðTÞ plays a role, particularly when this quantity is
comparable to the Hubble scale in the early Universe
evolution. We will restrict our discussion primarily to the
analytic evaluations of the misalignment mechanism, as the
lattice calculations performed in this work could be
appreciably different from QCD due the computational
and algorithmic limitations discussed in subsequent sec-
tions. While we will not discuss it in detail, we will also
point out how the axion mass enters into the relevant
calculations for axion strings and domain walls. Once the

full QCD results are at a mature stage, the lattice result for
maðTÞ should be used as input for the numerical solutions
to the classical equations of motions and cosmology
simulations.

A. Misalignment mechanism

To keep the presentation self-consistent, we summarize
the description of the misalignment mechanism of Ref. [32]
and subsequently summarized in Ref. [52,54,56]. We start
from the Robertson–Walker metric of the Universe,

−ds2 ¼ dt2 − RðtÞ2dx · dx; ð5Þ
and write down the axion equation of motion,

�
∂2
t þ 3H∂t − 1

R2
∇2

x

�
aðxÞ þm2

aðtÞfa sin
�
aðxÞ
fa

�
¼ 0;

ð6Þ

where H ¼ _R=R is the Hubble constant and the second
term is given by the derivative of the effective potential for
the axion field, Va, given by

Va ¼ f2am2
aðtÞ

�
1 − cos

�
a
fa

��
: ð7Þ

Along with the axion equation of motion, the Hubble
constant evolution is given by the Einstein equation

H2 ¼ 1

3M2
pl

�
π2

30
g�;RT4

þ f2a

�
1

2

�
da
dt

�
2

þm2
aðtÞ

�
1 − cos

�
a
fa

���	
; ð8Þ

where Mpl is the reduced Planck mass
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏc=8πG

p
. For

given maðtÞ, or equivalently maðTÞ, one can solve Eqs. (6)
and (8) numerically to arrive at the axion energy density:

ρa ¼
1

2

�
da
dt

�
2

þ 1

2
m2

aðtÞa2ðxÞ: ð9Þ

At this point, it is useful to discuss the qualitative conse-
quences of these solutions (see Fig. 4 in Ref. [54] for an
illuminating plot). When considering early times, one notes
that the Hubble constant is much larger than the axion mass
(3H ≫ ma), meaning that the axion wavelength is larger
than the Hubble length. Thus, the axion does not feel a
potential, and it is effectively massless. Moreover, the axion
number density is zero, and the axion field has a constant
value, θ1 (the misalignment angle). As time increases (and
temperature decreases), the axion mass increases while the
Hubble constant decreases. The solutions change drastically
when the axion mass is of the same order as the Hubble
constant (3H ≈ma), at which point the axion mass “turns

8Other nonperturbative QCD aspects include the number of
theta-vacua/domain walls for θ changing by 2π [87] and whether
or not axion number density is constant throughout the QCD
phase transition [53,88]. We do not discuss these further in this
work.

BERKOWITZ, BUCHOFF, AND RINALDI PHYSICAL REVIEW D 92, 034507 (2015)

034507-4



on” and the axion field rolls down the potential—during this
period the axion number density jumps to a nonzero value.
From this point in time onward, both the axion field and
axion number density have decaying oscillations about their
eventual final values that we see today (the decay becomes
adiabatic when 3H ≪ ma).
Analytic progress can be made by making a few key

observations.9 First, let us quantify the characteristic
temperature and corresponding time, T1 and t1, respec-
tively, when the Hubble constant is comparable to the axion
mass

maðT1Þ ¼ 3HðT1Þ≡ 1

t1
: ð10Þ

When T ≳ T1, Eq. (8) reduces to

HðTÞ ¼ πg1=2� ðTÞT2ffiffiffiffiffi
90

p
MPl

; ð11Þ

where g�ðTÞ is the effective number of relativistic degrees
of freedom at a given temperature. In this work, we use the
parametrization of g�ðTÞ in Appendix A of Ref. [54]. We
will compare our lattice maðTÞ to HðTÞ using Eq. (10) to
extract T1. The second observation is that the decaying
oscillations when 3H ≪ ma are adiabatic, and the equation
of motion can be recast as

1

f2a

dρa
dt

¼ 2maðtÞ
dma

dt

�
1 − cos

�
a
fa

��
− 3H

da
dt

: ð12Þ

Whenma ≫ H andma ≫ dma=dt, this relation leads to the
adiabatic invariant

ρaR3

ma
¼ constant; ð13Þ

and subsequently [54]

ρaðTγÞ ¼ ρaðT1Þ
maðTγÞ
maðT1Þ

�
RðT1Þ
RðTγÞ

�
3

≃ ρaðT1Þ
γ

maðTγÞ
maðT1Þ

g�ðTγÞT3
γ

g�ðT1ÞT3
1

; ð14Þ

where Tγ ≃ 2.73 K is the temperature of the cosmic
microwave background today, and γ is the ratio of the
entropy density today to the entropy density at t1. From this
relation, along with the fact that ρaðT1Þ ∼ 1

2
maðT1Þ2f2aθ21

and Eqs. (3), (10), and (11), we arrive at the commonly
used relation [53]

ρaðTγÞ ¼
�

3πg�ðTγÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
90g�ðT1Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffi
mumd

p
mu þmd

fπmπT3
γ

MPl

�

×

�
fa
T1

��
F1ðθ1Þ
2γ

�
θ21; ð15Þ

where F1ðθ1Þ accounts for the anharmonic corrections to
Eq. (13). If it is also assumed that the expansion of the
Universe is adiabatic for temperatures below T1, the
quantity F1ðθ1Þ=2γ ≈ 1 for θ1 ≲ 2 [53]. Using lattice
QCD calculations, T1 can be extracted as a function of
fa and a confinement-scale observable (such as the QCD
deconfinement temperature Tc), and as a result, a bound on
the free parameters fa and θ1 can be derived to ensure that
the axion density is below that of the dark matter density. If
we are only exploring axion theories where PQ breaking
occurs after inflation, the misalignment angles are averaged
over, and the θ1 dependence in Eq. (15) is replaced with the
average value, θ21 → hθ21i ¼ π2=3.

B. Axion strings

In the case where PQ breaking occurs before or during
inflation, any resulting topological defects, such as axion
strings or domain walls, are diluted away, and only the
misalignment mechanism contributes to the axion density
with the fixed θ1 of our observed Universe. However, if PQ
breaking occurs after inflation, these topological defects
can decay into axions and significantly alter the number
density of axions in the Universe today. Scenarios with two
or more decaying domain walls are highly constrained from
neutron electric dipole moment bounds on CP violation
and would require an appreciable fine-tuning [56].
The current understanding is that the quantity of axions

produced by domain wall decay is below the number of
axions produced from string decay, a number which is at
least comparable to the density produced from the mis-
alignment mechanism and could even be appreciably larger
as debated in the literature [40–42,47,49,50,85,86]. In
the case of string decay, this process occurs for string
frequencies between the Hubble scale and the axion mass
(H < ω < ma) and thus begins to play a role at temperature
T1. Similarly, domain walls also have a dependence on ma,
which plays a role in the axion spectrum. While it is not
generally expected to be the primary source of uncertainty
in these large scale cosmological simulations [54,85],
accurate input for the axion mass as a function of temper-
ature would nonetheless be useful.

III. QCD FREE ENERGY AS A FUNCTION
OF T AND θ

The free energy of QCD, F, as a function of temperature
and theta is given in terms of the path integral

9For simplicity, we look at just the zero-momentum mode,
dropping the∇2

x from Eq. (6). For a complete calculation with the
non-zero modes, see Ref. [45,52].
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ZQCDðθ; TÞ ¼
Z

½dA�½dψ �½dψ̄ � exp
�
−TX

t

d3xLQCDðθÞ
�

¼ exp½−VFðθ; TÞ�; ð16Þ

where

LQCDðθÞ ¼ LQCD þ g2θ
32π2

ϵμνρσFa
μνFa

ρσ: ð17Þ

The free energy is periodic in θ, and thus we can restrict to
the range −π < θ ≤ π and parametrize the free energy in
terms of a sum of cosine functions,

Fðθ; TÞ ¼
X
n

CnðTÞ cosðnθÞ: ð18Þ

Since QCD is a nonperturbative problem for generic T and
θ, the values of CnðTÞ are not readily accessible; even in
first-principle lattice QCD calculations, nonzero θ intro-
duces a computationally intractable sign problem.
However, at high enough temperatures, QCD interactions
are perturbative, and their parametric dependence on T and
θ should be given by the DIGM [57]. In this model, where
the QCD background is approximated by noninteracting
instantons, only C1 contributes to the free energy (all n > 1
coefficients are zero). The DIGM also predicts the value of
the coefficient (the mass dimension of which is 4) as a
function of ΛQCD,

FDIGMðθ; TÞ ¼ −CðTÞ cosðθÞ; ð19Þ

where CðTÞ can be well approximated by [53,59]

CðTÞ≃ CΛ4

ðT=ΛÞn ; ð20Þ

where C is a dimensionless constant in temperature and the
fermion masses and n is a power that is a function of the
number of flavors and colors.10 The Λ in this equation
essentially represents the scale setting of QCD, which will
be key topic of discussion later in this paper. For three
flavors, the latest value found is C ∼ 1.274 × 10−11 for Λ ¼
440 MeV [53,54]. However, this value can vary by almost
an order of magnitude if Λ is varied by 15%.
The IILM is a more sophisticated model that accounts for

instanton-instanton interactions and was applied to the
problem at hand in Ref. [58]. To solve for the free energy
in this model, grand canonical Monte Carlo simulations of
the partition function are required. The results can be fit to
the form

FIILMðθ; TÞ ¼ −DðTÞ cosðθÞ; ð21Þ

with

DðTÞ≃ ed0Λ4

ðT=ΛÞ−d1 exp
�
d2

�
ln
T
Λ

�
2

þ d3

�
ln
T
Λ

�
3

þ � � �
�
;

ð22Þ

where the values for di are given in Ref. [54] as a piecewise
function of temperatures at the flavor mass thresholds
(coincidentally, values for d0 and d1 do not differ from
the analogous terms calculated in Ref. [53]). The authors
point out that the largest uncertainties arise from the scale
setting of using Λ ¼ 400 MeV and emphasize at various
stages that the IILM should be compared with lattice QCD
results.
Since lattice QCD calculations are numerical and ulti-

mately yield dimensionless numbers, lattice scale setting is
of vital importance to relate lattice results to reality. The
way this is typically done is to choose an observable
(preferably one that can be calculated to high precision with
little to no unphysical lattice artifacts from volume or finite
lattice spacing) and match it onto some measured/derived
quantity from experiment. This is often done with matching
onto heavy-quark potentials [89–91], but this can also be
done for spectroscopy of confinement scale masses, such as
the Omega baryon [92]. For our pure-glue calculation, the
most reliable scale setting is to use the string tension, σ,
which can be used to define the critical temperature Tc in
physical units. Once this is done, all scales can be
expressed in units of the critical temperature Tc which
makes it natural to fit to the forms

CT4
c

ðT=TcÞn
;

ed0T4
c

ðT=TcÞ−d1
exp

�
d2

�
ln

T
Tc

�
2

þ d3

�
ln

T
Tc

�
3
�
:

ð23Þ

It should be noted that, when using the string tension
(or any other heavy-quark scale) for setting the scale, the
critical temperature in Yang–Mills [78] is roughly twice
that of full QCD [60,93,94]. This is to be expected, as the
dynamical quarks play a nontrivial role in the phase
transition.

IV. LATTICE SIMULATIONS
AND SCALE SETTING

We perform the lattice calculation of the free energy and
its expansion in the θ angle using the Wilson plaquette
action to discretize the SU(3) Yang–Mills continuum
theory,

SW ¼ β
X
P

�
1 − 1

3
Retr½UP�

�
; ð24Þ

10The actual expression derived from DIGM contains a more
involved integral over the logarithmic running of the coupling.
For a complete expression, see Appendix A of Ref. [59].
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where UP is the ordered product of gauge links along the
plaquette and β is the lattice gauge coupling. This lattice
action is well known, and in particular, a great deal of data
exist in the literature regarding the scale setting procedure
of the corresponding lattice system. We will make use of
this information when setting the temperature scale of our
lattice simulations. The lattice action in Eq. (24) contains
only one free parameter, β, which sets the lattice spacing
through dimensional transmutation. Once the lattice spac-
ing is fixed, one can give it physical units by measuring a
physical observable and relating it to an experimental
value.
We are interested in spanning a large interval of temper-

atures with our simulations. In order to accomplish that, we
fix the number of lattice sites in the temporal directionNτ to
6 and set the physical temperature

Tðβ; NτÞ ¼
1

aðβÞNτ
ð25Þ

by tuning a value for the lattice coupling constant β. In
Eq. (25) we explicitly show the dependence of the lattice
spacing a on β. Working at a fixed Nτ, the lattice spacing
alone determines the temperature. This approach is widely
used in the literature [63]. To check for possible lattice
discretization effects in our results and establish a continuum
limit, we simulate the same temperature at a smaller lattice
spacing by simply increasing the number of temporal lattice
sites (we use Nτ ¼ 8). Once the lattice spacing is fixed, the
physical spatial volume is determined by the number of
lattice points Nσ in the three spacial dimensions:
L3 ¼ ðaNσÞ3. One complication of our approach is that
the lattice spacing gets smaller at higher temperatures,
implying smaller spacial volumes at fixed aspect ratio
Nσ=Nτ. As a consequence it is of paramount importance
to check for possible finite-volume effects at high
temperatures.
Following Eq. (25), setting the physical temperature

scale has been traded for deducing the lattice spacing as a
function of the bare lattice parameters. To do so, one can
follow a variety of approaches that usually involve meas-
uring a physical quantity with the dimensions of a mass or a
length in a zero-temperature setup. We adopt the strategy of
using the string tension σ, which is well understood for a
Yang–Mills theory,

T
Tc

¼ a
ffiffiffi
σ

p ðβcÞNτc

a
ffiffiffi
σ

p ðβÞNτ
; ð26Þ

where βc gives the critical temperature Tc in a box of
thermal extent Nτc from the temporal Polyakov loop
susceptibility. In particular we choose the most continuum-
like point at which the thermal phase transition has been
studied for SU(3) with Wilson plaquette action [95]
(βc ¼ 6.338, Nτc ¼ 12), and we interpolate numerical

results for a
ffiffiffi
σ

p
as a function of β from Ref. [95]. The

interpolation uses the same function described in Ref. [78]
and later refined in Ref. [96]. In Fig. 1 we show T=TcðβÞ
for two temporal extents Nτ ¼ 6; 8.
We can compare this approach with scale setting

methods that use a different physical quantity, like the
Sommer radius r0, and quantify a systematic error for our
procedure. We have verified that setting the scale via both
the static quark potential quantity r0, as described in
Ref. [97], and the continuum-extrapolated ratio of the
critical temperature and the string tension Tc=

ffiffiffi
σ

p
as

described in Ref. [95] give T=Tc values which agree with
our method up to 1%–1.5% corrections in the temperature
range explored in the paper. Across the rest of the paper, we
report either results in units of the lattice spacing or results
in units of the critical temperature. This is to avoid giving
physical units to a or Tc; for a SU(3) Yang–Mills theory
like the one we simulate, the systematic error associated to
giving physical units to the lattice quantities is of the
4%–7% level [69].
Our gauge configurations are generated using the

CHROMA software system [98] with GPU acceleration
supplied by QDP-JIT/PTX [99]. The update algorithm is
a standard Cabibbo–Marinari heatbath [100] for SU(3),
alternated with eight steps of standard over-relaxation to
reduce correlations among subsequent configurations. For
each temperature T=Tc, we simulate two complementary
streams of configurations: one starts from a random gauge
configuration, while the other is initialized to a configu-
ration where each link is a unit matrix. On both streams we
discard the first 10000 updates and monitor basic local
observables like the spatial and temporal plaquettes and the
Polyakov loops in the four dimensions. For all temperatures
the two streams thermalize to a common value of the
plaquette and Polyakov loop; this allows us to effectively
double our statistics. More details on the topological charge
and topological susceptibility analysis are given in the next
section. Our full set of ensembles and measurements is
shown in Table I.

5.6 5.8 6.0 6.2 6.4 6.6

0.5

1.0

1.5

2.0

2.5

T
T

c

N 8

N 6

FIG. 1 (color online). Temperature as a function of β, given
βc ¼ 6.338 and Nτ ¼ 12.
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V. TOPOLOGICAL SUSCEPTIBILITY
ON THE LATTICE

We measure the topological charge on the lattice using
the bosonic field-theoretical definition that is built upon
discretizing the continuum formula on the right of Eq. (1),

QL ≡ 1

32π2
X
x

ϵμνρσTr½UμνðxÞUρσðxÞ�; ð27Þ

whereUμνðxÞ is the μν-plane plaquette at the lattice point x.
The above definition of the lattice topological charge
converges to the continuum definition when the lattice
spacing is sent to zero, but it relies on the fact that the gauge
fields are smooth. The ultraviolet fluctuations of the gauge
configurations are smoothed out via the cooling method
[101] before QL is measured. The cooling method is well
tested and understood in the context of topological charge
measurements on the lattice, and it is equivalent to a
smearing procedure or a gradient flow smoothing [102].
Empirically it was noted that this smoothing procedure is
such that the multiplicative and an additive renormalization
constants to QL are close to 1 and zero, respectively. This

was understood theoretically in Ref. [102]. Our use of the
cooling method should be viewed as a cheaper alternative
to the gradient flow method which will be employed in our
analysis when going beyond the Yang–Mills case.
Although UV fluctuations are removed by the cooling

procedure while keeping topological properties largely
unchanged, lattice artifacts affect QL. Since we are inter-
ested in continuum physics, we use four different defini-
tions of the topological charge based on QL. The following
definitions should all agree in the continuum limit, and their
behavior as a function of a will help us characterize lattice
discretization effects on our final results:

QR ¼ QL ð28aÞ

QZ ¼ roundðQLÞ ð28bÞ

Qa ¼ roundðQLÞ − “narrow instantons” ð28cÞ

Qf ¼ roundðαQLÞ α ¼ min h½αQL − roundðαQLÞ�2i;
ð28dÞ

TABLE I. A summary of our lattice parameters and lattice results for the topological susceptibility in units of the critical temperature.
The temperature in units of the critical temperature and the corresponding lattice coupling β are related by Eq. (26). We also report the
corresponding value of the interpolated string tension. Nmeas is the combined total number of measurements performed on two different
streams of configurations—one from a random start and one from a unit start. Our representative values at each temperature are
emphasized. They are all chosen from the globally fit definition ofQ as given in Eq. (28d) because it leads to smaller discretization and
finite-volume effects. These values are going to be used in all following analysis. The different definitions of the topological charge Q
from which the susceptibility is estimated are described in the text in Eq. (28).

Central value χ1=4=Tc � δχ1=4=Tc statistical error for

T=Tc β a
ffiffiffi
σ

p
Nτ Nσ Nmeas χR χZ χa χf

1.2 6.001 0.2161 6 64 14 000 0.3880 0.0012 0.3814 0.0012 0.3871 0.0012 0.4192 0.0013
1.31 6.053 0.1979 6 48 15 600 0.3495 0.0009 0.3130 0.0009 0.3392 0.0010 0.3691 0.0011

64 36 000 0.3424 0.0006 0.3358 0.0006 0.3402 0.0007 0.3703 0.0007
80 14 000 0.3426 0.0010 0.3389 0.0010 0.3416 0.0010 0.3735 0.0011

6.242 0.1484 8 64 33 998 0.3634 0.0010 0.3493 0.0010 0.3520 0.0010 0.3687 0.0010
96 14 000 0.3556 0.0015 0.3533 0.0014 0.3537 0.0015 0.3703 0.0015

1.4 6.095 0.1852 6 64 54 000 0.3153 0.0005 0.3077 0.0005 0.3095 0.0005 0.3370 0.0005
1.5 6.139 0.1729 6 64 54 000 0.2928 0.0005 0.2833 0.0005 0.2814 0.0005 0.3068 0.0005
1.6 6.182 0.1621 6 64 53 998 0.2721 0.0005 0.2587 0.0005 0.2568 0.0005 0.2799 0.0005
1.7 6.223 0.1525 6 64 24000 0.2536 0.0008 0.2330 0.0008 0.2369 0.0008 0.2585 0.0008
1.8 6.263 0.1441 6 64 24 000 0.2343 0.0008 0.2005 0.0009 0.2178 0.0008 0.2368 0.0008

80 32 000 0.2320 0.0006 0.2262 0.0006 0.2185 0.0006 0.2368 0.0006
6.471 0.1080 8 96 14000 0.2306 0.0016 0.2170 0.0017 0.2236 0.0015 0.2312 0.0016

1.9 6.301 0.1365 6 64 24 000 0.2175 0.0009 0.1672 0.0011 0.2019 0.0008 0.2190 0.0009
80 34 000 0.2164 0.0006 0.2095 0.0006 0.2026 0.0006 0.2189 0.0006

1.99 6.550 0.0973 8 64 14 795 0.2013 0.0034 0.1800 0.0036 0.1986 0.0029 0.2013 0.0034
2.0 6.338 0.1297 6 48 15 600 0.2040 0.0018 0.1292 0.0027 0.1898 0.0016 0.2042 0.0018

64 25 598 0.2032 0.0010 0.1390 0.0014 0.1893 0.0009 0.2041 0.0010
80 26 000 0.2014 0.0008 0.1920 0.0008 0.1888 0.0007 0.2030 0.0008
96 14 000 0.2004 0.0008 0.1961 0.0008 0.1900 0.0008 0.2038 0.0009

2.1 6.373 0.1235 6 80 24 000 0.1880 0.0009 0.1749 0.0009 0.1774 0.0008 0.1889 0.0009
2.5 6.502 0.1037 6 128 14 000 0.1497 0.0010 0.1479 0.0010 0.1494 0.0008 0.1492 0.0010

144 15 797 0.1525 0.0008 0.1513 0.0008 0.1495 0.0006 0.1518 0.0008
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where the R, Z, a, and f subscripts indicate the real-valued
lattice definition of Eq. (27), the rounded definition, a
lattice-artifact corrected definition that subtracts contribu-
tions from narrow instantons [101], and a globally fit
definition that redefines the charge based on the properties
of the whole distribution [68,69]. We measureQL every ten
Monte Carlo updates, and this gives us an autocorrelation
time of one measurement or smaller for all Nτ ¼ 6 lattices
and between two and three measurements for all Nτ ¼ 8
ensembles. In Fig. 2 we compare QR and Qf for T=Tc ¼
1.90 (β ¼ 6.301).
We define the lattice topological susceptibility from each

of the definitions above,

χi ≡ lim
V→∞

hQ2
i i

V
; ð29Þ

where the index i runs over the definitions in Eq. (28a)–
(28d) and V ¼ a4ðNσÞ3Nτ. We define our infinite-volume
susceptibility by measuring χ on different spatial volumes
and by choosing the value on the largest volume that does
not show signs of change. In practice we find that the
definition χa has the largest discretization effects, while χf
has negligible effects due to finite lattice spacing. In the
following section, we estimate finite-volume and discreti-
zation effects for all values of T=Tc explored. This will
allow us to choose a final value of χ at each T=Tc that is
free of artifacts and can be fitted to models in Sec. VII. All
results are summarized in Table I.

VI. DISCRETIZATION AND
FINITE-VOLUME ERRORS

In this section we study the systematic errors associated
with having a discretized finite volume and a finite lattice

spacing. We start by looking at the various definitions χi at
fixed T=Tc and for increasingly larger boxes. When the
physical volume is large enough, we expect to obtain a
constant topological susceptibility corresponding to
Eq. (29). For the simple rounded definition χZ (shown
in red in Fig. 3), the smaller volumes have a consistently
higher topological susceptibility. In contrast, the artifact-
corrected integer definition χa (shown in blue) has con-
sistently smaller topological susceptibilities for smaller
volumes. The unrounded χR (yellow) and globally fit
rounded χf (purple) definitions have essentially no
finite-volume corrections, but the unrounded measure is
systematically lower than the globally fit definition. At high
temperature (small lattice spacing), χf matches χZ, whereas

FIG. 2 (color online). The topological charge as a function of Monte Carlo time for the 803 × 6 β ¼ 6.301 (T=Tc ¼ 1.90) ensemble. In
the left panel, the yellow points are the measurements of QR, and the purple points are the globally fit values Qf. In both panels, the
brown dotted lines indicate the local maxima for the distribution of QR. The right panel shows a histogram of those points with a bin
width of 0.05. The dashed purple line is a Gaussian distribution with a standard deviation given by the second moment of the Qf
distribution.

FIG. 3 (color online). A study of finite-volume effects at three
different temperatures. All lattices have a temporal extent
Nτ ¼ 6. Each ensemble is slightly offset from its temperature
for ease of visibility, with the order from left to right following the
order in the legend. The statistical errors are smaller than the
markers shown.
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χR does not. For this reason we choose χf as our most
reliable definition. This comports with the findings of
Ref. [69]. Because of the concordance between the differ-
ent volumes, it seems as though many of the ensembles are
all in the infinite-volume limit. It is apparent from Fig. 3
that χf has hardly any finite-volume effects.
In Fig. 4 we show discretization effects at two different

temperatures. At T=Tc ¼ 1.31 we show the topological
susceptibility for the same physical volume at two different
lattice spacings. At T=Tc ¼ 1.8 we show the topological
susceptibility for physical spatial extents that differ by
roughly 13%. However, since we know from our finite-
volume study shown in Fig. 3 that the volume makes
essentially no difference at high temperatures (except for
the artifact-corrected definition χa), we can assume the
difference in the physical volume to be negligible com-
pared to the discretization errors. For both temperatures, χf
does not change when the lattice spacing is decreased by
∼30%. For the higher temperature, which corresponds to an
overall smaller lattice spacing, a similar effect is observed
for χZ. Because the globally fit definition of the topological
susceptibility is essentially independent of the volume and
lattice spacing, we use that definition for our final “curated”
data set, shown in bold in Table I. In the following, we only
consider a statistical uncertainty on the data points since the
systematics effects discussed above are negligible.

VII. COMPARISON BETWEEN LATTICE
RESULTS AND MODELS

We fit our best data points, those in bold in Table I and
shown in Fig. 5, to the forms shown in (23). Since the

lattice calculations naturally yield χ=T4
c and our temper-

atures are naturally in units of Tc, we actually fit

χDIGM
T4
c

¼ C
ðT=TcÞn

;

χIILM
T4
c

¼ ed0

ðT=TcÞ−d1
exp

�
d2

�
ln

T
Tc

�
2

þ d3

�
ln

T
Tc

�
3
�

ð30Þ

as functions of T=Tc rather than T itself. This allows us to
postpone consideration of the systematic error arising from
setting the scale in physical units with an uncertain critical
temperature.
The central values shown in Figs. 6 and 7 are the results

from fitting all the data points. The fit parameters are shown
in Table II, with a statistical uncertainty of one standard
deviation (1σ).
For the systematic fitting error on the DIGM, we fit the

same form to every subset of the best points with
cardinality 3 or greater and take the outer envelope of
all such fits’ statistical 1σ error bands. This procedure is

FIG. 6 (color online). A fit of our best points to the DIGM.

FIG. 5 (color online). The largest volumes from Gattringer
et al. [72] and our best Nτ ¼ 6 data points at each temperature.
The statistical errors on our points are smaller than the
markers shown.

FIG. 4 (color online). A study of lattice spacing effects at two
different temperatures. At T=Tc ¼ 1.31 the lattices shown are
483 × 6 and 643 × 8 which have exactly the same physical
volume, while at T=Tc ¼ 1.8 the lattices shown are 643 × 6
and 963 × 8, which have physical spacial extents that differ by
only 13%. Each ensemble is slightly offset from its temperature
for ease of visibility, with the order from left to right following the
order in the legend. The statistical errors are smaller than the
markers shown.
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extremely conservative. The resulting systematic fitting
error is shown as a light purple band in Fig. 6, where the
statistical error band is entirely covered by the width of
the line.
The DIGM is not reliable at low temperatures, and so

that region is not shown in Fig. 6. The systematic errors at
high temperature decrease—all the fits grow closer to the
central value.
In the pure-glue case, it is known [57] that the DIGM

exhibits, at high temperatures, the leading behavior χ ∼ T−n
where

n ¼ 11

3
Nc − 4 ¼ 7 ð31Þ

for SU(3), compared to our numerical result n¼5.64�0.04.
This suggests the temperatures we studied are not high
enough to trust the high-temperature DIGM parameters.
The IILM is more reliable at low temperatures and

unreliable at high temperatures. Indeed, our best-fit IILM
curve has a turning point at T=Tc ≈ 5.8, beyond which
it exhibits an unphysical increase of the topological
susceptibility with temperature.

Because the IILM is not designed to capture high-
temperature dynamics and has markedly more free param-
eters, the enveloping approach we used for estimating the
systematic error bands for the DIGM is far too conservative
and gets dominated by fits to a few high-temperature
points. Instead, we follow a jackknife-inspired procedure:
for the central value, we fit to all the best points, and for the
systematic fitting error, we fit to all subsets where one data
point is omitted. The outer envelope of all those fits’ 1σ
statistical error bands is shown as the systematic fitting
error in Fig. 7. The inner, darker error band shown there is
the statistical error band on the best fit of all of our data
points.

VIII. ILLUSTRATIVE EXAMPLE USING
LATTICE DATA TO EXTRACT AXION

MASS BOUNDS

As discussed in previous sections, the topological
susceptibility χ for QCD as a function of temperature is
required as input for the cosmological evolution of axions
in the early Universe. In this section, we will take our lattice
results for χ and carry out this procedure to calculate axion
mass bounds with a significant disclaimer: our lattice
calculation is affected by the absence of fermionic degrees
of freedom. This approach means that our numerical
calculation was significantly cheaper than it would have
been if we had calculated with full QCD but can lead to a
host of uncontrolled systematics. Most obvious is the
difference in critical temperatures between Yang–Mills
and QCD.11 The critical temperature Tc is the primary
scale where the theory deconfines. It also indicates the
onset of the fall of χ as temperature grows. In each of the
individual steps to this point, this has not been a issue, as all
quantities discussed in the result sections have been
dimensionless ratios that do not depend on scale setting.
However, in the final steps required to extract a bound, the
relative size of Tc to the present-day temperature of the
cosmic microwave background, Tγ , plays a role. It should
be noted that this systematic will not be an issue for future
calculations with physical QCD parameters. For now, it
prevents bounds relevant to reality from being extracted.
Let us describe the overall effect of setting the absolute

scale Tc. As discussed in Sec. II A, the axion begins rolling
down the potential at the temperature wherema ≈ 3H. With
simple algebra this may be rewritten

χðT1Þ ≈ 9f2aH2ðT1Þ: ð32Þ

The fortuitous form of H in Eq. (11),

FIG. 7 (color online). A fit of our best points to the IILM.

TABLE II. Fit parameters for the DIGM and IILM fit to all of
our best data points.

DIGM

χ2=d:o:f: ¼ 1.2

C 0.0869� 0.0015
n 5.64� 0.04

IILM

χ2=d:o:f: ¼ 1.7

ed0 0.079� 0.006
d1 −4.9� 0.5
d2 −1.7� 1.0
d3 1.2� 0.7

11There is roughly a factor of 2 difference between QCD
(Tc ∼ 154 MeV [60,93,94]) and Yang–Mills (Tc ∼ 284 MeV
[78]).
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H2ðTÞ ¼ π2

90M2
Pl

g�ðTÞT4; ð33Þ

makes it particularly nice to write the relation (32) in terms
of T=Tc, the temperature ratio that shows up in our lattice
calculations. One may show that the relation ma ≈ 3H can
be rewritten

χ

T4
c
ðT1=TcÞ ≈

π2f2a
10M2

Pl

g�ðT1=Tc · TcÞ ·
�
T1

Tc

�
4

; ð34Þ

which allows us to put all of the absolute scale dependence
into the argument of g�. Fortunately, at the temperatures of
interest, g� is insensitive to the difference between the
critical temperature Tc in QCD and the pure-glue theory
[54]—it is essentially a constant at and between those
temperatures. The particular temperature dependence of
Eq. (34) also means that we do not need to translate our
lattice results for χ=T4

c into physical units, therefore
avoiding what is usually the largest source of systematic
uncertainties.
However, this does not imply that all the systematic

errors are erased. Instead, because g� captures the relevant
degrees of freedom of reality, which includes quarks, rather
than a quark-free universe, we still have an uncontrolled
systematic error. This systematic will be avoided when
future lattice calculations use physical QCD parameters,
while the uncertainty in the QCD critical temperature Tc
will remain irrelevant thanks to the insensitivity of g�. Thus,
we expect the reliability of future lattice calculations to be
controlled entirely by the accuracy of the determination of
χ=T4

c and cosmological inputs, not the accuracy of the QCD
critical temperature.
Of course, with χ=T4

c from QCD in hand, it will make
sense to not simply estimate the onset of the axion field
rolling when ma ∼ 3H but to instead solve the cosmologi-
cal equations of motion numerically. Moreover, it will be
simple to put reliable bounds on the preinflation
PQ-breaking scenario, constraining a combination of the
initial θ parameter and the axion mass. Therefore, we
emphasize our results in the rest of this section as the first
step toward a full-fledged calculation of axion constraints
from first principles.
In Fig. 8 we plot our numerically fit DIGM extrapolation

of χ=T4
c, the left-hand side of Eq. (34), and three example

right-hand sides for different choices of fa as a function of
temperature. The intersection gives T1=Tc as a function of
fa, which is shown in Fig. 9. In terms of the DIGM fit
parameters, we have

T1

Tc
¼

�
10C

π2g�ðT1Þ
�
MPl

fa

�
2
� 1

4þn

; ð35Þ

where the insensitivity of g� to temperatures in the regime
of interest allows us to solve self-consistently with ease.

In a full calculation without extrapolation using a model, T1

can be determined as a function of fa numerically from
Eq. (34). In Fig. 9, our extracted T1=Tc is compared with
that of the IILM [54].
With T1 in hand, we can calculate the axion energy

density using

Ωa ¼
ρaðTγÞ
ρc

; ρc ¼ 3.978 × 10−11
�

h2

0.701

�
eV4:

ð36Þ

The resulting energy density from the misalignment
mechanism is given by

h2Ωa¼0.107ð1Þ
�
Fðθ1Þθ21

2γ

��
fa

1012GeV

�
1.2074ð8Þ

; ð37Þ

FIG. 8 (color online). The DIGM-inspired fit with systematic
fitting uncertainty shown with lines of ð3HÞ2 for three represen-
tative choices of fa.

FIG. 9 (color online). The value of T1, the temperature where
χ ¼ 9H2f2a, as a function of fa if χ is given by our DIGM-
inspired fits. The purple band includes the systematic fitting
uncertainty and the mild scale setting ambiguity added in
quadrature. The dashed line is the results from Ref. [54] when
Tc ¼ 154 MeV.
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where the errors are determined by bootstrapping the fit
results for the DIGM shown in Table II. A bound can be
derived for the postinflation PQ-breaking scenario by
starting from this density, setting hθ21i ¼ π2=3, and
comparing with the latest dark matter density from
Planck [103],

Ωah2 ≤ ΩDMh2 ¼ 0.1199� 0.0027: ð38Þ
This procedure leads to an upper bound on the value of

fa, and Eq. (3) can be used to translate this into a lower
bound on the axion mass today. Putting all these pieces
together using lattice inputs for Eq. (15), we arrive at the
bounds

Postinflation PQ breaking;

physical g�;mπ;fπ;Tc;

pure glue χ

8<
:
fa ≤ð4.10�0.04Þ×1011 GeV

ma ≥ð14.6�0.1Þ μeV ;

ð39Þ

which includes all the statistical, systematic, and scale-setting
errors from fitting to and extrapolating with the DIGM but
does not include any cosmological uncertainties. Also, to
reiterate, this is only the bound from the misalignment
mechanism and does not include string or domain wall decay,
which would give even tighter bounds. In comparison, the
most comprehensive, up-to-date bound from the misalignment
mechanism is given by ma ≥ 21 μeV [54].
Again, it should be noted that these results are for the

topological susceptibility χ from a pure-glue calculation
and not from the full QCD theory with dynamical fermionic
degrees of freedom. That being said, this calculation is still
illuminating and illustrates how uncertainty quantification
due to strong dynamics can be propagated to the final steps
of this calculation.

IX. CONCLUSIONS

We performed a lattice calculation of topological sus-
ceptibility for pure Yang–Mills theory at high temperatures
and applied the results to the problem of axion cosmology.
There are two primary accomplishments of this work.
First, we developed the connection between actual lattice

data and the well-known procedure for calculating the
axion density, with controlled uncertainties in the input
from the nonperturbative free energy. Once lattice QCD
results span the temperatures of interest, a simple inter-
polating fit can be used to solve the cosmological equations
of motion. In the meantime, we must rely on model-
inspired fit forms to extrapolate to the high temperatures of
interest. In this regard, we find that the DIGM-like fit,
Eq. (23), works remarkably well for a theory consisting
only of gluons, yielding a χ2=d:o:f ∼ 1.2 with very precise
lattice data (statistical errors roughly at the 0.2% level).
However, we found that our points do not conform to the

pure-glue expectation that the DIGM exponent n is 7, but
that n ¼ 5.64� 0.04. Also, even when propagating the
systematic errors, the final bounds were found to have total
uncertainties only at the few percent level. Thus, the
DIGM-like fit proves to be a good continuous fit form
for translating finite lattice calculations at discrete temper-
ature values to an equation that can be used to solve the
cosmology evolution equations numerically. Moreover, the
lattice can provide reliable errors on the fit parameters, and
these errors can be propagated to the final answers
straightforwardly.
Second, we aimed to perform a detailed study of lattice

systematic effects of lattice calculations of the topological
susceptibility at high temperature. To accomplish this,
small statistical errors are a must. Moreover multiple
volumes, lattice spacings, and discretized definitions of
the topological susceptibility are required to assess sys-
tematic effects and add precision. As expected, it was found
that the lattice artifacts affect each of the discretized
definitions of the topological susceptibility differently,
and while lattice spacing effects were the predominant
error in most of the definitions, one definition (artifact
corrected, Qa) was extremely sensitive to finite volumes at
high temperatures/small lattice spacing, leading to shifts of
order 100%. Overall, it was found, as in Refs. [68,69], that
the globally fit definition, Qf, had virtually no systematic
errors, and while a distinct systematic error could be seen in
all of the other definitions, no effect larger than the
statistical error bars could be quoted for this definition.
One disclaimer that has been pointed out frequently

throughout this paper is that the lattice results were for a
purely gluonic theory and the procedure for determining
the axion mass bounds assumed full QCD. This leads to
multiple issues, which essentially reduce the results in this
paper to simply be a preliminary step toward being useful in
realistic experiments. The low-temperature axion mass
depends on the pion mass and decay constant, which do
not exist in a purely gluonic theory, and the relevant number
of degrees of freedom, g�, depend on the number of
fermions below the temperatures of interest. Second,
QCD and pure Yang–Mills differ in deconfinement temper-
atures by roughly a factor of 2 when scales are fixed to
heavy-quark scales (thus, correctly describing high-
temperature physics and heavy-quark physics cannot be
done simultaneously). Third, dynamical fermion zero
modes are expected to play an important role in the
temperature behavior of the topological susceptibility,
which are omitted in Yang–Mills lattice calculations.
Despite all of these limitations, it is tempting to see how

the bounds behave compared to quoted values of the axion
mass bounds. The results in Eq. (39) imply that the axion
mass bound is weaker that the up-to-date value of ma >
21 μeV and, if true, would imply more viable parameter
space for the postinflation PQ-breaking scenario. Current
and next-generation ADMX experiments will thoroughly
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explore this additional axion mass parameter space over the
next few years. Moreover, these lattice-based bounds have
a well-defined and robust theoretical error associated with
them, which is a very compelling feature compared to
previous bounds.
While our bounds were derived without the inclusion of

fermions in the lattice calculation, they are ample motiva-
tion for future studies and calculations in this direction.
From this work many of the concerns on volume limitations
have been quelled, which suggests that lattice QCD
calculations on smaller volumes may be sufficient and
prohibitively large volumes may not be needed. The lattice
QCD issue of the increased autocorrelation and freezing of
the topological charge could still be significant, but one
potential solution is to extract the topological susceptibility
with fixed topology as in Ref. [74] or work with anisotropic
lattices to boost the volume in space while keeping the
temporal direction small to go to high temperatures. Both of
these approaches should be explored further at higher
precision to accurately quantify the size of the systematic
effects. Once methods of extracting topological suscep-
tibilities at high temperatures are reliable, the next step
would be to perform this calculation for QCD. Typically,
calculations of this kind start with larger-than-physical
quark masses (i.e. pion masses around 400 MeV) with
nonchiral fermion discretizations. However, using lattices
with physical quark masses and chiral domain-wall fer-
mions [60] is most likely the next step given current
computing resources and given that much of the involved

scale setting procedure and nonperturbative tuning has been
performed. At that stage, the lattice QCD results will be
directly applicable to cosmological simulations and will
have a direct connection with experimental searches.
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