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Measurements of the A, - p£~0, and A, > A.£"D, decay rates can be used to determine the
magnitudes of the Cabibbo-Kobayashi-Maskawa matrix elements V,;, and V,, provided that the relevant
hadronic form factors are known. Here we present a precise calculation of these form factors using lattice
QCD with 2 + 1 flavors of dynamical domain-wall fermions. The b and ¢ quarks are implemented with
relativistic heavy-quark actions, allowing us to work directly at the physical heavy-quark masses. The
lattice computation is performed for six different pion masses and two different lattice spacings, using
gauge-field configurations generated by the RBC and UKQCD Collaborations. The b — u and b — ¢
currents are renormalized with a mostly nonperturbative method. We extrapolate the form factor results to
the physical pion mass and the continuum limit, parametrizing the g> dependence using z expansions. The
form factors are presented in such a way as to enable the correlated propagation of both statistical and
systematic uncertainties into derived quantities such as differential decay rates and asymmetries. Using
these form factors, we present predictions for the A, — p£~v, and A, - A.¢"v, differential and

integrated decay rates. Combined with experimental data, our results enable determinations of |V,

5 |V(rb|s

and |V,;,/V | with theory uncertainties of 4.4%, 2.2%, and 4.9%, respectively.
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I. INTRODUCTION

To date, all direct determinations of the Cabibbo-
Kobayashi-Maskawa matrix element magnitudes |V |
and |V, | were performed using measurements of B meson
semileptonic or leptonic decays at e e~ colliders. For both
|V.»| and |V, |, there are tensions between the most precise
extractions from exclusive and inclusive semileptonic B
decays. The Particle Data Group lists [1]

[Viblexal = (328 £ 0.29) x 1073,

Viplina = (441 £0.157013) x 1072,
39.540.8) x 1073,

42240.7) x 1073. (1)

|Vcb|excl = (
|Vcb|incl = (
The exclusive results in Eq. (1) are from the decays
B —» 7n¢v and B - D*¢v (where ¢ = e, ) and use had-
ronic form factors from lattice QCD [2,3]. The discrepancy
between the exclusive and inclusive results is a long-
standing puzzle in flavor physics [4-6], and right-handed
currents beyond the Standard Model have been considered
as a possible explanation [7-10]. New lattice QCD calcu-
lations of the B — z form factors published recently yield
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somewhat higher values of |V |oq = (3.72£0.16) x 1073
[11] and |V, | = (3.61 £0.32) x 1073 [12], but the
latest analysis of B — D*/v using lattice QCD gives
[V eblexa = (39.04 £0.75) [13] and slightly increases the
exclusive-inclusive tension. Moreover, the current exper-
imental results for the ratios of the B — D(*)zi and
B — D¥¢p (¢ = e, y) branching fractions differ from
the Standard Model expectation with a combined signifi-
cance of 3.4¢ [14].

On the experimental front, new results are expected from
the future Belle II detector at the SuperKEKB eTe™
collider, and in the near future also from LHCb at the
Large Hadron Collider. The LHCb Collaboration is cur-
rently analyzing the ratio of branching fractions of the
baryonic b — u and b — ¢ decays A, — pu~7, and
A, = Ap o, with the aim of determining |V,;,/V |
for the first time at a hadron collider. These decays were
chosen over the more conventional B — zuv and B — Duv
decays because, with the LHCb detector, final states
containing protons are easier to identify than final states
with pions [15]. Note that the production rate of A, baryons
at the LHC is remarkably high, equal to approximately 1/2
the production rate of B° mesons [16].

The extraction of |V,;,| and |V | (or their ratio) from the
measured A, — pu~v, and A, — A "D, branching frac-
tions requires knowledge of the form factors describing the
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A, — pand A, —» A, matrix elements of the relevant b —
u and b — ¢ currents in the weak effective Hamiltonian.
These form factors have been studied using sum rules and
quark models [17-28]. Nonperturbative QCD calcula-
tions of the A, - p and A, — A, form factors can be
performed using lattice gauge theory. The first lattice
QCD calculation of A, — p form factors, published in
Ref. [29], employed static b quarks (i.e., leading-order
heavy-quark effective theory) to simplify the analysis.
The static limit reduces the number of independent
A, - p form factors to two [30-32], but introduces
systematic uncertainties of order Agcp/my, and |p’|/m,,
in the A, — pu~0, differential decay rate (where p’ is the
momentum of the proton in the A, rest frame). Here we
present a new lattice calculation which improves upon
Ref. [29] by replacing the static b quarks by relativistic b
quarks, eliminating this systematic uncertainty. In addi-
tion to the six form factors describing the hadronic part
of the decay A, — pu~7, in fully relativistic QCD, we
also compute the six analogous form factors for A, —
A 0, (note that early lattice studies of A, — A, form
factors in the quenched approximation can be found in
Refs. [33,34]). Preliminary results from the present work
were shown in Ref. [35].

In Sec. II we provide the definitions of the form factors
employed here. The lattice actions and parameters, as
well as the matching of the » - u and b — ¢ currents
from the lattice renormalization scheme to the continuum
MS scheme, are discussed in Sec. III. This calculation is
based on the same lattice gauge-field ensembles as
Ref. [29]; the ensembles include 2 + 1 flavor of dynami-
cal domain-wall fermions and were generated by the RBC
and UKQCD Collaborations [36]. Section IV explains our
method for extracting the form factors from ratios of
three-point and two-point correlation functions and
removing excited-state contamination by extrapolating
to infinite source-sink separation. Our fits of the quark
mass, lattice spacing, and momentum dependence of the

|

X ) arblAy(p.s)) = g () [fo<q2><mA,, - L 1)
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form factors are discussed in Sec. V. The form factors in
the physical limit are presented in terms of z-expansion
[37] parameters and their correlation matrices. Two
different sets of parameters, referred to as the “nominal
parameters” and the “higher-order parameters” are given.
The nominal parameters are used to obtain the central
values and statistical uncertainties of the form factors
(and of derived quantities), while the higher-order param-
eters are used to calculate systematic uncertainties. In
Sec. VI we then present predictions for the A, - p£~r,
and A, —» A ¢~ v, differential and integrated decay rates
using our form factors. Combined with experimental
data, our results for the A, — puv, and A, — A up,

decay rates in the high-g? region will allow determina-
tions of |V,,| and |V ,| with theory uncertainties of 4.4%
and 2.2%, respectively.

I1. DEFINITIONS OF THE FORM FACTORS

Allowing for possible right-handed currents beyond
the Standard Model, the effective weak Hamiltonian for
b — q¢" v, transitions (where ¢ = u, ¢) can be written as

G _ _ _
Heffzjg‘/Sb[(l +ef)ar'b—(1-e§)ar'ysbly,(1-ys)v
(2)

(in the Standard Model, e =0 and Véb =Vy). To

calculate the differential decay rate and other observables,
we therefore need the hadronic matrix elements of
the vector and axial vector currents, gy*b and gy"ysb. In
the following, we denote the final-state baryon by X
(X = p,A.). Lorentz and discrete symmetries imply that
the matrix elements (X|gy*b|A,) and (X|gy*ysb|A,) can
each be decomposed into three form factors. In this work
we primarily use a helicity-based definition of the A, — X
form factors, which was introduced in Ref. [38] and is
given by

my, tmy [ " 2 N
A, X —(m2 —m2\L
5 (P +p ( A, X)qz

p’ﬂ)]mp,sx (3)

pwﬂuAb(p,s). 4)

In these expressions, g = p — p’ is the four-momentum transfer (whereas g is the & or ¢ quark field), and s is defined as

sp = (my, £my)* = ¢*. (5)
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The form factors with subscripts 0, +, | describe the
contractions of the above matrix elements with virtual
polarization vectors ¢, that are, respectively, timelike,
longitudinal, and transverse to ¢". Consequently, this
choice of form factors leads to particularly simple expres-
sions for observables such as the differential decay rate.
Moreover, this choice simplifies the extraction of the form
factors from correlation functions and clarifies the spin-
parity quantum numbers of poles outside the physical
kinematic region 0 < ¢* < (my, — my)*.

An alternate definition of the form factors that can be
found in the literature (see, e.g., Ref. [27]) is the following:

(X(p'.s")|ar"b|Ay(p))
f3(q*) g

V2
= inlp' ) [l =2 Do, + |

S MA,;(PJ)’ (6)

(X(p',s")ar'rsb|Ay(p))
Al 2 Al 2
= ix(p',s) [fi‘(qz)y" ) )w"”qy L f5) )q"}

mAh mAb

X ysin, (P s), (7)

where o = £ (y*y* —y*y*) and, as before, g = p—p'.
This choice decomposes the matrix elements into form
factors of the first and second class according to Weinberg’s
classification [39]. The second-class form factors fg/ and
f4 would vanish in the limit m, = m, (for A, - A,) or
m;, = m, (for A, — p) [40]. In the following, we will refer
to the form factors defined in Eqgs. (6), (7) as “Weinberg
form factors.” The helicity form factors are related to the
Weinberg form factors as follows:

2

(@) = f1 (g% +mﬁ/(qz)v (8)

Fu@) = (@) +’”A';n—t’""f¥ (). (9)
2

Fold®) = FY (%) + 1 (), (10)

my, (mA,, - mx)

2

9:(@) = A1) = s @), ()

nmy

0.() = ) =" ), (12)

2

9(@) = A1) = e S ). (1)
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These relations also demonstrate the following endpoint
constraints for the helicity form factors:

f0(0) = £1(0), (14)
90(0) = g:.(0), (15)
gl(ngax) = g-‘r(Q%nax)? (16)

where ¢, = (my, — my)?. At intermediate stages of our
analysis of the lattice QCD data, it is beneficial to work
with both definitions of the form factors. However, we
perform the chiral/continuum/kinematic extrapolations
only in the helicity basis.

III. LATTICE ACTIONS AND CURRENTS

This calculation is based on lattice gauge-field ensem-
bles generated by the RBC and UKQCD Collaborations
[36] with the Iwasaki gauge action [41,42] and 2+ 1
flavors of dynamical domain-wall fermions [43-45]. We
implement the light (# or d) valence quarks with the
same domain-wall action that was used in generating the
ensembles. Our analysis uses six different combinations of
light-quark masses and lattice spacings as shown in Table I.
These parameters are identical to those used in the earlier
calculation of A, — pZv form factors in Ref. [29].
However, instead of the static Eichten-Hill action [46]
employed in Ref. [29], we now use anisotropic clover
actions for the heavy (¢ and b) quarks [47-50]. These
actions have the form

3
_ a a
SQ:“4E Q|:mQ+]/0v0—§v(<)2)+l/E (YIVI_EVEZ))
X i=1

3 3
a a
—CEEZO'OiFOi—CBZzUijFu} 0, (17)
i=1 ij=1

where Q is the lattice charm or bottom quark field, V,, and

V,Sz) are first- and second-order covariant lattice derivatives,
and F,, is a lattice expression for the field-strength tensor
(all of which are defined as in Ref. [51]). By suitably tuning
the parameters v, cg, cp as functions of am,, heavy-quark
discretization errors proportional to powers of am can be
removed to all orders. The remaining discretization errors
are of order a?|p|?, where |p| is the typical magnitude of the
spatial momentum of the heavy quark inside the hadron. As
the continuum limit @ — 0 is approached, the values v = 1
and cp = cp = cqw corresponding to the standard clover-
improved Wilson action are recovered. For the bottom
quark, we use the parameters that were tuned nonpertur-
batively by the RBC and UKQCD Collaborations [51]
using the condition that the action reproduces the correct
spin-averaged B, meson mass and relativistic dispersion
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TABLE L.
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Parameters of the lattice gauge-field ensembles [36] and light-quark propagators [29,53]. The three groups of data sets

{C14,c24,c54}, {F23,F43}, and {F63} correspond to three different ensembles of lattice gauge fields: one with a “coarse” lattice
spacing a ~0.11 fm, and two with “fine” lattice spacings a ~ 0.085 fm (we use the lattice spacing values determined in Ref. [54]).

(val)

Within each group, the valence-quark masses am,, ,

(val),

used for the propagators differ, resulting in different “valence pion masses” m; ;

the number of light-quark propagators used in each data set is denoted as N peqs-

Set p N3 x N, x Ns ams am® am™ a (fm) am™ m (MeV) N eas
Cl4 2.13 243 x 64 x 16 1.8 0.04 0.005 0.1119(17) 0.001 245(4) 2672
C24 2.13 243 x 64 x 16 1.8 0.04 0.005 0.1119(17) 0.002 270(4) 2676
C54 2.13 243 x 64 x 16 1.8 0.04 0.005 0.1119(17) 0.005 336(5) 2782
F23 2.25 323 x 64 x 16 1.8 0.03 0.004 0.0849(12) 0.002 227(3) 1907
F43 2.25 323 x 64 x 16 1.8 0.03 0.004 0.0849(12) 0.004 295(4) 1917
F63 2.25 323 x 64 x 16 1.8 0.03 0.006 0.0848(17) 0.006 352(7) 2782
relation, as well as the correct B — B, hyperfine splitting. - (q9) H(bb) 1= R-

For the charm quarks, we use the parameters from Vi=\Zy" 2y py [arib + 2a(c v.qriv;Vb

Ref. [52], where am,, gnd v were tuned nonperturbatlvely + C%/[ Elvj}’in b+ dl‘!;[ gVb + d‘L/[ aV.b)). (20)
to obtain the correct spin-averaged charmonium mass and

relativistic dispersion relation, while ¢z and cp were set to T . -

mean-field improved tree-level predictions. Note that after A =\Zy"Zy PA, [qwsb + 2a(cA[qyi757jv jb

the parameters were tuned in this way, the calculated L =S R = O T

charmonium hyperfine splittings were also in agreement +eqaVirirsyib + i arsVib + di gVirsb)]. - (21)
with experiment [52]. The values of all heavy-quark action (40) (bb) .

parameters used here are given in Table IL. where Z,™" and Z, " are the matching factors of the

We use a mostly nonperturbative method [55,56] to
match the b — ¢ (¢ = u, c¢) vector and axial vector currents

from the lattice scheme to the continuum MS scheme. The
renormalized currents in the MS scheme are written in
terms of the lattice quark and gluon fields as

bb _ _ =
Vo = ZE,‘”)Z& )PVO [Grob + 2“(05061}’07,'ij
+ C\Lzﬁvﬂo}’jb)L (18)
bb _ _ =
Ay = Zi}’q)Zg, >/’A0 [@rorsb + 2a(0§0‘170757’jvjb
+ CIAOZIVjYOYSij)]v (19)
TABLE II. Parameters of the bottom and charm quark actions
[51,52].
Parameter Coarse Fine
am(Qb> 8.45 3.99
£0) 3.1 1.93
o) 5.8 3.57
EB
am'® 0.1214 —0.0045
&) 1.2362 1.1281
RO 1.6650 1.5311
E
oo 1.8409 1.6232
B

flavor-conserving temporal vector currents gyoq and by,b,
which are computed nonperturbatively using charge con-
servation. These nonperturbative factors provide the bulk of
the renormalization, resulting in a much improved con-
vergence of perturbation theory for the residual matching
factors PV, A, Above, i denotes the spatial components

(i=1,2,3), and the repeated index j is summed from 1
to 3. The lattice currents containing the lattice derivatives

Vb = - [V, 0B+ ) = Ublx = br—R)]. (22)
39, =5 4G+ UL ~ 3~ U - (23)

are needed to remove O(a)-discretization errors from
the currents. Time derivatives have been eliminated in
Egs. (18)—(21) using the equations of motion. We have
computed py 4 as well as all of the O(a)-improvement
coefficients cﬁ;fAﬂ, df;’ﬂL,A#

improved lattice perturbation theory using the automated
framework PhySyHCAI [57,58]. The results are given in
Table III. The central values are the average of plaquette
and Landau-gauge mean-field improved results with per-
turbative expansion in ag(u = a~') [51]. The uncertain-
ties are the maximum of (i) the difference of the respective
mean-field improved results, (ii) the numerical integration
error, and (iii) a power-counting estimate. For consistency
with earlier stages of this project a different power-counting
estimate is used for the » - u and b — ¢ cases. For a

to one loop in mean-field
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Perturbative renormalization and improvement coefficients. The uncertainties given here include

estimates of the missing higher-loop corrections as well as uncertainties from the numerical evaluation of the
one-loop integrals. They are explained in more detail in the main text.

Parameter b — ¢, coarse b — ¢, fine b — u, coarse b — u, fine
Pyo 0.9798(20) 0.9848(15) 1.02658(69) 1.01661(52)
P40 1.0193(15) 1.0112(29) 1.02658(69) 1.01661(52)
Pvi 1.0184(38) 1.0162(41) 0.99723(25) 0.99398(12)
Pai 0.9866(33) 0.9896(26) 0.99723(25) 0.99398(12)
c§0 0.0258(13) 0.02873(99) 0.0558(63) 0.0547(64)
Cﬁn 0.03500(93) 0.03285(87) 0.0558(63) 0.0547(64)
c‘L/0 —0.0183(32) —0.0135(22) —0.0099(99) —0.0095(95)
Cﬁn —0.0205(17) —0.0155(27) —0.0099(99) —0.0095(95)
cﬁ, 0.03192(70) 0.0305(10) 0.0485(27) 0.0480(30)
c’Af ; 0.0221(31) 0.0237(20) 0.0485(27) 0.0480(30)
céj 0.0088(22) 0.0027(35) —0.0033(33) —0.0020(20)
cﬁj —0.0002(31) —0.0020(20) —0.0033(33) —0.0020(20)
d"‘;, —0.0055(12) —0.0067(17) —0.00079(79) —0.0012(12)
dﬁ_, 0.0060(69) 0.0044(40) 0.00079(79) 0.0012(12)
df,, —0.0176(44) —0.0043(69) 0.0018(18) 0.00047(48)
dﬁ, 0.0134(69) 0.0106(40) —0.0018(18) —0.00047(48)

perturbative quantity 4 with tree-level result 4(®) and full
one-loop result 2" we use (¥ /h") —1)24() as an error
estimate for » — u and (A" — h(o))(am(ﬂ =a')/n) as
an estimate for b — c. For the p factors [but not for the
O(a)-improvement coefficients] this estimate tends to be
less conservative than estimates used in similar work
[11,12,59]. The estimates of the combined uncertainty
from the p factors and O(a)-improvement coefficients,
see Figs. 11 and 13 and Table XII, agree well with similar
work [11,12,59].

The nonperturbative matching factors Zi,q *) and Z&,bb) are

given in Table IV. The light-quark and bottom-quark Z 8’”)

and Zi,bb) were computed by the RBC and UKQCD

Collaborations [36,60]. We determined the charm-quark

TABLE IV. Nonperturbative renormalization factors of the
flavor-conserving temporal vector currents. For Zg,""), we use

the results in the chiral limit from Ref. [36]. For Zi,hm, we use the

results obtained in Ref. [60] on the coarse amff;a> = 0.005 and

fine amsza> = 0.004 ensembles.

Parameter Coarse Fine
Zs/hh) 10.037(34) 5.270(13)
Z&,CC) 1.35725(23) 1.18321(14)
Zﬁ,“”) 0.71651(46) 0.74475(12)

Zifc) using the method of Ref. [60], by computing the
following ratio of D meson correlation functions without
and with the insertion of the current J, = ¢yc:

R o) ([ t’) — ZZ<DS('X0 +1, Z)D:(Xo, X)>
A >y (Ds(xo + 1,2)Jo(x0 + 1, ¥) D (x, X))
(24)

Here, we used the following interpolating field with the
quantum numbers of the D, meson:

Ds = EJ/SE’ (25)

where the tilde indicates gauge-covariant Gaussian smearing
to suppress excited-state contamination. For large Euclidean
time separations ¢, ¢, and |f — ¢|, the ratio (24) becomes

(cc)

equal to Z;,"'. Our numerical results for Rz(m(l, t'), along
\4

with fits in the plateau region giving Zg,“'), are shown in

Fig. 1 for the ensembles used in this calculation.

IV. EXTRACTION OF THE FORM FACTORS
FROM CORRELATION FUNCTIONS

In this section we explain how we extract the form
factors at the different lattice spacings and quark masses
from nonperturbative Euclidean correlation functions. The
extrapolations of these results to the physical limit will be
discussed in Sec. V.
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FIG. 1 (color online).

set (right). The horizontal lines indicate the extracted values of Z

We use the following interpolating fields for the A;, A,
and the proton:

Apy = €abc(c75)/3ygl§ﬁfi’2’ (26)
Aca = €abc(cy5)/}y&;ﬁgzglv (27)
N(l = eabc(cys)ﬁyﬁ;a}éﬁg’ (28)

where C is the charge-conjugation matrix, a, b, ¢ are color
indices, and a, f3, y are spinor indices (the symbol N is used
for the proton to avoid confusion with the A,-momentum
p). The tilde on the quark fields indicates gauge-covariant
Gaussian smearing. For the u and d quarks, the smearing
parameters are the same as in Ref. [61]. In the notation of
Ref. [61], for the charm quarks we used (o, ng) = (3.0, 70)
at the coarse lattice spacing and (o, ng) = (4.0,70) at the
|

CoMMp0.r) = 3 e (X (g, X)Jf(xg = 1+ 1. 3) A (30 = 1.2)),
yZ

CBP™(r o 11—
Yz

as well as the two-point functions,

C ™M (' 1) =D e 67X (xg + 1Y) Ko (0. X)),

! (33)

Ci ™ 0. 1)

Ze_lp Y (X5(x0, X)X (x0 — 1,)),
' (34)

C™ (1)

= Z<Ab5(x0 + 1, Y)Kha(XO’ X)>’

y

(35)

y).  (36)

CgiAb’bW)(f) = Z<Ab5(x0’ X) A (X0 — 1,

y

20

Ze—ip“(y—w (Apo(xo + 1,2)Jr(xg + 7, ¥) X5(x0, X)),

PHYSICAL REVIEW D 92, 034503 (2015)

1.195 . : . .
1190 = a ~ 0.085 fm ]
SsE Tean N
1180 | f
1175 L L L L
0 5 0 15 20
t'/a

Numerical results for the ratio R 7o (1,1") atr/a = 20 for the C54 data set (left) and at #/a = 24 for the F43 data

cc)

fine lattice spacing, and for the bottom quarks (o, ng) =
(2.0,10) at the coarse lattice spacing and (o, ng) =
(2.67,10) at the fine lattice spacing. The smearing of both
the charm and bottom quark fields was done using Stout-
smeared gauge links [62] with ten iterations and staple
weight p = 0.08 in the spatial directions.

In the following, we denote the final-state interpolating
field by X, (= N,, A.,) and the renormalized currents as
Jr, where

1, =V,

(29)

Jms = Ay (30)

with V, and A, given by Egs. (18)—(21). We set the A,
three-momentum p to zero, and compute “forward” and
“backward” three-point functions (where ¢ > ¢ > 0),

|
These definitions are similar to those in the static b-quark
case [29,53]; however, with the relativistic heavy-quark
action used here, the b quark can propagate in all directions,
and we included additional sums over the spatial coordi-
nates for the momentum projections. The quark-field
contractions for the three-point functions are illustrated
in Fig. 2. Only the b-quark sequential propagators need to
be recomputed for each source-sink separation, t. For the
proton final state, 16 times as many sequential propagators
are needed as for the A, final state because of the different
structure of diquark contractions. The b-quark propagators
decay extremely fast with distance, and care has to be taken
to perform sufficiently many conjugate-gradient iterations
to get an accurate solution up to the distance needed.
We computed the three-point functions for all final-state
momenta p’ with |p’|> < 12(2z/L)?, and for the ranges of
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FIG. 2 (color online). Illustration of the quark field contractions
on a given background gauge field for the forward (left) and
backward (right) three-point functions. The u, d, and ¢ quark
propagators are common to the forward and backward three-point
functions and have a Gaussian-smeared source at (x,, X). We sum
over the spatial points x and y with the appropriate phases to
project to definite momenta. The b-quark propagators are
computed using the sequential source method, with sequential
sources on the time slices xg &£ 7.

source-sink separations shown in Table V. In a first run we
computed the three-point functions for all possible values
of t/a in the wide ranges shown in the left column of
Table V, but only for the lattice currents of the form gI'b

and gI'y;V ;b. In a second run, we then computed the three-
point functions for all of the remaining O(a)-improvement
currents shown in Egs. (18)—(21), but only for the subsets
of separations in the right column of Table V (to save
computer time and disk space). For one of the data sets
(C14), we performed the calculation of all the currents for
the whole range of source-sink separations. As shown in
Fig. 4, the effects of the additional O(a) improvements
are small. Our method for effectively including these
corrections for all source-sink separations will be explained
further below.

TABLE V. Source-sink separations used for the three-point
functions for each data set. For the separations in the column
labeled “full O(a) improvement,” we computed the three-point
functions for all of the O(a) corrections in Egs. (18)—(21). For the
separations in the column labeled “partial O(a) improvement,”

we computed only the corrections with coefficients ¢f and % .
I3 e

As explained in the main text and illustrated in Fig. 4, the effects
of the missing terms are very small and practically independent of
the source-sink separation, and we achieve full O(a) improve-
ment for all separations by applying #-independent correction
factors computed using the subsets of separations were all O(a)
corrections are available.

Set Partial O(a) improvement  Full O(a) improvement
c14 t/a =4..15 t/a=4..15
c24 t/a=4...15 t/a=5,8,11
cs54 t/a=4..15 t/a=5.811
F23 t/a=>5..15 t/a = 6,10, 14
F43 t/a=>5..15 t/a = 6,10, 14
F63 t/a=5..17 t/a = 6,10, 14
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To discuss the spectral decomposition of the correlation
functions, we introduce the overlap factors

(O Ase (0)| A (p. ) = [(Z) + ZT P )u(p. 5))p  (37)

(01X, 0)[X(p'. ")) = [(Z{) + Z7)u(p' s )e  (38)

The two separate Z factors for each matrix element are
needed because the spatial-only smearing of the quark
fields in the interpolating field breaks hypercubic symmetry
[33]. Because we set p = 0, we can write

(0[Apa(0)|A, (P 5)) = Zn,u(p.s)g (39)

where Z, = ZE\IZ + Zfb) Further, we introduce the follow-

ing short-hand notation for the form factor decomposition
of the matrix elements (cf. Sec. II):

(X(p'.s"Ir|Ap(p.s)) = ax(p'.s")GCuy, (p.s). (40)

The spectral decompositions of the correlation functions
then read

C(3.fw) (p/’ F, t, l")
B 11
~ M2E 2m,,

2
x (24 + 227 (my + #)GIT]my, (1 + )]

+ (excited-state contributions), (41)

e—EX(z—t/)e—mAbfj

C(3’bw)(p’, ot t— l‘/)

1 1 /
_ —my, (t—1") j—Ext
=72\ — e "y e Ex
b ZEX 2mAh
= 1 2
x [y, (14 7")GM(my + P)(Z) + 23 1)]
+ (excited-state contributions), (42)

C(2~X*fw)(p’, t)
— C(Z’X‘bw)<p” l‘)
1 | ) 1 i
= Ee Ext[(Zg(> +Z§()70)(mx +p/)(Z§(> +Z§()yo)]
+ (excited-state contributions), 43)

C(Z,Ab.fw) (t) _ C(Z,A,,,bw) (t)

= g B, (147

+ (excited-state contributions),  (44)
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where G[I] = yoG[[] 7y, and all correlators are 4 x 4
matrices in spinor space. In the above expressions, we
have explicitly shown only the ground-state contributions,
which correspond to the positive-parity baryons of interest.
The excited-state contributions decay exponentially faster
with the time separations ', 7.

To extract individual form factors, we contract the
currents in the three-point functions with suitable polari-
zation vectors and form certain double ratios that eliminate

|

ru[(1,0)]r, [(1, O)]Te[COM (p/, p, 1. £) COPY (P! ¥, 1,1 = 1))

PHYSICAL REVIEW D 92, 034503 (2015)

all the time dependence and overlap factors for the ground-
state contributions. For an arbitrary four-vector n, we define

g, (45)

where ¢ = p—p’ is the four-momentum transfer. By
construction, r[n] is orthogonal to g. For the vector current,
we define the three ratios

RY(p.1.7) =

RY(p.1.) =

where e; is the three-dimensional unit vector in the j
direction, and x is the three-dimensional vector cross
product. We sum over repeated indices y, v from 0 to 3
and over repeated indices j, k from 1 to 3. The quantities
CAra) and C(>X2V) in the denominators are the averages
of the forward- and backward two-point functions.

These ratios are designed to isolate particular helicity
form factors and are equal to

: 46
THCOX (3, DT A ) o
ru[(0,€; x p")]r,[(0, e x p/ ) Tr[COM (p, #, 1, )ysy/ COP (¥, 1,1 = 1) ysy"] (47)
THCEXa (o [T/ CEh ) 7] |
RY (pl.1. ) = DB THCO @' 7 1, ) COM P 7 1= ) (48)
e TP ITC 0]
[
1 E
R, (Ip'].1) = X RV(Ip'|.1.1/2).
£ ([p]. 1) Ex—mx\/Ex+mx (p'l.2.1/2)
(53)
2 Ey
R "I, t) = RY(Ip'l,t,t/2),
('] 1) mAb_mX\/EX+mX o([p'].2./2)
(54)

RK(PC 1, l") _ (EX - mX>2(EX + mx)[mAb (mAb + mX)f—&-P

4m%b Exq*

+ (excited-state contributions), (49)

(Ex — my)*(Ex + mx)[my, f 1]
m%\hEX

RY(p1.1) =
+ (excited-state contributions), (50)

Ex + - 2
R(\)/(p/’ 1, t/) _ ( X mX)[mAb (’/’ZA,, mX)fO]
4EXmAh

+ (excited-state contributions). (51)

Sample numerical results for RY, R" , and R} are shown in
Fig. 3. We further define the quantities

2q2

(Ex — mx)(my, + my)

Ey
RV /
X \/EX Ty (p

Ry (Ip']. 1) =

4,1/2), (52)

where we evaluate the ratios R at ¢ = 7/2 to minimize
excited-state contamination at a given value of the
source-sink separation ¢ [if #/a is odd, we average R over
' =(t+a)/2 and ¢ = (r—a)/2 instead]. The notation
with the absolute value indicates that we average over the
directions of p’. Equations (52)—(54) yield

Ry (Ip'|.1) = f + (excited-state contributions), (55)
Ry (Ip'|.t) = f1 + (excited-state contributions), (56)
Ry, (|p'|. 1) = fo + (excited-state contributions), (57)

where the excited-state contributions decay exponentially
with 7. We checked that the helicity form factors (plus
the corresponding excited-state contributions for the sep-
arations that we utilize) are all positive by analyzing
individual three-point functions, so that the square roots
in Egs. (52)-(54) give the correct signs. Although not
explicitly annotated, the form factors in all of the above
expressions depend on |p’| and on the lattice parameters.
For the axial-vector current, we define R4  , as in
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FIG. 3 (color online). Numerical results for the vector-current ratios (46)—(48) and their axial-vector counterparts, at |p’ |2 =3Q2x/ L)z,
plotted for three different source-sink separations 7. The data shown here are from the C24 data set.

Eqs. (46)-(48) but with ' =y"ys in the three-point
functions. The axial-vector helicity form factors are then
extracted as

R, (Ip'l.1) = 2
o P _(EX+mX)(mAb_mX)
X RA( L 1/2), (58)
EX—mX + L] ’
Ry, (D). 1) = B Ra(p)i2),
gL Ex+mx EX—mX L1 ( )
59

2

my, +my

Ex

—my

Ro(Ip’

Ry (p'].1) = £1/2). (60)

/5

When evaluating the ratios, we take the baryon masses in
lattice units, amy, , am,_, and amy, from exponential fits to
the zero-momentum two-point functions for each data set;
see Table VI. We then compute the energies aE, (p’) and
aEy(p’) from these masses using the relativistic continuum
dispersion relation, and we also compute a’q? from these
masses and energies. Because the form factors are dimen-
sionless, the values of the lattice spacing are not needed
at this stage. The ratios are evaluated using statistical
bootstrap, and we use corresponding bootstrap samples
for the masses to take into account all correlations.
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TABLE VI. Hadron masses in lattice units.

Set amy, .

C143.305(11) 1.3499(51) 0.6184(76) 3.60327(42) 3.0649(27)
€24 3.299(10) 1.3526(57) 0.6259(57) 3.60312(45) 3.0628(29)
C54 3.3161(71) 1.3706(40) 0.6580(39) 3.60326(44) 3.0638(33)
F23 2.469(16) 1.008(12) 0.4510(86) 2.73156(44) 2.3198(32)
F432.492(11) 1.0185(67) 0.4705(42) 2.73169(44) 2.3230(26)
F63 2.5089(70) 1.0314(40) 0.5004(25) 2.73257(33) 2.3221(22)

amy amy ampg ampg

¢

As mentioned earlier, except in the case of the C14 data
set, we have full O(a) improvement data only for three
source-sink separations in each data set, but we have data
with partial O(a) improvement for all source-sink separa-
tions in the ranges shown in Table V. To account for this, we
computed the ratios

FI
R (p'].1)

PI ’
R (1p']. 1)

(61)

where f=f_.f1.f0,.9+,91,90, for those source-sink

PHYSICAL REVIEW D 92, 034503 (2015)

is as large as 2% for some of the form factors, but is
independent of the source-sink separation to a high degree
(even though R;FI) and R;PI) individually have a strong ¢
dependence). The same behavior is found at other values of
the momentum. In the case of A, — p (Fig. 4, left), the
correction shows a more significant dependence on the
source-sink separation, but is smaller than 0.3% for all form
factors. For the data sets other than C14 we therefore
performed constant fits to the ratios (61) as a function of ¢,
individually for each form factor f, each momentum |p’|,
and each data set. If these fits had a poor y?/D.O.F, we
excluded the shortest or the two shortest separations. In this
way, we obtained correction factors, which we then applied

o R (|p’

R;FI)(|p’ ,1) at all separations. This procedure is accurate
to better than per-mille level. In the following, all ratios
R/(|p’|.t) are understood to be corrected using this
procedure for all source-sink separations.

For the further data analysis, we then also formed the
linear combinations

,t) at all separations, to effectively obtain

(my, + mX)zRf_ - qufL

Ry = , 62
separations where both R(fm and R}PI) are available. " Sy (62)
N ical Its for Eq. (61) fi the C14 data set
umerical results for Eq. (61) from the ata se my, (ma, + my)(Ry, — Rf+>
(where we have FI data for all values of #) are shown in Ry = , (63)
Fig. 4. In the case of A, » A (Fig. 4, right), the correction 5+
|
R — my, (my, —mx)[(my, +my)*(Ry, = Ry )+ q*(Ry, = Ry,)] (64)
3 2 ’
qs+
2
Rt — (mAb B mX) Rg+ -9 RQJ_ (65)
f[ - s_ ’
‘ 1.010 T
1.004 Ay —p ¥ fh Loos | Ay — A, g+ ||
T e 3 gL ' 391
= 1.002 co0oo0oo%S IhH|] £_1000p---- a_ss_ﬂ_&&#.a_&aa_szA
= 1000f - - - - god&EE------- Boolf = o995} esssseseses [Tl
= 0008 e 2|l B ggn] § 7]
. o - == H .
- 7 0085 | sssssrees=E 890
0.996 |- i ’ ooooooooncg
1 1 1 0980 1 1 1
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
t (fm) t (fm)

FIG. 4 (color online). Ratios of the “fully O(a)-improved” (FI) and “partially O(a)-improved” (PI) data for R(¢) for the six different

helicity form factors, at |p’|* = 3(2z/L)?, from the C14 data set. The partially improved data only include the currents gI'y;V ;b for the
O(a) improvement, where g = i, ¢. For A, — p, these are the only currents needed at tree level and the ratio is very close to 1. For

A, = A, the ratio deviates from 1 significantly more, because the currents ¢V y,I'b are missing the partially improved data, but are
already needed at tree level in this case. The range of source-sink separations shown for A, — p is smaller because the statistical
fluctuations in the correlators were too large to reliably compute the individual quantities R(z) for t > 1.0 fm in this case.
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RfA — mAb (mAb X)(RQJr RgL) , (66)
2 S_
my, (mA,, + mX)KmA,, - mX)z(Rg+ - Rgo) =+ q2<Rg0 - RgL)] (67)
2 ’
q*s_

which, according to the relations in Egs. (8)—(13), become
equal to the Weinberg form factors at large 7. To extract the
ground-state form factors from R,(|p’[,#) (for both the
helicity and Weinberg form factors), we performed corre-
lated fits of the ¢ dependence including exponential
correction terms to account for the leading excited-state
contributions, thereby extrapolating R,(|p’[,?) to t = oo

To discuss these extrapolations in more detail, it is
convenient to denote the data for R(|p’. ) by

Rf,i,n(t)’ (68)
Wheref:f+,flyf0,g+,gj_3gO»fV’f;/’f:‘i/’ A ‘g’f? la_

bels the form factors, i = C14,C24,C54,F23,F43,F63
labels the data set (cf. Table I), and n labels the final-state
momentum via |p’|> = n(2x)?/L?. We performed the fits
using the functions

Rf,i,n(t) =fint Af.l',ne_{sfli.nf,

5f,i.,n = Omin T elrin GeV, (69)
with parameters f;,, As;,, and l;,, where f;, are the
form factors we aim to extract. By writing the energy gaps
Orin in the above form, we impose the constraint
Ofin > Omin- We chose 6, = 170 MeV, which is smaller
than any expected energy gap (given our prior knowledge
of the hadron spectrum at our values of the pion masses).
|

<lf~C24,n - lf,C54,n)2

|
This constraint has negligible effect in most cases, but
prevents numerical instabilities for some form factors at
certain momenta where the data show no discernible
excited-state contamination.

At each momentum 7, we perform one coupled fit to all
the data for the vector-current form factors (f ., f 1, fo, f Y
1Y, f¥) and another coupled fit to all the data for the axial-
vector-current form factors (g, g1, 9o, f1. f5, f4). This
allows us to implement two additional constraints to
stabilize the fits, based on the following knowledge:

(i) Because the lattice size, L (in physical units), is

equal within uncertainties for all data sets
(L ~2.7 fm), the squared momentum |p'|> =
n(2zx/L)* for a given n is also equal within un-
certainties for all data sets. This means that the
energy levels, and hence the parameters s ; ,, are
expected to be approximately equal across all data
sets 7, up to some dependence on the pion mass and
the lattice spacing.

(ii) By construction, the data R, , () for the helicity and
Weinberg form factors exactly satisfy the defining
relations (62)—(67) at each value of the source-sink
separation. The extracted ground-state form factors
fin should also satisfy these relations.

For the coupled fit to all vector form factor data at a given
momentum n, we therefore add the following terms,
corresponding to Gaussian priors, to the y> function:

(lf,FZB,n - lf,F43,n>2

(1 -1 )?
f.cl4, f.c24,
,n_))(Vn+2|: gl4c24]2 —+

(lf.F43,n - lf,F63,n)2
[6F43’F63]2
m

(lf,C54,n - lf,F63,n)2

+ [6%545‘63}2 4 GZ

where 6, = 0.1 and

(o ]2 = wh[(m)?

(mz)*P2,

with w,, =4 GeV~2. With these widths, the terms with
Iy, in Eq. (70) implement the constraint that the energy

(71)

[0%24,C54]2

[0'5123‘]?43}2

2
Din

2
oV . v 2
] * Z (fﬂ’n Fin mAb,i(mAb’i + my ;) fz,,,n) /Gf

my l+le
+Z(fl“l_ lzn_#fbn) 612‘+Z<f0’i’”_f¥,i,n_m (

2
qi,n
Ay i\TA, i —

2
) e (0)

|
gaps (87, — Omin) at given momentum 7 should not
change by more than 10% when going from the fine to
the coarse lattice spacing and not more than 400% the
change in m2 (in GeV?); both are reasonable assumptions
given the prior experience with hadron spectroscopy
in lattice QCD. Note that absolute variations of [y;,
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translate to relative variations of (&;;, — ) because
dlexp(ly; )|/ exp(ls;,) = dls;,. The last three terms in
Eq. (70) enforce the relations (62)—(64) between the
ground-state vector form factors in the helicity and Wein-
berg definitions (we set o, = 10~*). For the fit to the axial
vector form factor data, analogous terms are added to )(fm.

We initially included all available values of ¢ in the fits,
and then removed data points for each form factor at the
smallest ¢ until the fits had good quality as determined
by the correlated y?>/D.O.F. To estimate the remaining
systematic uncertainties associated with higher excited
states, we then further removed the next-lowest values of
¢ simultaneously for all R;;, and computed the resulting
shifts in f; ,. We then took the larger of the following two
as our estimate of the excited-state systematic uncertainty:
(1) the shift in f;, at the given momentum » and (ii) the
average of the shifts f;, over all momenta n. We added
these excited-state uncertainties in quadrature to the stat-
istical uncertainties in f; . The fits are illustrated in Fig. 5,
and the results for f , are listed in the Appendix. As can be
seen in Tables XIV and X VI, the results for the second-class
form factor f4 are very close to or consistent with zero for
both A, - p and A, — A, despite the rather large mass
differences m; — m, and m;, — m,. The results for the other
second-class form factor f4 are significantly nonzero, but
are still noticeably smaller than the results for the first-class
form factors.

V. CHIRAL/CONTINUUM/KINEMATIC
EXTRAPOLATION OF THE FORM FACTORS

The last step in the data analysis is to perform fits of the
form factor results {f;, } using suitable functions describ-
ing the dependence on the momentum transfer, the depend-
ence on the up and down quark masses (or equivalently the
pion mass), and the dependence on the lattice spacing. We
perform global fits of the helicity form factors based on the
simplified z expansion [37], modified to account for pion-
mass and lattice-spacing dependence. The expansion
parameter z/ for a form factor f is defined as

\/zf q —\/t+—t0 2)
\/tf —-q +\/tf -1

where we choose
to = (my, — my)? (73)

so that the point z =0 corresponds to ¢> = g2, (i.e.,
p’ = 0in the A, rest frame). The values of ti are discussed
further below. After factoring out the leading pole con-
tribution, we expand the form factors in a power series in
z/. We find that our lattice data can be described well by

PHYSICAL REVIEW D 92, 034503 (2015)

keeping only the zeroth and first order in z/. As explained
further below, we also perform higher-order fits to estimate
systematic uncertainties. Our nominal (as opposed to
higher-order) fits are of the form

1 mlzr - mzzr hys
f<q2) _ [af<1 + el -phy >
1- q2/(mgole)2 ’ ’ A)%
: A2
fof(.2 f p’ | f _—~QCD
+a17 (g } X [1 +b +d
) (w/a * (afay

(74)
with fit parameters a{; , a{ , cf; , b/, and d’. Here, m,, are the
valence pion masses of each data set (see Table I), and
My ohys = 134.8 MeV is the physical pion mass in the
isospin limit [63]. As discussed in Ref. [29], chiral-
perturbation-theory predictions for the pion-mass depend-
ence of the form factors considered here are unavailable
and would be of limited use because of the large momen-
tum scales in these matrix elements, and because of the
large number of low-energy constants. In Eq. (74) we
describe the pion -mass dependence through the factor
1+ cg (m2 —m?2 phys) /A2 multiplying a,. Here, we intro-
duced the scale A, = 47zf with f = 132 MeV so that ¢,
becomes dimensionless. Because our lattice actions and
currents are O(a) improved, we allow for a quadratic
dependence on the lattice spacing via the factor in the
second line of Eq. (74), where Agcp = 0.5 GeV. The
parameters b/ and @/ describe the momentum-dependent
and momentum-independent parts of the lattice discretiza-
tion errors. We use the individual lattice QCD results for the
baryon masses from each data set (see Table VI) to evaluate
a’q? and z, and we take into account the uncertainties
and correlations of these masses. We set the pole masses
equal to

am{;Ole = ampg + al/, (75)
where ampg is the pseudoscalar B, or B, mass (in lattice
units) computed individually for each data set (and also
listed in Table VI), and A/ is the mass splitting (in GeV)
between the meson with the relevant quantum numbers and
the pseudoscalar B, (for A, — p) or B, (for A, - A.). We
use fixed values of A/ for all data sets, based on
experimental data (where available) [1] and averages of
our lattice QCD results over the different data sets. These
values are given in Table VII. The pole factor is then
written as

1
1 —(a*q?)/(ampg + aAT)*’

(76)

so that the explicit value of the lattice spacing is needed
only for the term aA/. Note that when the input values of
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TABLE VIL  Values of # and m/,.
mg = 6.276 GeV should be used.

PHYSICAL REVIEW D 92, 034503 (2015)

To evaluate the form factors in the physical limit, mp = 5.279 GeV, m, = 134.8 MeV, and

f I N p) mlg M=) AN =) (A A mlg (A = A AN = A
fe S 1~ (mp + my) mp + A 46 MeV (mf;,,e)2 mg + A 56 MeV
fo 0t (mg + m,)? my + A 377 MeV (mgole)z mp_+ A 449 MeV
94> 91 " (mp + m,)? mp + AS 427 MeV (m{)'ole)z mp_+ A 492 MeV
90 0~ (mg +m,)? mp + A 0 (] ge)? mg + A 0

A’ are varied, the shape parameters a'(’; and a‘f returned
from the fit change in such a way as to largely cancel the
effect of this variation on the form factors (varying A/ by
10% changes the form factors themselves by less than 1%).

The parameter ti should be set equal to or below the
location of any singularities remaining after factoring out
the leading pole contribution. The A, — p and A, — A,
form factors (in infinite volume) have branch cuts starting
at g> = (mg +m,)? and ¢*> = (mg + mp)?, respectively.
In the case of A;, — p, the form factors fy, g, g, have no
poles below this branch cut, and the form factors f,, f |, go
only have a single pole below g¢*> = (mg + m,)?, which
gets removed by the explicit factor of 1/[1 — ¢*/ (mgole)z].

We therefore set t/; = (mg + m,)?* for all A, — p form
factors. More precisely, to evaluate the dimensionless

quantity aztfr in the fit, we use

a2t =

(amps + amy gy )*  (for A, — p), (77)
where ampg is the pseudoscalar B, mass (in lattice units)
computed individually for each data set, and m, s =
134.8 MeV. This means that the value of the lattice spacing
is needed only for the term am,, ;.. We checked that using
the individual lattice pion masses of each data set instead of
the physical pion mass has a negligible effect on the
extrapolated form factors. In the case of A, — A, the
onset of the branch cut, mp + mp, is several hundred MeV

above the lowest pole for all form factors, and there may be
additional poles below mpg + mp. We therefore set tfr =

(mgole)2 for the A, - A, form factors; more precisely,

@t = (amps + aAl)?  (for A, — A,), (78)
where ampg is the pseudoscalar B, mass (in lattice units)
computed individually for each data set, as discussed above.
With this choice of ¢/, the factors of 1/[1 — g%/ (mgole)z] are
not strictly necessary, but we find that they improve the
quality of the fit at first order in the z expansion.

We implement the constraint ¢, (gau) = 94 (Gaax)
[Eq. (16)] at z9+9+ =0 and a =0 by using shared

parameters ag-?* and cg*%* for these two form factors.

We impose the constraints f((0) = f(0) and go(0) =
9+(0) [Egs. (14) and (15)] using Gaussian priors
with  widths equal to max[z/*(0),z/+(0)]*> and
max[z%(0), z9+ (0)]?, respectively, to allow for missing
higher-order terms in z/. For A, — p, we performed one
global fit to all helicity form factors, taking into account the
correlations between different form factors, different
momenta, and different data sets. For A, - A., such a
global fit showed indications of problems associated with a
poorly conditioned data covariance matrix, and we addi-
tionally performed fits of the subsets {f,,fo}, {fL},
{9:,91,90} to reduce the sizes of the data covariance
matrices. We then took the central values and covariances
of the form factor parameters within each subset from these
subset fits, and only used the global fit to estimate the cross-
covariances between the parameters in different subsets.
The physical limit is given by a — 0 and m, — m, s,
and correspondingly Eq. (74) reduces to the simple form

1 .
AP =————lah +al ()], (19)
1- q /(mpole)
TABLE VIII. Central values and uncertainties of the nominal

form factor parameters for A, - p and A, — A.. See Table IX
for the correlation matrices.

Parameter A, —p A, = A,

a-(?;— 0.4382 £0.0315 0.8146 £ 0.0167
a{’ —0.6452 £ 0.2093 —4.8990 + 0.5425
a{)'o 0.4189 £ 0.0256 0.7439 £ 0.0125
a{“ —0.7862 £+ 0.2038 —4.6480 + 0.6084
a{)'i 0.5389 £ 0.0435 1.0780 £ 0.0256
a{i —0.8069 + 0.3039 —6.4170 + 0.8480
ag-? 0.3912 £0.0198 0.6847 £+ 0.0086
al* —0.8167 £0.1749 —4.4310+ 0.3572
al 0.4526 £+ 0.0292 0.7396 £+ 0.0143
af —0.7817 £ 0.1886 —4.3660 + 0.3314
af* —0.9061 £ 0.1956 —4.4630 £ 0.3613
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where ¢ should be evaluated using the experimental values
of the baryon masses, and mgole, tfr should be set to the
values given in Table VII, with mp = 5.279 GeV,

m, = 134.8 MeV, and mp = 6.276 GeV. The central

values and uncertainties of the parameters {a{; ,a{ }
from the nominal fit are given in Table VIII, and the
correlation matrices are given in Table IX. The parameter
covariances cov(p,q) can be obtained from the
correlations corr(p,q) and uncertainties ¢,, o, using
|

p’ q

2_ 2 3
Mz =~ Maphys | ~f Mz

PHYSICAL REVIEW D 92, 034503 (2015)

cov(p.q) = o,0,corr(p, q); files containing the central
values and covariance matrices of the fit parameters are
available as Supplemental Material [64]. Plots of the lattice
data along with the physical-limit fit curves are shown in
Figs. 6, 7, 8, and 9.

To estimate the systematic uncertainties caused by our
assumptions on the lattice spacing, quark mass, and ¢>
dependence, we also perform fits that include additional
higher-order terms, employing the form

1 : :
fHO(qz) =T 5, F v |:a(}; <1+C(f) +C0
] - qz/(m{)o]e)z A)2(

3
—m . .
”’phys> +d <1 +¢]

mz —m; o, , :
) () + ol ()P
V4

A

x [1 cpr PP g Moo gy DT o Aden +j P Aoco s |p/|AéCD] (80)
(z/a)* ~ (z/a)* = (a/a)’ = (z/a)’ (z/a)’ (z/a)’

TABLE IX. Correlation matrices of the nominal form factor parameters for A, — p (top) and A, — A, (bottom).
Ay —p a{).' a{ - ago a{o agi a{i agt” ay’ ay af’ aj*
ag‘ 1 —0.9058  0.5081 —0.4403  0.5299 -0.3987  0.5362 —-0.4112  0.6302 -0.5305 —0.3898
a{* —0.9058 1 -0.4280  0.4312 -0.4238 03739 -0.4402 0.3912 -0.4901 0.4839 0.3668
ag‘) 0.5081 —0.4280 1 -0.8533 04251 -0.3226  0.6963 —-0.5274  0.5504 —0.4694 —0.4886
0{0 -0.4403 04312 -0.8533 1 -0.3525  0.3008 —0.5963  0.5917 -0.4661 0.4554 0.5667
af)u 0.5299 —-0.4238  0.4251 —0.3525 1 -0.8930 04748 —-0.3554 05975 -0.5111 —-0.3348
a{L -0.3987  0.3739 -0.3226  0.3008 —0.8930 1 —-0.3664  0.3156 —-0.4349  0.4542 0.2900
ag-’ 0.5362 —0.4402  0.6963 —-0.5963  0.4748 —0.3664 1 —0.8434  0.6238 —0.5500 —0.7905
al’ -0.4112  0.3912 -0.5274 05917 -0.3554  0.3156 —0.8434 1 -0.4761 0.5011 0.8778
al 0.6302 —0.4901 0.5504 —0.4661 0.5975 —0.4349  0.6238 -0.4761 1 —0.9039 —-0.4497
a¥ —0.5305  0.4839 —-0.4694  0.4554 -0.5111 0.4542 —0.5500  0.5011 —-0.9039 1 0.4632
alt —0.3898  0.3668 —0.4886  0.5667 —0.3348  0.2900 -0.7905 0.8778 —-0.4497  0.4632 1
Ay = A, a'();* a‘f* al al aj)* al* ag-” al’ ay’ al af*
aJO‘+ 1 -0.6644  0.6827 —-0.4853  0.6218 —0.3906  0.4828 —-0.3152 0.5636 —0.4317 —-0.3763
a{* —0.6644 1 -0.6515 09445 -0.3853  0.5109 —0.3831 04915 -0.2979  0.4916  0.4764
a-(’;" 0.6827 —0.6515 1 —0.7040  0.4208 -0.3620 0.6174 —0.4822 04320 -0.4726 -0.4756
a{” —0.4853  0.9445 -0.7040 1 -0.2738  0.4739 -0.3888  0.5261 -0.2164 04779  0.4877
a'gL 0.6218 —-0.3853  0.4208 —0.2738 1 -0.6637 03933 -0.2369  0.5161 —0.3639 —0.2926
a-fL —0.3906  0.5109 -0.3620  0.4739 —0.6637 1 -0.2903 03509 —-0.2443  0.3640  0.3400
ag-? 04828 —-0.3831 0.6174 —0.3888  0.3933 —0.2903 1 -0.7304  0.6365 -—0.6743 —0.7301
al’ -0.3152 04915 -0.4822  0.5261 —0.2369  0.3509 -0.7304 1 —0.3829  0.8725 0.9171
al 0.5636 —-0.2979  0.4320 -0.2164 0.5161 —-0.2443  0.6365 —0.3829 1 —0.6843 —0.4846
af -0.4317 04916 -0.4726 04779 -0.3639 0.3640 -0.6743  0.8725 —0.6843 1 0.8456
al* -0.3763 04764 -0.4756 04877 —0.2926 0.3400 —-0.7301 09171 —-0.4846 0.8456 1
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FIG. 5 (color online). Extrapolations of R/(|p’[.?) to infinite source-sink separation. The data shown here are at momentum
|p’|? = 3(27/L)>?, and are from the C24 data set. For each momentum, all vector (or axial vector) form factors from all data sets are
fitted simultaneously as explained in the main text.
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FIG. 6 (color online).
indicate the 1o statistical uncertainty.

This allows for higher-order variation in the lattice
spacing, quark masses, and momentum dependence.
The data themselves
complex form sufficiently well, so we constrain the

do not determine this more
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A, = p vector form factors: lattice results and extrapolation to the physical limit (nominal fit). The bands

higher-order coefficients E{;, c{, b, d, i, k' to be

natural sized using Gaussian priors with central value
0 and width

z-expansion coefficients a, using Gaussian priors with

10. We constrain the second-order
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FIG. 7 (color online).

indicate the 1o statistical uncertainty.

central values 0 and widths given by approximately
twice the magnitude of the previous (nominal) fit
results for a’;. Given that this fit is quadratic in z/,
we now impose the kinematic constraints (14) and (15)

0.75

0.80
q2 /ql'%lax
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A, — p axial-vector form factors: lattice results and extrapolation to the physical limit (nominal fit). The bands

at ¢> =0 up to widths of max[z/°(0),z/+(0)]* and
max|[z%(0), z+ (0)]?, respectively.

In the higher-order fit, we use bootstrap data for
the correlator ratios

in which the matching- and
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FIG. 8 (color online).
indicate the lo statistical uncertainty.

O(a)-improvement coefficients were drawn from Gaussian
random distributions with central values and widths accord-
ing to Table III. Thus, the higher-order fit results also
include the perturbation-theory systematic uncertainty. To

A, — A, vector form factors: lattice results and extrapolation to the physical limit (nominal fit). The bands

take into account the uncertainties of the lattice spacings,
we promote the lattice spacings of the different ensembles
to fit parameters, constrained with Gaussian priors accord-
ing to the central values and uncertainties given in Table I.
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FIG. 9 (color online). A, — A, axial-vector form factors: lattice results and extrapolation to the physical limit (nominal fit). The bands
indicate the lo statistical uncertainty.

The systematic uncertainties caused by the finite lattice  using chiral perturbation theory for the nucleon magnetic
volume cannot easily be estimated from the data, because =~ moment [65] and axial charge [66], and, specifically for the
all of our data sets have approximately the same lattice size, ensembles used herein, for the heavy-baryon axial cou-
L ~?2.7 fm. Finite-volume effects have been calculated  plings [61,67]. Based on this experience, we estimate that
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the finite-volume systematic uncertainties in our results are
3% for the A, — p form factors and 1.5% for the A, - A,
form factors. The neglected isospin breaking effects in the
form factors are estimated to be of order O((my; —m,)/
Aqep) #0.5% and O(aey, ) & 0.7%. Finally, there is an
uncertainty resulting from the tuning of the relativistic
heavy quark (RHQ) parameters, which was performed in
Ref. [51] for the b quark and in Ref. [52] for the ¢ quark. In
Ref. [12], the same b-quark parameters were used to
compute the B — x form factors on the same gauge-field
configurations as in the present work, and the uncertainties

of amg’), &P and cg% were propagated to the form factors

. . . (b)
by repeating the calculation for multiple values of am,,",

&P and cg"g. The resulting uncertainties in the B — &
form factors were found to be 1%. We could not afford to
repeat the present calculation for multiple values of the
RHQ parameters, and therefore adopt the 1% estimate
also for the b-quark parameter uncertainty in the A, — p
and A, — A, form factors. We are unable to estimate the
c-quark parameter uncertainty in the A, — A, form factors
at this time, but we note that our choice of parameters
precisely reproduces the experimental values of the char-
monium masses and hyperfine splittings, as well as the
relativistic continuum dispersion relation, on both the
coarse and the fine lattices [52]. To estimate the effect
of the light-quark-mass uncertainties, we promote the pion
masses (in lattice units) to fit parameters, constrained with
Gaussian priors according to the central values and widths
given in Ref. [36]. We find that this results in a smaller than
0.1% uncertainty in the A, - p and A, - A, form factors.
To incorporate the systematic uncertainties resulting from
the finite-volume effects, the missing isospin breaking, and
the RHQ parameter tuning in the higher-order fit, we add
these uncertainties to the data covariance matrix before
performing the fit. We assume that these uncertainties are
100% correlated between the different data sets and differ-
ent final-state momenta, and between the three different
form factors corresponding to the same type of current
(vector or axial vector).

In the physical limit, the higher-order fit functions
reduce to

]+ d[ (@) + PP,

fio(4?) e (81)

The values of the parameters a'g , a‘{ , a-’; , their total
uncertainties, and their correlation matrices are given in
Tables X and XI, and are also available as Supplemental
Material [64]. The recommended procedure for computing
the central value, statistical uncertainty, and total systematic
uncertainty of a general observable depending on the form
factor parameters (for example, a differential decay rate at a

PHYSICAL REVIEW D 92, 034503 (2015)

TABLE X. Central values and uncertainties of the higher-order
form factor parameters for A, - p and A, — A.. See Table XI
for the correlation matrices.

Parameter Ay —>p Ay, = AL

a{)'- 0.4251 +0.0388 0.8103 £+ 0.0276
a_;t —0.7088 + 0.3361 —4.7480 + 0.9429
a;— 0.8925 + 0.8869 0.7862 + 8.8020
a{;o 0.4144 +£0.0321 0.7389 £ 0.0225
a{o —1.0420 £ 0.3142 —4.5630 £ 0.9426
a’;’ 1.9260 £+ 0.9190 2.7050 + 8.4430
a-(f;i 0.5214 £+ 0.0520 1.0940 £ 0.0435
a-{i —0.8247 + 0.4424 —6.4410 + 1.5010
afz‘i 0.7609 £+ 1.2770 2.3160 £+ 11.320
al- o 0.3889 + 0.0260 0.6848 +0.0184
ay’ —1.0730 £ 0.2617 —4.3790 + 0.6954
ay’ 1.9860 + 0.8247 1.2810 4+ 7.3650
al 0.4419 £+ 0.0388 0.7408 + 0.0258
al —0.8649 + 0.3481 —4.3860 + 0.8774
ay 0.9969 + 0.8955 1.3380 =+ 8.0440
af* —1.0840 £+ 0.2732 —4.6270 + 0.7088
ay* 1.4520 £ 1.0680 1.6140 + 7.4530

particular value of g2, or an integrated decay rate, or a ratio
of decay rates) is the following:

(1) Compute the observable and its uncertainty using
the nominal form factors given by Eq. (79), with
the parameter values and correlation matrices from
Tables VIII and IX. Denote the so-obtained central
value and uncertainty as

0,60. (82)

(2) Compute the same observable and its uncertainty
using the higher-order form factors given by
Eq. (81), with the parameter values and correlation
matrices from Tables X and XI. Denote the
so-obtained central value and uncertainty as

Ono, 00 HO- (83)

(3) The final result for the observable is then given by

(0== (25) + max (|0HO — 0|,
~~~

stat

|0"20,H0 - G%DD'

syst

(84)

In other words, the central value and statistical uncertainty
are obtained from the nominal fit, and the systematic
uncertainty is given by the larger of the following two
quantities: (i) the shift in the central value between the
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TABLE XI. Correlation matrices of the higher-order form factor parameters for A, — p (top) and A, — A, (bottom).

Nov d o o d d o A @ & & @ @ @ o
ag+ 1 —-0.7671 0.2482 0.5337 —0.2670 —0.0922 0.5121 —-0.2469 —0.0180 0.3774 —0.2148 —0.0472 0.4420 —-0.2680 0.0018 —0.2284 —0.0231
a-lf+ —-0.7671 1 —-0.6611 —0.2486 0.1617 0.0653 —0.2526 0.1671 0.0056 —0.2177 0.1480 0.0287 —0.2496 0.1849 —0.0169 0.1534 0.0147
a‘é* 0.2482 —0.6611 1 —-0.0792 0.0267 0.2795 —0.0035 —-0.0120 0.0425 —-0.0562 0.0382 0.0559 —0.0279 —0.0074 0.0870 0.0370 0.0469 .
a-(/;“ 0.5337 —-0.2486 —0.0792 1 —-0.7202 0.2599 0.4581 —0.2052 —0.0146 0.4734 —0.2798 —0.0031 0.3860 —0.2266 —0.0115 —0.2781 0.0048 -
a{“ —-0.2670 0.1617 0.0267 —0.7202 1 —-0.6947 —0.2404 0.1415 0.0128 —0.2964 0.2603 —0.0377 —0.2410 0.1694 0.0090 0.2610 —0.0279
a-zfo —0.0922 0.0653 0.2795 0.2599 —0.6947 1 0.0190 —0.0056 0.0297 —0.0019 —0.0529 0.1086 —0.0081 —0.0097 0.0664 —0.0568 0.0874
a(f)'L 0.5121 -0.2526 —0.0035 0.4581 —0.2404 0.0190 1 —-0.7672 0.1031 0.3418 —-0.1831 —0.0539 0.4313 —-0.2713 0.0163 —0.1994 —0.0127
a{L —-0.2469 0.1671 —0.0120 —0.2052 0.1415 —0.0056 —0.7672 1 —0.5040 —0.1983 0.1259 0.0378 —0.2429 0.1907 —0.0274 0.1347 0.0083
aéL —0.0180 0.0056 0.0425 —-0.0146 0.0128 0.0297 0.1031 —0.5040 1 —0.0271 0.0045 0.0524 —-0.0286 0.0090 0.0530 0.0120 0.0187
azgi’g+ 0.3774 —0.2177 —0.0562 0.4734 —0.2964 —0.0019 0.3418 —0.1983 —0.0271 1 —-0.6751 0.2299 0.5903 —0.2849 —0.0084 —0.6325 0.1314
a‘({+ —0.2148 0.1480 0.0382 —0.2798 0.2603 —0.0529 —0.1831 0.1259 0.0045 —0.6751 1 —-0.6972 —0.2576 0.1666 —0.0268 0.6832 —0.1976
a‘%* —0.0472 0.0287 0.0559 —0.0031 —0.0377 0.1086 —0.0539 0.0378 0.0524 0.2299 —-0.6972 1 —-0.0760 0.0463 0.2693 —0.3207 0.2419
ago 0.4420 —0.2496 —0.0279 0.3860 —0.2410 —0.0081 0.4313 —0.2429 —-0.0286 0.5903 —0.2576 —0.0760 1 —-0.7868 0.3673 —0.2892 —0.0105
a“fo —0.2680 0.1849 —0.0074 —0.2266 0.1694 —0.0097 —0.2713 0.1907 0.0090 —0.2849 0.1666 0.0463 —0.7868 1 —-0.7393 0.1798 0.0107
ago 0.0018 —0.0169 0.0870 —0.0115 0.0090 0.0664 0.0163 —0.0274 0.0530 —0.0084 —0.0268 0.2693 0.3673 —0.7393 1 0.0302 0.0637
aﬁ’u —-0.2284 0.1534 0.0370 —0.2781 0.2610 —0.0568 —0.1994 0.1347 0.0120 —0.6325 0.6832 —0.3207 —0.2892 0.1798 0.0302 1 -0.6223
a‘gL —0.0231 0.0147 0.0469 0.0048 —0.0279 0.0874 —0.0127 0.0083 0.0187 0.1314 —-0.1976 0.2419 —-0.0105 0.0107 0.0637 —0.6223 1
Ap = A, a{;’ a{* ag* a{;(’ a{ 0 a‘§° a{} a{ + a}; ag- al” ast ag’ af’ a aft as-
a.0f+ 1 —0.5220 0.1623 0.7106 —0.2661 —0.0293 0.6259 —-0.2683 0.0077 0.1992 —0.1307 —0.0277 0.2833 —0.1838 0.0436 —0.1611 0.0088
a{+ —-0.5220 1 —0.6595 —0.3199 0.4277 0.0649 —0.2548 0.2618 —0.0102 —0.1403 0.1878 0.0413 —0.1575 0.1932 —0.0364 0.1703 0.0030
a£+ 0.1623 —0.6595 1 —0.0350 0.1309 0.0939 0.0181 —-0.0149 0.0300 —0.0111 0.0190 0.0007 0.0005 —0.0041 0.0186 0.0246 0.0088
ag“ 0.7106 —0.3199 —0.0350 1 —-0.5132 0.1123 0.5190 —-0.2037 —0.0014 0.2531 —0.2100 0.0128 0.2012 —0.1481 0.0096 —0.2057 —0.0079
a{o —-0.2661 0.4277 0.1309 —0.5132 1 —-0.5243 —-0.1791 0.2285 0.0094 —0.1770 0.2589 0.0134 —0.1266 0.1854 —0.0086 0.2339 0.0127
a-go —0.0293 0.0649 0.0939 0.1123 —-0.5243 1 —0.0222 0.0275 0.0138 0.0044 —0.0148 0.0300 —0.0074 0.0112 —0.0034 —0.0218 0.0075
aél 0.6259 —0.2548 0.0181 0.5190 —0.1791 —0.0222 1 —0.5829 0.1142 0.1754 —-0.1255 —0.0168 0.2874 —0.1811 0.0416 —0.1320 —0.0086
a{i —-0.2683 0.2618 —0.0149 —0.2037 0.2285 0.0275 —0.5829 1 —0.4656 —0.1154 0.1472 0.0360 —0.1487 0.1650 —0.0341 0.1319 0.0096
aél 0.0077 —=0.0102 0.0300 —0.0014 0.0094 0.0138 0.1142 —0.4656 1 —0.0006 —0.0003 0.0057 0.0049 —0.0059 0.0087 —0.0006 0.0033
agi’g+ 0.1992 —-0.1403 —-0.0111 0.2531 —0.1770 0.0044 0.1754 —-0.1154 —0.0006 1 —0.4436 0.0876 0.7054 —0.2594 0.0128 —0.4268 0.0479
aﬁ’+ —-0.1307 0.1878 0.0190 —0.2100 0.2589 —0.0148 —0.1255 0.1472 —0.0003 —0.4436 1 —0.5465 —0.2790 0.3438 0.0541 0.4776 —0.1381
a‘g* —-0.0277 0.0413 0.0007 0.0128 0.0134 0.0300 —0.0168 0.0360 0.0057 0.0876 —0.5465 1 —0.0447 0.1194 0.0577 —0.1482 0.2692
a‘go 0.2833 —0.1575 0.0005 0.2012 —0.1266 —0.0074 0.2874 —0.1487 0.0049 0.7054 —0.2790 —0.0447 1 —-0.5511 0.2196 —0.3015 0.0059
a?o —0.1838 0.1932 —0.0041 —0.1481 0.1854 0.0112 —0.1811 0.1650 —0.0059 —0.2594 0.3438 0.1194 —0.5511 1 —0.7687 0.2440 0.0190
aleo 0.0436 —0.0364 0.0186 0.0096 —0.0086 —0.0034 0.0416 —0.0341 0.0087 0.0128 0.0541 0.0577 0.2196 —0.7687 1 0.0004 0.0405
a!]u_ —-0.1611 0.1703 0.0246 —0.2057 0.2339 —0.0218 —0.1320 0.1319 —0.0006 —0.4268 0.4776 —0.1482 —0.3015 0.2440 0.0004 1 —-0.5028
ay 0.0088 0.0030 0.0088 —0.0079 0.0127 0.0075 —0.0086 0.0096 0.0033 0.0479 —-0.1381 0.2692 0.0059 0.0190 0.0405 —0.5028 1

ANV 7a_pd « 1y
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FIG. 10 (color online).
show the total uncertainty.

nominal fit and the higher-order fit, and (ii) the increase in
the uncertainty (computed in quadrature as shown above)
from the nominal fit to the higher-order fit. The statistical
and systematic uncertainties in Eq. (84) should be added in
quadrature. By construction, the above procedure gives the
combined systematic uncertainty associated with the con-
tinuum extrapolation, chiral extrapolation, z expansion,
perturbative matching, scale setting, b-quark parameter
tuning, finite volume, and missing isospin symmetry
breaking/QED.

Plots of the form factors including the systematic
uncertainties, computed as explained above, are shown
in Figs. 10 and 12. The relative systematic uncertainties in
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Final results for the A, — p form factors. The inner bands show the statistical uncertainty and the outer bands

the form factors are shown in Figs. 11 and 13. In addition to
the combined systematic uncertainty (thick black curves),
these figures also show the individual sources of uncer-
tainty. The individual systematic uncertainties were esti-
mated using additional fits as follows:

(1) Continuum-extrapolation uncertainty: only the

higher-order terms with coefficients b*, &/, j/, k'
were added to Eq. (74).

(ii) Chiral-extrapolation uncertainty: only the higher-

order terms with coefficients E{;, c{ were added

to Eq. (74).
(iii) z-expansion uncertainty: only the higher-order term
al[z/ (¢*))* was added to Eq. (74).
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FIG. 11 (color online).
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Systematic uncertainties in the A, — p form factors in the high-¢? region. As explained in the main text, the

combined uncertainty is not simply the quadratic sum of the individual uncertainties.

(iv)

)

Matching and improvement uncertainty: no higher-
order terms were added to Eq. (74), but the
matching- and O(a)-improvement coefficients
were drawn from Gaussian random distributions
with central values and widths according to
Table III when computing the correlator ratios
using the bootstrap method.

Scale setting (i.e., lattice spacing) uncertainty: no
higher-order terms were added to Eq. (74), but the

(vi)

034503-23

lattice spacings were promoted to fit parameters
constrained with Gaussian priors according to the
central values and uncertainties given in Table I.
Finite-volume effects, missing isospin breaking/
QED, and RHQ parameter tuning uncertainties:
no higher-order terms were added to Eq. (74), but
the estimates of these uncertainties (as discussed
above) were added to the data covariance matrix
used in the fit.
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FIG. 12 (color online).
show the total uncertainty.

Figures 11 and 13 show that near ¢*> = g2,,, the finite-
volume and chiral-extrapolation uncertainties are the
largest, but as the momentum |p’| increases (corresponding
to decreasing ¢2), the z-expansion and continuum-
extrapolation uncertainties grow and become dominant.
The continuum-extrapolation uncertainty should not be
interpreted as the actual size of lattice discretization errors;
the reason for the large continuum-extrapolation uncer-
tainty is primarily that we have only two lattice spacings
and our data do not tightly constrain all of the extrapolation
coefficients.
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Final results for the A, — A_ form factors. The inner bands show the statistical uncertainty and the outer bands

Discretization errors associated with the relativistic
heavy quark actions used for the b and ¢ quarks are not
necessarily well approximated by the leading terms in an
expansion in aAgcp and ap’. These errors can be
described by mismatches of the coefficients of higher-
dimensional operators in the heavy-quark expansions of
the lattice theory and continuum QCD [47,68-70].
In Ref. [12], the resulting heavy-quark discretization
errors in the B — z form factors were estimated using
power counting to be of order 2% for the same lattice
actions and parameters as used in the present work. For
most of the kinematic range, our estimate of the total
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Systematic uncertainties in the A, — A, form factors in the high-¢> region. As explained in the main text, the

combined uncertainty is not simply the quadratic sum of the individual uncertainties.

continuum-extrapolation uncertainty in the A, — p form
factors is larger than this power-counting estimate, see

Fig. 11. Similarly, a comparison with the analysis of B —
D form factors in Ref. [59] suggests that heavy-quark
discretization errors in the A, - A. form factors are
smaller than or compatible with our estimates of the total
continuum-extrapolation uncertainties in the entire kin-

ematic range.

VL. PREDICTIONS FOR THE A, — p£-i,
AND A, — A7~ 7, DECAY RATES

In this section, we present predictions for the A, —
pf v, and A, —» A7, differential and integrated
decay rates using our form factor results. Including possible
right-handed currents with real-valued e®, the effective
Hamiltonian in Eq. (2) leads to the following expression
for the differential decay rate in terms of the helicity
form factors:
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2
qz) {4<m§ T 2g?)(s [(1 = eR)gu + s_[(1 + eR)f L)

+ 2% (s4[(mn, = my)(1 =€) gy ] +s_[(ma, +my)(1 +€f)f )
+ % (s, [(ma, = my)(1+ €R) ol +s_[(my, +my)(1 - 65)90]2)}, (85)

where, as before, X = p, A, denotes the final-state baryon,
and

s+ = (my, £my)* = ¢ (86)

Ab_’p7—7177

S 20p ]
>
o
1
‘V}
X
Lof

dr/dg?
Va2

0.5}

0.0
0 5 10 15 20

7 (GeV?)

FIG. 14 (color online). Predictions for the A, — pZ~v, differ-
ential decay rates for £ = e, p, 7 in the Standard Model. The inner
bands show the statistical uncertainty and the outer bands show
the total uncertainty, calculated using Eq. (84).

|

Expressions for the individual helicity amplitudes and the
angular distributions can be found in Refs. [27,28,71]. By
combining experimental data with our form factor results,

novel constraints in the (V7,,ef) plane can be obtained.
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FIG. 15 (color online). Predictions for the A, — A.Z7D,
differential decay rates for £ = e, u,7 in the Standard Model.
The inner bands show the statistical uncertainty and the outer
bands show the total uncertainty, calculated using Eq. (84).
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In the following, we consider the Standard Model

with VI, =V, and ef =0. Our predictions of the

A, - p¢~ v, and A, > A0, differential decay rates
for £ = e, u, 7 are shown in Figs. 14 and 15. The central
values, statistical uncertainties, and systematic uncertain-
ties have been calculated using Eq. (84); all baryon and
lepton masses were taken from Ref. [1]. Our results
are most precise in the high-¢g* region, where the form
factor shapes are most tightly constrained by the lattice
QCD data. We obtain the following partially integrated
decay rates:

1 dmae dU(A, = ppu~0,)
| ub‘ 15 GeV? dq2

= (12.31 £0.76 £0.77) ps~', (87)

(15 GeV?) =

e dI( Ab - Auo,)
|VLh\ 7 GeV? q*
837i016i034) ps~, (88)

Cauw(7 GeV?) = dg?

and their ratio

¢ (15 GeV?)

= 1.471 +0.095 £+ 0.109, 89
CA[ME(7 G6V2> ( )

where the first uncertainty is statistical and the second
uncertainty is systematic. Together with experimental
data, Egs. (87), (88), and (89) will allow determinations
of |V ub/ Vep| With theory uncertainties of
4.4%, 2.2%, and 4.9%, respectively. A breakdown of the
uncertainties into the individual sources, obtained
by applying Eq. (84) to the various additional form
factor fits discussed at the end of Sec. V, is given in
Table XII.

The predicted total decay rates for all possible lepton
flavors are

T(Ay = pe,)/|Vap|? = (257 £2.6 £4.6) ps~',  (90)

LAy = pp0,)/|Vip* = (257 £2.6 £4.6) ps™', (91)
T(Ay, = pr0,) )|V = (17.7£1.3£1.6) ps!,  (92)

(A, = Aee™0,)/|Vep|> = (21.5 £ 0.8 £ 1.1) ps~!

(93)

PHYSICAL REVIEW D 92, 034503 (2015)

TABLE XII. Approximate breakdown of relative uncertainties
in the partially integrated A, — pu~0, and A, — A u~7, decay
rates and their ratio, defined in Eqgs. (87), (88), and (89). As
explained in the main text, the combined uncertainty is not simply
the quadratic sum of the individual uncertainties.

15 GeV?
Epn(15 GeV?) £y,45(7 GeV?) £ v
(%) (%) (%)
Statistics 6.2 1.9 6.5
Finite volume 5.0 2.5 4.9
Continuum 3.0 1.4 2.8
extrapolation
Chiral extrapolation 2.6 1.8 2.6
RHQ parameters 1.4 1.7 23
Matching and 1.7 0.9 2.1
improvement
Missing isospin 1.2 1.4 2.0
breaking/QED
Scale setting 1.7 0.3 1.8
Z expansion 1.2 0.2 1.3
Total 8.8 4.5 9.8

T(Ap = A™0,)/|Vep = (21.5£0.8 £ 1.1) ps~

(94)

(A, = A ,)/|Vey? = (7.15 £ 0.15 £ 0.27) ps~

(95)

Motivated by the R(D™)) puzzle [14], we also provide
predictions for the following ratios:

F(Ab i ACT_DT)
I'(A, —» Ace7D,)

= 0.3318 £ 0.0074 £+ 0.0070,  (96)

F(Ab d ACT_DT)
F(Ab - Ac:u_D;t)

= 0.3328 £ 0.0074 £ 0.0070.  (97)

QED corrections to the decay rates, which may be
relevant at this level of precision, have been neglected
here.

VII. SUMMARY

We have presented a high-precision lattice QCD calcu-
lation of the complete set of relativistic form factors
describing the A, — p and A, — A, matrix elements of
the vector and axial vector b — u and b — ¢ currents. The
form factors and their uncertainties in the physical limit are
shown in Figs. 10 and 12. Any observable depending on the
form factors can be calculated using Eq. (84), which is
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based on two different sets of form factor parameters.
The nominal form factors are used to calculate the
central value and statistical uncertainty of the observable,
and are given by the functions (79) with parameters and
correlation matrices from Tables VIII and IX, together
with the pole masses from Table VII. The higher-order
form factors are additionally needed to calculate the
systematic uncertainty of the observable, and are given
by Eq. (81) with the parameters from Tables X and XI.
The higher-order fit was performed in such a way that the
systematic uncertainty obtained from Eq. (84) includes
the continuum-extrapolation uncertainty, the chiral-
extrapolation uncertainty, the kinematic (¢*) extrapolation
uncertainty, the perturbative matching/improvement
uncertainty, the uncertainty due to the finite lattice volume,
and the uncertainty from the missing isospin breaking
effects. The individual contributions to the systematic
uncertainties in the form factors are shown in Figs. 11
and 13.

Our predictions of the A, —» p£~v, and A, - A0,
differential decay rates using the new form factors are
presented in Sec. VI. The results (87), (88), and (89) for the
Ay = pp~v, and A, - A.u~0, differential decay rates in
the high-¢” region can be combined with forthcoming
experimental data to determine |V |, |V |, and |V, /V
with theory uncertainties of 4.4%, 2.2%, and 4.9%,
respectively. These uncertainties are competitive with the
total uncertainties in the 2014 Particle Data Group values
based on exclusive B meson decays [see Eq. (1)].
Compared to Ref. [29], we have reduced the uncertainty
in the A, = p£~1, decay rate at high ¢° by a factor of 3.
This reduction in uncertainty mainly resulted from the
elimination of the static approximation for the b quark.
Combined with experimental data, our form factor
results will also provide novel constraints on right-handed
couplings beyond the Standard Model [7-10]. The
constraints from the baryonic decays nicely complement
existing constraints from mesonic decays due to the
unique dependence of the baryonic decays on ep.
Using our A, — A, form factors, very precise
predictions can also be made for the decay A, —
A0, which may provide new insights into the
R(D™)) puzzle [28,71].
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Note added—A measurement of the ratio of partially

integrated A, — pp~v, and A, — A.u"0, decay rates

was recently published by the LHCb Collaboration, with
the result [73]

q;lnax dF(Ah_)p”_E#) d 2
15 GeV? a7
qr2m|x dr‘(Ab_)A(‘:uiﬁﬂ)
7 GeV? dq?

= (1.00 £ 0.04 + 0.08) x 1072,
dq?

(98)

where the first uncertainty is statistical and the second
uncertainty is systematic. Combined with our lattice QCD
result in Eq. (89), this gives [73]

%
||V“b|| = 0.083 & 0.004(expt) & 0.004(lattice),  (99)
cb

and, taking the value of |V | extracted from exclusive B
decays [73],
|V.up| = (3.27 £ 0.15(expt) & 0.16(lattice)

+0.06(|V,5])) x 1072 (100)
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Tables XIII-X VT list the form factor values extracted from the individual lattice data sets and momenta.

TABLE XIII. A, — p helicity form factors.

PHYSICAL REVIEW D 92, 034503 (2015)
APPENDIX: TABLES OF LATTICE FORM FACTOR DATA

f(A, = p) Ip'?/(2z/L)* Cl4 c24 C54 F23 F43 F63
fi 1 1.436(60) 1.417(52) 1.429(54) 1.422(60) 1.419(51) 1.436(41)
2 1.209(66) 1.202(59) 1.213(55) 1.210(83) 1.218(57) 1.236(44)
3 1.037(73) 1.037(52) 1.050(50) 1.032(56) 1.051(36) 1.083(34)
4 0.912(64) 0.925(27) 0.938(27) 0.968(31) 0.964(22) 0.969(19)
5 0.809(34) 0.823(26) 0.836(26) 0.856(30) 0.857(22) 0.875(19)
6 0.740(34) 0.754(26) 0.768(26) 0.780(29) 0.788(22) 0.810(19)
8 0.614(35) 0.651(27) 0.664(27) 0.682(29) 0.690(21) 0.710(19)
9 0.590(36) 0.608(28) 0.623(27) 0.655(29) 0.649(22) 0.672(19)
fi 1 1.767(88) 1.762(64) 1.802(66) 1.780(81) 1.771(73) 1.804(59)
2 1.526(85) 1.523(68) 1.558(64) 1.547(97) 1.554(71) 1.582(50)
3 1.32(11) 1.325(85) 1.353(81) 1.31(11) 1.333(76) 1.390(57)
4 1.136(95) 1.156(61) 1.185(54) 1.201(57) 1.203(34) 1.224(46)
5 1.009(50) 1.024(39) 1.056(39) 1.068(45) 1.079(32) 1.112(29)
6 0.923(50) 0.941(39) 0.968(39) 0.964(44) 0.988(32) 1.029(29)
8 0.756(50) 0.805(40) 0.830(39) 0.839(45) 0.857(32) 0.893(30)
9 0.726(51) 0.754(41) 0.781(40) 0.808(46) 0.811(33) 0.849(31)
fo 1 1.056(24) 1.011(26) 1.008(26) 1.051(29) 1.040(24) 1.025(21)
2 0.887(37) 0.878(34) 0.874(37) 0.889(43) 0.894(36) 0.891(36)
3 0.775(39) 0.777(24) 0.777(24) 0.788(29) 0.796(24) 0.798(23)
4 0.718(40) 0.727(25) 0.724(29) 0.757(49) 0.748(48) 0.746(20)
5 0.654(24) 0.674(20) 0.672(20) 0.666(26) 0.669(21) 0.681(17)
6 0.606(24) 0.631(20) 0.633(19) 0.626(25) 0.627(21) 0.645(17)
8 0.516(26) 0.549(22) 0.555(20) 0.550(29) 0.555(24) 0.581(19)
9 0.502(30) 0.529(28) 0.535(20) 0.530(29) 0.530(26) 0.559(21)
g 1 0.952(17) 0.922(17) 0.920(14) 0.947(24) 0.939(23) 0.925(20)
2 0.828(19) 0.815(17) 0.813(16) 0.823(27) 0.826(24) 0.821(21)
3 0.721(28) 0.721(19) 0.722(19) 0.721(33) 0.729(25) 0.735(22)
4 0.648(24) 0.664(16) 0.663(12) 0.665(27) 0.659(24) 0.663(21)
5 0.582(20) 0.606(15) 0.606(11) 0.598(27) 0.600(27) 0.607(23)
6 0.540(20) 0.567(15) 0.569(11) 0.559(30) 0.561(31) 0.576(26)
8 0.463(22) 0.497(16) 0.505(12) 0.494(38) 0.496(36) 0.517(30)
9 0.458(25) 0.481(24) 0.489(12) 0.487(30) 0.483(30) 0.507(25)
g1 1 0.952(23) 0.920(20) 0.919(16) 0.947(30) 0.939(28) 0.924(25)
2 0.827(25) 0.812(20) 0.811(18) 0.818(32) 0.822(30) 0.817(26)
3 0.719(32) 0.720(22) 0.720(22) 0.715(38) 0.723(31) 0.729(27)
4 0.643(29) 0.659(20) 0.658(16) 0.657(33) 0.651(30) 0.655(26)
5 0.578(26) 0.603(19) 0.602(14) 0.586(34) 0.589(33) 0.598(28)
6 0.535(27) 0.566(20) 0.566(15) 0.546(38) 0.549(37) 0.566(32)
8 0.456(36) 0.495(24) 0.503(17) 0.476(51) 0.480(48) 0.506(40)
9 0.454(39) 0.482(36) 0.491(17) 0.473(45) 0.470(45) 0.499(36)
9 1 1.475(60) 1.469(47) 1.477(41) 1.496(75) 1.469(57) 1.476(43)
2 1.237(44) 1.229(39) 1.242(36) 1.274(50) 1.262(42) 1.275(26)
3 1.055(24) 1.048(21) 1.065(21) 1.082(28) 1.089(22) 1.113(17)
4 0.912(22) 0.924(20) 0.935(19) 0.982(25) 0.972(19) 0.972(15)
5 0.808(21) 0.818(18) 0.833(19) 0.872(22) 0.867(17) 0.881(14)
6 0.73421) 0.746(18) 0.759(19) 0.782(21) 0.789(17) 0.811(14)
8 0.603(30) 0.631(18) 0.646(19) 0.668(20) 0.675(17) 0.695(14)
9 0.576(24) 0.592(20) 0.607(20) 0.640(23) 0.638(18) 0.660(16)
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TABLE XIV. A, — p Weinberg form factors.

f(Ay = p) Ip’|?/(27/L)? Cl4 c24 C54 F23 F43 F63
Vit 1 1.168(42) 1.144(46) 1.152(47) 1.123(48) 1.138(37) 1.164(31)
2 0.974(55) 0.968(54) 0.977(51) 0.952(75) 0.973(49) 1.000(41)
3 0.846(49) 0.844(31) 0.858(31) 0.838(24) 0.860(20) 0.889(21)
4 0.771(44) 0.782(19) 0.792(19) 0.816(24) 0.814(25) 0.819(15)
5 0.692(25) 0.707(20) 0.715(20) 0.728(26) 0.729(21) 0.745(15)
6 0.641(25) 0.654(19) 0.666(20) 0.677(23) 0.681(20) 0.698(15)
8 0.547(26) 0.579(20) 0.590(20) 0.606(23) 0.611(19) 0.629(15)
9 0.530(27) 0.545(21) 0.557(20) 0.587(23) 0.578(20) 0.597(15)
y 1 0.505(46) 0.520(29) 0.543(25) 0.556(45) 0.532(39) 0.534(30)
2 0.465(32) 0.466(28) 0.485(25) 0.503(39) 0.489(30) 0.485(23)
3 0.397(53) 0.405(48) 0.413(43) 0.397(78) 0.397(58) 0.417(32)
4 0.307(44) 0.315(47) 0.328(46) 0.325(54) 0.327(40) 0.337(40)
5 0.267(24) 0.267(20) 0.285(18) 0.288(29) 0.295(25) 0.306(18)
6 0.238(24) 0.241(20) 0.251(18) 0.243(28) 0.258(24) 0.276(18)
8 0.176(24) 0.190(20) 0.200(18) 0.198(29) 0.207(25) 0.220(19)
9 0.165(25) 0.175(21) 0.187(19) 0.187(30) 0.196(26) 0.210(20)
y 1 —0.145(59) -0.172(46)  —0.188(42) —-0.092(64)  —0.127(43) -0.181(29)
2 —0.118(38) -0.123(41)  —0.141(33) -0.085(59)  —0.106(33) —0.149(24)
3 -0.101(37) -0.095(39)  —0.116(34) -0.072(41) ~ —0.091(31) —0.131(25)
4 -0.079(39) -0.081(43)  —0.102(41) -0.088(61)  —0.099(40) -0.111(27)
5 -0.059(33) -0.051(34)  —0.068(31) -0.097(39)  —0.094(29) -0.100(28)
6 —0.056(34) -0.037(34)  —0.055(29) -0.083(40)  —0.087(30) -0.087(23)
8 —0.056(44) -0.054(42)  —0.064(33) -0.101(48)  —0.101(38) —0.086(29)
9 —0.053(58) -0.031(44)  —0.043(34) -0.107(50) ~ —0.092(46) -0.072(35)
3 1 0.959(18) 0.957(19) 0.950(17) 0.953(21) 0.947(17) 0.953(15)
2 0.846(18) 0.837(20) 0.838(17) 0.868(24) 0.868(22) 0.865(20)
3 0.731(13) 0.726(12) 0.738(13) 0.762(18) 0.769(16) 0.773(16)
4 0.668(14) 0.685(15) 0.687(13) 0.701(15) 0.696(13) 0.701(11)
5 0.598(12) 0.614(12) 0.621(12) 0.642(14) 0.639(12) 0.643(11)
6 0.554(12) 0.568(11) 0.576(11) 0.597(14) 0.599(15) 0.606(12)
8 0.480(21) 0.500(11) 0.508(14) 0.532(16) 0.531(13) 0.543(12)
9 0.467(16) 0.477(13) 0.487(16) 0.512(15) 0.508(14) 0.522(12)
4 1 0.008(39) 0.046(33) 0.039(29) 0.007(41) 0.010(37) 0.036(34)
2 0.024(38) 0.030(33) 0.034(34) 0.061(45) 0.057(40) 0.059(41)
3 0.015(39) 0.007(30) 0.023(33) 0.058(52) 0.057(42) 0.055(41)
4 0.030(40) 0.032(34) 0.036(29) 0.053(42) 0.056(37) 0.057(37)
5 0.024(38) 0.012(29) 0.023(27) 0.068(40) 0.061(37) 0.056(34)
6 0.023(39) 0.003(30) 0.012(27) 0.062(42) 0.061(38) 0.050(35)
8 0.030(64) 0.006(35) 0.007(31) 0.068(55) 0.064(52) 0.046(42)
9 0.017(53) -0.006(45)  —0.004(35) 0.048(57) 0.048(57) 0.028(42)
4 1 -0.98(12) -0.976(89)  —1.033(80) -1.01(15) -0.99(12) —1.027(86)
2 -0.77(10) —-0.784(98)  —0.829(94) -0.79(12) -0.78(11) —0.844(79)
3 —0.672(44) -0.676(39)  —0.702(32) -0.654(53)  —0.667(43) -0.732(33)
4 —0.532(43) -0.526(37)  —0.558(31) -0.605(53)  —0.601(42) -0.610(32)
5 —0.479(40) -0.471(35)  —0.501(29) -0.520(48)  —0.521(40) -0.561(31)
6 —0.429(40) —-0.428(34)  -0.452(29) —-0.437(45)  —0.457(40) -0.504(31)
8 —0.323(41) -0.350(36)  —0.372(30) -0.353(47)  -0.379(42) -0.412(33)
9 —0.299(43) -0.318(37)  —0.340(31) -0.348(50)  —0.358(44) -0.391(35)
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TABLE XV. A, — A, helicity form factors.

f(A, = AL p'|?/(2x/L)? Cl4 c24 C54 F23 F43 F63
I 1 1.0401(82) 1.0114(81) 1.0170(77) 1.068(15) 1.062(13) 1.047(10)
2 0.9887(74) 0.9613(76) 0.9676(72) 1.016(14) 1.011(12) 0.998(10)
3 0.9418(69) 0.9167(73) 0.9229(69) 0.968(13) 0.963(12) 0.9528(95)
4 0.9018(92) 0.8826(77) 0.8852(71) 0.936(13) 0.927(12) 0.9133(88)
5 0.864(12) 0.8515(73) 0.8528(67) 0.894(17) 0.887(17) 0.876(14)
6 0.8327(67) 0.820(11) 0.8202(81) 0.859(15) 0.852(14) 0.8455(96)
8 0.7692(81) 0.757(12) 0.758(10) 0.799(15) 0.791(14) 0.788(11)
9 0.7406(98) 0.727(14) 0.728(12) 0.766(15) 0.758(14) 0.757(12)
10 0.7098(89) 0.709(16) 0.708(15) 0.748(18) 0.737(16) 0.735(14)
fi 1 1.467(17) 1.431(13) 1.450(17) 1.464(23) 1.458(16) 1.453(14)
2 1.400(13) 1.368(12) 1.386(13) 1.398(19) 1.394(14) 1.390(13)
3 1.339(12) 1.308(12) 1.326(13) 1.335(17) 1.333(13) 1.330(12)
4 1.268(17) 1.244(12) 1.257(15) 1.282(18) 1.276(17) 1.270(17)
5 1.219(20) 1.204(12) 1.215(12) 1.228(18) 1.224(21) 1.218(21)
6 1.180(12) 1.163(13) 1.172(12) 1.185(15) 1.181(14) 1.176(11)
8 1.094(14) 1.078(18) 1.086(15) 1.103(19) 1.099(17) 1.102(16)
9 1.056(14) 1.039(19) 1.047(16) 1.055(18) 1.054(16) 1.061(16)
10 0.997(14) 1.000(23) 1.004(21) 1.021(22) 1.015(20) 1.027(20)
fo 1 0.9025(45) 0.8952(57) 0.8937(54) 0.945(13) 0.9392(98) 0.9206(62)
2 0.8674(41) 0.8598(54) 0.8586(51) 0.906(12) 0.8996(88) 0.8846(57)
3 0.8336(38) 0.8273(50) 0.8258(48) 0.867(11) 0.8619(81) 0.8508(51)
4 0.8032(46) 0.7935(61) 0.7920(58) 0.842(13) 0.8337(86) 0.8231(75)
5 0.7748(41) 0.7714(46) 0.7692(43) 0.805(12) 0.8012(99) 0.7939(68)
6 0.7458(46) 0.7429(53) 0.7409(53) 0.772(10) 0.7691(88) 0.7669(76)
8 0.6970(70) 0.6928(75) 0.6924(78) 0.729(17) 0.723(13) 0.723(11)
9 0.6716(69) 0.6655(68) 0.6655(70) 0.696(14) 0.691(11) 0.693(10)
10 0.6582(84) 0.659(12) 0.658(12) 0.694(22) 0.685(18) 0.685(16)
I 1 0.8397(32) 0.8334(62) 0.8318(56) 0.8724(73) 0.8673(57) 0.8512(52)
2 0.8069(33) 0.8024(70) 0.7998(56) 0.8426(71) 0.8361(54) 0.8173(30)
3 0.7777(30) 0.7738(58) 0.7718(53) 0.8099(66) 0.8031(49) 0.7887(29)
4 0.7527(26) 0.7498(68) 0.7476(54) 0.7783(58) 0.7728(43) 0.7633(28)
5 0.7268(28) 0.7232(56) 0.7217(50) 0.7503(56) 0.7442(42) 0.7378(30)
6 0.7023(34) 0.6978(59) 0.6965(53) 0.7208(57) 0.7155(49) 0.7147(32)
8 0.6595(45) 0.6537(65) 0.6536(56) 0.6731(65) 0.6680(54) 0.6732(45)
9 0.6402(52) 0.6311(72) 0.6319(70) 0.650(11) 0.6452(91) 0.6547(62)
10 0.6240(71) 0.624(11) 0.625(11) 0.641(10) 0.6352(87) 0.642(11)
g1 1 0.8389(35) 0.8332(50) 0.8315(48) 0.8720(72) 0.8663(57) 0.8510(54)
2 0.8054(37) 0.8016(67) 0.7989(52) 0.8415(72) 0.8347(57) 0.8167(34)
3 0.7756(35) 0.7729(51) 0.7708(44) 0.8081(68) 0.8017(50) 0.7878(33)
4 0.7511(32) 0.7500(64) 0.7472(55) 0.7775(56) 0.7714(42) 0.7634(32)
5 0.7244(34) 0.7226(47) 0.7206(48) 0.7482(54) 0.7426(41) 0.7373(33)
6 0.6983(41) 0.6958(50) 0.6944(45) 0.7159(56) 0.7116(47) 0.7120(33)
8 0.6540(57) 0.6511(57) 0.6510(49) 0.6664(56) 0.6626(48) 0.6691(41)
9 0.6335(58) 0.6275(67) 0.6284(56) 0.6408(94) 0.6374(81) 0.6495(52)
10 0.6206(90) 0.6230(91) 0.6233(95) 0.637(11) 0.6325(88) 0.641(12)
9 1 0.9771(97) 0.959(12) 0.9608(99) 1.007(15) 0.998(13) 0.9801(93)
2 0.9296(66) 0.913(11) 0.9151(88) 0.958(13) 0.951(11) 0.9292(75)
3 0.8866(63) 0.873(11) 0.8740(86) 0.916(12) 0.908(10) 0.8891(67)
4 0.8478(61) 0.838(11) 0.8383(86) 0.873(13) 0.866(13) 0.853(11)
5 0.8141(62) 0.804(11) 0.8044(86) 0.838(12) 0.831(10) 0.8197(88)
6 0.7854(66) 0.774(12) 0.7737(95) 0.807(12) 0.800(11) 0.7950(76)
8 0.7281(86) 0.716(14) 0.717(11) 0.745(15) 0.738(13) 0.7409(95)
9 0.704(11) 0.688(16) 0.690(14) 0.718(19) 0.712(16) 0.717(12)
10 0.6732(91) 0.676(18) 0.675(16) 0.698(18) 0.691(15) 0.695(13)
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TABLE XVI. A, — A, Weinberg form factors.

f(A, = A |p')?/(27/L)? Cl4 c24 C54 F23 F43 F63
Vit 1 0.9534(80) 0.9273(80) 0.9316(71) 0.988(15) 0.981(14) 0.965(11)
2 0.9096(72) 0.8842(74) 0.8894(66) 0.943(14) 0.937(13) 0.923(11)
3 0.8697(66) 0.8465(71) 0.8517(63) 0.902(13) 0.896(12) 0.8852(95)
4 0.8390(82) 0.8214(75) 0.8230(65) 0.877(14) 0.867(12) 0.8527(88)
5 0.807(11) 0.7950(70) 0.7957(60) 0.840(18) 0.832(16) 0.821(13)
6 0.7798(63) 0.768(11) 0.7679(80) 0.810(16) 0.802(14) 0.7954(98)
8 0.7255(78) 0.714(12) 0.7154(98) 0.758(15) 0.749(15) 0.746(11)
9 0.7009(96) 0.688(13) 0.689(11) 0.730(15) 0.721(14) 0.719(12)
10 0.6761(87) 0.676(15) 0.674(14) 0.716(19) 0.704(16) 0.700(14)
y 1 0.365(11) 0.3569(91) 0.367(11) 0.338(18) 0.338(13) 0.3455(96)
2 0.3481(80) 0.3427(62) 0.3516(72) 0.323(13) 0.3241(87) 0.3308(73)
3 0.3330(67) 0.3273(56) 0.3354(60) 0.308(11) 0.3107(83) 0.3149(71)
4 0.3045(82) 0.2997(70) 0.3072(83) 0.287(11) 0.2903(86) 0.296(11)
5 0.2927(78) 0.2903(52) 0.2968(56) 0.2756(10) 0.2784(76) 0.2813(75)
6 0.2839(60) 0.2802(51) 0.2861(55) 0.2665(98) 0.2690(74) 0.2700(63)
8 0.2618(76) 0.2578(66) 0.2624(65) 0.244(11) 0.248(11) 0.2523(94)
9 0.2524(77) 0.2489(66) 0.2531(66) 0.231(11) 0.2363(10) 0.2422(90)
10 0.2279(75) 0.2300(88) 0.2330(78) 0.216(13) 0.221(11) 0.231(12)
y 1 -0.090(15) ~ -0.057(13)  —0.068(11) -0.075(32)  -0.074(29)  —0.079(20)
2 -0.078(14)  -0.045(12)  —0.057(10) -0.070(31) ~ —0.070(28)  —0.072(20)
3 -0.070(13) ~ -0.037(12)  —0.051(10) -0.067(31)  —0.065(29)  —0.067(20)
4 -0.073(14)  —0. 057(13) —0.064(11) -0.072(31)  -0.067(28)  —0.060(19)
5 -0.068(22)  —0.051(12 -0.0572(97)  —0.074(41) ~ —0.065(40)  —0.058(31)
6 -0.076(14)  —0. 057(17) —0.061(11) -0.084(31)  —0.073(28)  —0.064(21)
8 -0.072(17)  -0.054(21)  —0.058(14) -0.075(50)  —0.066(44)  —0.057(28)
9 -0.078(25)  —0.060(28)  —0.063(21) -0.091(44)  —0.080(38)  —0.067(27)
10 -0.051(17)  —0.049(20)  —0.048(15) -0.063(54)  —0.053(46)  —0.042(29)
i 1 0.8581(72) 0.838(12) 0.8386(87) 0.881(12) 0.890(10) 0.8552(65)
2 0.8235(57) 0.810(12) 0.8089(85) 0.853(10) 0.8514(86) 0.8242(58)
3 0.7918(53) 0.780(11) 0.7791(84) 0.822(10) 0.8126(84) 0.7948(58)
4 0.7608(51) 0.749(11) 0.7498(83) 0.7824(94) 0.7795(83) 0.7627(69)
5 0.7357(55) 0.726(11) 0.7255(84) 0.7579(96) 0.7502(81) 0.7397(67)
6 0.7144(56) 0.704(12) 0.7030(96) 0.7355(95) 0.7271(82) 0.7232(68)
8 0.6709(71) 0.659(13) 0.659(10) 0.687(12) 0.6791(98) 0.6818(88)
9 0.6519(90) 0.637(15) 0.638(14) 0.666(17) 0.659(14) 0.664(11)
10 0.6289(80) 0.626(16) 0.627(14) 0.647(14) 0.639(11) 0.643(12)
A 1 0.032(12) 0.008(15) 0.012(10) 0.016(18) 0.040(15) 0.007(14)
2 0.031(11) 0.014(15) 0.017(10) 0.020(15) 0.028(13) 0.013(12)
3 0.027(11) 0.013(15) 0.014(10) 0.024(15) 0.018(12) 0.012(11)
4 0.016(10) -0.002(14) 0.0045(98) 0.008(16) 0.014(14) -0.001(15)
5 0.019(11) 0.005(15) 0.008(10) 0.016(15) 0.013(13) 0.004(14)
6 0.027(12) 0.014(18) 0.015(13) 0.033(15) 0.026(13) 0.019(13)
8 0.029(15) 0.013(24) 0.014(17) 0.034(18) 0.028(16) 0.022(15)
9 0.031(17) 0.017(27) 0.016(21) 0.043(22) 0.037(20) 0.025(18)
10 0.014(16) 0.006(20) 0.005(13) 0.016(20) 0.011(17) 0.003(15)
4 1 -0.501(24)  -0.513(46)  —0.525(43) -0.530(42)  —0.457(34)  —0.531(30)
2 —-0.467(16)  —0.459(14)  —0.478(14) —-0.462(29)  -0438(24)  —0.467(16)
3 —-0438(15)  —0431(13)  —0.447(12) —-0433(27)  -0439(23)  —0.439(15)
4 -0.422(1 ) —0.437(17) —0.438(15) -0.439(37)  -0421(32)  —0.440(26)
5 -0.399(16 -0.402(14 -0.410(13) -0.408(28)  —0.411(25)  —0.410(18)
6 —0.381(16) —0.378(14) -0.387(13) -0.384(27)  —0.388(24)  —0.387(16)
8 -0.343(26)  -0.342(15)  —0.352(14) -0.348(33)  —0.348(30)  —0.354(17)
9 -0.330(31)  -0.329(17)  —0.337(16) -0.331(29)  -0.331(26)  —0.339(19)
10 -0.299(31)  -0.339(35)  —0.332(31) -0.348(59)  —0.345(52)  —0.355(43)
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