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We present a method to smear (center projected) Zð2Þ vortices in lattice gauge configurations such as to
embed vortex physics into a full SUð2Þ gauge configuration framework. In particular, we address the
problem that using Zð2Þ configurations in conjunction with overlap (or chirally improved) fermions is
problematic due to their lack of smoothness. Our method allows us to regain this smoothness and
simultaneously maintain the center vortex structure. We test our method with various gluonic and fermionic
observables and investigate to what extent we are able to approach SU(2) gauge dynamics without
destroying the original vortex structure.
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I. INTRODUCTION

Being part of the standard model of particle physics,
quantum chromodynamics (QCD) is generally believed to
be the correct theory of the strong interactions. A particular
feature of QCD is that its fundamental fermions, the quarks,
cannot be observed as free particles, but are always
confined in composite particles, the hadrons, such as the
protons and neutrons. The vortex model [1–6] assumes that
the center of the gauge group is crucial for confinement.
The center degrees of freedom can be extracted from gauge
field configurations by maximal center gauge (MCG) and
center projection [7,8]. These d.o.f. are dubbed P-vortices
and can be viewed as two-dimensional surfaces on the four-
dimensional lattice. They are thought to approximate
objects already present in configurations before the extrac-
tion step. These latter objects are called thick vortices, carry
quantized magnetic center flux and are responsible for
confinement according to the vortex model. The extracted
P-vortex surfaces are complicated, unorientable random
surfaces percolating through the lattice. These and other
P-vortex properties are in good agreement with the require-
ments to explain confinement, which was shown both in
lattice Yang-Mills theory and within a corresponding
infrared effective model, see e.g. [8–15]. The vortex model
can be applied to other infrared features of QCD not
immediately related to confinement, such as the topological
properties of gauge fields. In particular, it was shown how
the topological susceptibility present in QCD can be
calculated from center vortices [16–23] and vortices are

also able to explain chiral symmetry breaking [24–36]. This
way, the vortex model provides a unified picture for the
infrared, low energy sector of QCD, explaining both
confinement and the chiral and topological features of
the strong interaction. A recently published work [37] also
favors the center vortex degrees of freedom to be the
dominating fluctuations in the QCD vacuum.
However, some of the properties of full QCD are

obscured in the P-vortex (vortex-only) configurations,
especially when it comes to topological properties in
connection with fermions. In particular, we address the
problem of reproducing a finite chiral condensate in center
projected [Z(2)] configurations, using overlap (and chirally
improved) Dirac operators. Low-lying eigenmodes and also
zero modes are not found in these configurations; the
spectra show a large eigenvalue gap for vortex-only
configurations. In [30] the reason for the large gap in
the vortex-only case was shown to be connected to the lack
of smoothness of center projected lattices, i.e., maximally
nontrivial plaquettes—the vortex plaquettes. In that case,
the exact symmetry of the overlap operator is strongly field-
dependent, and does not really approximate the chiral
symmetry of the continuum theory. It was further shown
that the overlap operator produces more reasonable spectra
when applied to a smoother version of the center projected
lattice. The procedure applied however requires knowledge
of the original lattice. In the present work, we want to
explore another strategy: Starting from Zð2Þ vortex con-
figurations, we want to embed the corresponding physics in
full SUð2Þ configurations by smoothing the thin vortices
[38,39]. We speculate that the infrared aspects of the QCD
vacuum can be understood in terms of thick center vortices,
which can be derived from thin vortex structures by a new
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smearing method, introduced in the following. The idea
and the goal of this method can be summarized as follows:
Remove maximally nontrivial plaquettes without destroy-
ing the vortex structure and reproduce gluonic and fer-
mionic observables of the original SUð2Þ configurations
using the smoothed center vortices. Section II presents the
development of the new vortex smearing method, including
a brief summary of its relevant steps in Sec. II H. In Sec. III
we apply the vortex smearing method to 1000 Zð2Þ vortex
configurations, obtained from Monte Carlo-generated full
SUð2Þ gauge fields after maximal center gauge and center
projection. We present results for various gluonic and
fermionic observables comparing the original (full) and
vortex smeared lattice configurations. Section IV gives
more insight into the actual effect of the vortex smearing by
applying it to classical, i.e., planar and spherical vortex
configurations. We finish with concluding remarks
in Sec. V.

II. METHOD

Center vortex gauge fields are generally not smooth
enough to fulfill e.g. the Lüscher condition [40], especially
for thin vortex (Z(2)) configurations. The problem, men-
tioned above, of the overlap Dirac operator with Zð2Þ
vortex configurations is caused by maximally nontrivial
plaquettes, which are the locations where P-vortex flux
pierces lattice planes. The actual (closed) vortex surface is
located on the dual lattice [41], but we call plaquettes with
center flux −1 dual vortex plaquettes or simply vortex
plaquettes in the following. The idea is to smooth out the
thin vortices to regain a finite thickness. This can be
understood in two ways. One is to distribute the center
vortex flux of the vortex plaquettes, i.e., Tr Uμν ¼ −2 to
several (neighboring) plaquettes. On the other hand, we can
think in terms of link variables, applying a smooth link
profile, i.e., a “slow” rotation of the links within several
lattice spacings instead of the sudden jump from þ1 to −1
or the other way around. Both ideas thicken the vortices in
the sense that the center flux is not restricted to a singular
surface but spread out over a few lattice spacings. We are
going to discuss both approaches, which are related of
course, starting with a simple rotation smearing.

A. Link rotation smearing

We start with identifying the vortex plaquettes, i.e.,
plaquettes with Tr Uμν ¼ −2 in a given Zð2Þ configuration.
The plaquette Uμν is given by the product of four links, i.e.,
Uð~xÞμν ¼ Uð~xÞμUð~xþ μ̂ÞνU†ð~xþ ν̂ÞμU†ð~xÞν. In fact, for
Zð2Þ gauge variables U ¼ �1 and the ordering of the
product is irrelevant. Therefore we next identify the pair of
opposite links causing the overall −1 of the vortex pla-
quette, either Uð~xÞμUð~xþ ν̂Þμ or Uð~xÞνUð~xþ μ̂Þν gives
−1. Then we smear these two links as illustrated in Fig. 1,
i.e., the �1 links are rotated away from the center values in
order to get a smooth transition fromþ1 to −1 instead of an
instant jump between neighboring links. This of course
removes the maximally nontrivial (vortex) plaquette, indi-
cated in Fig. 1 with a (red) circle, and spreads its center flux
(−1) within its neighboring plaquettes. In Fig. 1 we use
steady rotations of π=3, i.e., the two links are given by
rotations of π=3 and 2π=3, which distributes the vortex flux
uniformly to the three plaquettes, each carrying 1=3 of the
total center vortex flux. Of course, the link rotations also
lead to nontrivial plaquettes in the directions orthogonal to
the plotted plane, but with opposite flux directions in
forward and backward directions. These additional con-
tributions will not be treated individually since different
vortex structures would make the procedure very complex,
but they will be taken into account by the plaquette
minimization technique discussed below.
There are of course many ways to implement these

rotations, therefore we perform a systematic analysis to
explore which method is best suited for our goal. In order to
reproduce the original vortex structure the smoothed SUð2Þ
links should stay in the same hemisphere of the corre-
sponding S3 after MCG projection, hence we apply only
rotations smaller than π=2. A statistical analysis shows that
the maximally nontrivial plaquette reduces more effectively
if the two corresponding links rotate in the same Uð1Þ
subgroup of SUð2Þ, however the situation is nevertheless
not trivial: It is interesting to observe that, overall, the
smallest plaquette values are observed for link rotations of
π=5 or π=6 away from their corresponding center elements,
whereas for π=3 and π=4we still observe plaquettes with Tr
Uμν ¼ −2. These situations can occur at vortex corners or

1 1/3 1/3 1/3

FIG. 1 (color online). Illustration of vortex smearing: the Zð2Þ links of the thin vortex plaquette (indicated by red circle) and the link
rotation profile of the smeared (thick) vortex. Using steady rotations of π=3 in the same Uð1Þ subgroup, the center vortex flux −1 of the
thin (dual) vortex plaquette is distributed uniformly within the original and neighboring plaquettes. This is indicated by the numbers
below the plaquettes as multiples of π, indicating the composition of the total center vortex flux exp iπ ≡ −1. The Uð1Þ subgroup for
each vortex plaquette is chosen such as to minimize the affected plaquettes.
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intersections, where different rotations affect single pla-
quettes. In fact, we can easily construct situations where
multiples of π=3 or π=4 add up to �π, resulting in
exp�iπ ¼ −1, see also [22]. For rotations up to π=5
MCG and center projection also reproduce the original
vortex structure very well. If we now restrict all rotations to
the same Uð1Þ subgroup, the smeared configurations still
show a gap in the overlap spectra, i.e., no near-zero modes
are found, as it is the case for maximal Abelian projected
configurations. Therefore, we generalize the procedure; for
each vortex plaquette we randomly choose a Uð1Þ sub-
group to perform the smearing rotation. This way, the
eigenvalue gap closes and a finite density of near-zero
modes shows up. In order to improve the result, instead of
randomly choosing the Uð1Þ subgroups we try to minimize
the affected plaquettes. Now the maximally nontrivial
plaquette reduces further, however the eigenvalue spectra
do not change significantly. Finally, we try various smear-
ing methods, i.e., APE, EXP, LOG and their improved and
HYP versions [42–47], to make the smeared vortex
configurations even smoother. Even though the average
plaquette now reduces further, intriguingly the maximally
nontrivial plaquette moves back toward −1. While the
standard smearing routines act too mildly, the improved
ones, using bigger Wilson loops or the hypercubic nesting
trick, smooth the configurations enough within a few
smearing steps. In Fig. 2 we show the overlap and asqtad
staggered spectra for original (full) SUð2Þ, MCG projected
Zð2Þ and various vortex and HYP smeared configurations.
We see that 2-3 HYP smearing steps seem to be appropriate
to reproduce the original Dirac spectra. However, even by
systematically scanning the parameter sets for the various
smearing routines, we cannot avoid that the vortex structure
is deformed during the smearing and we are not able to
reproduce the initial vortex configuration after MCG
projection. Therefore we rule out standard smearing rou-
tines and try yet another strategy, i.e. distributing the vortex

flux of a single vortex plaquette (Tr Uμν ¼ −2) to several
(neighboring) plaquettes.

B. Center vortex flux distribution

The first step is again to identify the vortex plaquettes,
i.e. plaquettes with Tr Uμν ¼ 2 exp�iπ ¼ −2 in a given
Zð2Þ configuration. The plaquettes and therefore also the
vortex structure are by definition gauge invariant. The Zð2Þ
links however are not and therefore the pair of links giving
the overall −1 identified in the link smearing procedure
discussed above is somewhat arbitrary. For the link rotation
smearing we restricted ourselves to the direction of the
jump from þ1 to −1 (or the other way around) to perform
the smooth rotation since this jump in fact defines the
vortex in the Zð2Þ configuration within its specific gauge.
Thinking in terms of vortex flux distribution, however,
there is no such preferred direction and we want to
distribute the flux symmetrically among neighboring pla-
quettes. Therefore we now smear all four links of the vortex
plaquette by individual link rotations in the same Uð1Þ
subgroup in order to guarantee uniform flux distributions.
The Uð1Þ subgroup is either chosen randomly for each
vortex plaquette, or such as to reduce the plaquettes
orthogonal to the vortex plaquettes, affected by the indi-
vidual link rotations.
Figure 3 shows an example of how to change the

individual links using � π=8 rotations away from the
original links. We have to distinguish four different cases
according to the initial link configurations in order to get
flux distributions of exp� iπ=2 and exp� iπ=8 at the
original and four neighboring plaquettes summing up to
the initial center element. The flux distributions for the
individual cases are shown in Fig. 4. There are of course
many ways to distribute the center vortex flux symmetri-
cally and uniformly among various plaquettes, and even
more ways to realize these distributions by different link
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FIG. 2 (color online). 20 lowest (a) overlap and (b) asqtad staggered eigenvalues for original (full) SUð2Þ, Maximal Center Gauge
(MCG) projected Zð2Þ, Uð1Þ and SUð2Þ vortex smeared configurations with different numbers of HYP smearing steps.
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configurations. In order to reproduce the initial vortex
configuration however, we have to restrict the individual
rotations to�π=8 giving the maximally possible center flux
distribution shown in Fig. 4.
Smearing the Zð2Þ configuration in this way (with

individual rotations up to �π=8) is not enough to close
the gap in the overlap spectrum. Standard smearing routines
APE, EXP and LOG are again too mild to resolve this
problem, whereas their improved HYP versions again
destroy the vortex structure. Choosing the Uð1Þ subgroup
for each of the four rotations individually in order to
minimize the affected plaquettes, instead of applying the
individual rotations to the four links in the same subgroup,
not only destroys the uniform flux distribution but also does
not close the gap in the overlap spectrum. Distributing the
flux to more and more plaquettes dissolves the vortex
structure in a sense, especially when it comes to edges and
corners of the vortex structure. We therefore resort to yet a
further technique: resolving the vortex structure within a
finer lattice in order to generate more lattice spacings in
which to smear it.

C. Vortex (lattice) refinement and blocking

By smearing the vortex structure on the original lattice
we quickly end up destroying the vortex structure, since we
cannot treat every single vortex edge, corner, writhing or
intersection point, etc. independently. However, we can
obtain more freedom in treating these structures by putting
the vortex configuration on a finer lattice. For Zð2Þ gauge
links the refinement procedure can be defined straightfor-
wardly and yields exactly the same vortex structure but on a
finer lattice. The refinement procedure is illustrated in
Fig. 5; we double the number of links in each direction,
hence the lattice volume increases by a factor of 24 ¼ 16. If
the initial link was 1 we only insert two 1 links, however if
the initial link has value −1, we insert a 1 and a −1 link in
forward direction. The new link pairs are copied forward by
half the initial lattice spacing in all orthogonal directions,
e.g., an x-link Uxð~xÞ ¼ −1 at ~x ¼ ðx; y; z; tÞ gives ~Ux ¼ 1
at ðx; y; z; tÞ; ðx; yþ 1=2; z; tÞ; ðx; y; zþ 1=2; tÞ;…; ðx; yþ
1=2; zþ 1=2; tþ 1=2Þ and ~Ux ¼ −1 at ðxþ 1=2;
y; z; tÞ; ðxþ 1=2; yþ 1=2; z; tÞ; ðxþ 1=2; y; zþ 1=2; tÞ;…;
ðxþ 1=2; yþ 1=2; zþ 1=2; tþ 1=2Þ.

(b)(a)

(d)(c)

FIG. 3 (color online). Distribution of center vortex flux: the Zð2Þ links of the initial vortex plaquette (exp�iπ ¼ −1) and the
corresponding smeared links using �π=8 rotations away from the initial links. We distinguish four cases (a–d) according to the initial
link configurations. The smeared links distribute the flux as shown in Fig. 4, for rotations in the same Uð1Þ subgroup.
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FIG. 4. Vortex flux distributions for smeared vortex plaquettes with link rotations shown in Fig. 3 (a–d). They add to a total flux of�π,
consisting of�π=2 at the original vortex and�π=8 at neighboring plaquettes. These vortex flux distributions among plaquettes are valid
for link rotations in the same Uð1Þ subgroup only, and do not necessarily correspond to the final vortex smeared configurations, where
the individual rotations are performed in different Uð1Þ subgroups, such as to minimize the affected (including orthogonal) plaquettes,
see text.
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Just as refinement gives the same vortex structure on the
finer lattice, the inverse procedure, blocking, again gives
the original configuration. During blocking, the copies
between the coarse lattice planes are thrown away and the
two refined links, e.g., ~Uxð~x ¼ ðx; y; z; tÞÞ and ~Uxð~x ¼
ðxþ 1=2; y; z; tÞÞ, are multiplied to reproduce the original
Uxð~x ¼ ðx; y; z; tÞÞ ¼ 1 ·�1 ¼ �1 link, see also Sec. II F
for more details. On the refined lattice, however, one now
has the advantage that deformations of the vortex surface
within the original lattice spacing still yield the correct

vortex structure after blocking. Visualizing the actual
(closed) vortex surface on the dual lattice, refinement
not only multiplies the number of vortex plaquettes,
yielding more (refined) plaquettes (and therefore also links)
at e.g. vortex edges or corners, as shown in Fig. 6, but also
adds links (and plaquettes) in directions orthogonal to the
vortex surface, which we may use to smear our configu-
rations. This way we may not make the vortex thicker in
terms of the original lattice, but we can make the configu-
ration smoother by adding additional rotations to the

FIG. 5. Refinement routine: Example of one −1 (fat z-) link giving eight −1 and eight 1 links after refinement.

(a)

(b)

(c)

FIG. 6 (color online). Vortex refinement (a → b), smearing (b → c) and blocking (c → a): Example of a partial vortex surface on the
dual lattice including edges and corners (red circles). Smearing the central (red dotted) plaquette in the coarse lattice (left) influences all
other attached plaquettes since we smear in the directions orthogonal to the plaquette (i.e., its dual plaquette on the original lattice) and
the vortex corners (and edges) are deformed. For the refined lattice on the right, smearing individual plaquettes only affects its direct
neighbors if they are connected via an edge and therefore plaquettes attached to the vortex corners do not affect each other directly
during smearing. Further, deformations of the refined vortex surface during smearing within the original lattice spacing (as indicated in
c) will reproduce the original vortex structure after blocking.
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(refined) links or distributing the vortex flux to more
(refined) plaquettes.
The refinement and blocking procedures are discussed

more extensively in [16,17] where they help to remove
ambiguities from vortex intersections, corners or writhing
points, or, respectively, ultraviolet artifacts during vortex
topological charge calculation. In fact, during vortex
topological charge calculation the lattices are refined
threefold, i.e., resulting in a lattice spacing a=3 in order
to resolve intersection lines and to make sure that neigh-
boring vortex surfaces cannot interact with each other. Even
though smearing on finer and finer lattices might be more
and more efficient, we restrict ourselves to a twofold
refinement to limit the computational cost for the overlap
Dirac operator evaluation. Nevertheless, resolving vortex
structure ambiguities via refinement seems also useful for
the present problem of smearing the vortex surface, since
such structures, i.e., vortex intersections, corner or writhing
points, are more easily deformed during the smearing
process.
Having cast a configuration on a finer lattice, for the

smearing routines we again start by identifying the
(maximally nontrivial) center vortex plaquettes with Tr
Uμν ¼ −2. On the refined lattice there are of course more
center vortex plaquettes compared to the original lattice. As
mentioned above, the lattice volume, i.e., the number of
lattice points and equally the number of links and pla-
quettes is multiplied by 24 ¼ 16. As can be seen in Fig. 5
however, the number of negative links is only increased by
a factor of eight, since we also add eight positive links for
an initially negative link. The number of vortex plaquettes
finally is increased by four, as can be checked in Fig. 5 too,
but can also be easily understood in terms of the dual
lattice, where the vortex surface forms a closed surface of
dual plaquettes, which are simply refined to four smaller
plaquettes each (see also Fig. 6). We should therefore note
that the vortex density is reduced by a factor four on the
refined, original lattice; this ultimately was the initial goal
of the refinement procedure, resolving vortex structure
ambiguities by increasing the distance between close vortex
structures or neighboring surfaces which would otherwise
interact after thickening them during vortex smearing.

D. Refined link rotation smearing

As in Sec. II A, we locate the opposite link pairs causing
(negative) vortex plaquettes now on the refined lattice and

smooth out the jump from 1 to −1 or the other way around.
On the refined lattice we can extend the rotation to four
links without disturbing any neighboring vortex plaquettes
and additionally apply rotations to the neighboring links in
link direction from the refinement procedure, see Fig. 7. We
rotate the individual links either π=8 or π=4 away from their
initial center elements and still reproduce the initial vortex
configuration after blocking. At this stage, we made
another interesting observation: Applying the Dirac oper-
ators to the refined, smeared configurations gives spurious
results, the spectra show an even larger gap with individual
eigenvalue bands, even for the asqtad staggered fermions.
The problem seems related to the refinement procedure,
since the asqtad (and the standard) staggered Dirac oper-
ator, which identifies zero modes well on center projected
configurations, gives unphysical spectra already for the
simply refined (nonsmeared) configurations. This obser-
vation is insofar interesting as the refined lattices represent
the same vortex configurations, except that they of course
are half as thick compared to the original lattice due to the
smaller lattice constant. The only difference to vortex
configurations on originally finer lattices seems to be the
fact that negative links only arise at every second (even)
lattice slice of the corresponding link direction (e.g., x-links
in x-slices, i.e., odd x-slices contain only 1 x-links). Even
though this seems not very likely in Monte Carlo generated
vortex configurations, the fact that it causes a problem in
identifying Dirac operator zero modes is worth noting.
While the staggered Dirac operator might fail because of its
even/odd-lattice implementation, we cannot think of any
plausible explanation for the failure of the overlap Dirac
operator. However, we find in the next section that this
problem is not as severe for the overlap compared to the
staggered fermions, since it is not present for the former in
the case of flux distribution smearing on refined lattices,
and therefore we will not discuss it further for now.
In order to overcome this issue in the present case of link

rotation smearing, we try to spread the vortex structure back
to its initial thickness, i.e., two lattice constants of the
refined lattice, during the smearing process. Therefore we
simply add another smeared link close to −1 to the
corresponding odd lattice slice of the refined lattice.
There are many different ways of doing the individual
rotations; finally, we settle with the smearing rotations
shown in Fig. 8, which seem to give the best results. The
figure shows all rotations in the same U(1) subgroup,

FIG. 7 (color online). Refined link rotation smearing: The smearing rotation from 1 to −1 can be extended to four links without
disturbing any other vortex plaquettes. Center vortex plaquettes of the initial and refined (or MCG projected after smearing)
configurations are again indicated by red circles. Link rotations in the top/bottom row are given by π=8; π=4; 3π=4; 7π=8 and
π=8; π=4; π=4; π=8 and the individual Uð1Þ subgroups are chosen such that the affected plaquettes are minimized.
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however, in practice, the subgroups for the individual
rotations are chosen such as to minimize the corresponding
plaquettes, i.e., reduce the maximally nontrivial plaquette
among the six plaquettes affected by the link being rotated
as much as possible. In order to check the vortex flux
distribution among the refined and smeared plaquettes, we
analyze the idealized case of all rotations in one Uð1Þ
subgroup, which of course is not the optimal case for the
overall smearing routine. We restrict ourselves to the
plaquettes in one plane only, cf. Fig. 9, noting however
that the smearing routine distributes vortex flux also to
orthogonal plaquettes. The center vortex flux distribution is
shown in Fig. 9 in terms of fractions of π for the individual
refined and original plaquette values for the two cases
plotted in Fig. 8, i.e., 1 → −1 or −1 → 1. The individual
contributions add up to �π respectively, giving a flux of
�π=2 for the initial vortex plaquette and �π=4 for the
neighboring plaquettes.
With this refined smearing procedure, a flat vortex

surface is distorted within the initial thickness it had before
the refinement procedure, which seems to work just like a
smearing effect for the thick center vortices. In terms of the
thin vortex structure, i.e., if we apply the MCG and project
the smeared (thick) vortices back to Zð2Þ, the thin vortex
exhibits a rough instead of a flat surface, since we

introduced additional vortex plaquettes on the refined
lattice, within the original thickness of the vortex (see also
Fig. 8). The actual effect of this vortex surface distortion
will be presented for classical, i.e., planar and spherical
vortices in Sec. IV. These additional plaquettes are of
course removed after blocking and we recover the original
vortex surface. They are also partially removed already on
the refined lattice by the smoothing procedure discussed in
the next section.

E. Refined vortex flux smearing

On the refined lattice, we have a straightforward way to
distribute the center vortex flux among the four refined
plaquettes corresponding to each initial center vortex
plaquette without affecting neighboring plaquettes or even
links. In Fig. 10 we show examples of link configurations
to distribute the center vortex flux exp iπ ¼ exp−iπ ¼ −1
uniformly among the four refined plaquettes, each carrying
one fourth of the initial center vortex flux. The uniform
distribution is of course only guaranteed if we apply all link
rotations of �π=4 and π=2 in the same Uð1Þ subgroup.
Since we change only links at half the initial lattice

spacings, i.e., links dividing the original plaquettes into
four refined plaquettes, blocking trivially (the mentioned
links are thrown away) restores the initial Zð2Þ link

FIG. 8 (color online). Refined link rotation smearing for 1 → −1 and −1 → 1 link pairs. The individual Uð1Þ rotations of the links
from left to right in the top and bottom rows of the two cases are given by π=8; π=4; 5π=8; 3π=4; π=8; 3π=4; π=8; π=4 and
5π=8; 7π=8; π=8; π=8; π=8; 3π=4; π=8; π=4. The odd (lower) lattice slices also contain a certain number of smeared links close to −1,
introducing additional vortex plaquettes (red circles) which distort and therefore smear the vortex surface in link direction. The Uð1Þ
subgroups are not the same for the individual rotations, but chosen such as to minimize the corresponding plaquettes.
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FIG. 9 (color online). Vortex flux distributions for refined link rotation smeared vortex plaquettes with 1 → −1 and −1 → 1 link pairs
in terms of fractions of�π adding up to a total flux of�π, with�π=2 at the original vortex and�π=4 for neighboring plaquettes. These
vortex flux distributions among plaquettes are valid for link rotations in the same U(1) subgroups only, and do not necessarily
correspond to the final vortex smeared configurations, where the individual rotations are chosen such as to minimize the corresponding
plaquettes.
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configuration and therefore the original vortex structure.
However, this method also changes links orthogonal to the
links giving the initial jump from 1 to −1 or vice versa. In
fact these are the links in direction of the jump (or, rotation,
after smearing) plotted in Fig. 10 with rotations of �π=4.
Depending on the vortex structure, the plotted link con-
figurations may still cause maximally nontrivial plaquettes
in directions orthogonal to the displayed plane; as men-
tioned above, we can easily construct situations where
�π=4 and π=2 links add up to �π, giving exp�iπ ¼ −1
for a plaquette. Therefore, we try to “2D gauge transform”
away from the simple examples in Fig. 10. In fact, applying
a gauge transformation at the central lattice site leads to
arbitrary link configurations without changing the pla-
quettes in the displayed plane. Since we only want to
affect the displayed links and not the ones orthogonal to the
displayed (paper) plane, we do not apply real (4D) gauge
transformations, affecting all links at a certain point, but
restrict the transformations to the displayed links in the 2D
plane. Using this “2D gauge transformation” at the central
points of the original vortex plaquettes, using random
SUð2Þ vectors, we can minimize the affected plaquettes
orthogonal to the original or refined vortex plaquette. This
way we eliminate maximally nontrivial plaquettes and the
overlap fermions seem to detect zero modes properly.
Staggered fermions, however, still show a gap, which
might be related to the problem discussed in the last
section, i.e., its even/odd lattice implementation and the
refinement procedure. In fact, the smeared configurations
shown in Fig. 10 all have nontrivial links in the even
(upper) slice of the refined lattice. Since we apply the “2D
gauge transformation” in order to minimize the plaquettes,
the link configuration we start with does not matter.
However, if we analyze the refined flux smeared configu-
rations, we find that the majority of links close to −1 is still
found in the even lattice slices after the smearing routine.

This seems to be reasonable, since after refinement −1
links only appear in even lattice slices, see also Fig. 5; links
close to −1 in odd lattice slices would obviously lead to
plaquettes close to −1 as well, which we try to avoid. By
omitting the minimizing “2D gauge transformation” and
applying different link rotations in order to reproduce the
uniform flux distribution among the plaquettes we may
overcome the problem of the staggered Dirac operator in a
similar way as in the previous section. However, even
though we examined many different combinations of link
rotations, we did not find a solution which gives equally
good results for both, overlap and staggered fermions. We
also attempted extending the flux distribution to the next
neighboring plaquettes, and further also included “2D
gauge transformations” at the points next to the central
point. Apart from not being able to solve the initial problem
this way, we furthermore lose the vortex finding property.
Therefore we settle on the link configurations shown in
Fig. 10, supplemented by the “2D gauge configuration” at
the center of the original vortex plaquette. This method
gives us the best results toward our goal, approaching
continuum SUð2Þ gauge dynamics, except for the staggered
fermion spectra. These, however, can be improved with yet
another, final step in our vortex smearing procedure,
described in the next section.

F. Vortex smeared blocking

A simple way to eliminate ultraviolet fluctuations of the
center projection vortices obtained in the maximal center
gauge is to apply blocking steps such as to transfer the
vortex configurations onto new coarser lattices, while
always preserving their chromomagnetic flux content on
length scales larger than the new lattice spacing. Consider a
new coarse lattice with n times the spacing of an old fine
lattice, superimposed on the latter such that all sites of the

(d)(c)

(b)(a)

FIG. 10 (color online). Examples of link configurations giving uniform center vortex flux distribution among the four refined
plaquettes of the initial center vortex plaquette. The individual link rotations are given by þπ=2, �π=4 and �3π=4 in the same Uð1Þ
subgroup. Each refined plaquette carries one fourth of the initial center vortex flux; (a), (c) exp iπ ¼ −1 and (b), (d) exp−iπ ¼ −1. In
order to minimize the orthogonal plaquettes (the ones orthogonal to the displayed plane) we vary the Uð1Þ subgroup by applying “2D
gauge transformations” (see text) at the central points of the plaquettes, indicated by the red circle.
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coarse lattice coincide with sites of the fine lattice. In this
work we use n ¼ 2, but the blocking procedure in principle
is feasible for arbitrary n. The gauge phases associated with
plaquettes on the coarse lattice then are defined to be equal
to the n × n Wilson loops on the old fine lattice to which
these plaquettes correspond. Equivalently, if an odd number
of vortices pierces the n × n Wilson loop on the old fine
lattice, then one vortex is defined to pierce the correspond-
ing plaquette on the new coarse lattice; if an even number of
vortices pierces the n × n Wilson loop on the fine lattice,
then no vortex pierces the corresponding plaquette on the
coarse lattice. Note that, thinking in terms of thin center
vortices, i.e., a Zð2Þ lattice, this argumentation and the
blocking simply reduces to the multiplication of the n2

plaquettes forming the n × n Wilson loop. Note also that
blocking manifestly preserves the values of all Wilson
loops (as far as they can still be defined on the coarse
lattice). Thus, blocking leaves the string tension induced by
a thin vortex ensemble invariant. The only information that
is lost during blocking are the original small plaquettes, i.e.,
ultraviolet fluctuations.
Now, in terms of Zð2Þ lattices, we have seen that

blocking is the exact inverse procedure to refinement.
Hence, blocking a refined lattice exactly gives us the same
links and plaquettes present in the original lattice, and
therefore also the same vortex structure. For the following
discussion let us identify original (x,y,z,t) and refined
lattice sites (2x-1,2y-1,2z-1,2t-1), and let us call the latter
“odd” lattice sites on the refined lattice, since all indices are
odd. Whenever one index of a refined lattice site is even,
the lattice site is not part of the original lattice and we may
call it “half-even” or “even” if all indices are even. It now is
interesting to note that, due to the refinement procedure we
defined in Sec. II C, we can alternatively block the refined
lattices starting at (half-)even (refined) lattice points, i.e.,
one refined (half an original) lattice spacing away from the

original (odd refined) lattice sites in any forward space-time
direction and still get back the exact, original configuration.
Hence, instead of starting the blocking procedure at the
(odd) refined lattice point (1,1,1,1), which actually coin-
cides with (1,1,1,1) on the original lattice, we can also start
blocking at, e.g., point (2,1,1,1) on the refined lattice to
reproduce the original configuration, or even at (2,2,2,2) as
shown in Fig. 11. Now, as mentioned before for the refined
flux smearing procedure, blocking the smeared lattice
starting at odd refined lattice sites recovers the original
vortex configurations, as the links making up the original
plaquettes are not changed during the smearing procedure.
However, if we start the blocking at any (half-)even lattice
site we have to multiply several smeared SUð2Þ links
instead of �1 s and end up with a SUð2Þ instead of a Zð2Þ
configuration. This new, blocked configuration now rep-
resents some smeared version of the original Zð2Þ lattice,
since the smeared links are derived from the original lattice
after refinement. In order to keep the smearing procedure
symmetric, i.e., we do not want to favor any smearing
direction, we start the blocking procedure at the even lattice
sites of the refined lattice, i.e. one refined (half an original)
lattice spacing forward in every space-time direction, as
indicated in Fig. 11 by the red arrow. This procedure we
will call “smeared blocking” in the following.

G. Vortex smoothing

Since center projection vortices exhibit artificial ultra-
violet fluctuations, we also use the smoothing procedure
first discussed in [48]. It operates using elementary cube
transformations on the lattice vortex surface such that a net
decrease in the number of vortex plaquettes is achieved.
One point at which the smoothing procedure can be

applied is before the refinement process; note that, after
refining, the vortex surface smoothing has no effect any

FIG. 11 (color online). Refinement and smeared blocking procedure: After refinement the blocking is not performed starting at
(1,1,1,1), the lower, left corner, but half an original (i.e., one refined) lattice spacing forward in every space-time direction, i.e., (2,2,2,2)
on the refined lattice, indicated by the red arrow (the time direction is indicated by the fine lines connecting the spacelike cubes). Without
vortex smearing between steps 2 and 3 the lattices before and after the whole procedure are actually the same; with vortex smearing the
reblocked lattice gives a smeared version of the original lattice.

APPROACHING SUð2Þ GAUGE DYNAMICS WITH … PHYSICAL REVIEW D 92, 034502 (2015)

034502-9



more, since elementary cubes are made up of eight smaller
cubes after refinement. The initial idea was that smearing
smoothed vortex configurations might be easier since the
number of small vortex structures is reduced. However, we
found that results for smeared original and smoothed vortex
configurations, even though they might differ for individual
configurations, agree within uncertainties in ensemble
averages. In fact, it was shown in [48] that smoothing
does not change the long-range physics of gauge configu-
rations, since it only removes artificial ultraviolet fluctua-
tions of the vortices.
On the other hand, smoothing does turn out to be useful

at a different point; namely, for our artificially distorted
vortex surfaces after refined smearing andMCG projection,
since it removes those distortions which turn out to be
only elementary cube transformations of the refined
vortex configurations. However, the smoothing procedure
does not necessarily reproduce the originally refined
vortex configuration, it only gives a smooth version of
the vortex surface within the original lattice spacing (two
refined lattice spacings). Again, see Sec. IV for more details
on the distortion and smoothing effects on classical
configurations.

H. Summary

To conclude this section we briefly summarize the vortex
smearing method for Zð2Þ configurations (the initial
smoothing and final blocking are optional and therefore
put in parentheses):
(1) (smoothing of the thin vortex surface, see Sec. II G

for details)
(2) refinement of the Zð2Þ lattice configuration,

see Fig. 5
(3) identification of vortex plaquettes, i.e., plaquettes

with Tr Uμν ¼ −2
(4) application of one of the two smearing routines:

(i) link rotation smearing:
(a) identification of opposite links causing

the overall −1 of the plaquette, i.e.,
Uμð~xÞUμð~xþ ν̂Þ or Uνð~xÞUνð~xþ μ̂Þ

(b) application of refined link rotation smearing
as depicted in Fig. 8, except for the Uð1Þ
subgroups of the individual rotations not
chosen uniformly, but such as to minimize
the affected plaquettes

(ii) application of the refined vortex flux smearing,
as depicted in Fig. 10, including “2D gauge
transformations” in order to minimize the
orthogonal plaquettes (see Sec. II E for details)

(5) (vortex smeared blocking, see Fig. 11)

III. RESULTS

In order to test our method we use 500 thermalized
Lüscher-Weisz SUð2Þ gauge field configurations on 84

lattices at coupling β ¼ 3.3 which gives a lattice string
tension σlat ¼ 0.1112� 0.0017 corresponding to a lattice
spacing a ¼ 0.1495� 0.0012 fm. The locations of center
vortices are identified as usual by mapping the SUð2Þ
lattice to a Zð2Þ lattice which contains, by definition, only
thin vortex excitations. The mapping is carried out by fixing
the lattice to the direct maximal center gauge, which is
equivalent to Landau gauge in the adjoint representation,
and whichmaximizes the squared trace of the link variables.
The gauge-fixing procedure is the over-relaxation method.
We also apply the above mentioned vortex smoothing and
evaluate our results on both original and smoothed vortex
configurations after vortex smearing. As mentioned above,
the results for original and smoothed vortex configurations
are equal within uncertainties of ensemble averages. Hence,
by combining the results we can double our statistics—we
may think of two different Gribov copies for each
Monte Carlo configuration, although the vortex structures
are of course correlated. In the following sectionswe present
various observables for refined link rotation smeared,
refined vortex flux smeared and their vortex smeared
blocked configurations and discuss the individual advan-
tages and drawbacks.

A. Fermionic eigenvalues and overlap zero modes

Fermion eigenmodes are calculated by an implementa-
tion of the MILC [49] code at the Phoenix and Vienna
Scientific Cluster (VSC) of the Vienna University of
Technology (VUT) and the Riddler Cluster at New
Mexico State University (NMSU). In Fig. 12 we display
the twenty lowest-lying complex conjugate eigenvalue
pairs of the overlap and asqtad staggered Dirac operators
[50,51], for center projected, vortex smeared and original
configurations. For the spectra on the refined lattices, the
eigenvalues are multiplied by a factor two, to account for
the refinement effect: For the free Dirac operator, using a
plane wave ansatz ψαðxÞ ¼ uα expðipμxμÞ, the eigenvalues
are given by λ ∝ ffiffiffiffiffiffiffiffiffiffipμpμ

p , see e.g. [32]. The allowed values
for pμ are

pi ¼
2niπ
aNS

;

p4 ¼
8<
:

2n4π
aNT

for periodic BC

ð2n4þ1Þπ
aNT

for antiperiodic BC
; n ∈ Z;

with NS the spatial and NT the temporal extent of the
lattice. Hence, even though there are 24 ¼ 16 times more
eigenmodes on the refined lattice, the eigenvalues scale
linearly with 1=NS;T . The seeming mismatch is of course
compensated by much higher degeneracy of higher modes
on the finer lattice.
Looking more closely at the overlap spectra, we see that

there only appear to be five eigenvalue pairs (out of twenty)
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in the center projected case, indicating a four-fold degen-
eracy when the overlap operator is applied to Zð2Þ lattice
configurations. This factor of four has the following origin:
In the first place, when link variables are simply plus or
minus the 2 × 2 identity matrix, the two colors decouple,
and we have a factor of two degeneracy. Second, whenever
the link variables are real and the Dirac operator has the
Wilson or overlap (but not staggered) form, the eigenvalue
equation Dψn ¼ λnψn is invariant under charge conjuga-
tion. Thus, if ψn is an eigenstate with eigenvalue λn, then
C−1ψ�

n is also an eigenstate, with the same eigenvalue [52].
This gives another factor of two, resulting in an overall
four-fold degeneracy. For the vortex smeared configura-
tions there is no such degeneracy and the spectra approach
the original (full) SUð2Þ spectra. The actual correspon-
dence of the spectra can be seen in the scatter plots in
Fig. 13 for the ensemble mean eigenvalues and in Fig. 14(a)
for the overlap eigenvalues on individual configurations.

The asqtad staggered results are not as good as for the
overlap Dirac operator in the sense that the gap is much
larger than for the original configurations, see Fig. 12(b).
This large gap is caused by the refinement procedure, as
discussed already in Sec. II D. Smearing the refined Zð2Þ
configurations still shows large eigenvalue gaps which only
go away after smeared blocking. Since we focus on
topological properties and therefore especially on zero
modes, the smearing routine was optimized to reproduce
the best overlap results. In Fig. 12(b) we also plot the asqtad
staggered spectra for simply refined and vortex smearedþ
MCG projected Zð2Þ configurations; while the naive
refinement process (without smearing) obviously troubles
the Dirac operators (the overlap response is similar), the
latter actually reproduces spectra which somewhat seem to
interpolate between the original and projected cases. In
Fig. 14(b) we show a scatter plot of the number of zero
modes for original (full) SUð2Þ and vortex smeared
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FIG. 12 (color online). 20 lowest (a) overlap and (b) asqtad staggered eigenvalues for original (full) SUð2Þ, Maximal center gauge
projected Zð2Þ and vortex smeared configurations.
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FIG. 13 (color online). Scatter plot of (a) overlap and (b) asqtad staggered nonzero eigenvalues for original (full) SUð2Þ and vortex
smeared configurations (ensemble mean eigenvalues).
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configurations. There is no one-to-one correlation for the
individual configurations; the reason for this will be
discussed in the next section where we analyze the
influence of our method on topological properties of the
gauge field.
Before that, we look at the distributions of the

“unfolded” level spacing and the lowest (nonzero) eigen-
values. Chiral random matrix theory (RMT) predicts that
these distributions are universal when they are classified
according to symmetry properties of the Dirac operator and
the sector of fixed topological charge under consideration
[53–55]. Fermion modes in the fundamental representation
of gauge group SU(N) of the overlap operator have the
symmetry properties of the orthogonal ensemble, i.e., their
distribution is described by a Gaussian measure on the
space of real N × N symmetric matrices and is invariant
under orthogonal conjugation, whereas for the staggered
operator they fall into the symplectic ensemble, described
by a Gaussian measure on the space of quaternionic N × N

Hermitian matrices and its distribution is invariant under
conjugation by the symplectic group.
The unfolding is done by first sorting all nonzero

positive eigenvalues λni with n labeling the configuration
number in ascending order. Nn

i then gives the location of λ
n
i

in the sorted list and is referred to as the unfolded spectrum.
The level spacing s is simply given by s ¼ ðNn

iþ1 − Nn
i Þ=

Nc where Nc is the number of configurations. The
distributions of the unfolded level spacing s in RMT are
well approximated by the various Wigner distributions [56]

PðsÞ ¼
(

π
2
se−

π
4
s2 orthogonal ensemble

262144
729π3

s4e−
64
9πs

2

symplectic ensemble:
ð1Þ

In Fig. 15(a) we show the distribution of the unfolded level
spacing for overlap and staggered fermions on our original
SUð2Þ configurations. The distributions are slightly shifted
to lower values compared to RMT predictions, the reason
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FIG. 14 (color online). Scatter plot of overlap (a) nonzero eigenvalues and (b) number of zero modes for individual configurations.
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FIG. 15 (color online). Distribution of the “unfolded” level spacing s for (a) overlap and staggered eigenvalues on original
configurations vs RMT universality predictions and (b) overlap eigenvalues on original and smeared configurations. For better
differentiation we attach the individual plots in Fig. 31 in Appendix A.
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could be a lack of statistics and our rather small lattice
volume, but more likely our choice of gauge coupling
β ¼ 3.3, which is right at the deconfinement phase tran-
sition where fluctuations can be expected. Figure 15(b)
shows the results for overlap fermions on original and
smeared configurations and we observe that the smearing
processes shift the distributions further to the left, i.e.,
smaller level spacings. Only the blocking procedure for link
rotation smearing seems to strongly distort the level
spacing distributions. The results for staggered fermions
are presented in Fig. 16, smearing again shifts the dis-
tributions slightly to smaller level spacings, after blocking,
however, smeared and original distributions are not further
apart than original and RMT predictions.
Next we look at the distribution of the lowest eigenvalue

λmin for the various ensembles. Chiral RMT predicts that
these distributions are universal when they are classified
according to the number of exact zero modes ν within each
ensemble and then considered as functions of the rescaled
variable z ¼ ΣVλmin. Here V is the volume and Σ is the
infinite volume value of the chiral condensate hψ̄ψi. RMT
gives for the distribution of the rescaled lowest eigenvalue
for the orthogonal ensemble, expected to apply to the
overlap fermions, in the ν ¼ 0 and ν ¼ 1 sector [57]

PðzÞ ¼
8<
:

2þz
4
e−

z
2
−z2

8 if ν ¼ 0

z
4
e−

z2
8 if ν ¼ 1:

ð2Þ

For the symplectic ensemble, expected to apply to the
staggered fermions, the RMT prediction is [57–59]

PðzÞ ¼
8<
:

ffiffi
π
2

p
z3=2I3=2ðzÞe−z2

2 if ν ¼ 0

2
ð2νþ1Þ!ð2νþ3Þ! z

4νþ3e
−z2
2 Tνðz2Þ if ν > 0;

ð3Þ

where I3=2ðzÞ is the modified Bessel function and TνðxÞ a
rapidly converging series based on partitions of integers,
specified in the references. Staggered fermions, however,
do not have exact zero modes at finite lattice spacing, even
for topologically nonzero backgrounds, and thus seem to
probe the ν ¼ 0 predictions of chiral random matrix theory
only. We compare the RMT predictions with our data in
Fig. 16(b) for staggered and Fig. 17 for overlap fermions. If
one knows the value of the chiral condensate in the infinite
volume limit, Σ, the RMT predictions for PðzÞ are
parameter free. On the rather small systems that we
considered here, we did not obtain direct estimates of Σ.
Instead, we made one-parameter fits of the measured
distributions to the RMT predictions, with Σ the free
parameter and results given in Table I. We note that the
chiral condensate is very small and results on the various
ensembles vary, within rather large uncertainties caused by
small statistics and also the choice of gauge coupling
β ¼ 3.3 right at the deconfinement phase transition causing
large fluctuations. The distributions of the lowest staggered
eigenvalues in Fig. 16(b) are not consistent with RMT
predictions for the original configurations; after link
rotation smearing, they actually seem to agree with
RMT predictions, but not for flux distribution smearing.
After blocking the original distributions are reproduced, for
different fitting parameters, i.e., chiral condensates though.
Finally, the overlap results shown in Fig. 17 for ν ¼ 0 and
ν ¼ 1 sectors are broadly consistent with RMT predictions,
with the exception of link rotation smeared blocking in the
ν ¼ 0 case, which deviates strongly from the other dis-
tributions, and a somewhat distorted distribution for flux
distribution smearing (without blocking) in the ν ¼ 1 case.
For ν ¼ 0 the distribution found in the original configu-
rations differs at zero eigenvalue from the RMT prediction,
i.e., we find less low-lying eigenmodes. We conclude that
the smeared ensembles roughly reproduce Dirac spectra
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FIG. 16 (color online). (a) Distribution of the “unfolded” level spacing s for staggered eigenvalues on original and smeared
configurations. (b) Distribution of the smallest staggered eigenvalue λmin and RMT universality prediction PðzÞ vs the rescaled variable
z ¼ ΣVλmin, where V is the volume and Σ is the infinite volume value of the chiral condensate. Fitted values for Σ are given in Table I.
For better differentiation we attach the individual plots in Figs. 34, 35 in Appendix B.
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and distributions of the original configurations except for
link rotation smeared blocking with overlap and flux
distribution smearing with staggered fermions.

B. Gluonic and fermionic topological charge correlation

If we want to recover the topological structure of the
original (full) SU(2) configurations from the vortex
smeared configurations we face the problem that standard
gluonic definitions of topological charge via plaquette or
hypercube constructions need some smearing or cooling
procedure in order to guarantee a smooth gauge back-
ground which fulfills the Lüscher condition [40]. However,
smoothing and especially cooling destroys the relevant
vortex structures. In a word, gluonic topological charge
definitions are not very reliable in the background of center
vortices, this was also discussed in [22]. For the gluonic
topological charge QT we use the integral (sum, on the
lattice) of the gluonic charge density qðxÞ ¼
1

16π2
trðF μν

~F μνÞ in the “plaquette” and/or “hypercube”
definitions on the lattice [60,61], which in fact give almost
the same results, see Fig. 18(a). In Fig. 18(b) we show that
the gluonic topological charge after cooling or LOG

smearing correlates very well on both, original and vortex
smeared configurations.
The Atiyah-Singer index theorem relates the number of

exact fermionic zero modes of a configuration and the
topological charge QF ¼ Trðγ5DovÞ ¼ n− − nþ ¼ indDov
[62], which we call the fermionic topological charge. The
relation QT ≈QF is not exact on either original or vortex
smeared configurations, see Fig. 19 for topological charge
correlation between the two definitions on individual
configurations. These results are not affected by additional
cooling or LOG smearing. In view of the above concerns, it
is not surprising that the correlation of either fermionic QF
[as seen in Fig. 14(b)] or gluonic topological charge QT of
the vortex smeared configurations with the original topo-
logical charge is not very good. In Fig. 19 we see that the
refined vortex smeared configurations overestimate the
original topological charge. For the smeared blocked
configurations the net topological charge QT is comparable
to the original one; actually, in the blocked vortex flux
distribution smeared case one can see a slightly positive
correlation, see Fig. 20(b). However the correlation
between individual configurations is not very good.
Again, this is not very surprising since cooling or smearing
in order to evaluate the gluonic topological charge on the
lattice destroys its center vortex content. However, in [16] it
was shown that the vortex topological charge defined there
based directly on the structure of the vortex configurations
gives a good estimate of the topological susceptibility of the
gauge field ensemble. Therefore we analyze the vortex
topological charge and the topological susceptibility next.

C. Vortex topological charge and
topological susceptibility

Center vortices give rise to topological charge at inter-
section and writhing points [17,27]. It is known from [16]
that center vortices reproduce the topological susceptibility
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FIG. 17 (color online). Distribution of the smallest overlap eigenvalue λmin and RMT universality prediction PðzÞ for topological
sectors (a) ν ¼ 0 and (b) ν ¼ 1 vs the rescaled variable z ¼ ΣVλmin, where V is the volume and Σ is the infinite volume value of the chiral
condensate. Fitted values for Σ are given in Table I. Find the individual plots in Fig. 32, 33 in Appendix A.

TABLE I. The chiral condensate Σ from fits of the distribution
of the lowest eigenvalue to the RMT predictions and the number
of configurations in each topological sector in parenthesis.

Configuration
Overlap,
ν ¼ 0

Overlap,
ν ¼ 1 Staggered

Original SUð2Þ 0.018 (133) 0.014 (255) 0.016 (500)
Link rotation
smeared

0.017 (341) 0.011 (393) 0.016 (1000)

-”- blocked 0.011 (928) 0.014 (66) 0.015 (1000)
Flux distribution
smeared

0.011 (87) 0.010 (174) 0.008 (1000)

-”- blocked 0.013 (480) 0.014 (444) 0.017 (1000)
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FIG. 18 (color online). (a) Scatter plot of plaquette and hypercubic definition of topological charge QT after cooling and LOG
smearing. (b) Scatter plot of QT after cooling and LOG smearing for plaquette and hypercube definitions. Both plots are for vortex
smeared configurations, for original (full) configurations they look very similar.
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FIG. 19 (color online). Scatter plot of fermionic QF and gluonic topological charge QT after (a) cooling or (b) (LOG) smearing on
original (full) SUð2Þ and various vortex smeared configurations (QF=T on same configs); Scatter plot of gluonic topological charge QT
after (c) cooling and (d) (LOG) smearing for original (full) vs vortex smeared configurations. In the blocked vortex flux distribution
smeared case one can actually see a positive correlation, see also Fig. 20.
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of the original gauge fields. We want to estimate how well
our vortex smearing procedure recovers this effect and
further, how accurately the vortex topological charge
reveals the topological content of individual gauge fields,
i.e., we are interested in the correlation of the vortex
topological charge with the index and gluonic topological
charge definitions. The concepts of blocking and smooth-
ing were introduced in Secs. II G and II F, for more details
on the use of these methods during vortex topological
charge calculation see [16], where it was also shown that
the string tension is rather independent of vortex smooth-
ing; however, smoothing reduces vortex topological charge
and susceptibility by removing short range fluctuations of
the vortex structure. On our original 84 lattices with lattice
spacing a ≈ 0.15 fm 1-2 blocking steps seem appropriate
during the vortex topological charge calculation in order to
get in the range of a physical vortex thickness of 0.4 fm
[8,63,64]. The refined lattices should accordingly be
blocked 2-3 times.
The vortex topological charge is not necessarily corre-

lated to the index of the Dirac operator, since the vortex
configurations do not represent a topological torus, as there
are monopoles and Dirac strings present. Thus, the basic
index theorem is not valid and extra terms appear which are
reflected in the difference of the vortex topological charge
and the index. During cooling or smearing, monopoles and
Dirac strings are smoothed out or fall through the lattice
and the toroidal topology is restored, hence F ~F approaches
the index topological charge. However, the vortex finding
property is lost during smearing and the vortex topological
charge quickly vanishes for full configurations. These
aspects were discussed in more detail in [22]. Vortex
topological charge depends on the orientation of the (thick)
vortex surfaces. The (thin) Zð2Þ vortices lack any infor-
mation of orientation and in order to calculate the vortex
topological charge, orientation is applied randomly to the
vortex surfaces. Similarly, during vortex smearing, by

replacing the “Zð2Þ jump” with a smooth, random rotation
in the SUð2Þ space, we automatically give the vortex
surfaces a random orientation in the color space, which
influences the gluonic topological charge. Since these two
processes are independent, we cannot expect that the
smeared vortex configurations or the vortex topological
charge in general give comparable results for individual
configurations concerning topological properties. However,
as stated at the beginning of this section, the topological
susceptibility of original gauge fields is mirrored by the
vortex topological charge. Hence, we want to verify if this
is also true for the vortex smeared configurations and if we
can reproduce the topological susceptibility of the original
SUð2Þ gauge fields. The vortex topological charge for
original and smeared configurations is essentially the same,
since we deal with identical vortex structures. However, the
random application of vortex orientation ruins a one-to-one
correlation, unless we use the same random generator every
single time. Even though this random step has no influence
on the rather dominant writhing point contribution to
topological charge, the random contribution of a few
intersection points is enough to destroy a one-to-one
correlation between individual configurations. Taking
together all arguments from the previous and this section
concerning the different approaches to topological charge
determination, from center vortices, gluonic or fermionic
definitions, it is not surprising that the first of these does not
exactly reproduce the latter ones for individual configura-
tions. In Figs. 21 and 22 we show correlations between
gluonic resp. fermionic and vortex topological charge—
there is no one-to-one correlation.
In Fig. 23 we show the topological susceptibilities for

original (full) SUð2Þ and (a) link rotation or (b) flux
distribution smeared configurations. The first thing we
note is that for our original SUð2Þ gauge ensemble, the
topological susceptibilities from fermionic and gluonic
topological charge definitions are not consistent,
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FIG. 20 (color online). Scatter plot of (a) fermionic and gluonic topological charge correlations and (b) cross-correlations between
original (full) vs blocked vortex flux distribution smeared configurations.
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hQ2
Fi=V ¼ ð200 MeVÞ4 and hQ2

Ti=V ¼ ð160 MeVÞ4
(averaging cooling and smearing QT), presumably caused
by our small original lattice volume of about ð1.2 fmÞ4. It is
very interesting, however, that the vortex topological
susceptibility reproduces these values with one, respec-
tively two blocking steps, averaging over the corresponding

smoothing steps, see red dots/lines in Fig. 23. Next, we see
that for the refined smeared configurations the gluonic and
vortex topological charges (green dots and dashed lines)
lead to much higher susceptibilities, caused by the artificial
vortex fluctuations introduced during the refined smearing
process giving many (extra) contributions to F μν

~F μν. This
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FIG. 21 (color online). Scatter plot of the vortex vs gluonic topological charge for original (full) SUð2Þ and vortex smeared
configurations. Vortex topological charge determination after (a), (b) one and (c), (d) two blocking steps and (a), (c) no and (b),
(d) maximal smoothing. In (e), (f) we show the combined results (a–d) for blocked flux distribution smeared configurations again.
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effect is larger for link rotation [Fig. 23(a)] compared to
flux distribution smearing [Fig. 23(b)]. After blocking,
however, the original results are reproduced, shown in the
lower plots in each case, i.e., compare red and blue dots/
lines in Fig. 23(c) and (d). The gluonic topological
susceptibilities after cooling and (LOG) smearing (blue

dashed lines) agree with the original values (red dashed
lines) and vortex topological charge also matches
the original averages (blue and red dots). Concerning
fermionic topological susceptibility (solid lines), the
refined link rotation smearing reproduces a value of
hQ2

Fi=V ¼ ð180 MeVÞ4; after smeared blocking, the value

(a)

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

-10 -8 -6 -4 -2  0  2  4  6  8  10

vo
rt

ex
 to

p.
 c

ha
rg

e 
Q

V

fermionic top. charge QF

original SU(2)
link rotation
-"- blocked

flux distribution
-"- blocked

(b)

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

-10 -8 -6 -4 -2  0  2  4  6  8  10

vo
rt

ex
 to

p.
 c

ha
rg

e 
Q

V

fermionic top. charge QF

original SU(2)
link rotation
-"- blocked

flux distribution
-"- blocked

(c)

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

-10 -8 -6 -4 -2  0  2  4  6  8  10

vo
rt

ex
 to

p.
 c

ha
rg

e 
Q

V

fermionic top. charge QF

original SU(2)
link rotation
-"- blocked

flux distribution
-"- blocked

(d)

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

-10 -8 -6 -4 -2  0  2  4  6  8  10

vo
rt

ex
 to

p.
 c

ha
rg

e 
Q

V

fermionic top. charge QF

original SU(2)
link rotation
-"- blocked

flux distribution
-"- blocked

(e)

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

-10 -8 -6 -4 -2  0  2  4  6  8  10

vo
rt

ex
 to

p.
 c

ha
rg

e 
Q

V

fermionic top. charge QF

1 block no smooth
1 block max smooth

2 block no smooth
2 block max smooth

(f)

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

-10 -8 -6 -4 -2  0  2  4  6  8  10

vo
rt

ex
 to

p.
 c

ha
rg

e 
Q

V

fermionic top. charge QF

1 block no smooth
1 block max smooth

2 block no smooth
2 block max smooth

FIG. 22 (color online). Scatter plot of the vortex vs fermionic topological charge for original (full) SUð2Þ and vortex smeared
configurations. Vortex topological charge determination after (a), (b) one and (c), (d) two blocking steps and (a), (c) no and (b),
(d) maximal smoothing. In (e), (f) we show the combined results (a–d) for blocked flux distribution smeared configurations again.
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drops to ð95 MeVÞ4, however. The vortex flux distribution
smearing method gives a more reasonable result, perfectly
consistent with gluonic and vortex topological susceptibil-
ities. The refined version of flux distribution smearing gives
a topological susceptibility from fermionic QF of
ð260 MeVÞ4, which lies exactly between the gluonic values

after cooling or LOG smearing for the refined flux
distribution smeared configurations. After blocking this
value drops to ð160 MeVÞ4, consistent with gluonic topo-
logical charge susceptibilities from original (full) SU(2)
and vortex flux smeared and blocked configurations. For
our rather small original lattices of about ð1.2 fmÞ4, a
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FIG. 23 (color online). Topological susceptibility from fermionic QF, gluonic QT and vortex topological charge QV for original (full)
SUð2Þ (red) and refined (a), (c) link rotation (see Sec. II D) or (b), (d) vortex flux distribution (see Sec. II E) smeared (green) and blocked
(blue, see Sec. II F) configurations. In (a) and (b) we show all blocking and smearing steps for QV, i.e., we see four vertical groups of
data points according to no, one, two and three blocking steps from left to right. Within these groups we plot the data points for zero to
five smoothing steps from left to right again. In (c) and (d) we show 1-2 blocking steps for 84 lattices, i.e., original and smeared blocked
configurations, and 2-3 blocking steps for refined (164) lattices, resulting in lattice spacings a ≈ 0.3 − 0.6 fm, respectively. We also
zoom into the interesting susceptibility region and therefore miss a few data points from vortex topological chargeQV [green dots in (a)
and (c)] and the blue line for topological susceptibility from fermionicQF for blocked link rotation smearing (blue solid line) in (c). Note
that for original (full) SUð2Þ, the topological susceptibilities from fermionic (red solid line) and gluonic topological charge definitions
(red dashed lines) are not consistent, hQ2

Fi=V ¼ ð200 MeVÞ4 and hQ2
Ti=V ≈ ð160 MeVÞ4 (averaging data from cooling and LOG

smearing QT), presumably caused by our small original lattice volume of about ð1.2 fm4Þ. Vortex topological charge QV (red dots)
reproduces the two values after one resp. two blocking steps in (c) or (d). Refined smeared configurations (green) show very high
susceptibilities for gluonic and vortex topological charge, caused by artificial vortex fluctuations introduced in the refined smearing
methods. Blocking removes these fluctuations and we observe good agreement between the different topological charge definitions on
original and vortex smeared configurations, especially for the vortex flux distribution smearing—see (d) at a ¼ 0.6 fm (i.e., two
blocking steps for QV ).
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topological susceptibility of roughly ð160 MeVÞ4 seems
reasonable and we find that all definitions of topological
charge agree on this value after appropriate smearing and
blocking, as the lower plots at a ¼ 0.6 fm show. The results
confirm that vortices are indeed able to reproduce the
topological susceptibility of full QCD, either via vortex
topological charge or gluonic and fermionic definitions
after vortex smearing.

D. Center vortex and Dirac eigenmode correlations

We analyze the correlation of the overlap Dirac zero
mode and first asqtad staggered Dirac eigenmode of the
vortex smeared configurations to the original vortex struc-

ture. We use the correlator CλðNvÞ ¼
P

pi

P
x∈H

ðVρλðxÞ−1ÞP
pi

P
x∈H

1

[65], where the sum is over sites pi on the dual lattice which
belong to Nv plaquettes on the vortex surface (as identified
from center projection), ρλðxÞ is the eigenmode density and

V is the lattice volume. At each such vortex site on the dual
lattice there is a second sum (x ∈ H) over sites in a
hypercube on the original lattice surrounding pi. This
correlator gives the relative enhancement of the eigenmode
density at the vortex surface. A similar quantity CλðqvÞ can
be formulated for vortex topological charge density qv, with
pi the sites on the dual lattice carrying vortex topological
charge qv.
In Figs. 24 and 25 we display the data for CλðNvÞ

resp. CλðqvÞ computed for overlap and staggered
eigenmodes on the original (full), center projected
Zð2Þ and various smeared configurations. We see that
for refined vortex smeared configurations the eigenm-
odes are strongly correlated to the vortex surface and
topological charge. The anticorrelation of overlap
eigenmodes for the Zð2Þ (center projected) configura-
tions is completely removed after refined smearing,
however after smeared blocking we lose the correlation
to the original vortex structure again. We tried to extend
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FIG. 24 (color online). Vortex correlation of (a) overlap and (b) asqtad staggered eigenmodes for original (full) SUð2Þ, maximal center
gauge projected Zð2Þ and vortex smeared configurations.
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FIG. 25 (color online). Correlation of vortex topological charge density with (a) overlap zero mode and (b) lowest asqtad staggered
eigenmode densities for original (full) SUð2Þ, center projected Zð2Þ and vortex smeared configurations.
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FIG. 26 (color online). Scatter plot of (a) SUð2Þ and (b) Zð2Þ Wilson loops during smearing for original and various vortex smeared
configurations.
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FIG. 27 (color online). (a) Vortex limited Wilson loops and (b) Creutz ratios of original (full) SUð2Þ and various vortex smeared
configurations.
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FIG. 28 (color online). Two orthogonal pairs of planar vortices (a) on a 84 lattice and after (b) refinement and (c) vortex smearing on
164 lattices. For a more detailed view of the configuration in (c) see Fig. 29. Smoothing (c) gives (b) and blocking (c) [or (b)] gives (a).
We plot the dual vortex plaquettes, which actually represent the closed vortex surfaces.
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the second sum (
P

x∈H in Cλ) to next-to-nearest neigh-
bors but then the signal is lost in the background noise,
i.e., we practically sum over all sites where the
correlator gives zero per definition. In the case of
asqtad staggered eigenmodes we get good correlations
for all cases. The refined smeared configurations show
drastically enhanced correlations whereas blocked
smeared results lie between original SU(2) and center
projected Zð2Þ correlations.

E. Wilson loops and vortex limited Wilson loops

In Fig. 26 we show the standard and center projected
Wilson loops of original SUð2Þ vs vortex smeared con-
figurations. Plaquettes are systematically minimized during
smearing, hence small smeared Wilson loops tend to be
much closer to 1. The Zð2ÞWilson loops, i.e., Wilson loops
after MCG and center projection, for smeared blocked
configurations however seem to reproduce the original
Zð2Þ Wilson loops.
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FIG. 29 (color online). Dual vortex plaquettes of two orthogonal pairs of planar vortices after vortex smearing on 164 lattices from
Fig. 28(c). From left to right and top to bottom we plot the single time slices (t ¼ 1-16).
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In Fig. 27(a) we show the ratios of vortex limited Wilson
loops, i.e., Wilson loop averagesWi evaluated on subsets of
loops with i original vortex piercings. The results show that
the vortex structure is preserved, only for large Wilson
loops on blocked smeared lattices the signal becomes weak.
Finally, in Fig. 27(b) we plot the Creutz ratios χðR;RÞ
which give for R → ∞ the asymptotic string tension. We
find that the vortex smeared configurations reproduce the
original string tension, but not the Coulomb interaction for
small R.

IV. VORTEX SMEARING AND CLASSICAL
CONFIGURATIONS

Finally, we also tested the vortex smearing method on
classical vortex configurations, namely planar and spheri-
cal vortices. The figures give an overview of the effects
during vortex smearing and nicely illustrate the individual
steps.

A. Planar vortex pairs

Plane vortices are constructed as presented in [20,66].
Due to the periodic boundary conditions of our lattice the
vortex planes always appear in pairs and we analyze two
vortex pairs in perpendicular directions, i.e., xy- and zt-
vortices. They intersect at four space-time points, which
contribute to the topological charge with contributionsQ ¼
�1=2 depending on the orientation of the intersecting
vortex sheets. After vortex smearing we may get total
topological charge Q ¼ −2;−1; 0; 1 or 2, however the
smearing routine seems to prefer the cases of even Q
(−2; 0 and 2). In fact, Q ¼ j1j requires orientation changes
of single vortex sheets, which would introduce magnetic
monopoles and therefore additional gauge singularities
which seem to be suppressed by the minimizing of the
plaquettes.
Figure 28 shows the vortex configuration on the initial 84

lattice, after refinement, vortex smearing and smoothing on
the refined 164 lattice. As stated above, refinement gives

exactly the same vortex configuration on a finer lattice,
whereas the smearing routine seems to distort the plane
vortex sheets. However, after smoothing the smeared vortex
surface as defined in [48], all distortions are removed in
the case of plane vortex sheets. After blocking even the
unsmoothed smeared vortex configuration reveals the
initial configuration.

B. Spherical vortex

The spherical vortex was introduced in [66] and
analyzed in more detail in [19] and [21]. The thin
[Z(2)] vortex surface is given by a three dimensional
sphere, which we put in a single time slice. In the thick
vortex representation we can define an orientable and a
nonorientable spherical vortex, which are characterized by
topological charge Q ¼ 0 and Q ¼ �1. The latter shows a
hedgehog-like structure of gauge links at the vortex surface,
the 3-sphere, defining a map S3 → SUð2Þ which is charac-
terized by a winding number which yields the nonzero
topological chargeQ. Smearing the thin vortex, without any
information on orientation, is very unlikely to reproduce the
hedgehog-like structure and therefore always gives the
Q ¼ 0 case. The vortex structure itself however, even
though distorted during the smearing procedure, is nicely
recovered during smoothing and perfectly after blocking,
see Fig. 30.

V. CONCLUSIONS

We presented a method to smear Zð2Þ vortex configu-
rations such as to recover thick vortices with SUð2Þ
Yang-Mills information. The main goal was to remove
the eigenvalue gap observed for overlap fermions in
center projected Zð2Þ vortex configurations. In order to
maintain the original vortex structure we have to put the
Zð2Þ configurations on finer lattices, where we imple-
mented two different smearing methods. On the refined
lattice we can distribute the center vortex flux of the
(dual) vortex plaquettes straightforwardly onto the refined

(a) x

y

(b) x

y

(c) x

y

(d) x

y

FIG. 30 (color online). The spherical vortex (a) on a 84 lattice and after (b) refinement, (c) vortex smearing and (d) smoothing on 164

lattices. Blocking the configuration in (c) [or (b) or (d)] gives (a). We plot the dual vortex plaquettes, representing the closed vortex
surface.
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plaquettes making up the original vortex plaquette. On
the other hand, we can smear in terms of link variables,
applying a smooth link profile, i.e., a “slow” rotation of
the links within several lattice spacings instead of the
sudden jump from þ1 to −1 or the other way around,
which characterizes the vortex surface. Both approaches
thicken the vortices in the sense that the center flux is not
restricted to a singular surface but spread out over a few
lattice spacings. The refinement procedure applied to the
Zð2Þ configurations, although preserving the exact vortex
structure, causes new obstacles for lattice fermions,
especially for the staggered Dirac operator, which are
supposedly related to discretization effects. For the
staggered operator these seem to be caused by its special
implementation with even/odd lattices and are hard to
overcome with smearing methods. For the overlap oper-
ator however, we can optimize our smearing routines to
close the eigenvalue gap and reproduce a finite number of
actual zero modes. Besides the refined smearing methods,
we also discuss a method to block the smeared lattice
back to its original size. With the various methods we can
also reproduce topological properties of the original
gauge fields; on blocked vortex smeared lattices the
different definitions of topological charge, i.e., fermionic,
gluonic and vortex topological charge, result in compa-
rable susceptibilities. However, one-to-one correlations of
topological aspects for individual configurations are not
observed. The reason was discussed in detail above and
can be summarized in a simple manner. Gluonic topo-
logical charge definitions are usually applied after cool-
ing or smearing, both transforming Monte Carlo
configurations into smooth gauge fields without center
vortex excitations. Thin center vortex gauge fields, i.e.,
Zð2Þ configurations, on the other hand lack any infor-
mation of the orientation of thick center vortices, which
is crucial for topological charge determination. During
vortex smearing or vortex topological charge determina-
tion we apply random orientations to the vortex sheets
and cannot expect to reproduce the original topological
charge. However, earlier results and the analysis here
show that vortex gauge fields reproduce the net topo-
logical charge and susceptibility via vortex topological
charge definition and via fermionic or gluonic definitions
after the introduced vortex smearing methods. The vortex

smeared configurations, besides preserving the original
vortex structure, also reproduce the asymptotic string
tension of the original gauge field ensemble, which is the
basis of the confinement mechanism by center vortices. It
should be stressed that our method is not intended to
reproduce full Yang-Mills dynamics on arbitrarily short
length scales, but rather to encode the infrared dynamics
consistently in fields which only vary appreciably over
lengths commensurate with an infrared effective picture.
This consistency is, strictly speaking, not manifest as
long as one remains in a thin P-vortex framework. In the
process, properties are seen to be recovered which are not
accessible using pure Zð2Þ configurations. In accordance
with this, it should be remarked that, although we
primarily have not analyzed the scaling behavior of
our smeared ensembles due to the considerable numerical
effort associated with the refined lattices, we do not
envisage reproducing a particular scaling law with the
smeared degrees of freedom. Rather, the center vortex
picture as an infrared effective model has a fixed scale
given by the vortex thickness, which acts as an ultraviolet
cutoff and has a direct relation to ΛQCD. Starting from
(thin) Zð2Þ vortices our smearing method tries to regain
the finite vortex thickness, which then sets the initial
scale and allows us to extract observables within these
infrared effective degrees of freedom. Going forward in
that sense, the plan is to use the developed tools to
analyze topological and fermionic properties of the
SUð2Þ effective center vortex model [12]. Further, the
methods shall be advanced to the SUð3Þ gauge group and
applied to the corresponding vortex model [13].
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APPENDIX A: OVERLAP FERMION MODE DISTRIBUTIONS
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FIG. 31 (color online). “Unfolded” level spacing of overlap eigenvalues in the fundamental representation of SU(2) (orthogonal
ensemble) for (a) all, (b) original and (c), (d) smeared configs: (c) link rotation smearing, (d) flux distribution smearing and their blocked
versions in (e) and (f), respectively.
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FIG. 32 (color online). Distribution of lowest overlap eigenvalues in the fundamental representation of SU(2) (orthogonal ensemble)
for (a), (b) original, (c), (d) link rotation and (e), (f) flux distribution smearing in topological sectors ν ¼ 0 (left) and ν ¼ 1 (right).
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FIG. 33 (color online). Distribution of lowest overlap eigenvalues in the fundamental representation of SU(2) (orthogonal ensemble)
for (a), (b) combined configurations, (c), (d) link rotation and (e), (f) flux distribution smeared blocking in topological sectors ν ¼ 0
(left) and ν ¼ 1 (right).
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APPENDIX B: STAGGERED FERMION MODE DISTRIBUTIONS
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FIG. 34 (color online). “Unfolded” level spacing of staggered eigenvalues in the fundamental representation of SU(2) (symplectic
ensemble) for (a) all, (b) original and (c)–(f) smeared configurations: (c) link rotation smearing, (d) flux distribution smearing and their
blocked versions in (e) and (f), respectively.
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FIG. 35 (color online). Distribution of lowest staggered eigenvalues in the fundamental representation of SU(2) (symplectic ensemble)
for (a) all, (b) original and (c), (f) smeared configurations: (c) link rotation and (d) flux distribution smearing and their blocked versions
in (e) and (f), respectively.
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