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We present our study of the renormalization of the chromomagnetic operator, OCM, which appears in
the effective Hamiltonian describing ΔS ¼ 1 transitions in and beyond the Standard Model. We have
computed, perturbatively to one loop, the relevant Green’s functions with two (quark-quark) and three
(quark-quark-gluon) external fields, at nonzero quark masses, using both the lattice and dimensional
regularizations. The perturbative computation on the lattice is carried out using the maximally twisted-mass
action for the fermions, while for the gluons we employed the Symanzik improved gauge action for
different sets of values of the Symanzik coefficients. We have identified all the operators which can
possibly mix with OCM, including lower-dimensional and nongauge invariant operators, and we have
calculated those elements of the mixing matrix which are relevant for the renormalization ofOCM. We have
also performed numerical lattice calculations to determine nonperturbatively the mixings of the
chromomagnetic operator with lower-dimensional operators, through proper renormalization conditions.
For the first time, the 1=a2-divergent mixing of the chromomagnetic operator with the scalar density has
been determined nonperturbatively with high precision. Moreover, the 1=a-divergent mixing with the
pseudoscalar density, due to the breaking of parity within the twisted-mass regularization of QCD, has been
calculated nonperturbatively and found to be smaller than its one-loop perturbative estimate. The QCD
simulations have been carried out using the gauge configurations produced by the European Twisted Mass
Collaboration with Nf ¼ 2þ 1þ 1 dynamical quarks, which include in the sea, besides two light mass
degenerate quarks, also the strange and charm quarks with masses close to their physical values.
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I. INTRODUCTION

A very natural explanation for the extraordinary success
of the Standard Model (SM) in describing the electro-weak
and strong interactions at the fundamental level is that the
SM Lagrangian contains all relevant operators of dimen-
sion d ≤ 4 composed by the (already observed) elementary
particle fields and compatible with the principles of Lorentz
invariance and gauge symmetry. The effects of higher-
dimension (d > 4) effective operators, which are not
included in the SM Lagrangian, are expected to be naturally
small, being suppressed by negative powers of the high-
energy scale M characterizing the physics beyond the SM,
as M4−d (up to logarithmic corrections).
In this picture, a special role is played by the operators of

dimension d ¼ 5, as their contribution is suppressed by
only one power of the high scale. In the leptonic sector, an
important example of d ¼ 5 operator is represented by the
Weinberg operator for neutrino masses [1], composed by

two lepton doublets and two Higgs fields. After the
occurrence of spontaneous electroweak symmetry breaking
this operator leads to a natural explanation of the small
light-neutrino masses, which are thus predicted to be
inversely proportional to the large scale M.
In the quark sector the d ¼ 5 magnetic operators, which

induce ΔF ¼ 1 flavor changing transitions, are of relevant
phenomenological interest. In the strangeness changing
ΔS ¼ 1 case, for instance, these magnetic operators con-
tribute to both CP conserving and CP violating rare kaon
decays, as well as to K0 − K̄0 mixing and to the CP
violating ratio ε0=ε. In a large class of new physics models
these contributions can be substantially larger than in the
SM, which motivates the interest in studying their effects.
This is the case, for instance, of generic supersymmetric
extensions of the SM, in which ΔS ¼ 1 transitions
described by the magnetic operators are mediated by the
strong interactions through virtual gluino exchanges [2,3].
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For definiteness, let us consider in the following ΔS ¼ 1
transitions. In both the SM and beyond, the low-energy
effective Hamiltonian contains four magnetic operators of
dimension five,

HΔS¼1;d¼5
eff ¼

X
i¼�

ðCi
γQi

γ þ Ci
gQi

gÞ þ h:c: ð1Þ

which are defined as

Q�
γ ¼ Qde

16π2
ðψ̄ sLσ

μνFμνψdR � ψ̄ sRσ
μνFμνψdLÞ; ð2Þ

Q�
g ¼ g

16π2
ðψ̄ sLσ

μνGμνψdR � ψ̄ sRσ
μνGμνψdLÞ: ð3Þ

In the above expressions, Fμν and Gμν represent the
electromagnetic and strong field strength tensors, respec-
tively, ψ s and ψd are the strange and down quark fields
and the subscripts R;L denote the right/left chiral structure
ð1� γ5Þ. The coefficients Ci

γ and Ci
g, multiplying the

electromagnetic (EMO) and chromomagnetic (CMO) oper-
ators in the effective Hamiltonian, contain the effects of the
physics at short distance and they depend on the specific
structure of the new physics model. These coefficients
can be calculated perturbatively via the OPE. The long-
distance effects of the strong interactions are encoded in
the operator matrix elements and, thus, require for their
evaluation a nonperturbative method, primarily a lattice
QCD calculation.
The matrix element of the EMO between kaon and pion

states may be relevant in the CP-violating part of the K →
πlþl− semileptonic decays (see Ref. [4]) and its determi-
nation offers, for instance, the possibility to put bounds on
the supersymmetric couplings related to the splitting of the
off-diagonal entries in the down-type squark mass matrix.
The matrix element hπjQþ

γ jKi has been computed on the
lattice both in the quenched approximation [5] and with
Nf ¼ 2 flavors of degenerate sea quarks [6].
Several matrix elements of the CMO between kaon and

pion states are of phenomenological interest for super-
symmetric extensions of the SM. The matrix element
hπ0jQþ

g jK0i may provide contributions to the K0 − K̄0

mixing amplitude (see Ref. [3]), while the matrix element
hπþπ−jQ−

g jK0imay play a role for determining ε0=ε and for
the ΔI ¼ 1=2 rule (see Ref. [2]). Finally the matrix element
hπþπþπ−jQþ

g jKþi may contribute to the CP-violating part
of the K → πππ decays [3]. All the above-mentioned
matrix elements can be parametrized in terms of suitably
defined B parameters:

hπ0jQþ
g jK0i ¼ −

1ffiffiffi
2

p 11

32π2
M2

KðpK · pπÞ
ms þmd

BKπ
CMO;

hπþπ−jQ−
g jK0i ¼ i

11

32π2
M2

KM
2
π

fπðms þmdÞ
BK2π
CMO;

hπþπþπ−jQþ
g jKþi ¼ −

11

16π2
M2

KM
2
π

f2πðms þmdÞ
BK3π
CMO: ð4Þ

At leading order (LO) in chiral perturbation theory
(ChPT) the CMO has a single representation in terms of
pseudo-Goldstone boson fields [7]. Therefore, the three B
parameters appearing in Eq. (4) are related by chiral
symmetry, which predicts at LO their equality:

BKπ
CMO ¼ BK2π

CMO ¼ BK3π
CMO ¼ BCMO: ð5Þ

A lattice calculation of the matrix elements of the CMO
is challenging, particularly when more than one pion are
considered in the final state. Even in the case of only one
final pion, which corresponds to the matrix element
hπjQþ

g jKi of the operator Qþ
g ¼ ðg=16π2Þψ̄ sσμνGμνψd,

no results have been produced so far. The main difficulty,
with respect to the EMO case, is that strong interactions
induce a mixing of the CMO with operators of lower
dimension, with coefficients which are power divergent
with the cutoff; on the lattice this is the inverse of the lattice
spacing 1=a. The leading divergence of the bare CMO,
which is of order 1=a2, is determined by the mixing with
the dimension-three scalar operator ψ̄ sψd. Its coefficient
must be evaluated in a fully nonperturbative way, since
nonperturbative effects, e.g., factors of the form aΛQCD,
combined with factors which diverge as inverse powers of
the lattice spacing can give finite (or even divergent)
contributions [8].
In order to define the properly renormalized CMO,

besides the subtraction of the lower-dimension operators,
the mixing with equal dimension (d ¼ 5) operators, includ-
ing the CMO itself, must also be taken into account. This
mixing is only logarithmically divergent and can be, thus,
evaluated in perturbation theory. The one-loop calculation
of the corresponding renormalization factor and mixing
coefficients is one aim of the present study. Specifically,
we have considered a lattice regularization of QCD defined
by a generic class of Symanzik improved gluon actions and
a twisted-mass quark action [9,10]. By investigating the
symmetry properties of this action, we have shown that
the renormalized CMO mixes with a total of 13 operators
(including itself), of which seven are not present on-shell;
among them, there will be nongauge invariant (but BRST
invariant) operators as well. For on-shell matrix elements,
the mixing assumes the general form

g0ψ̄ sσμνGμνψd ¼ Z1½g0ψ̄ sσμνGμνψd�R
þ Z2½ðm2

d þm2
sÞψ̄ sψd�R

þ Z3½mdmsψ̄ sψd�R þ Z4½□ðψ̄ sψdÞ�R
þ Z12½iðrdmd þ rsmsÞψ̄ sγ5ψd�R
þ Z13½ψ̄ sψd�R; ð6Þ

where R denotes the corresponding renormalized operators,
Z12 ∝ 1=a, Z13 ∝ 1=a2, rsðdÞ is the Wilson hopping param-
eter of the strange (down) quark, and we have evaluated
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the renormalization factor Z1 and the mixing coefficients
Z2 − Z13 at one loop. Note that the presence of the mixing
with the pseudoscalar density is due to the parity violation
in the twisted-mass formulation of QCD on the lattice. As
discussed above, the power-divergent coefficients Z12 and
Z13 require an independent nonperturbative determination.
A strategy to implement nonperturbatively the subtrac-

tion of the mixings of the CMO with the lower-dimension
operators has been anticipated in Refs. [11–13]. In this
work we apply it for obtaining the first nonperturbative
determinations of the power-divergent mixings Z13 and
Z12. To this end we have used the gauge configurations
produced at three values of the lattice spacing (between
≃0.6 and ≃0.9 fm) by the European Twisted Mass
Collaboration (ETMC) with Nf ¼ 2þ 1þ 1 dynamical
quarks, which include in the sea, besides two light mass
degenerate quarks, also the strange and charm quarks with
masses close to their physical values [14–16]. It turns out
that the one-loop perturbative estimate of Z13 differs only
by less than 10% from the nonperturbative results at the
three values of the lattice spacing, while the nonperturba-
tive determination of Z12 is found to be smaller than the
corresponding one-loop perturbative result. This finding
suggests that, together with our nonperturbative determi-
nations of the mixing coefficients Z13 and Z12, the
perturbative estimates of the renormalization factor Z1

and of the mixing coefficients Z2, Z3, and Z4 may be
used for the determination of the (renormalized) CMO
matrix element. Preliminary results for such a matrix
element between pion and kaon states have been presented
in Ref. [17] and the final ones will be the subject of a
forthcoming publication [18].
The outline of this paper is as follows. Section II

provides a brief theoretical background in which we
introduce the symmetries of the employed actions and
the transformation properties of all candidate operators
which can mix with OCM at the quantum level. Section III
contains a summary of the computational procedure for
the Green’s functions of the chromomagnetic operator.
This section is divided in two subsections. In Sec. III A,
calculating the 2-pt and 3-pt Green’s function of OCM in
dimensional regularization (DR), we construct a
set of 11 independent equations for the disentanglement
of the mixing coefficients. We present these coefficients in
the MS renormalization scheme. On the other hand in
Sec. III B by using the lattice formulation and the results
which we found in Sec. III A, we calculate the mixing
coefficients on the lattice, again in the MS renormalization
scheme. In Sec. IV we describe the first nonperturbative,
high-precision determination of the 1=a2-divergent mixing
of the chromomagnetic operator with the scalar density,
using the ETMC gauge configurations with Nf ¼ 2þ 1þ
1 produced at three values of the lattice spacing. We also
describe the first nonperturbative calculation of the
1=a-divergent mixing of the chromomagnetic operator with

the pseudoscalar density using the renormalization condition
introduced in Ref. [11]. Finally, we conclude in Sec. V with a
discussion of our results and possible future extensions of
our work. For completeness, we have included two
Appendices containing the mixing coefficients Zi
(Appendix A) and the one-loop perturbative renormalization
factors Zc, Zψ , Zm, ZA, and Zg on the lattice (Appendix B).
Preliminary results for the above coefficients have been
already presented in Refs. [11–13,17].

II. SYMMETRIES OF THE ACTION
AND TRANSFORMATION PROPERTIES

OF OPERATORS

We start by studying the mixing of the chromomagnetic
operator,1

OCM ¼ g0ψ̄ sσμνGμνψd; ð7Þ
using both DR and lattice regularization (L). On the lattice
we use the fermion setup studied in Refs. [9,10]; in
particular, valence quarks are described by the twisted-
mass/Osterwalder-Seiler (OS) action at maximal twist,
which in the physical basis reads

SF½ψf; ψ̄f; U� ¼ a4
X
f

X
x

ψ̄fðxÞ½γ · ~∇ − iγ5WcrðrfÞ

þmf�ψfðxÞ; ð8Þ

where

γ · ~∇≡ 1

2

X
μ

γμð∇⋆
μ þ∇μÞ; ð9Þ

WcrðrfÞ≡ −a
rf
2

X
μ

∇⋆
μ∇μ þMcrðrfÞ; ð10Þ

rf is the Wilson parameter for the flavor f ¼ u; d; s, and
McrðrfÞ is the corresponding critical quark mass.
The full fermion action includes also a part describing

sea quarks, and possibly a ghost part (to compensate
the valence quark determinant for the partially quenched
flavors) [19]; these parts will not be needed in our
perturbative calculation. For the gluon part we employ
the Symanzik improved action:

SG ¼ 2

g20

�
c0
X
plaq

ReTrf1−Uplaqg þ c1
X
rect

ReTrf1−Urectg

þ c2
X
chair

ReTrf1−Uchairg þ c3
X
paral

ReTrf1−Uparalg
�
;

ð11Þ

1In our notation g0 is the bare coupling constant, ψs;d
are the s- and d-quark fields, Gμν is the gluon tensor, and
σμν ≡ ði=2Þ½γμ; γν�.
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where the Wilson loops are products of consecutive links in the directions ðμ; ν;−μ;−νÞ, ðμ; ν; ν;−μ;−ν;−νÞ,
ðμ; ν;−μ; ρ;−ν;−ρÞ, ðμ; ν; ρ;−μ;−ν;−ρÞ for Uplaq, Urect, Uchair, and Uparal, respectively. The Symanzik coefficients
c0; c1; c2; c3 may take arbitrary values, subject to the constraint

c0 þ 8c1 þ 16c2 þ 8c3 ¼ 1; ð12Þ
which ensures the correct classical continuum limit. Our results (Sec. III B) will be provided for some of the most popular
choices for ci.
There exist certain symmetries of the action (valid both in the continuum and lattice formulation of the theory) which

reduce considerably the number of operators that can possibly mix with OCM at the quantum level. These symmetries are
defined by means of the discrete transformations P (continuum parity),

P∶

8><
>:

U0ðxÞ → U0ðxPÞ; UkðxÞ → U†
kðxP − ak̂Þ; k ¼ 1; 2; 3

ψfðxÞ → γ0ψfðxPÞ
ψ̄fðxÞ → ψ̄fðxPÞγ0;

ð13Þ

where xP ¼ ð−x; x0Þ and μ̂ is the unit vector in the μ
direction,

Dd∶

8><
>:

UμðxÞ → U†
μð−x − aμ̂Þ

ψfðxÞ → e3iπ=2ψfð−xÞ
ψ̄fðxÞ → e3iπ=2ψ̄fð−xÞ;

ð14Þ

which, besides inverting x → −x, counts the parity of the
dimension d of each operator by multiplying it by eiπd,

R5 ¼
Y
f

Rf5; Rf5∶
�
ψf → γ5ψf

ψ̄f → −ψ̄fγ5;
ð15Þ

C (charge conjugation; T means transpose)

C∶

8><
>:

ψðxÞ → iγ0γ2ψ̄ðxÞT
ψ̄ðxÞ → −ψðxÞTiγ0γ2
UμðxÞ → U⋆

μðxÞ; μ ¼ 0; 1; 2; 3;

ð16Þ

and S (exchange between the s and the d quark),

S∶

8><
>:

ψ sðxÞ ↔ ψdðxÞ
ψ̄ sðxÞ ↔ ψ̄dðxÞ
ms ↔ md:

ð17Þ

In terms of the above transformations, the symmetries of
the action are2

• P ×Dd × ðm→ −mÞ wherem are allmasses exceptMcr

• Dd ×R5

• C×S; if rs ¼ rd

• C×P ×S; if rs ¼ −rd: ð18Þ

In order to identify which operators can possibly mix
with OCM, we examine the transformation properties of all
candidate operators under the above symmetries; admis-
sible operators must transform in the same way as OCM.
Furthermore, by general renormalization theorems, these
operators must be gauge invariant, or else they must vanish
by the equations of motion.
In Table I we present all candidate operators along

with their transformation properties. Operators marked by
“✓” have the same properties as OCM and, thus, may mix
with it. Operators marked by “ðþÞ” or “ð−Þ” have the
same transformation properties as OCM only if rs ¼ rd or
rs ¼ −rd, respectively; for this reason the Wilson param-
eters rs; rd have been explicitly introduced in O11 and O12

below [see Eqs. (29)–(30)]. There follows immediately that
OCM ≡O1 can only mix with the following operators:

O1 ¼ g0ψ̄ sσμνGμνψd ð19Þ

O2 ¼ ðm2
d þm2

sÞψ̄ sψd ð20Þ

O3 ¼ mdmsψ̄ sψd ð21Þ

O4 ¼ □ðψ̄ sψdÞ ð22Þ

O5 ¼ ψ̄ sð−D⃖þmsÞð ~DþmdÞψd ð23Þ

O6 ¼ ψ̄ sð ~DþmdÞ2ψd þ ψ̄ sð−D⃖þmsÞ2ψd ð24Þ

O7 ¼ msψ̄ sð ~DþmdÞψd þmdψ̄ sð−D⃖þmsÞψd ð25Þ

2Note that, in the case of rs ¼ −rd, CPS will not be a
symmetry of the valence part of the action which contains a u
quark, since it will require ru → −ru. However, the u quark can
be dropped from the valence part of the action, since our operator
does not contain u quarks and, therefore, the Green’s functions of
interest will also not contain any external u quarks. Nonetheless,
it is important to note that the sea quark part of the action is
symmetric even in the presence of u, since it is an even
function of the Wilson coefficients rf [by virtue also of
Mcrð−rfÞ ¼ −McrðrfÞ] [19].
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TABLE I. Transformation properties of gauge invariant operators and of operators which vanish by the equations of motion, in the
physical basis.

Operators
P ×Dd×
ðm → −mÞ Dd ×R5

C × S
if rs ¼ −rd

C × P × S
if rs ¼ −rd

Dimension-three operators
✓ ψ̄sψd − þ þ þ

iψ̄ sγ5ψd þ þ þ −
Dimension-four operators

ðmd þmsÞψ̄ sψd þ þ þ þ
ðmd −msÞψ̄sψd þ þ − −

ðþÞ iðmd þmsÞψ̄sγ5ψd − þ þ −
ð−Þ iðmd −msÞψ̄sγ5ψd − þ − þ

ψ̄sð ~DþmdÞψd þ ψ̄sð−D⃖þmsÞψd þ þ þ þ
ψ̄sð ~DþmdÞψd − ψ̄sð−D⃖þmsÞψd þ þ − −

ðþÞ iψ̄ sγ5ð ~DþmdÞψd þ iψ̄sð−D⃖þmsÞγ5ψd − þ þ −
ð−Þ iψ̄ sγ5ð ~DþmdÞψd − iψ̄sð−D⃖þmsÞγ5ψd − þ − þ
Dimension-five operators
✓ g0ψ̄ sσμνGμνψd − þ þ þ

ig0ψ̄ sγ5σμνGμνψd þ þ þ −
✓ ðm2

d þm2
sÞψ̄sψd − þ þ þ

iðm2
d þm2

sÞψ̄sγ5ψd þ þ þ −
ðm2

d −m2
sÞψ̄ sψd − þ − −

iðm2
d −m2

sÞψ̄ sγ5ψd þ þ − þ
✓ mdmsψ̄ sψd − þ þ þ

imdmsψ̄ sγ5ψd þ þ þ −
✓ msψ̄ sð ~DþmdÞψd þmdψ̄sð−D⃖þmsÞψd − þ þ þ
✓ mdψ̄sð ~DþmdÞψd þmsψ̄sð−D⃖þmsÞψd − þ þ þ

msψ̄ sð ~DþmdÞψd −mdψ̄ sð−D⃖þmsÞψd − þ − −
mdψ̄sð ~DþmdÞψd −msψ̄ sð−D⃖þmsÞψd − þ − −
imsψ̄sγ5ð ~DþmdÞψd þ imdψ̄sð−D⃖þmsÞγ5ψd þ þ þ −
imdψ̄sγ5ð ~DþmdÞψd þ imsψ̄sð−D⃖þmsÞγ5ψd þ þ þ −
imsψ̄sγ5ð ~DþmdÞψd − imdψ̄ sð−D⃖þmsÞγ5ψd þ þ − þ
imdψ̄sγ5ð ~DþmdÞψd − imsψ̄ sð−D⃖þmsÞγ5ψd þ þ − þ

✓ ψ̄sð ~DþmdÞ2ψd þ ψ̄ sð−D⃖þmsÞ2ψd − þ þ þ
ψ̄sð ~DþmdÞ2ψd − ψ̄ sð−D⃖þmsÞ2ψd − þ − −
iψ̄ sγ5ð ~DþmdÞ2ψd þ iψ̄sð−D⃖þmsÞ2γ5ψd þ þ þ −
iψ̄ sγ5ð ~DþmdÞ2ψd − iψ̄ sð−D⃖þmsÞ2γ5ψd þ þ − þ

✓ □ðψ̄sψdÞ − þ þ þ
iψ̄ sγ5D⃖μ

~Dμψd þ þ þ −
✓ ψ̄sð−D⃖þmsÞð ~DþmdÞψd − þ þ þ

iψ̄ sð−D⃖þmsÞγ5ð ~DþmdÞψd þ þ þ −
✓ ψ̄s∂⃖ð ~DþmdÞψd − ψ̄sð−D⃖þmsÞ~∂ψd − þ þ þ
✓ ψ̄s

~∂ð ~DþmdÞψd − ψ̄sð−D⃖þmsÞ∂⃖ψd − þ þ þ
ψ̄s∂⃖ð ~DþmdÞψd þ ψ̄sð−D⃖þmsÞ~∂ψd − þ − −
ψ̄s

~∂ð ~DþmdÞψd þ ψ̄sð−D⃖þmsÞ∂⃖ψd − þ − −
iψ̄ s∂⃖γ5ð ~DþmdÞψd − iψ̄sð−D⃖þmsÞγ5~∂ψd þ þ þ −
iψ̄ s

~∂γ5ð ~DþmdÞψd − iψ̄sð−D⃖þmsÞγ5∂⃖ψd þ þ þ −
iψ̄ s∂⃖γ5ð ~DþmdÞψd þ iψ̄sð−D⃖þmsÞγ5~∂ψd þ þ − þ
iψ̄ s

~∂γ5ð ~DþmdÞψd þ iψ̄sð−D⃖þmsÞγ5∂⃖ψd þ þ − þ
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O8 ¼ mdψ̄ sð ~DþmdÞψd þmsψ̄ sð−D⃖þmsÞψd ð26Þ

O9 ¼ ψ̄ s∂⃖ð ~DþmdÞψd − ψ̄ sð−D⃖þmsÞ~∂ψd ð27Þ

O10 ¼ ψ̄ s
~∂ð ~DþmdÞψd − ψ̄ sð−D⃖þmsÞ∂⃖ψd ð28Þ

O11 ¼ irdψ̄ sγ5ð ~DþmdÞψd þ irsψ̄ sð−D⃖þmsÞγ5ψd ð29Þ

O12 ¼ iðrdmd þ rsmsÞψ̄ sγ5ψd ð30Þ

O13 ¼ ψ̄ sψd; ð31Þ

where □≡ ∂μ∂μ, and the left and right covariant deriva-
tives are defined in terms of the gluon field Aμ as follows:

~Dμ ¼ ~∂μ þ ig0Aμ; D⃖μ ¼ ∂⃖μ − ig0Aμ: ð32Þ

We do not impose in our calculation the conservation of
external momentum. Therefore, the list of independent
operators in Table I accounts for operators which are total
derivatives.3 As for the parameters rs and rd, in our
perturbative calculation we make the (independent) choices
of values rs ¼ �1, rd ¼ �1, consistently with their values
in the simulations.
Operators O9 and O10 are not gauge invariant, but they

are admissible candidates for mixing, since they vanish by
the equations of motion; indeed, they will mix with OCM
both in DR and on the lattice. The operators O11;O12;O13

are of lower dimension and, thus, they do not mix with O1

in DR; they do, however, show up in the lattice formulation.
Before closing this section, we mention that in the

presence of the electromagnetic interactions the operator
OCM can mix also with the EMO [see Eq. (2)]. The
corresponding mixing coefficient is of order Oðg2Þ; i.e.,
it does not vanish formally in the limit of zero quark electric
charge, since the latter is already included in the definition
of the EMO.

III. RENORMALIZATION FUNCTIONS

The operators OR
i are related to the bare ones, Oi

(i ¼ 1;…; 13), through

Oi ¼
X13
j¼1

ZijOR
j ðinmatrix notation∶ O ¼ ZORÞ; ð33Þ

where the 13 × 13 mixing matrix Zij (which should more
properly be denoted as ZX;Y

ij , where X ¼ DR; L;… is the

regularization and Y ¼ MS;RI0;… the renormalization
scheme) obeys

Z ¼ 1þOðg2Þ; ð34Þ
where g is the renormalized coupling constant. Since we
are interested in OR

1 we only need to calculate the first row
of the inverse mixing matrix, Z−1, which, to one loop, is
immediately related to the first row of Z: Zi ≡ Z1i.
Since renormalization conditions are typically imposed on

amputated renormalized Green’s functions, let us relate the
latter to the bare ones. For the quark-quark Green’s function,
the following condition holds:

hψROR
1 ψ̄

Riamp¼hψRψ̄Ri−1hψROR
1 ψ̄

RihψRψ̄Ri−1

¼ðZψ hψψ̄i−1Þ
�
Z−1
ψ

X13
i¼1

ðZ−1Þ1ihψOiψ̄i
�

× ðZψ hψψ̄i−1Þ

¼Zψ

X13
i¼1

ðZ−1Þ1ihψOiψ̄iamp; ψ ¼ ffiffiffiffiffiffi
Zψ

p
ψR:

ð35Þ
The one-loop Feynman diagrams contributing to hψO1ψ̄iamp
are shown in Fig. 1. Note that Eq. (35) holds for an arbitrary
regularization and arbitrary renormalization scheme; the
only condition on the renormalization scheme is that it be
mass independent, in which case the quark field renormal-
ization factors Zψ does not depend on flavor. To avoid heavy
notation we have omitted coordinate/momentum arguments
on ψ ;O, as well as Dirac/flavor indices on
hψψ̄i; hψOψ̄i, etc.
Similarly for quark-quark-gluon Green’s functions we

have

hψROR
1 ψ̄

RAR
ν iamp ¼ ZψZ

1=2
A

X13
i¼1

ðZ−1Þ1ihψOiψ̄Aνiamp;

Aν ¼
ffiffiffiffiffiffi
ZA

p
AR
ν : ð36Þ

FIG. 1. One-loop Feynman diagrams contributing to the 2-pt
Green’s function of the chromomagnetic operator, O1. A wavy
(solid) line represents gluons (quarks). A crossed circle denotes
the insertion of O1.

3Instead of the operator O4 one can consider the operator
O0

4 ≡ ψ̄sD⃖μ
~Dμψd, which shares the same transformation proper-

ties of O4. It can easily be shown that the operator O0
4 is a linear

combination of O4 and other operators entering the basis (19)–
(31). The choice of O4 has the advantage that it does not
contribute to physical amplitudes, since it is a total four-
derivative. Moreover, its nonperturbative determination is quite
simpler, because its matrix element between physical hadron
states is simply given by the corresponding matrix element of the
scalar density ψ̄sψd multiplied by the squared four-momentum
transfer. Finally, as it will be shown later, its mixing with the
chromomagnetic operator is vanishing at one loop and, therefore,
any redefinition of O4 does not change the mixing of the other
operators of the basis at one loop.
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Strictly speaking, on the right-hand sides of Eqs. (35)
and (36) one must take the regulator to its limit value
(i.e., ϵ → 0 in DR or a → 0 on the lattice). This limit is
convergent, provided all renormalization functions Z have
been appropriately chosen. It is only in this limit that the
right-hand sides of Eqs. (35) and (36) are equal to the
corresponding left-hand sides.
The one-loop Feynman diagrams contributing to

hψO1ψ̄Aνiamp are shown in Fig. 2 [one-particle irreducible
(1PI)] and Fig. 3 [one-particle reducible (1PR)]. While 1PR
diagrams do contribute to the renormalized Green’s func-
tions hψROR

1 ψ̄
RAR

ν iamp, their contribution to the mixing
matrix cancels out.
Imposing renormalization conditions of the above 2- and

3-pt Green’s functions is sufficient4 in order to obtain all Zi.
In some definitions of OCM (see, e.g., [20]) there is an

extra factor of a quark mass,

~OCM ≡mOCM; ð37Þ

where m is the mass of one of the quark flavors. The
renormalized mass mR is given by mR ¼ Z−1

m m; in a mass-
independent scheme, Zm is also flavor independent, like
Zψ . In this case the renormalization matrix ~Zij for ~OCM is
simply given by: ~Zij ¼ ZmZij.

By analogy with Zm, a multiplicative factor of Zg
must be included in Z1, if the calculation of Green’s
functions involves the operator ψ̄ sσμνGμνψd, rather than
gψ̄ sσμνGμνψd. Wewill make use of this fact in Eq. (58). The
calculation of Zm and Zg is presented in Appendix B.
Inorder to impose renormalization conditions,weneed the

expressions for the tree-level 2-pt and 3-pt Green’s functions
of Oi, i ¼ 1;…; 13. The tree-level parts of the 3-pt ampu-
tatedbareGreen’s functions hψ sðq2ÞOiðxÞψ̄dðq3ÞAνðq1Þiamp

are shown (apart from an overall factor of eix·ð−q1−q2þq3Þ) in
Table II; similarly for the tree-level parts of the 2-pt bare
Green’s functions hψ sðq2ÞOiðxÞψ̄dðq3Þiamp. Note that the
tree-level 3-pt Green’s functions, despite being amputated,
receive also contributions which are not 1PI, as shown in
Fig. 4. We do not include these in Table II; however, their
value can be easily deduced from the corresponding
tree-level 2-pt Green’s functions.

A. Dimensional regularization

The next step in our renormalization procedure is to
calculate the MS-renormalized 2-pt and 3-pt Green’s

1 2 3

4 5 6

7 8 9

1 0 1 1

FIG. 2. 1PI Feynman diagrams which contribute to the 3-pt Green’s function of O1. Diagrams 1, 4, 6 do not appear in DR. Wavy
(solid) lines represent gluons (quarks). Crossed circles denote the insertions of O1.

FIG. 3. 1PR Feynman diagrams which contribute to the 3-pt
Green’s function of O1. Wavy (solid) lines represent gluons
(quarks). Crossed circles denote the insertions of O1.

4One could of course calculate also 4-pt Green’s functions; in
doing so, a number of consistency checks would emerge
regarding the divergent part of the mixing coefficients Zi. Further
Green’s functions (5-pt and above) will bring in no superficial
divergences, and no further renormalization conditions (or con-
sistency checks) will arise.
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functions ofOCM ; in order to do so, we must regularize the
theory in D dimensions (D ¼ 4 − 2ϵ), in the continuum.
The general form of the Oð1=ϵÞ part of the bare Green’s
functions is (consistently with the tree-level values of the
operators in Table II):

hψO1ψ̄iDRampj1=ϵ ¼ ρ1ðq22þq23Þþρ2ðm2
s þm2

dÞ
þρ3iðmdq3þmsq2Þþρ4iðmsq3þmdq2Þ
þρ5q2:q3þρ6q2q3þρ7msmd; ð38Þ

hψO1ψ̄AνiDRamp;1PIj1=ϵ¼R1gðq2þq3ÞνþR2gðγνq3þq2γνÞ
þR3igðmsþmdÞγνþR4ð−2igσρνq1ρÞ;

ð39Þ
where g is the renormalized coupling constant in the MS
scheme, which is related to the bare coupling constant in

DR, gDR0 , through: g ¼ μ−ϵðZDR;MS
g Þ−1gDR0 and ρi; Ri are

numerical coefficients. Additional terms in Eqs. (38) and
(39) [such as gq1ν or gq1γν in Eq. (39)] would imply mixing
with further operators from Table I, but this is excluded by
the symmetries listed in Eq. (18).
Computing ρi; Ri to one loop, we find

ρ1 ¼
g2

16π2
1

ϵ
ð−3CFÞ ð40Þ

ρ2 ¼
g2

16π2
1

ϵ
ð−6CFÞ ð41Þ

ρ3 ¼
g2

16π2
1

ϵ
ð3CFÞ ð42Þ

ρ4 ¼ ρ5 ¼ ρ6 ¼ ρ7 ¼ 0 ð43Þ

R1 ¼
g2

16π2
1

ϵ
ð−6CFÞ ð44Þ

R2 ¼
g2

16π2
1

ϵ

�
3Nc

4

�
ð45Þ

R3 ¼
g2

16π2
1

ϵ

�
−

3

2Nc
þ 3Nc

4

�
ð46Þ

R4 ¼
g2

16π2
1

ϵ

�
1

Nc
−

α

2Nc
þ 7Nc

4
þ 3αNc

4

�
: ð47Þ

Here, Nc is the number of colors, CF ¼ ðN2
c − 1Þ=ð2NcÞ is

the quadratic Casimir operator in the fundamental repre-
sentation, α is the gauge parameter (α ¼ 1ð0Þ corresponds
to Feynman (Landau) gauge).
We have also computed the finite parts [Oðϵ0Þ]

for the above Green’s functions, which are just the
corresponding MS-renormalized Green’s functions.
These are irrelevant for the computation of the
mixing coefficients in the MS scheme in DR;
however, they are necessary in the calculation of Zij
with lattice regularization and MS renormalization
(see Sec. III B). Using the form of Eqs. (38)–(39) and
the tree-level Green’s functions of the various operators

FIG. 4. 1PR Feynman diagrams contributing to the tree-level
3-ptGreen’s functions.Wavy(solid) lines representgluons(quarks).
Crosses denote the insertions of the operator Oi; i ¼ 1;…; 13.

TABLE II. Operators which will possibly mix with the chromomagnetic operator in the physical basis, along with their tree-level 2-pt
and 3-pt (1PI) Green’s functions. Here, q1 is the external gluon momentum and q2;3 is the external final (initial) quark momentum.

Operators Tree Level 2-pt Tree Level 3-pt (1PI)

O1 g0ψ̄sσμνGμνψd 0 −2ig0σμνq1μ
O2 ðm2

d þm2
sÞψ̄ sψd m2

d þm2
s 0

O3 mdmsψ̄ sψd mdms 0
O4 □ðψ̄sψdÞ ðq2 − q3Þ2 0

O5 ψ̄ sð−D⃖þmsÞð ~DþmdÞψd −q2q3 þ iq2md þ iq3ms þmsmd −g0ðq2γν þ γνq3Þ þ ig0ðms þmdÞγν
O6 ψ̄ sð ~DþmdÞ2ψd þ ψ̄ sð−D⃖þmsÞ2ψd −q22 − q23 þ 2iðmdq3 þmsq2Þ þm2

d þm2
s −2g0iσμνq1μ − 2g0ðq3ν þ q2νÞ

−2ig0ðmd þmsÞγν
O7 msψ̄sð ~DþmdÞψd þmdψ̄sð−D⃖þmsÞψd msðiq3 þmdÞ þmdðiq2 þmsÞ ig0ðms þmdÞγν
O8 mdψ̄sð ~DþmdÞψd þmsψ̄sð−D⃖þmsÞψd mdðiq3 þmdÞ þmsðiq2 þmsÞ ig0ðms þmdÞγν
O9 ψ̄s∂⃖ð ~DþmdÞψd − ψ̄sð−D⃖þmsÞ~∂ψd 2q2q3 − iðq2md þ q3msÞ g0ðq2γν þ γνq3Þ
O10 ψ̄s

~∂ð ~DþmdÞψd − ψ̄sð−D⃖þmsÞ∂⃖ψd −q23 − q22 þ iðq2ms þ q3mdÞ −2g0ðq2ν þ q3νÞ þ g0ðq2γν þ γνq3Þ
−2ig0σμνq1μ

O11 irdψ̄ sγ5ð ~DþmdÞψd þ irsψ̄ sð−D⃖þmsÞγ5ψd irdγ5ðiq3 þmdÞ þ irsðiq2 þmsÞγ5 −g0ðrd − rsÞγ5γν
O12 iðrdmd þ rsmsÞψ̄ sγ5ψd iðrdmd þ rsmsÞγ5 0
O13 ψ̄ sψd 1 0

M. CONSTANTINOU et al. PHYSICAL REVIEW D 92, 034505 (2015)

034505-8



(Table II), we construct a set of equations for the
disentanglement of the mixing coefficients; in particular,
by demanding that the coefficients of Oð1=ϵÞ in the
left-hand sides of Eqs. (35)–(36) vanish,5 we obtain,
to order g2

− ZDR;MS
6 − ZDR;MS

10 ¼ ρ1 ð48Þ

ZDR;MS
2 þ ZDR;M̄S

6 þ ZDR;MS
8 ¼ ρ2 ð49Þ

2ZDR;MS
6 þ ZDR;MS

8 þ ZDR;MS
10 ¼ ρ3 ð50Þ

−ZDR;MS
5 − ZDR;MS

7 þ ZDR;MS
9 ¼ ρ4 ð51Þ

− ZDR;MS
4 ¼ ρ5 ð52Þ

− ZDR;MS
5 þ 2ZDR;MS

9 ¼ ρ6 ð53Þ

− ZDR;MS
3 − ZDR;MS

5 − 2ZDR;MS
7 ¼ ρ7 ð54Þ

ZDR;MS
4 − 2ZDR;MS

6 − 2ZDR;MS
10 ¼ R1 ð55Þ

−ZDR;MS
5 þ ZDR;MS

9 þ ZDR;MS
10 ¼ R2 ð56Þ

ZDR;MS
5 − 2ZDR;MS

6 þ ZDR;MS
7 þ ZDR;MS

8 ¼ R3 ð57Þ

g2zDR;MS
1 þ ZDR;MS

6 þ ZDR;MS
10

¼ R4 þ g2
�
zDR;MS
ψ þ 1

2
zDR;MS
A þ zDR;MS

g

�
; ð58Þ

where ZDR;MS
1 ¼ 1þ g2zDR;MS

1 þOðg4Þ and Zi>1 ¼
Oðg2Þ by Eq. (34); also,

ZDR;MS
ψ ¼ 1þ g2zDR;MS

ψ þOðg4Þ; ð59Þ

zDR;MS
ψ ¼ 1

16π2
1

ϵ
ð−CFαÞ; ð60Þ

ZDR;MS
A ¼ 1þ g2zDR;MS

A þOðg4Þ; ð61Þ

zDR;MS
A ¼ 1

16π2
1

ϵ

�
13Nc

6
−
αNc

2
−
2Nf

3

�
; ð62Þ

ZDR;MS
g ¼ 1þ g2zDR;MS

g þOðg4Þ; ð63Þ

zDR;MS
g ¼ 1

16π2
1

ϵ

�
Nf

3
−
11Nc

6

�
: ð64Þ

In particular, Eq. (58) stems from the requirement that
the coefficients of ð−2igσμνq1μÞ=ϵ in the left-hand side
and right-hand side of Eq. (36) coincide:

0 ¼ ð1þ g2zDR;MS
ψ Þ

�
1þ 1

2
g2zDR;MS

A

�
ð1þ g2zDR;MS

g Þð1 − g2zDR;MS
1 Þð1þ R4Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

only theOð1=ϵÞ part

− ZDR;MS
6 − ZDR;MS

10 : ð65Þ

As it stands, the system of 11 equations [Eqs. (48)–(58)]
for the ten unknowns ZDR;MS

1 − ZDR;MS
10 appears overcon-

strained; indeed, Eqs. (48), (52), and (55) can only be
compatible if 2ρ1 ¼ R1. This relation is indeed confirmed
by our results [Eq. (40) and Eq. (44)]. The presence of

zDR;MS
g in Eq. (58) stems from the fact that all one-loop
Green’s functions were calculated with an insertion of
ψ̄ sσμνGμνψd (rather than gψ̄ sσμνGμνψd ; thus, multiplica-
tion by Zg is necessary in a way analogous to Eq. (37).
Solving the above equations, we obtain the mixing

coefficients:

ZDR;MS
1 ¼ 1þ g2

16π2
1

ϵ

�
−
Nc

2
þ 5

2Nc

�
ð66Þ

ZDR;MS
2 ¼ g2

16π2
1

ϵ

�
−3Nc þ

3

Nc

�
ð67Þ

ZDR;MS
3 ¼ 0 ð68Þ

ZDR;MS
4 ¼ 0 ð69Þ

ZDR;MS
5 ¼ g2

16π2
1

ϵ

�
3Nc

2
−

3

Nc

�
ð70Þ

ZDR;MS
6 ¼ 0 ð71Þ

ZDR;MS
7 ¼ g2

16π2
1

ϵ

�
−
3Nc

4
þ 3

2Nc

�
ð72Þ

ZDR;MS
8 ¼ 0 ð73Þ

ZDR;MS
9 ¼ g2

16π2
1

ϵ

�
3Nc

4
−

3

2Nc

�
ð74Þ

5Note that Eq. (36) will also contain Oð1=ϵÞ terms which are
not polynomial in qi, m; such terms arise from the 1PR one-loop
3-pt Green’s function of O1 (Fig. 3) and from the 1PR tree-level
Green’s functions of O2;…;O13 (Fig. 4). By Eq. (35) all such
terms cancel out among themselves.
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ZDR;MS
10 ¼ g2

16π2
1

ϵ

�
3Nc

2
−

3

2Nc

�
: ð75Þ

An immediate check of our results is the extraction of the
correct anomalous dimension, ~γCM, already known in the
literature for the operator ~OCM [Eq. (37)], with a quark
mass and a coupling constant in its definition [20]. The

following relation holds between zDR;MS
1 and ~γCM:

~γCM ¼ −2ϵg2ðzDR;MS
1 þ zDR;MS

m Þ ¼ g2

16π2

�
4Nc −

8

Nc

�
;

ð76Þ
�
ZDR;MS
m ¼1þg2zDR;MS

m þOðg4Þ;zDR;MS
m ¼ 1

16π2
1

ϵ
ð−3CFÞ

�
:

ð77Þ

B. Lattice regularization-MS renormalization

The computation of the 2-pt and 3-pt bare Green’s
functions of OCM on the lattice are the most demanding
part of the present work. This is particularly true for the 3-pt
function, since it had to be calculated for arbitrary values of
the external momenta, qi, of the quarks and gluon. The
algebraic expressions involved were split into two parts:
(a) Terms that can be evaluated in the a → 0 limit: Such
terms exhibit a very complicated dependence on qi , even
for zero quark masses, involving Spence functions. These
functions constitute a part of the regularization-independent
renormalized Green’s functions. (b) All remaining terms:
These are divergent as a → 0; however, their dependence
on qi; m is necessarily polynomial. Our computations were
performed in a covariant gauge, with arbitrary value of the
gauge parameter α. Given that some of the operators which
mix withOCM contain powers of the quark masses, we have
kept these masses different from zero throughout most of
the computation; it is only in the final expressions for Zi
that we set m → 0.
For the algebraic operations involved in evaluating

Feynman diagrams, we make use of our symbolic package
in Mathematica. A brief description of the computation of a
Feynman diagram can be found, e.g., in Ref. [21]
and references therein. The algebraic expressions for
each Feynman diagram typically involve ∼105 terms at
intermediate stages. The requirements in terms of CPU
time, both for algebraic manipulation and for numerical
integration of momentum loop integrals, were rather
modest as compared to human effort: a total of ∼4 months
on a single core CPU was required.
The computation on the lattice is performed in the

twisted basis (ψ 0; ψ̄ 0), and, thus, before comparing with
the results in DR, we must rotate to the physical basis
(ψ ; ψ̄). This rotation amounts to the following transforma-
tion of the fermion field:

ψ 0 ¼ e−i
π
4
γ5ψ ; ð78Þ

ψ̄ 0 ¼ e−i
π
4
γ5 ψ̄ : ð79Þ

The rotation of the 2-pt Green’s function is, therefore,

hψOψ̄iamp ¼ e−i
π
4
γ5hψ 0Oψ̄ 0iampe

−iπ
4
γ5 ; ð80Þ

and similarly for the 3-pt Green’s function.
We will make use, once again, of Eqs. (35)–(36), with

MS being the renormalization scheme; however, the
regularization will now be the lattice. The above equations
now take the form

hψO1ψ̄iMS
amp ¼ ZL;MS

ψ

X13
i¼1

ððZL;MSÞ−1Þ1ihψOiψ̄iLamp ð81Þ

and

hψO1ψ̄AνiMS
amp ¼ ZL;MS

ψ ðZL;MS
A Þ1=2

×
X13
i¼1

ððZL;MSÞ−1Þ1ihψOiψ̄AνiLamp: ð82Þ

The left-hand sides of the above equations are known
from the calculations in DR (see Sec. III A). The bare lattice
Green’s functions in these equations contain terms which
diverge in the limit a → 0; these divergent terms have a
form similar to Eqs. (38) and (39), with two differences:

(i) 1
ϵ → − logða2Þ

(ii) There are additional Oð 1a2Þ, Oð1aÞ contributions:

inhψO1ψ̄iLamp∶ ρ8ðrdγ5q3þ rsq2γ5Þ
þρ9iðrdmdþ rsmsÞγ5þρ10 ·1

ð83Þ

in hψO1ψ̄AνiLamp;1PI∶ R5gðrd − rsÞγ5γν: ð84Þ

These contributions lead to mixing with the lower-
dimension operators O11, O12, and O13 defined in
Eqs. (29)–(31).
The renormalization functions ZL;MS

ψ (ZL;MS
A ) for the

quark (gluon) field, as well as ZL;MS
g , ZL;MS

m , were only
partially available in the literature; we computed them for a
general covariant gauge, using the Symanzik improved
gauge action for different sets of values for the Symanzik
coefficients. These results are presented in Appendix B,
in the RI0 renormalization scheme along with conversion
factors to the MS scheme.
Renormalizability of the theory implies that the differ-

ence between the one-loop renormalized and bare Green’s
functions must only consist of expressions which are
polynomial in qi; m; in this way, the right-hand sides of
Eqs. (81)–(82) can be rendered equal to the corresponding
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left-hand sides, by an appropriate definition of the (qi- and

m-independent) renormalization functions ZL;MS
i . These

differences can be written as follows:

hψO1ψ̄iMS
amp − hψO1ψ̄iLamp ¼ g2ðzL;MS

ψ − zL;MS
1 ÞhψO1ψ̄itree

−
X13
i¼2

ZL;MS
i hψOiψ̄itree ð85Þ

and

hψO1ψ̄AνiMS
amp − hψO1ψ̄AνiLamp

¼ g2
�
zL;MS
ψ þ 1

2
zL;MS
A þ zL;MS

g − zL;MS
1

�
hψO1ψ̄Aνitree

−
X13
i¼2

ZL;MS
i hψOiψ̄Aνitree: ð86Þ

Indeed, we have checked explicitly the polynomial char-
acter of Eqs. (85)–(86). This check is quite nontrivial,
especially for Eq. (86), since both the bare and renormal-
ized Green’s functions, taken individually, exhibit a very
complex dependence on the momenta qi . The left-hand
sides of Eqs. (85)–(86) have the same tensorial form as
Eqs. (38)–(39), respectively, but with the additional con-
tributions of Eqs. (83)–(84).
Each tensorial structure (multiplying ρ1 − ρ10; R1 − R5)

will provide an equation; the set of these equations (a total
of 15) can be solved for the 13 mixing coefficients Zi.
Two of the equations serve as consistency checks and the
remaining 13 lead to awell determined system.Upon solving
all equations we obtain for the Iwasaki gluon action (see
Appendix A for other gluon actions we have considered),

ZL;MS
1 ¼ 1þ g2

16π2

�
Nc

�
−7.9438þ 1

2
log ða2μ̄2Þ

�

þ 1

Nc

�
4.4851 −

5

2
log ða2μ̄2Þ

��
ð87Þ

ZL;MS
2 ¼ g2CF

16π2
½4.5370þ 6 log ða2μ̄2Þ� ð88Þ

ZL;MS
3 ¼ 0 ð89Þ

ZL;MS
4 ¼ 0 ð90Þ

ZL;MS
5 ¼ g2

16π2

�
Nc

�
4.2758 −

3

2
log ða2μ̄2Þ

�

þ 1

Nc

�
−3.7777þ 3 log ða2μ̄2Þ

��
ð91Þ

ZL;MS
6 ¼ 0 ð92Þ

ZL;MS
7 ¼ −

ZL;MS
5

2
ð93Þ

ZL;MS
8 ¼ g2CF

16π2
ð−3.7760Þ ð94Þ

ZL;MS
9 ¼ ZL;MS

5

2
ð95Þ

ZL;MS
10 ¼ g2CF

16π2
½3.7777 − 3 log ða2μ̄2Þ� ð96Þ

ZL;MS
11 ¼ 1

a
g2CF

16π2
ð−3.2020Þ ð97Þ

ZL;MS
12 ¼ −ZL;MS

11 ð98Þ

ZL;MS
13 ¼ 1

a2
g2CF

16π2
ð36.0613Þ: ð99Þ

In these equations, μ̄ is the MS renormalization scale

which appears in hψO1ψ̄iMS
amp and hψO1ψ̄AνiMS

amp by virtue

of g ¼ μ−ϵðZDR;MS
g Þ−1gDR0 , μ̄ ¼ μð4π=eγEÞ1=2.

The above results for ZL;MS
1 − ZL;MS

13 are independent of
the choices rs ¼ �1, rd ¼ �1. There is also a small
systematic error originating from the numerical estimation
of lattice integrals; however, it is much smaller than the
displayed accuracy of the results. It is important to
emphasize that the coefficients Z11 − Z13, which control
the mixing with lower-dimension operators, may receive
also nonperturbative contributions proportional to
½ð1=aÞ expð−1=ð2β0g20ÞÞ�k ∼ Λk (with k ¼ 1; 2 for Z11;12

and Z13, respectively) [22]. For this reason, a proper
subtraction of the mixing with operators O11 −O13 must
be implemented in a nonperturbative way [12,13,18].
If one wants to renormalize in an (appropriately defined)

RI0 scheme, the calculation in DR is not necessary: it
suffices to compute the bare Green’s functions on the
lattice. In this case the left-hand sides of Eqs. (35)–(36), for
particular values of the external momenta, are dictated by
the RI0 renormalization conditions.
The conversion factor between the RI0 and the MS

scheme will actually be a (13 × 13) matrix in this case:

CRI0;MS
ij . Since this matrix is regularization independent, one

may compute it through

OMS
R ≡CRI0;MSORI0

R ; CRI0;MS ¼ðZDR;MSÞ−1ZDR;RI0 : ð100Þ

Thus, in RI0, the mixing coefficients read (in matrix
notation)

ZL;RI0 ¼ ZL;MSCRI0;MS: ð101Þ
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IV. NONPERTURBATIVE DETERMINATION
OF THE POWER-DIVERGENT

MIXING COEFFICIENTS

In this section we present the nonperturbative determi-
nation of the coefficients Z13 and Z12 describing the power-
divergent mixings of the chromomagnetic operator with
the scalar and pseudoscalar densities, respectively. We use
lattice QCD simulations with the gauge configurations
produced by ETMC with four flavors of dynamical quarks
(Nf ¼ 2þ 1þ 1), which include in the sea, besides two
light mass degenerate quarks, also the strange and charm
quarks with masses close to their physical values [14–16].
Due to the equations of motion some of the operators

O1 −O13 do not appear in the calculation of on-shell
matrix elements. The remaining ones, namely O1, O2, O3,
O4, O12, and O13, are present and it is, therefore, crucial
to have a reliable estimate of the corresponding mixing
coefficients. For operators of the same dimensionality as
the chromomagnetic one, i.e., O1 −O4, our perturbative
one-loop results [see, e.g., Eqs. (87)–(90)] are expected to
provide a satisfactory estimate. However, as already dis-
cussed in Sec. I, for the mixing coefficients of the operators
with lower dimensionality O12 and O13, which are power-
divergent, perturbation theory is expected to provide only a
ballpark estimate [8].
In order to achieve a nonperturbative estimate of the

mixing coefficients of the operators O12 and O13 we
impose the following renormalization conditions [11]

lim
ms;md→0

hπjOR
1 jKi¼ 1

Z1

lim
ms;md→0

hπjO1−
c13
a2

O13jKi¼ 0;

ð102Þ

h0jOR
1 jKims;md

¼ 1

Z1

h0jO1−
c13
a2

O13−
c12
a
O12jKims;md

¼0;

ð103Þ

where the pion and kaon states are taken to be at rest.6 Note
that in this section the operators Oi are the bare (local)
lattice versions of the operators introduced in Sec. II [see
Eqs. (19)–(31)]. In Eqs. (102)–(103) we have factorized out
explicitly the power divergence of the mixings with the
operators O12;13 and we have introduced the renormaliza-
tion scale independent [23] mixing coefficients c12;13,

which can be written as appropriate combinations of
operator renormalization factors (see Eq. (108) below).
The renormalization conditions (102) and (103) are valid
up to cutoff effects, which are Oða2Þ for Eq. (102) and
OðaÞ for Eq. (103).
The first condition (102) requires that the renormalized

chromomagnetic operatorOR
1 has vanishing on-shell matrix

elements in the SU(3) chiral limit. This is also consistent
with ChPT, which for the matrix element of OR

1 ≡ 16π2Qþ
g

predicts at LO [see Eqs. (4)–(5)]

hπjðpπÞjOR
1 jKjðpKÞi ¼

11

2
Cj M2

K

ms þmd
ðpπ · pKÞBCMO;

ð104Þ
where C� ¼ 1, C0 ¼ −1=

ffiffiffi
2

p
and BCMO is a SU(3) ChPT

low-energy constant.
The second condition (103) imposes that in the con-

tinuum limit the parity violating matrix element h0jOR
1 jKi

is identically vanishing.
As usual, in the lattice version of the chromomagnetic

operator (19) the gluon tensor Gμν is replaced by its clover
discretization Pμν, namely, [24]

O1 ¼ g0ψ̄ sσμνPμνψd; ð105Þ
where

PμνðxÞ≡ 1

4a2
X4
j¼1

1

2ig0
½PjðxÞ − P†

jðxÞ�; ð106Þ

and the sum is over the four plaquettes PjðxÞ in the μ-ν
plane stemming from x and taken in the counterclock-
wise sense.
Our lattice setup is the same as the one adopted in

Ref. [25] for the determination of the up, down, strange and
charm quark masses. The fermions were simulated using
the Wilson twisted mass action [9,26] which, at maximal
twist, allows for automatic OðaÞ improvement [10,19]. In
order to avoid the unphysical flavor mixing in the strange
and charm valence sectors we adopted the nonunitary set up
described in Ref. [19], in which the valence quarks are
regularized as OS fermions [27]. For the gauge links we
simulated the Iwasaki action [28], because it proved to
facilitate simulations with light quark masses allowing us
to bring the simulated pion mass down to approximately
210 MeV [14–16].
The details of the ETMC gauge ensembles are collected

in Table III, where the number of the gauge configurations
analized (Ncfg) corresponds to a separation of 20 trajecto-
ries. At each lattice spacing, different values of the light sea
quark mass were considered. The up and down quark
masses were always taken to be degenerate and equal in the
sea and valence sectors (mu ¼ md ¼ ml). The masses of
both the strange and the charm sea quarks were fixed, at
each β, to values close to the physical ones [14]. We
simulated quark masses for the light sector in the range

6Such a choice is motivated by the fact that, as already
observed, the matrix elements of the operator O4 ¼ □ðψ̄ sψdÞ
are proportional to the squared four-momentum transfer between
the external hadronic states. This implies that for external π- and
K-mesons at rest (or, more precisely, in the case of mesons with
equal spatial momentum) the operator O4 has vanishing matrix
elements in the SU(3) chiral limit and, therefore, it does not affect
the determination of the mixing coefficient c13 from Eq. (102).
The same happens for the contributions of the operators O2 and
O3, since they are directly proportional to the quark masses.
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3mphys
l ≲ml ≲ 12mphys

l , while we used three values of the
valence strange quark mass in the range 0.7mphys

s ≲ms ≲
1.2mphys

s in order to interpolate to the physical strange
quark mass [25]. The simulated pion masses cover the
range ≃210 ÷ 450 MeV.
Quark propagators with different valence masses are

obtained using the multiple mass solver method [29,30],
which allows us to invert the Dirac operator for several
quark masses at a relatively low computational cost. The
statistical accuracy of the meson correlators is significantly
improved by using the “one-end” stochastic method [31],
which includes spatial stochastic sources at a single time
slice chosen randomly. Statistical errors are evaluated using
the jackknife procedure.
In our lattice setup both the scalar and the pseudoscalar

nonsinglet densities renormalize multiplicatively and,
choosing in particular rs ¼ rd ¼ r (see below), we have

OR
13 ¼ ZPO13 ¼ ZPψ̄ sψd;

OR
12 ¼

ZS

ZP
O12 ¼

ZS

ZP
irðμs þ μdÞψ̄ sγ5ψd; ð107Þ

where μ ¼ ZP ·m is the (twisted) bare quark mass, while
ZP and ZS are the renormalization factors of the (pseudo)
scalar densities computed using the RI0-MOM scheme in
Ref. [25]. Therefore, the mixing coefficients c12 and c13
introduced in Eqs. (102)–(103) are related to the operator
renormalization factors via

c13
a2

≡ Z13ZP;
c12
a

≡ Z12

ZS

ZP
: ð108Þ

In order to extract the coefficient c13 from the condition
(102) we have computed for each gauge ensemble the
3-pt meson correlators defined as

Cj
3ðt; t0Þ ¼

1

L6

X
~x;~y;~z

h0jPπ
5ðyÞOjðxÞPK†

5 ðzÞj0iδt;ðtx−tzÞδt0;ðty−tzÞ;

ð109Þ

where j ¼ 1 or j ¼ 13, Pπ
5ðxÞ ¼ iψ̄dðxÞγ5ψuðxÞ, and

PK
5 ðxÞ ¼ iψ̄ sðxÞγ5ψuðxÞ. Our choice ru ¼ −rd ¼ −rs

guarantees that the two valence quarks in the pion and
kaon mesons have always opposite values of the Wilson
parameter. In this way the pion and kaon states in the matrix
elements of the renormalized chromomagnetic operator
hπjOR

1 jKi have good scaling and chiral properties.
At large euclidean time the correlation function is

dominated by the contribution of the lightest states and
one gets

Cj
3ðt;t0Þt≫a;ðt0− tÞ≫a

											! Zπ

2Mπ

Z�
K

2MK
hπjOjjKie−Mπ te−MKðt0−tÞ

ð110Þ

with ZπðKÞ ¼ h0jPπðKÞ
5 ð0ÞjπðKÞi.

From the large time behavior of the 3-pt correlators
corresponding to the chromomagnetic and scalar density
insertions one can construct the following ratio,

C1
3ðt; t0Þ

C13
3 ðt; t0Þt ≫ a; ðt0 − tÞ ≫ a

												! hπjO1jKi
hπjO13jKi

≡ R13ðms;ml;mlÞ;

ð111Þ

where the first two quark masses are those involved in the
transition and the third one is the spectator valence quark
mass, which is taken to be equal to the light sea quark mass.
According to Eq. (102), the ratio R13ðms;ml;mlÞ provides
in the SU(3) chiral limit an estimate of the mixing
coefficient c13 at each value of the lattice spacing, namely,

c13 ¼ lim
ms;ml→0

a2R13ðms;ml;mlÞ: ð112Þ

Note that the dimensionless quantity a2R13ðms;ml;mlÞ
is extracted directly from the ratio (111) computed in
lattice units.

TABLE III. Details of the gauge ensembles and values of the simulated sea and valence quark bare masses used in this work (after
Ref. [25]).

Ensemble β V=a4 aμsea ¼ aμl aμσ aμδ Ncfg aμs

A30.32 1.90 323 × 64 0.0030 0.15 0.19 150 0.0145, 0.0185, 0.0225
A40.32 0.0040 100
A50.32 0.0050 150
A60.24 1.90 243 × 48 0.0060 0.15 0.19 150
A80.24 0.0080 150
A100.24 0.0100 150
B25.32 1.95 323 × 64 0.0025 0.135 0.170 150 0.0141, 0.0180, 0.0219
B35.32 0.0035 150
B55.32 0.0055 150
B75.32 0.0075 80
B85.24 1.95 243 × 48 0.0085 0.135 0.170 150
D15.48 2.10 483 × 96 0.0015 0.12 0.1385 60 0.0118, 0.0151, 0.0184
D20.48 0.0020 100
D30.48 0.0030 100
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In order to perform the chiral limit, we start by
computing the ratio C1

3ðt; t0 ¼ T=2Þ=C13
3 ðt; t0 ¼ T=2Þ in

the degenerate case ms ¼ ml for all the gauge ensembles
of Table III,7 which will be referred to as the π → π
channel. In this channel the mixing with the operator O4 is
absent and the mixing with the operator O12 is linear in the
light quark mass, while the mixings with the operators O2

and O3 are quadratic in the quark mass.
The results obtained for the ensembles corresponding

to the lightest pion mass at each of the three lattice spacings
are presented in Fig. 5. It can be seen that the ratio
C1
3ðt; T=2Þ=C13

3 ðt; T=2Þ exhibits nice plateaux. In what
follows we consider two different choices for the time

intervals adopted to extract the values of a2R13ðml; ml;mlÞ
from the ratio C1

3ðt; T=2Þ=C13
3 ðt; T=2Þ. The first choice,

which will be referred to as the short plateaux (SP),
corresponds to the time intervals ½tmin; T=2 − tmin�, where
tmin is the time distance at which the pion ground state starts
to dominate the corresponding 2-pt correlator according to
the analysis carried out in Ref. [25] (see the horizontal solid
lines in Fig. 5). For the second choice, whichwill be referred
to as the long plateaux (LP), the time intervals are extended
from 6a to T=2 − 6a, as shown in Fig. 5 by the horizontal
dashed lines.
The results obtained for a2R13ðml; ml;mlÞ, adopting the

LP choice for the plateaux, are collected in Fig. 6 and show
a linear dependence on the light quark mass, as expected
at leading order in the quark mass expansion. Therefore,
we fit the data at each lattice spacing using a linear ansatz
of the form a2R13ðml; ml;mlÞ ¼ c13 þ A · aμl, where
the parameters c13 and A are determined by minimizing
the χ2 variable. Similar results (with larger statistical errors)

FIG. 5 (color online). The ratio of 3-pt correlators C1
3ðt; t0Þ=C13

3 ðt; t0Þ in lattice units for the gauge ensembles A40.24 (a), B25.32 (b),
and D15.48 (c) versus the insertion time t for a fixed time separation t0 ¼ T=2 between the source and the sink. The horizontal solid
(dashed) lines correspond to the central values and the errors obtained adopting the SP (LP) choice of the plateaux (see text).

7Precisely, we replace in Eqs. (105)–(112) the strange quark
s by a light quark d0 with mass md0 ¼ ml and rd0 ¼ rd. In this
way we guarantee the absence of disconnected contributions
and keep the discretization effects in the squared pion mass of
order Oða2mlÞ.
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hold as well for the values of a2R13ðml; ml;mlÞ obtained
adopting the SP choice for the plateaux.
As a check of the uncertainty related to the chiral

extrapolation, we have also computed the ratio
a2R13ðms;ms;mlÞ using for ms the values corresponding
to the valence strange (bare) quark mass reported in
Table III. With respect to Eqs. (111)–(112) we replace
the d quark in the transition by a strangelike quark s0 with
mass ms0 ¼ ms and rs0 ¼ rs. We refer to this channel as the
K → K one. The results for the ratio a2R13ðms;ms;mlÞ
obtained for the ensembles at β ¼ 2.10 are reported in
Fig. 7(a), where it can be seen that the data at fixed value
of the light quark mass can be fitted adopting a quadratic
ansatz in the strange quark mass. In Fig. 7(b) the SU(3)
chiral point is finally reached by performing a linear fit
in the light quark mass and the result is compared with the

one corresponding to the π → π channel [see Fig. 6 at
β ¼ 2.10]. A good agreement between the two channels is
obtained within one standard deviation. Similar results are
obtained at β ¼ 1.90 and 1.95.
Our determinations of the mixing coefficient c13

obtained from the π → π and K → K matrix elements,
adopting the two choices SP and LP for the plateaux, are
presented in Table IV. A very good agreement is found
between the results obtained in the two channels, while
small differences (within at most ≈1.5 standard deviations)
are visible between the values corresponding to the SP
and LP choices for the plateaux. This comparison will be
useful to quantify the uncertainties due to the subtraction
of the mixing with the scalar density in the study of the
(renormalized) chromomagnetic operator matrix elements
[17,18]. Note that the uncertainties on c13 are of the order of

FIG. 6 (color online). The ratio a2R13ðml; ml;mlÞ, extracted using the LP choice for the plateaux, versus the (twisted) quark bare
mass aμl ¼ ZPaml for each value of the lattice spacing. The solid lines are the results of linear fits in aμl applied to all data. The values
of the χ2 variable (divided by the number of degrees of freedom) are reported in each inset. The diamonds represent the values of the
mixing coefficient c13 obtained in the chiral limit [see Eq. (112)].
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0.01% in the case of the LP choice, while they do not
exceed the level of 0.1% in the case of the SP choice.
We now want to compare our nonperturbative results

of Table IV with the predictions of perturbation theory
at one loop obtained in the previous section. Since the
mixing coefficient Z13 starts already at order Oðg2Þ, while
both Z1 and ZP start at order Oð1Þ, the one-loop perturba-
tive term for c13, defined in Eq. (108), is the same as the
one of a2Z13, namely in the case of the ETMC action
[see Eq. (99)]

c1-loop PT13 ¼ g2CF

16π2
36.0613: ð113Þ

In Fig. 8, using g2 ¼ g20 ¼ 6=β, the nonperturbative
results for c13ð16π2Þ=ðg2CFÞ, obtained at three values of
the lattice spacing using the LP choice for the plateaux,
are compared with the corresponding perturbative result
from Eq. (113). It can be seen that the nonperturbative
determinations of c13 differ less than ≃10% from the

perturbative predictions at one loop at all values of the
lattice spacing. We expect, however, that in order to get a
reliable determination of the renormalized CMO matrix
elements a high-precision determination of c13, at the level
of 0.1% or better, will be required [12,13].

FIG. 7 (color online). (a) The ratio a2R13ðms;ms;mlÞ in case of the K → K channel, adopting the LP choice for the plateaux, versus
the strange quark bare mass aμs ¼ ZPams for fixed values of the light quark mass aμl ¼ ZPaml corresponding to the three ensembles
B15.48, B20.48 and B30.48 at β ¼ 2.10. The dashed lines are quadratic fits in aμs applied to the data. (b) The ratio a2R13ð0; 0;mlÞ for
the K → K channel versus the light-quark bare mass aμl. The solid line is a linear fit in aμl and the empty square is the corresponding
value of c13. The empty circle is the result for c13 obtained from the π → π channel [see Fig. 6 at β ¼ 2.10].

TABLE IV. Values of the mixing coefficient c13 obtained as the
chiral limit of the data on the ratios a2R13ðml; ml;mlÞ for the
π → π channel and a2R13ðms;ms;mlÞ for the K → K channel,
extracted at three values of the lattice spacing using the SP and LP
choices for the plateaux.

β

π → π channel K → K channel

SP LP SP LP

1.90 0.89769 (17) 0.89710 (11) 0.89752 (24) 0.89716 (10)
1.95 0.87687 (36) 0.87627 (12) 0.87687 (38) 0.87632 (13)
2.10 0.81646 (78) 0.81675 (08) 0.81635 (61) 0.81677 (08)

FIG. 8 (color online). The quantity c13ð16π2Þ=ðg2CFÞ versus
the coupling g2=ð4πÞ ¼ g20=ð4πÞ ¼ 3=ð2πβÞ calculated nonper-
turbatively at three values of the lattice spacings using the LP
choice for the plateaux in the π → π channel (see Table IV). The
horizontal dotted line is the prediction of lattice perturbation
theory at one loop corresponding to Eq. (113). The solid line
corresponds to a linear fit in g2=ð4πÞ and the full circle is the
corresponding extrapolated value at g2 ¼ 0.
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Let us now discuss the nonperturbative determination of
the mixing coefficient c12 of the chromomagnetic operator
with the pseudoscalar density. To this end we make use of
Eq. (103) and of our accurate nonperturbative results for the
mixing coefficient c13. We anticipate that the OðaÞ terms
affecting the rhs of Eq. (103), which are unavoidably
relevant in the parity violating matrix elements h0jO1jKi
and h0jO13jKi, turn out to be numerically competitive for
our values of the lattice spacing with the contribution of the
power-divergent mixing with the pseudoscalar densityO12.
This finding can be expected also from the smallness of the
one-loop perturbative estimate of c12 [see Eq. (98)] with
respect to the corresponding result (99) for the mixing
coefficient c13.
We start by computing for each gauge ensemble the

2-pt meson correlators defined as

CK
2 ðtÞ ¼

1

L3

X
~x;~z

h0jPK
5 ðxÞPK†

5 ðzÞj0iδt;ðtx−tzÞ; ð114Þ

Cj
2ðtÞ ¼

1

L3

X
~x;~z

h0jOjðxÞPK†
5 ðzÞj0iδt;ðtx−tzÞ; ð115Þ

where j ¼ 1 or j ¼ 13 and PK
5 ðxÞ ¼ iψ̄ sðxÞγ5ψdðxÞ with

rs ¼ rd [see Eq. (107)]. At large time distances one has

CK
2 ðtÞ→t≫a

jZKj2
2MK

e−MKt; Cj
2ðtÞ→t≫a

ZKh0jOjjKi
2MK

e−MKt ð116Þ

with ZK ¼ h0jPK
5 jKi. We stress that, since rs ¼ rd, the two

valence quarks in the kaon have the same value of the
Wilson parameter and, therefore, the squared meson mass
M2

K differs from its continuum counterpart by terms of
order Oða2Þ, which do not vanish in the chiral limit.
Then, using our nonperturbative results for c13, the

one-loop perturbative estimates for Z1 [see Eq. (87)] and
the nonperturbative renormalization factors ZS from
Ref. [25], we have computed the following ratio

R12ðml; ms;aÞ

≡ 1

Z1ZSh0jPK
5 jKi

h
h0jO1jKi − c13

a2
h0jO13jKi

i
ð117Þ

both in the degenerate case ms ¼ ml and for the three
simulated values of ms reported in Table III. For the
dimensionless quantity ar0R12ðms;ml; aÞ, where r0 is
the Sommer parameter, the continuum limit expectation
is a simple linear dependence on the sum of the light and
strange (renormalized) quark masses, viz.

ar0R12ðml; ms; aÞ
¼ c12

ZP

ZSZ1

r0ðml þmsÞ þOða2Þ; ð118Þ

where the factor ZP=ðZSZ1Þ is almost constant for our three
β values, namely, ZP=ðZSZ1Þ ¼ f1.285; 1.275; 1.260g for
β ¼ f1.90; 1.95; 2.10g. Note that the ratio ZP=ZS is both

scheme and renormalization scale independent, while
the renormalization factors Z1 carries the scheme and
renormalization scale dependence of the lhs of
Eq. (118). Thus, the coefficient c12 is both scheme and
renormalization-scale independent (see Ref. [23]).
However, as anticipated, the contribution of the lattice

artefacts in Eq. (118) is not negligible. Beyond trivial
terms proportional to a2 and a2ðml þmsÞ, coming from
the mixing of O1 with dimension-six parity-odd operators,
one should also consider that in the twisted-mass approach
the Symanzik expansion of correlators like Cj

2ðtÞ [see
Eq. (115)] may contain chirally enhanced cutoff effects
that are described by the (space-time integrated) insertion
of the parity-odd local operator Lodd ¼ L5 þOða3Þ, con-
necting the vacuum with the one-pion state [32,33]. In
particular the matrix element of the chromomagnetic
operator h0jOR

1 jKi may receive a cutoff effect proportional
to h0jL5jπihπjOR

1 jKi=M2
π . Therefore, taking into account

that at maximal twist we have h0jL5jπi ∝ aml [32], the
following fit has been performed:

ar0R12ðms;ml; aÞ ¼
�
c12

ZP

ZSZ1

þ d12a2
�
r0ðml þmsÞ

þ h0a2 þ h00a
4 þ hCa2r0ml

MK

Mπ

þ hSa2r0ml
ðMK −MπÞ2

M2
π

; ð119Þ

where c12, d12, h0, h00, hC, and hS are fitting parameters
and the last two terms come from the expected mass
dependence of the matrix elements of the chromo-
magnetic operator, hπjOR

1 jKi ∝ MπMK , and of the operator
O4 ¼ □ðψ̄ sψdÞ, hπj□ðψ̄ sψdÞjKi ∝ ðMK −MπÞ2.
The kaon mass MK appearing in Eq. (119) is directly

extracted from the lattice correlator CK
2 ðtÞ [see Eq. (114)]

and contains Oða2Þ terms, which make it heavier than its
continuum counterpart. Instead the pion mass Mπ appear-
ing in Eq. (119) may receive a tower of cutoff effects by
multiple insertions of the parity-odd local operator Lodd, so
that it is not known a priori whether it may be lighter or
heavier than its continuum counterpart. Therefore, we have
adopted for the pion mass two choices differing by Oða2Þ
terms, namely the OS pionMOS

π [27], which coincides with
MK in the mass-degenerate case ms ¼ ml, and the twisted-
mass neutral pionMTM

π0
, which for our lattice setup turns out

be lighter than the charged one. For the values of MTM
π0

we
have used the lattice results reported in Ref. [34].
We have applied the fitting function (119) to the lattice

data for ar0R12ðms;ml; aÞ and found that the use of MTM
π0

produces smaller values of χ2 with respect to the OS choice
MOS

π . Moreover we have tried also to insert an extra cutoff
effect in the pion mass of the form M2

π ¼ ½MTM
π �2 þ ca2.

However, the resulting value of the fitting parameter c
turned out to be largely compatible with c ¼ 0 and no
improvement in the χ2 value was found.
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The good quality of our best fit (corresponding to
χ2=d:o:f:≃ 0.6) is shown in Fig. 9. In particular it can
be seen that Eq. (119) is able to take properly into account
the dependence on both the lattice spacing [see panel (a)]
and the light-quark mass [see panel (b)].
The final nonperturbative result for the mixing coeffi-

cient c12 is

c12 ¼ 0.035ð20Þ; ð120Þ
which is approximately 40% of the value expected from
one-loop perturbation theory for the ETMC action, namely,
[see Eq. (98)]

c1-loop PT12 ¼ g2CF

16π2
3.2020 ¼ f0.0854; 0.0832; 0.0772g

for β ¼ f1.90; 1.95; 2.10g: ð121Þ
The uncertainty in the nonperturbative determination

(120) of c12 is ≈60%, and this justifies a posteriori that the
g2 dependence of the mixing coefficient c12 has been
neglected in the present analysis.
We note, in conclusion, that the smallness of both the

perturbative (121) and nonperturbative (120) determina-
tions for c12 implies that in our lattice formulation the
subtraction of the power-divergent mixing with the pseu-
doscalar density is not going to play a crucial role for the
numerical determination of the CMO matrix elements.

V. SUMMARY

The study of the chromomagnetic operator on the lattice
has been hampered up to now by the complicated pattern of

operator mixing. We identified these operators based on the
symmetries of the regularized theory, which has been
conveniently chosen to be twisted-mass LQCD (at maximal
twist) with the Iwasaki gluon action.
There are mixings with lower-dimensional operators

(which are power divergent), as well as with gauge non-
invariant operators. We have computed all relevant mixing
coefficients to one loop in lattice perturbation theory; this
has required the calculation of both 2-pt (quark-quark) and
3-pt (quark-quark-gluon) Green’s functions at nonzero
quark masses. We have calculated all the elements of the
mixing matrix that is relevant for the renormalization of the
chromomagnetic operator at one loop in lattice perturbation
theory.
For the first time the 1=a2-divergent mixing of the

chromomagnetic operator with the scalar density has been
determined nonperturbatively with high precision (see
Table IV). The 1=a-divergent mixing with the pseudoscalar
density, which is peculiar of the twisted-mass formulation,
has been also calculated nonperturbatively [see Eq. (120)]
and found to be smaller than its one-loop perturbative
estimate (121). We have carried out the QCD simulations
on the lattice using the gauge configurations produced
by ETMC with Nf ¼ 2þ 1þ 1 dynamical quarks, which
include in the sea, besides two light mass degenerate
quarks, also the strange and charm quarks with masses
close to their physical values. Three values of the lattice
spacing between≃0.6 and≃0.9 fm and pion masses in the
range 210 ÷ 450 MeV have been considered.
The results presented in this paper, which determine the

mixing pattern of the chromomagnetic operator, are an

FIG. 9 (color online). The dimensionless quantity ar0R12ðml; ms; aÞ versus the (renormalized) quark mass (ml þms), calculated
using the values of r0=a from Ref. [25] and the nonperturbative result for c13 corresponding to the π → π channel and to the LP choice
for the plateaux (see Table IV). In (a) the dots, squares and diamonds correspond to the results obtained for the gauge ensembles A30.32,
B25.32, and D20.48, respectively, which share a (renormalized) light-quark mass ml ≈ 12 MeV. In (b) the results corresponding to the
ETMC ensembles with β ¼ 1.95 (fixed value of the lattice spacing) and various values of the light-quark mass ml (see the inset) are
presented. The dashed lines represent the best fit curves according to Eq. (119).
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essential ingredient for the determination of the (renormal-
ized) CMO matrix element between pion and kaon states,
whose calculation is in progress. Preliminary results have
been presented in Ref. [17] and the final ones will be the
subject of a forthcoming publication [18].
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APPENDIX A: MIXING COEFFICIENTS Zi

In this Appendix we present our results for the mixing
coefficients, Zi (i ¼ 1;…; 13) in the MS scheme, for the
following gluon actions: Wilson, tree-level Symanzik,
Tadpole Improved Lüscher-Weisz (TILW, at βc0 ¼ 8.30;
β ¼ 2Nc=g2), Iwasaki and Doubly Blocked Wilson
(DBW2). The values of the Symanzik coefficients corre-
sponding to these actions are collected in Table V.
Our calculation has been performed in an arbitrary

covariant gauge. All the mixing coefficients Zi
(i ¼ 1;…; 13) in the MS scheme are gauge independent.
The generic forms of the mixing coefficients are

ZL;MS
1 ¼ 1þ g2

16π2

�
Nc

�
e1;1 þ

1

2
logða2μ̄2Þ

�

þ 1

Nc

�
e1;2 −

5

2
logða2μ̄2Þ

��
; ðA1Þ

ZL;MS
2 ¼ g2CF

16π2
½e2 þ 6 log ða2μ̄2Þ�; ðA2Þ

ZL;MS
3 ¼ 0; ðA3Þ

ZL;MS
4 ¼ 0; ðA4Þ

ZL;MS
5 ¼ g2

16π2

�
Nc

�
e5;1 −

3

2
logða2μ̄2Þ

�

þ 1

Nc
ðe5;2 þ 3 logða2μ̄2ÞÞ

�
; ðA5Þ

ZL;MS
6 ¼ 0; ðA6Þ

ZL;MS
7 ¼ −

ZL;MS
5

2
; ðA7Þ

ZL;MS
8 ¼ g2CF

16π2
ðe8Þ; ðA8Þ

ZL;MS
9 ¼ ZL;MS

5

2
; ðA9Þ

ZL;MS
10 ¼ g2CF

16π2
½−e5;2 − 3 log ða2μ̄2Þ�; ðA10Þ

ZL;MS
11 ¼ 1

a
g2CF

16π2
ðe11Þ; ðA11Þ

ZL;MS
12 ¼ −ZL;MS

11 ; ðA12Þ

ZL;MS
13 ¼ 1

a2
g2CF

16π2
ðe13Þ; ðA13Þ

where the values of ei, ei;j are shown explicitly in Table VI.

APPENDIX B: PERTURBATIVE ONE-LOOP
RENORMALIZATION OF Zc, Zψ , Zm, ZA, Zg

ON THE LATTICE

In this Appendix we provide the results of our one-loop
calculation for the renormalization functions of the ghost
field (Zc), quark field (Zψ ), gluon field (ZA), coupling
constant (Zg), quark mass (Zm). These functions enter the
renormalization of the chromomagnetic operator through
Eqs. (B16), (35), (36), (86), and (37). The computation was
performed using twisted mass fermions, Symanzik
improved gluon action and a general covariant gauge.
Here we present the results for Wilson, tree-level
Symanzik, TILW (βc0 ¼ 8.30), Iwasaki and DBW2
actions. For the extraction of the renormalization functions,
we applied the RI0 scheme at a scale μ̄. Once we have
computed the renormalization functions in the RI0 scheme
we can construct their MS counterparts using conversion

TABLE V. Symanzik coefficients for various choices of gluon
actions.

Coefficient Wilson
Tree-level
Symanzik

TILW
(βc0 ¼ 8.30) Iwasaki DBW2

c0 1 5=3 2.386978 3.648 12.2688
c1 0 −1=12 −0.159128 −0.331 −1.4086
c2 0 0 0 0 0
c3 0 0 −0.014244 0 0
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factors which are known (see, e.g., [35]), up to the required
perturbative order.
The aforementioned renormalization functions are

defined as follows:

g0 ¼ Zgg; ðB1Þ
c ¼

ffiffiffiffiffi
Zc

p
cR; ðB2Þ

ψ ¼ ffiffiffiffiffiffi
Zψ

p
ψR; ðB3Þ

Aμ ¼
ffiffiffiffiffiffi
ZA

p
AR
μ ; ðB4Þ

α ¼ Z−1
α ZAα

R; ðB5Þ

m ¼ ZmmR: ðB6Þ

In the above, Zg actually stands for Z
L;RI0
g , and similarly for

all other Z’s. The renormalization function Zα for the gauge
parameter receives no one-loop contribution.

1. Ghost-field renormalization Zc

The ghost field renormalization enters the evaluation of
Zg (see Appendix B 4) and it can be extracted from the RI0
condition

lim
a→0

�
ZL;RI0
c ðaμ̄ÞΣ

L
c ðq; aÞ
q2

�
q2¼μ̄2

¼ 1; ðB7Þ

where ΣL
c ðq; aÞ is the ghost self energy up to one loop

computed from the diagrams in Fig. 10, namely,

ΣL
c ðq; aÞ ¼ q2 þOðg2Þ: ðB8Þ

The generic form of ZL;RI0
c is

ZL;RI0
c ¼ 1þ g2Nc

16π2

�
ec − 1.2029α −

1

4
ð3 − αÞ log ða2μ̄2Þ

�
:

ðB9Þ
The numerical values of the coefficient ec are listed in
Table VII for all gluon actions we have considered.

2. Renormalization of fermion field (Zψ)
and mass (Zm)

In order to obtain the renormalization functions of
fermionic operators we also compute the quark field
renormalization, Zψ , as a prerequisite.
Zψ is extracted from the RI0 renormalization condition

on the fermion self energy ΣL
ψðq; aÞ ¼ iqþmþOðg2Þ,

namely

lim
a→0

½ZL;RI0
ψ ðaμ̄ÞtrðΣL

ψðq; aÞqÞ=ð4iq2Þ�q2¼μ̄2 ¼ 1: ðB10Þ

The trace here is over Dirac indices; a Kronecker delta in
color and in flavor indices has been factored out of the
definition of ΣL

ψ . The Feynman diagrams contributing to ΣL
ψ

are shown in Fig. 11. Our result for Zψ is

ZL;RI0
ψ ¼ 1þ g2CF

16π2
½eψ − 4.7920αþ α log ða2μ̄2Þ�: ðB11Þ

FIG. 10. One-loop Feynman diagrams contributing to the
renormalization of the ghost field. Awavy (dotted) line represents
gluons (ghosts).

TABLE VI. Results for the mixing coefficients at one loop using the MS scheme on the lattice. The finite parts ei
and ei;j are given for five actions: Wilson, tree-level Symanzik, TILW (βc0 ¼ 8.30), Iwasaki and DBW2.

Coefficient Wilson Tree-level Symanzik TILW (βc0 ¼ 8.30) Iwasaki DBW2

e1;1 −16.8770 −12.8455 −10.4920 −7.9438 −3.2465
e1;2 13.4540 9.3779 7.0022 4.4851 −0.5102
e2 1.9290 2.7677 3.4589 4.5370 8.5250
e5;1 5.9806 5.3894 4.9311 4.2758 2.2834
e5;2 −6.4047 −5.5061 −4.8014 −3.7777 −0.5292
e8 −4.0626 −3.9654 −3.8894 −3.7760 −3.4713
e11 −4.4977 −4.0309 −3.6792 −3.2020 −1.9216
e13 54.9325 47.7929 42.6253 36.0613 19.9812

TABLE VII. The coefficients ec, eψ , em, eA;1, eA;2, eg;1, and
eg;2 for five actions: Wilson, tree-level Symanzik, TILW
(βc0 ¼ 8.30), Iwasaki, and DBW2.

Coefficient Wilson
Tree-level
Symanzik

TILW
(βc0¼8.30) Iwasaki DBW2

ec 4.6086 3.7759 3.2208 2.5469 0.9433
eψ 16.6444 13.0233 10.7153 8.1166 2.9154
em 16.9524 13.6067 11.4247 8.8575 2.9060
eA;1 22.3157 10.3088 2.4199 −7.2464 −28.5805
eA;2 −19.7392 −6.6595 2.0039 11.8888 32.2815
eg;1 −13.4192 −6.5831 −2.0835 3.4235 15.6942
eg;2 9.8696 3.3297 −1.0019 −5.9444 −16.1407
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The part of ΣL
ψ proportional to the unit matrix in Dirac

space leads to the value of Zm. Our result for Zm is

ZL;RI0
m ¼ 1þ g2CF

16π2
½em þ α − 3 log ða2μ̄2Þ�: ðB12Þ

The numerical values of the coefficients eψ and em are
listed in Table VII.

3. Gluon field renormalization ZA

The renormalization for the gluon field, ZA, can be
evaluated from the gluon propagator GL

μνðq; aÞ with radi-
ative corrections, namely

GL
μνðq; aÞ ¼

1

q2

�
δμν − qμqν=q2

ΠTðaqÞ
þ α

qμqν=q2

ΠLðaqÞ
�
; ðB13Þ

where the one-loop contributions to the transverse (ΠT)
and longitudinal (ΠL) parts of the gluon self-energy,
ΠT;LðaqÞ ¼ 1þOðg2Þ are obtained from the diagrams
of Fig. 12. The normalization condition is

lim
a→0

½ZL;RI0
A ðaμ̄ÞΠTðaqÞ�q2¼μ̄2 ¼ 1: ðB14Þ

Our result up to one loop is

ZL;RI0
A ¼ 1þ g2

16π2

�
Nc

�
eA;1−0.8863αþ1

4
α2
�
þ 1

Nc
eA;2

−2.1685Nfþ
�
2

3
Nf−

13

6
Ncþ

1

2
αNc

�
logða2μ̄2Þ

�
;

ðB15Þ

(Nf stands for the number of flavors). The numerical values
of the coefficients eA;1 and eA;2 are listed in Table VII.
One may similarly deduce the value of Zα [see Eq. (5)]

from the longitudinal part ΠLðaqÞ of the gluon self-energy;
as mentioned before, Zα receives no one-loop contribution.

4. Coupling constant renormalization Zg

Zg can be extracted either from the gluon-quark-quark
Green’s function, or equivalently from the gluon-ghost-
ghost Green’s function GL

Ac̄c; we have chosen to compute
the latter.8 It is customary to renormalize the strong

coupling constant in the MS scheme also when RI0 schemes
are adopted for the operators. The same choice is
made here.
The corresponding renormalization condition9

lim
a→0

½ZL;RI0
c ðZL;RI0

A Þ1=2ZL;RI0
g GL

Ac̄cðq; aÞ�q2¼μ̄2 ¼ Gfinite
Ac̄c ;

ðB16Þ
where the expressionGfinite

Ac̄c is required to be the same as the
one stemming from the continuum

lim
ϵ→0

½ZDR;RI0
c ðZDR;RI0

A Þ1=2ZDR;RI0
g GAc̄cðqÞ�q2¼μ̄2 ¼ Gfinite

Ac̄c :

ðB17Þ
[In the above equation ZDR;RI0

g is required to eliminate only
the pole parts of the left-hand side, without additional finite
terms; hence, it is trivially equal to ZDR;MS

g .] Thus, Gfinite
Ac̄c is

found to be

Gfinite
Ac̄c ¼ 1þ g2

16π2

��
169

72
þ 3

4
αþ 1

8
α2 þ 1

2
α log

�
μ̄2

q2

��
Nc

−
5

9
Nf

�
: ðB18Þ

The Feynman diagrams contributing to GL
Ac̄c are shown in

Fig. 13. Our result for ZL;RI0
g is

ZL;RI0
g ¼ 1þ g2

16π2

�
eg;1Nc þ

1

Nc
eg;2 þ 0.5287Nf

þ
�
11

6
Nc −

1

3
Nf

�
logða2μ̄2Þ

�
: ðB19Þ

The numerical values of the coefficients eg;1 and eg;2 are
listed in Table VII.

5. Conversion to the MS scheme

Each renormalization function on the lattice, ZL;RI0 , may
be expressed as a power series in the coupling constant g
which is already renormalized in the MS scheme
(see Sec. IV).
As already mentioned, our one-loop calculations for

Zc; Zψ ; Zm; ZA and Zg are performed in a generic gauge
with parameter αRI

0
. The conversion of αRI

0
to the MS

scheme is given by

αRI
0 ¼

�
ZL;MS
α

ZL;RI0
α

�
−1 ZL;MS

A

ZL;RI0
A

αMS: ðB20Þ

Since ðZL;MS
α =ZL;RI0

α Þ ¼ ðZDR;MS
α =ZDR;RI0

α Þ ¼ 1 at three
loops [36], it follows that

FIG. 11. One-loop Feynman diagrams contributing to the
renormalization of the fermion field. A wavy (solid) line
represents gluons (fermions).

8We have checked, via explicit computation in the Feynman
gauge, that the two determinations lead to identical results.

9Equation (B16) is evaluated at vanishing ghost momentum; q
stands for the ghost/gluon momentum.
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αRI
0 ¼ ZL;MS

A

ZL;RI0
A

αMS ≡ 1

CAðgMS; αMSÞ
αMS: ðB21Þ

Since the ratio of Z’s appearing in Eq. (B21) must be
regularization independent, it may be calculatedmore easily
in DR [35]; to one loop, the conversion factor CA equals

CAðg; αÞ ¼
ZDR;RI0
A

ZDR;MS
A

¼ 1þ g2

36ð16π2Þ ½ð9α
2 þ 18αþ 97ÞNc − 40Nf�;

ðB22Þ
where hereafter both g and α are expressed in the MS
scheme.

Thus, once we have computed the renormalization
functions in the RI0 scheme we can construct their MS
counterparts using conversion factors which, up to the
required perturbative order, are given by

Ccðg; αÞ≡ ZL;RI0
c

ZL;MS
c

¼ ZDR;RI0
c

ZDR;MS
c

¼ 1þ g2

16π2
Nc; ðB23Þ

Cψ ðg; αÞ≡ ZL;RI0
ψ

ZL;MS
ψ

¼ ZDR;RI0
ψ

ZDR;MS
ψ

¼ 1 −
g2

16π2
CFα; ðB24Þ

Cmðg; αÞ≡ ZL;RI0
m

ZL;MS
m

¼ ZDR;RI0
m

ZDR;MS
m

¼ 1þ g2

16π2
CFð4þ αÞ:

ðB25Þ
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