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We revisit the issue of the large negative next-to-leading-order (NLO) cross section for single inclusive
hadron production in pA collisions in the saturation formalism. By implementing the exact kinematical
constraint in the modified dipole splitting functions, two additional positive NLO correction terms are
obtained. In the asymptotic large-k⊥ limit, we analytically show that these two terms become as large as the
negative NLO contributions found in our previous calculation. Furthermore, the numerical results
demonstrate that the applicable regime of the saturation formalism can be extended to a larger k⊥
window, where the exact matching between the saturation formalism (in the asymptotic k⊥ regime) and the
collinear factorization calculations will have to be performed separately. In addition, after significantly
improving the numerical accuracy of the NLO correction, we obtain excellent agreement with the LHC
and RHIC data for forward hadron productions.
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I. INTRODUCTION

A focal point of the frontier of high energy nuclear
physics at the RHIC and the LHC is the study of saturation
in hadron collisions. Saturation is an effect that emerges
due to bremsstrahlung gluon radiation in the hadronic wave
function. It was prompted by the theoretical prediction that,
at high energy, the gluon density rises rapidly as x, the
longitudinal momentum fraction of the gluons with respect
to their parent hadron, decreases. This rise is governed by
the famous Balitskii, Fadin, Kuraev, and Lipatov (BFKL)
evolution equation [1], which emerges from the resumma-
tion of terms proportional to αs ln 1

x. However, when the
gluon density becomes high, it is expected that gluons start
to recombine and QCD dynamics becomes nonlinear. This
eventually leads to the onset of gluon saturation [2–4], as a
result of the nonlinear QCD dynamics. To quantify the
recombination effect, a nonlinear term in the gluon evo-
lution equation was proposed in Refs. [2,3]. This nonlinear
extension of the BFKL evolution equation was later
independently derived by Balitsky and Kovchegov; accord-
ingly, the equation is referred to as the BK evolution
equation [5,6]. Theoretically, it seems that gluon saturation
is bound to occur as a result of high-energy evolution.
The taskremains to finda“smokinggun” signatureofgluon

saturation in experimentaldata at e.g. theRHICor theLHC.A
wealthof results inpAcollisions, ideal forobservingsaturation
[7], are becoming available. But it is critical to have precise,
quantitative phenomenological calculations in the saturation
formalism to compare to these experimental results.

Single inclusivehadronproduction inpA collisionsat high
energy reveals the interesting physics of gluon saturation
particularly well, compared to pp collisions. The effect of
densegluons in the target nucleus canbe characterizedby the
introductionofasemi-hardmomentumscale,whichisknown
as the saturation scale Qs, a function of the momentum

fractionxg ¼
kþgluon
kþnucleon

, and thenuclearmassnumberA.Roughly

speaking, the saturation scale can be used to separate the
saturated (dense) regime, in which the nonlinear energy
evolution applies, from the (dilute) regime in which the
evolution is linear. When the typical hard scale of the
scattering, Q, is less than Qs, one expects that the target
partons involved in the interaction are saturated.On the other
hand, when Q ≫ Qs, the saturation effect is no longer
important, and standard perturbative QCD should be suffi-
cient to describe the data.
It is generally believed that the transverse momentum of

typical gluons inside nuclear targets is roughly Qsðxg; AÞ. In
high-energy pA collisions, before partons from the proton
projectile fragment into hadrons with transverse momentum
p⊥, they undergo multiple interactions with the dense gluonic
fields in the highly boosted target nucleus, picking up a
transversemomentumofroughlyQs intheprocess.Thesquared
saturationmomentumQ2

s in nuclear targets isA1=3 times that in
protons, due to random multiple scatterings. Therefore, the
transverse momentum (p⊥) spectrum of the produced hadrons
exhibits different behavior in pA collisions, especially in the
relatively low-p⊥ regime, than in pp collisions.
Measurements of single inclusive hadron production in

pA collisions at the RHIC [8–13] and the LHC [14–21]
have provided plenty of data. There have been many
theoretical and phenomenological efforts [22–39] on this
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subject, which imply that gluon saturation (or shadowing)
plays an important role in the production of forward
rapidity hadrons.
The first complete next-to-leading-order (NLO) calcu-

lation for inclusive hadron productions [40,41] in pA
collisions was achieved a few years ago, using Mueller’s
dipole formalism (see Ref. [42] for a discussion at NLO).
This computation was the first complete NLO calculation
which used dimensional regularization and with the MS
regularization scheme, which is necessary to correctly
incorporate the available NLO collinear parton distribu-
tions (PDFs) and fragmentation functions (FFs) without
introducing additional scheme dependence.
Schematically, the full NLO cross section for hadron

production at forward rapidity y, with the hadron having
transverse momentum p⊥ ¼ zk⊥, can be written as follows:

d3σ
dyd2p⊥

¼
Z

xpfiðxpÞ ⊗ Dh=iðzÞ ⊗ F
xg
i ðk⊥Þ

⊗ Hð0Þ þ αs
2π

Z
xpfiðxpÞ

⊗ Dh=jðzÞ ⊗ F
xg
ðNÞij ⊗ Hð1Þ

ij : ð1Þ
All the hard factors H are given in Refs. [40,41]. F

xg
i ðk⊥Þ

and F
xg
ðNÞij, which are functions of the transverse momen-

tum k⊥ of the produced parton, represent the Fourier
transforms of dipole scattering amplitudes. xpfiðxpÞ and
Dh=jðzÞ are the parton distribution and fragmentation
functions, respectively.
The first numerical analysis of forward hadron produc-

tion in pA and dA collisions in the small-x saturation
formalism, based on the NLO results in Refs. [40,41], was
presented in Refs. [43,44]. It was found that the theoretical
uncertainty is significantly reduced compared to leading-
order (LO) results, and the calculated NLO cross section
agrees well with forward-rapidity RHIC data for p⊥ ≲Qs.
Recall that Qs is the characteristic scale for the gluon
density in a heavy nucleus. In general, the p⊥ region in
which the calculation and results agree increases with the
center-of-mass scattering energy

ffiffiffiffiffiffiffiffi
sNN

p
, since the typical

gluon density probed is larger at high energy. However, the
numerical results of the NLO cross section abruptly drop to
negative values above some cutoff momentum which is
generally slightly greater than Qs.

1

Strictly speaking, the saturation formalism always takes
the high-energy limit s → ∞, which yields large saturation
momentum Qs. In this limit, the NLO results in
Refs. [40,41] are obtained after the subtraction of the
rapidity divergence (associated with the small-x evolution

in the s → ∞ limit) as well as the collinear divergences
[associated with the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution of PDFs and FFs]. However, in
phenomenological studies of saturation physics, the center-
of-mass energy of scatterings is finite and the saturation
momentum is not very large. It is natural to expect that the
saturation formalism works when k⊥ ≤ Qs. On the other
hand, when k⊥ ≫ Qs, the saturation formalism is believed
to be no longer applicable since xg is no longer small, and
the collinear factorization approach should be the relevant
formalism to describe the large-k⊥ part of the cross section.
Studies [45] have shown that the transverse-momentum-
dependent (TMD) factorization is closely related or equiv-
alent to the small-x factorization in terms of gauge links
[46–48], if one puts them in the same kinematical region. A
similar kinematic restriction is also required for the TMD
factorization in the hard scattering processes, where the
transverse momentum k⊥ is much smaller than the hard
momentum scale Q (like the invariant mass of the lepton
pair in the Drell-Yan process) [49]. In other words, the
TMD factorization would be invalid in the large-k⊥ ∼Q
region. In this region, a matching to the collinear factori-
zation calculation is usually performed [49]. This argument
applies to the case studied in this paper as well.
In Ref. [50], the matching between the perturbative

results was reached by taking the large-k⊥ limit of the NLO
cross section in the small-x formalism and enforcing the
exact kinematic constraint. One might wonder if there is a
way to naturally implement the kinematic constraint in the
small-x formalism. Doing so could help extend the appli-
cability of the formalism to the large-k⊥ regime. Recently,
the authors of Ref. [51] performed another independent
NLO calculation of single inclusive hadron production in
pA collisions. Their discussion of the Ioffe time depend-
ence, which is equivalent to the kinematical constraint,
motivated us to investigate the details of the dipole
formalism application in this process and compute the
effect of the kinematical constraints. We find that we obtain
two additional NLO corrections from incorporating these
constraints. These two terms were conjectured to be small
in the s → ∞ high-energy limit, and therefore implicitly
neglected in the original derivation of the NLO corrections
[40,41]. It is interesting to note that, in Ref. [52], a similar
logarithmic term played an important role in deriving the
Sudakov factor in other hard processes. We need to
emphasize that there is no Sudakov factor in the process
of single hadron productions. As we will show later, these
additional NLO corrections are indeed small as long as
k⊥ < Qs. However, they become large when k⊥ > Qs. By
including these two terms, we can offset the negativity of
the NLO terms at larger p⊥ and extend the applicability
window of the saturation formalism towards larger p⊥ for
single hadron productions.
The goal of this paper is to revisit the issue of the

negative NLO cross section found in the large-k⊥ regime of

1The relationship between the saturation scale Qs, the cutoff
momentum at which the results become negative, and the boundary
of the region in which the calculation accurately describes the
data appears to be some sort of rapidity-dependent proportionality,
but the details are not clear. Reference [44] includes some
discussion of the relationship among these momenta.
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forward-rapidity single inclusive hadron production in pA
collisions, and the numerical implementation of the exact
kinematics in the small-x formalism at one-loop order. We
find that, with the exact kinematical constraint imposed, we
can obtain two additional NLO hard factors, with one from
the q → q channel and the other from the g → g channel.
We first analytically show that these two terms are large
enough to partially overcome the negative NLO terms
found earlier in the simple Golec-Biernat and Wusthoff
(GBW) model [53]. Numerically, these two terms are found
to be negligible when k⊥ < Qs, but they become important
when k⊥ rises to ≈2Qs and higher.
More importantly, we have significantly improved our

numerical implementation of all NLO corrections, which
allows us to do phenomenological studies at the LHC
energy. We find excellent agreement between the full NLO
cross section and the forward hadron production data at the
LHC. This paves the road for a quantitative and precise
phenomenological test of saturation physics at the LHC.
The rest of this paper is organized as follows. In Sec. II,

we present a detailed derivation of the implementation of
the kinematical constraint into the dipole model, and obtain
two additional NLO corrections (one for the quark channel
and one for the gluon channel) after subtracting the
corresponding small-x large logarithms. We further evalu-
ate these two terms by Fourier transform, and demonstrate
that they have the same 1

k4⊥
behavior exhibited by perturba-

tive QCD in the high-k⊥ limit. In particular, we analytically
show that the additional terms are large compared to the
negative cross section at NLO. In Sec. III, we present the
numerical results and compare them to RHIC and LHC
results. We summarize our paper in Sec. IV.

II. DIPOLE MODEL AND KINEMATICAL
CONSTRAINTS AT NLO

Let us first review the exact kinematical constraint
discussed in previous publications [50–52,54], since it
plays an important role in this paper. We will continue
to use light-cone perturbation theory as in Refs. [40,41],

and define pþ ¼ p0þp3ffiffi
2

p and p− ¼ p0−p3ffiffi
2

p .

The kinematical constraint is derived from the conser-
vation of the—component of the four-momentum before
and after interactions for 2 → 2 processes. For quark
production with transverse momentum k⊥, as illustrated
in Fig. 1, we obtain

x0gP− ¼ l2⊥
2ð1 − ξÞxpPþ þ k2⊥

2ξxpPþ ≤ P−: ð2Þ

As ξ approaches 1, the above kinematical constraint
indicates

l2⊥ ≤ ð1 − ξÞxps; or ξ ≤ 1 −
l2⊥
xps

: ð3Þ

For a rapidity divergent term, we find that the above
constraint modifies the upper limit of the divergent integral
as follows:

Z
1−

l2⊥
xps

0

dξ
1 − ξ

¼ ln
xps

l2⊥
¼ ln

1

xg
þ ln

k2⊥
l2⊥

; ð4Þ

where xg ≡ k2⊥
xps

according to the leading-order kinematics.

In the high-energy limit, we assume k⊥ ∼ l⊥ which makes
the second term very small. However, as we shall show in

the following discussion, the ln k2⊥
l2⊥
term becomes important

when k⊥ gets larger than the typical saturation momentum.

The direct evaluation of this ln k2⊥
l2⊥

term is not easy in the

momentum space, but indirectly evaluating it in coordinate
space is quite straightforward, as we shall demonstrate in
the following discussion, after encoding it into the modified
dipole splitting functions.2

Inspired by Ref. [54], which proposed the kinematical
constraint on the BK evolution, and Ref. [51], which
introduced the Ioffe time cutoff in the one-loop calculation,
we find that it is convenient to encode the kinematical
constraint by modifying the dipole splitting function for the
q → qg splitting, shown in Fig. 1, as follows:

ψλ
αβðpþ; kþ; u⊥Þ ¼ 2πi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ð1 − ξÞpþ

s
½1 − J0ðu⊥ΔÞ�

×

8<
:

u⊥·ϵ
ð1Þ
⊥

u2⊥
ðδα−δβ− þ ξδαþδβþÞ; λ ¼ 1;

u⊥·ϵ
ð2Þ
⊥

u2⊥
ðδαþδβþ þ ξδα−δβ−Þ; λ ¼ 2;

ð5Þ

FIG. 1. A typical real diagram at NLO.

2A similar term, lnM2

l2⊥
, where M is another hard scale (e.g. the

Higgs mass or dijet invariant mass), is used to derive the Sudakov
factor when M2 ≫ k⊥2 [52]. The Sudakov physics is different
from what we are discussing here, since basically the single
hadron production process is a single scale problem. First of all,
the new terms that we obtain can be never interpreted as a
Sudakov factor; instead it should be viewed as part of the NLO
power correction. In addition, the color flow is completely
different. Note that the color factor for the quark Sudakov factor
is CF while the one for BFKL physics is always Nc=2.
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with Δ2 ¼ ξð1 − ξÞxps. The original dipole splitting func-

tion, which is proportional to u⊥·ϵ
ð1;2Þ
⊥

u2⊥
, arises from the Fourier

transform of l⊥·ϵ
ð1;2Þ
⊥

l2⊥
. The additional term of −J0ðu⊥ΔÞ arises

from the kinematical constraint, Eq. (3), imposed during
the Fourier transform.
In general, the correction to the splitting function

J0ðu⊥ΔÞ does not play any important role since it vanishes
when we take the high-energy limit s → ∞. It only
becomes important when the gluon longitudinal momen-
tum fraction 1 − ξ approaches zero. Specifically, for quark
production at one-loop order, we always get the following
DGLAP-type contribution from real diagrams:

Z
1

τ
dξ

1þ ξ2

1 − ξ
¼

Z
1

τ
dξ

1þ ξ2

ð1 − ξÞþ
þ
Z

1

0

dξ
2

1 − ξ
: ð6Þ

For the first term on the right-hand side of the above
equation, we can safely take the s → ∞ limit, since this
term is regular when ξ → 1. However, one cannot neglect
the correction J0ðu⊥ΔÞ for the second term, since it is
singular when ξ → 1. Clearly, in this NLO calculation for
single hadron production in pA collisions, the kinematical
constraint only affects the rapidity subtraction term.
The relevant contribution to the cross section, with the

modified splitting function, can be written as

αsNc

2π2

Z
1

0

dξ
1 − ξ

Z
d2x⊥d2y⊥d2b⊥

ð2πÞ2 e−ik⊥·ðx⊥−y⊥Þ½−Sðx⊥; y⊥Þ

þ Sðx⊥; b⊥ÞSðb⊥; y⊥Þ�

×

�½1 − J0ðu⊥ΔÞ�2
u2⊥

þ ½1 − J0ðu0⊥ΔÞ�2
u02⊥

−
2u⊥ · u0⊥
u2⊥u02⊥

½1 − J0ðu⊥ΔÞ�½1 − J0ðu0⊥ΔÞ�
�
; ð7Þ

where u⊥ ≡ x⊥ − b⊥ and u0⊥ ≡ y⊥ − b⊥.
This term looks similar to the last term of Eq. (4.21) in

Ref. [51]. In this paper, we are implementing the kinemati-
cal constraint, while the authors in Ref. [51] were discus-
sing the Ioffe time cutoff. In fact, by identifying 2Pþ

τ in
Ref. [51] with the center-of-mass energy s in our paper, we
find that these two effects become the same. One of the
most important differences between our calculation and
Ref. [51], as demonstrated below, is that we subtract the
small-x logarithms and extract the NLO corrections which
can be computed numerically in SOLO. It will be interesting
to compare the factorization approach of our calculations
with that in Ref. [51], and in particular to see the
phenomenological consequence. This, however, is beyond
the scope of our paper.
One can actually approximately integrate over ξ and

find that

Z
1

0

dξ
1 − ξ

�
1 − J0

�
u⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xpsð1 − ξ

q
Þ
��

2

≃ ln
xpsu2⊥
c20

¼ ln
1

xg
þ ln

k2⊥u2⊥
c20

ð8Þ

Z
1

0

dξ
1 − ξ

�
1 − J0

�
u⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xpsð1 − ξ

q
Þ
��

×

�
1 − J0

�
u0⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xpsð1 − ξ

q
Þ
��

≃ ln
xpsu⊥u0⊥

c20
¼ ln

1

xg
þ ln

k2⊥u⊥u0⊥
c20

; ð9Þ

with c0 ¼ 2e−γE . Here we have used xpxgs ¼ k2⊥. It is then
clear that the first term ln 1

xg
can be subtracted from the NLO

cross section and interpreted as the BK evolution of the
dipole amplitude S up to rapidity Yg ¼ ln 1

xg
. The second

term in the above equations, which is conjugate to the term

ln k2⊥
l2⊥
as in Eq. (4) [see also Eq. (3.12) of Ref. [51]] with l⊥

being the gluon transverse momentum, arises due to the
exact kinematical constraint. More precisely, the second

integral should give ln 1
xg
þ ln k2⊥u2<

c2
0

instead of ln 1
xg
þ

ln k2⊥u⊥u0⊥
c2
0

with u< ≡minfu⊥; u0⊥g, which makes the calcu-

lation for Lqðk⊥Þ nonanalytical and the precise numerical
evaluation more challenging. Fortunately, one can numeri-
cally check that the resulting Lqðk⊥Þ has similar large-k⊥
behavior, and it gives the same high-k⊥ tail, since u⊥ ≃ u0⊥
when k⊥ → ∞. Besides, as we will show later, in the low-
k⊥ region, Lqðk⊥Þ is negligible in the total cross section.
Our goal here is to extract the correct large-k⊥ tail of the
additional hard factor, which eventually helps to extend
the applicability of the small-x calculation. In this sense, we

can approximate ln k2⊥u2<
c2
0

as ln k2⊥u⊥u0⊥
c2
0

. Also, because the rest

of the expression is symmetric under the exchange
u⊥↔u0⊥, it is useful to note that this is equivalent to using

ln k2⊥u2⊥
c2
0

or ln k2⊥u02⊥
c2
0

.

The leftover terms can be cast into an additional hard
factor which reads

Lqðk⊥Þ ¼
αsNc

2π2

Z
d2x⊥d2y⊥d2b⊥

ð2πÞ2 e−ik⊥·ðx⊥−y⊥Þ

× ½Sðx⊥ − b⊥ÞSðy⊥ − b⊥Þ − Sðx⊥ − y⊥Þ�

×

�
1

u2⊥
ln
k2⊥u2⊥
c20

þ 1

u02⊥
ln
k2⊥u02⊥
c20

−
2u⊥ · u0⊥
u2⊥u02⊥

× ln
k2⊥ju⊥jju0⊥j

c20

�
: ð10Þ

The corresponding contribution to the single inclusive cross
section in this channel can be written as
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d3σLq

dyd2p⊥
¼

Z
1

τ

dz
z2

X
f

xpqfðxpÞDh=qðzÞLqðk⊥Þ: ð11Þ

It is not hard to show that the above contribution from
Lðk⊥Þ is free of both UV and IR divergences. When
b⊥ → x⊥, the first bracket vanishes. When b⊥ → ∞, the
second bracket vanishes. Due to these strong cancellations,
it was believed that this contribution should be small. In
fact, Ewerz et al. [55] studied the Ioffe time effect of the
dipole model in deep inelastic scattering for inclusive total
cross sections, and they found that this effect is small.
For single inclusive hadron production in pA collisions, as
we demonstrate below, the effect is small when p⊥ is small,
but it becomes as large as other NLO corrections when
p⊥ ∼Qs.
Note that this term is physically and fundamentally

different from the so-called ΔH correction from Kang
et al. [56], which is proportional to the rapidity interval

Y − Yg ¼ ln 1
xp
þ ln k2⊥

m2
p
. As commented in Ref. [57], the

choice of the rapidity interval leads to an unphysical
conclusion and violates the small-x factorization. The
new additional term Lqðk⊥Þ does not depend on either
the projectile longitudinal momentum fraction xp, or the
hadronic mass mp. It is important to notice that QCD
factorization does not allow us to have hadronic massmp in
any hard factors. Otherwise, this implies that we cannot
separate the nonperturbative physics from the perturbative
calculable hard factors. It is also clear from our above
derivation that xp naturally cancels out and thus does not
appear in Lq. We would like to emphasize that the so-called
ΔH correction discussed in Ref. [56] is unjustified and
should be absent in view of the small-x factorization.
Let us derive the following simplified expression for

Lqðk⊥Þ which is much easier to evaluate numerically. It is
straightforward to use the following Fourier transform
identities3:

1

u2⊥
ln
k2⊥u2⊥
c20

¼ 1

8π

Z
d2l⊥eil⊥·u⊥

�
ln
k2⊥
l2⊥

�
2

; ð12Þ

~u⊥
u2⊥

ln
k2⊥u2⊥
c20

¼ 1

2π

Z
d2l⊥eil⊥·u⊥

i~l⊥
l2⊥

ln
k2⊥
l2⊥

; ð13Þ

to find that

Lqðk⊥Þ ¼
αsNc

4π2
S⊥½Lq1ðk⊥Þ þ Lq2ðk⊥Þ þ Lq3ðk⊥Þ�

ð14Þ

with

Lq1ðk⊥Þ ¼ −
Z

d2r⊥
2π

e−ik⊥·r⊥Sðr⊥Þ
�
ln
k2⊥r2⊥
c20

�
2

; ð15Þ

Lq2ðk⊥Þ ¼ ð2πÞFðk⊥Þ
Z

d2l⊥Fðk⊥ − l⊥Þ
�
ln
k2⊥
l2⊥

�
2

;

ð16Þ

Lq3ðk⊥Þ ¼ −4
Z

d2l⊥d2l0⊥Fðk⊥ − l0⊥ÞFðk⊥ − l⊥Þ

×
l0⊥ · l⊥
l02⊥l2⊥

ln
k2⊥
l2⊥

: ð17Þ

In deriving the above expression, we have used the fact that
the impact parameter integration simply gives S⊥, which is
the area of the target nucleus (see Appendix A for detailed
derivations).
In fact, one can further evaluate Lqðk⊥Þ analytically in

the GBW model by assuming

SðR⊥Þ ¼ exp

�
−
Q2

sR2⊥
4

�
;

⇒ Fðk⊥Þ ¼
1

πQ2
s
exp

�
−
k2⊥
Q2

s

�
; ð18Þ

and find

Lq1ðk⊥Þ ¼
−2
Q2

s

�
Lð2;0Þ

�
−1;−

k2⊥
Q2

s

�
− 2 ln

k2⊥eγE
Q2

s

× Lð1;0Þ
�
−1;−

k2⊥
Q2

s

�
þ
��

ln
k2⊥eγE
Q2

s

�
2

þ π2

6

�

× exp

�
−
k2⊥
Q2

s

��
;

Lq2ðk⊥Þ ¼ 4π2Fðk⊥ÞFðk⊥Þ
Z

∞

0

dl⊥l⊥ exp
�
−
l2⊥
Q2

s

�

× I0

�
2l⊥k⊥
Q2

s

��
ln
k2⊥
l2⊥

�
2

;

Lq3ðk⊥Þ ¼ −
8π

k⊥
Fðk⊥Þ

�
1 − exp

�
−
k2⊥
Q2

s

��

×
Z

∞

0

dl⊥I1
�
2l⊥k⊥
Q2

s

�
exp

�
−
l2⊥
Q2

s

�
ln
k2⊥
l2⊥

:

ð19Þ
For Lq2ðk⊥Þ and Lq3ðk⊥Þ, in principle, one can also
perform the dl⊥ integration and obtain analytical final

3Note that this Fourier transform may be problematic for
u⊥ ¼ 0, and therefore we should exclude the point where u⊥ ¼ 0,
in principle. However, the fact that the first bracket in Eq. (10)
vanishes when x⊥ → b⊥ (or equivalently u⊥ → 0), suggests that
we are justified in ignoring the fact that Lqðk⊥Þ is undefined at
that point. We have also numerically tested that the two
expressions of Lðk⊥Þ, before and after the Fourier transform,
give the same numerical results.
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results in terms of derivatives of hypergeometric functions.

Asymptotically, Lq1ðk⊥Þ and Lq3ðk⊥Þ give 8Q2
s

k4⊥
and − 4Q2

s

k4⊥
in

the large-k⊥ limit, respectively, while Lq2ðk⊥Þ is exponen-
tially suppressed. The most interesting observation is that

Lqðk⊥Þjk⊥→∞ ¼ αsNcS⊥
4π2

4Q2
s

k4⊥
. Comparing to the NLO quark

channel hard factor, which involves

αsNc

4π2

Z
1

τ=z
dξxqðxÞ ð1þ ξ2Þ2

ð1 − ξÞþ
Q2

s

k4⊥
∼ −

αsNc

4π2
xpqðxpÞ

61

12

Q2
s

k4⊥
ð20Þ

in the large-k⊥ limit, it is conceivable that this term is
sufficient to largely cancel the large and negative NLO
cross section found earlier. In order to understand the

importance of the additional contribution
d3σLq
dyd2p⊥

as in

Eq. (11), it is illuminating to compare it with the lead-
ing-order cross section in the quark channel which can be
written as

d3σqLO
dyd2p⊥

¼
Z

1

τ

dz
z2

X
f

xpqfðxpÞDh=qðzÞS⊥Fðk⊥Þ;

with Fðk⊥Þ≡
Z

d2r⊥
ð2πÞ2 e

−ik⊥·r⊥Sðr⊥Þ; ð21Þ

since the LO cross section can provide an order-of-
magnitude estimate of the total cross section. It is then
straightforward to see that one just needs to compare
Lqðk⊥Þ (after factorizing out S⊥) with Fðk⊥Þ. As shown

in Fig. 2, Lðk⊥Þ is small compared to Fðk⊥Þ in the low-k⊥
region, and therefore the additional contribution is
negligible when k⊥ < Qs. On the other hand, Lqðk⊥Þ falls
slowly with k⊥ and becomes important when k⊥ > 2Qs.

III. THE GLUON CHANNEL CONTRIBUTION

For the gluon channel, we can use the same procedure to
take into account the kinematical constraint. As discussed
above, all the hard factors were computed in Refs. [40,41]
except for the rapidity divergent piece. For a large nucleus
target and in the large-Nc limit, we can write the rapidity
divergent term as

αsNc

π2

Z
1

0

dξ
1 − ξ

Z
d2x⊥d2y⊥d2b⊥

ð2πÞ2 e−ik⊥·ðx⊥−y⊥Þ½−Sðx⊥; y⊥Þ

þ Sðx⊥; b⊥ÞSðb⊥; y⊥Þ�Sðx⊥; y⊥Þ

×

�½1 − J0ðu⊥ΔÞ�2
u2⊥

þ ½1 − J0ðu0⊥ΔÞ�2
u02⊥

−
2u⊥ · u0⊥
u2⊥u02⊥

× ½1 − J0ðu⊥ΔÞ�½1 − J0ðu0⊥ΔÞ�
�
; ð22Þ

where u⊥ ≡ x⊥ − b⊥ and u0⊥ ≡ y⊥ − b⊥. We have put in
the kinematical constraint in the same fashion as we did for
the quark channel. Again, after subtracting the small-x
logarithm ln 1

xg
through the BK evolution equation for the

dipole scattering amplitude in the adjoint representation
appearing in the gluon channel, we can obtain the remain-
ing additional hard correction due to the kinematical
constraint

FIG. 2 (color online). The comparison between Q2
s

S⊥ Lqðk⊥Þ andQs
2Fðk⊥Þwith S⊥ factored out. (One can also simply setQs ¼ 1 GeV.)

Here we have employed three different numerical methods to evaluate Lqðk⊥Þ. The blue dots indicate the direct numerical evaluation of
Lqðk⊥Þ as in Eq. (10) with MATHEMATICA, while the red circles represent the evaluation of Eq. (14). The golden diamonds correspond to
the numerical results obtain from Eq. (14) by using our SOLO code programmed with Cþþ. The asymptotic k⊥ behavior of Lqðk⊥Þ is
indicated by the green dashed line. The numerical uncertainties are very small as shown in the right plot.
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Lgðk⊥Þ ¼
αsNc

π2

Z
d2x⊥d2y⊥d2b⊥

ð2πÞ2 e−ik⊥·ðx⊥−y⊥Þ½−Sðx⊥; y⊥Þ

þ Sðx⊥; b⊥ÞSðb⊥; y⊥Þ�Sðx⊥; y⊥Þ

×

�
1

u2⊥
ln
k2⊥u2⊥
c20

þ 1

u02⊥
ln
k2⊥u02⊥
c20

−
2u⊥ · u0⊥
u2⊥u02⊥

ln
k2⊥ju⊥jju0⊥j

c20

�
: ð23Þ

At the end of the day, we can find the following additional
contributions from the gluon channel:

d3σLg

dyd2p⊥
¼

Z
1

τ

dz
z2

xpgðxpÞDh=gðzÞLgðk⊥Þ; ð24Þ

with Lgðk⊥Þ ¼ αsNc
4π2

S⊥½Lg1ðk⊥Þ þ Lg2ðk⊥Þ þ Lg3ðk⊥Þ� and

Lg1ðk⊥Þ ¼ −2
Z

d2r⊥
2π

e−ik⊥·r⊥Sðr⊥ÞSðr⊥Þ
�
ln
k2⊥r2⊥
c20

�
2

;

ð25Þ

Lg2ðk⊥Þ ¼ ð4πÞ
Z

d2l⊥d2l0⊥Fðk⊥ − l⊥ − l0⊥Þ

× Fðk⊥ − l0⊥ÞFðl0⊥Þ
�
ln
k2⊥
l2⊥

�
2

; ð26Þ

Lg3ðk⊥Þ ¼ −8
Z

d2l⊥d2l0⊥d2l00⊥Fðl00⊥ÞFðk⊥ − l0⊥ − l00⊥Þ

× Fðk⊥ − l⊥ − l00⊥Þ
l0⊥ · l⊥
l02⊥l2⊥

ln
k2⊥
l2⊥

: ð27Þ

In the GBW model, using Eq. (18), these expressions can
be simplified to

Lg1ðk⊥Þ ¼ −
2

Q2
s

�
Lð2;0Þ

�
−1;−

k2⊥
2Q2

s

�

− 2 ln
k2⊥eγE
2Q2

s
Lð1;0Þ

�
−1;−

k2⊥
2Q2

s

�

þ
��

ln
k2⊥eγE
2Q2

s

�
2

þ π2

6

�
exp

�
−

k2⊥
2Q2

s

��
; ð28Þ

Lg2ðk⊥Þ ¼
16π

Q4
s
Fðk⊥Þ

Z
∞

0

dl⊥l⊥
Z

∞

0

dq⊥q⊥I0
�
2k⊥q⊥
Q2

s

�

× I0

�
2l⊥q⊥
Q2

s

�
e
−
l2⊥þ3q2⊥

Q2
s

�
ln
k2⊥
l2⊥

�
2

; ð29Þ

Lg3ðk⊥Þ ¼ −
32π

Q2
s
Fðk⊥Þ

Z
∞

0

dl⊥
Z

∞

0

dq⊥ð1 − e−q
2⊥=Q2

s Þ

× I0

�
2k⊥q⊥
Q2

s

�
I1

�
2l⊥q⊥
Q2

s

�
e
−
l2⊥þ2q2⊥

Q2
s ln

k2⊥
l2⊥

: ð30Þ

It is straightforward to find that the leading power behavior

of Lgðk⊥Þ is αsNc
4π2

S⊥ 8Q2
s

k4⊥
with Qs defined as the quark

saturation momentum.

IV. NUMERICAL RESULTS AND PHYSICAL
DISCUSSIONS

A. Numerical setup

The calculation of single inclusive hadron production in
pA collisions up to the NLO level with the full running
coupling has been recently implemented as the computer
program Saturation physics at One Loop Order, or SOLO

[43]. Initial results from the program showed that the full
NLO pA → hX cross section agrees fairly well with the
forward RHIC data. The same paper also provided numeri-
cal results at the energy scale of the LHC at extreme
forward rapidities y≳ 5, since at the time no LHC experi-
ment had published any results.
Since then, ALICE, CMS, and ATLAS have released

their experimental data of the pA → hX differential cross
section, all of which are at roughly central rapidity,
−2≲ y≲ 2. Unfortunately, the initial version of SOLO

gives results with very large uncertainties for LHC central
rapidity collisions, for basically the following reasons.
First, several of the terms involve oscillatory factors of
the form J0ðp⊥r⊥

z Þ or J0ðp⊥r⊥
zξ Þ, which are integrated over r⊥.

At the LHC, the physical scenario where a high-xp parton
from the proton projectile radiates a soft (small-ξ) gluon (or
quark), which then fragments into the produced hadron,
becomes a much more significant contribution than at the
RHIC. Specifically, ξ or z can be as small as τ ¼ p⊥ffiffiffiffiffiffi

sNN
p ey,

which decreases from 0.04 at BRAHMS with y ¼ 2.2, to
0.0002 at ALICE or ATLAS with y ¼ 0 for p⊥ ¼ 1 GeV.
Such small values of z and ξ produce rapid oscillations in
the integrand, which most numerical integration algorithms
are notoriously bad at handling. Although there are
specialized algorithms available, they are prohibitively
difficult when the integrals have four, six, or even eight
dimensions, as is the case with most terms in the cross
section.
Other terms involve factors like Fðk⊥ − l⊥Þ which are

integrated over l⊥, or similar factors with other forms of the
argument. These functions have their peaks where the
argument is zero: for example, l⊥ ¼ k⊥ in the first case.
The numerical integration algorithms used by SOLO are
most effective when the function being integrated has
its peak where the integration variable l⊥ ¼ 0, which is
approximately satisfied at the RHIC (the largest contribu-
tions come from k⊥ ∼ 10 GeV), but not at the LHC. Under
LHC kinematical conditions, we have to accommodate
much larger values of k⊥ while keeping the numerical
uncertainties under control.
Through a series of transformations and various tricks,

together with a tremendous amount of effort, we have
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converted the formulas originally used by SOLO [44] to
improved versions with vastly smaller numerical uncer-
tainties. At this moment, we believe that all the numerical
uncertainties are well under control even at the middle
rapidity region of the LHC. Appendix B explains some of
the key points of these transformations, but we will reserve
the full details of the numerical implementation for a
separate document to be released later.
We have computed results for two different parametriza-

tions of the dipole scattering amplitude S (or its momentum-
space expression, F). First, the GBW model, defined by

SGBWðr⊥Þ ¼ exp

�
−
Q2

sr2⊥
4

�
ð31Þ

with

Q2
sðxgÞ ¼ cA1=3Q2

0

�
x0
xg

�
λ

ð32Þ

where A represents the number of nucleons in the target
nucleus and c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − b2=R2

p
, where b is the impact

parameter and R is the nuclear radius, accounts for the
centrality of the collision. We use the same parameters as in
previous SOLO results [43,44,50]: c ¼ 0.56 to represent
minimum bias collisions, and the original GBW fit param-
eters from Ref. [53], x0 ¼ 0.000304, λ ¼ 0.288 and Q2

0 ¼
1 GeV2, which are based on HERA data. The GBW model
is often used in phenomenological calculations due to its
simple analytical form.
In addition, we also show results computed using the

numerical solution of the BK equation [5,6] with the
running coupling correction [58–61], setting the QCD
running coupling scale in the rcBK equation to
Λ ¼ 0.1 GeV. This solution has been shown [62–65] to
be very useful in phenomenology, especially at high
transverse momenta. Previous studies have also considered
the McLerran-Venugopalan model [4], an analytical
expression which gives a high-k⊥ power tail similar to
the BK solution, but we have omitted those results from the
present analysis because the GBW and rcBK models are
sufficient to show the interesting features of the results.
Results computed from SOLO are for the quantity

1
S⊥

d3σpA→πX

dyd2p⊥
, which can be trivially converted into the differ-

ential yield for production of a single pion species in the
center-of-mass frame,

d3NpA→πX

dyd2p⊥
¼ S⊥

σinel

1

S⊥
d3σpA→πX

dyd2p⊥
ð33Þ

where π is a single species of pion: πþ, π0, or π−. However,
the experiments measure

1

2πp⊥
d2NpA→hX

dηdp⊥
¼ 1

2πp⊥σinel
d2σpA→hX

dηdp⊥
ð34Þ

where h may include several different hadron species,
depending on the detector, and σinel is the total inelastic
cross section. We neglect the difference between rapidity in
the lab frame and pseudorapidity η. Accordingly, we
multiply the output from SOLO by a factor σh

σπ S⊥=σinel to
make it compatible with the experimental measurements.

(i) BRAHMS measures negatively charged hadrons.
We use σh

σπ ¼ 1.3 to account for the yields
from kaons and other hadrons. We also set S⊥≈
πð7.5 fmÞ2 ¼ 1770mb, and use σinel¼2400mb [66].

(ii) STAR measures only neutral pions, so σh

σπ ¼ 1, and
σinel ¼ 2210 mb [11], with the same S⊥ as
BRAHMS.

(iii) ALICE and ATLAS measure all charged pions,
kaons, and protons. We use a result from CMS
[67] that the kaon and proton yields are 13% and 6%,
respectively, of the pion yield, giving σh

σπ ≈ 2.4, and
σinel ¼ 2100 mb from LHCb [68]. For lead nu-
clei, S⊥ ≈ SAu⊥ × ð208=197Þ2=3 ¼ 1830 mb.

As far as the definition of rapidities is concerned,
deuteron beams have positive rapidity and gold nuclei
beams have negative rapidity at the RHIC. The energy of
both beams per nucleon is

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. Therefore,
the center-of-mass frame is the same as the lab frame. The
specification of rapidities in the SOLO package follows the
above setup: positive rapidity always refers to the deuteron-
going direction (or proton-going, at the LHC), as shown in
Fig. 3. On the other hand, some of the ATLAS and ALICE
pPb data measured at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV are presented in
the opposite rapidity configuration, with the proton beams
having negative rapidity. In order to compare our results
with those data without confusion, we have flipped the sign

FIG. 3 (color online). The orientation of rapidities used by
SOLO and throughout this paper. Positive (or forward) rapidity is
always in the direction of the proton (or deuteron, for the RHIC)
beam. Some results published by ALICE [15] and ATLAS [21]
use the opposite orientation. In this paper we always use y to
represent the rapidity in the center-of-mass frame.
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of rapidity in the experimental results and labeled our plots
with the rapidity y in the center-of-mass frame in the SOLO

convention. Throughout this paper, forward rapidity, y > 0,
always means the rapidity region along the proton (or
deuteron) beam direction in the center-of-mass frame.

B. Discussion of numerical results

Figures 4 and 5 show the differential dA → hX yields at
forward rapidity for BRAHMS [9] and STAR [10],
respectively, along with the corresponding results from
SOLO using the new (transformed) formulas. The LO and
LOþ NLO curves are very similar to earlier results
published in Ref. [43]; some slight differences are due
to the increased precision of the new formulas. In the
meantime, the Lq and Lg corrections are completely
negligible in the region where p⊥ ≲Qs. On the other
hand, where p⊥ ≳Qs, Lq and Lg start to become important
and alleviate the negativity problem in the GBW model,
and help us to better describe the data in the high-p⊥
region. In the rcBK case, we find that the full NLO cross
section now becomes completely positive and provides us
excellent agreement with all the RHIC data.
In Fig. 6, we show the comparison between the forward

ATLAS data at y ¼ 1.75 and the numerical results from
SOLO. We observe remarkable agreement between the full

NLO calculation from the saturation formalism and exper-
imental data up to 6 GeV. Again, as we have seen earlier,
the newly added Lq and Lg corrections help to increase the
applicable p⊥ window of the saturation formalism from
roughly 2.5–3 to 6 GeV. From 6 GeVand up, the full NLO
cross section still becomes negative, which implies that the
saturation formalism does not apply anymore and the
collinear factorization should be used. Admittedly, what
we have seen is only one piece of a promising clue for the
gluon saturation phenomenon. More data in different
forward rapidity windows at the LHC would allow us to
conduct precise tests of the theoretical calculation, and may
eventually provide us the smoking gun proof.
In Fig. 7, we show the comparison between the ALICE

and ATLAS data at y ¼ 0 and the numerical results from
SOLO. We find that the full NLO results, especially the one
with the rcBK solution, miss the data. (It seems that the
GBW model roughly agrees with the data, but we believe
that it is probably just a coincidence.) This indicates that the
dilute-dense factorization breaks down at y ¼ 0. This is
completely expected for the following reason. First, the
collinear parton distributions of the proton projectile do not
resum small-x logarithms and may have considerable
uncertainties in the very low-x region. Most importantly,
the dilute-dense factorization derived in Refs. [40,41]

FIG. 4 (color online). Comparisons of BRAHMS data [9] with the center-of-mass energy of
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV per nucleon at rapidity
y ¼ 2.2; 3.2 with our results. As illustrated above, the crosshatch fill shows LO results, the grid fill indicates LOþ NLOresults, and the
solid fill corresponds to our new results which include the NLO corrections from Lq and Lg due to the kinematical constraint. The error
band is obtained by changing μ2 from 10 to 50 GeV2.
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assumes that the proton projectile is dilute while the nuclear
target is dense. In the forward rapidity region, for example
y ¼ 1.75, one can estimate that roughly xg=xp ∼ 10−2,
which indicates that the small-x evolution is more important
in the nuclear target than in the proton projectile. Therefore,
we can use the integrated parton distributions in the proton
projectile and use the small-x evolution for the unintegrated
gluon distribution in the nuclear target. On the other hand, in
the middle rapidity region, xg=xp ∼ 1, we should use the
small-x evolution to resum both αs ln

1
xg
and αs ln

1
xp
simulta-

neously, since they are of the same order. This means that we
need to do a complete NLO calculation in the framework of
the so-called k⊥ factorization with unintegrated parton
distributions for both the proton projectile and the nuclear
target. Unfortunately, this calculation is very challenging,
and therefore we shall leave it to future studies.

Some more discussion and comments are in order, as
follows. First of all, as we have shown analytically and
numerically in the GBW model, the two additional NLO
corrections derived in this work extend the applicability of
the saturation physics calculation further into the large-p⊥
region, without significantly modifying the low-p⊥ results.
The numerical results using the rcBK solution also support
the same conclusion. In the very large-p⊥ region where the
saturation effect is extremely small, the full NLO cross
section may still become negative, but this is already
beyond the applicability of the saturation formalism. In
this region, it is well known that the collinear factorization
is the relevant framework and provides the best description
of the QCD dynamics.
Second, the comparison between the data and our

calculation suggests that the implementation of the

FIG. 5 (color online). Comparison of STAR data [10] with
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV at y ¼ 4 with results from SOLO for the GBWand rcBK
models. The color scheme is the same as in Fig. 4, and again, the error band comes from μ2 ¼ 10 and 50 GeV2. We do not see the
negative total cross section because the cutoff momentum above which the cross section becomes negative is larger than the p⊥ of the
available data, and in fact larger than the kinematic limit

ffiffiffiffiffiffiffiffi
sNN

p
e−y.

FIG. 6 (color online). Comparison of ATLAS forward-rapidity data [21] with the center-of-mass energy of
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV at
y ¼ 1.75 with SOLO results for the GBWand rcBK models. Again, the color scheme is the same as in Fig. 4. Here the error band shows
plots for μ2 ¼ 10 GeV2 and μ2 ¼ 100 GeV2. Since the numerical data for these measurements are not published, we have extracted
the ATLAS points from Fig. 6 of Ref. [21]. The extraction procedure introduces uncertainties comparable to the size of the points.
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kinematical constraint works slightly better for the rcBK
approach. As compared to the GBW model, the rcBK
solution of the dipole scattering amplitude has the correct
perturbative tail.
Last but not least, as shown in the numerical results, the

negative cross section at NLO may still persist when p⊥ of
the measured hadron is much larger than the saturation
momentum Qs. We recall the results of Ref. [50]: first, that
the perturbative QCD calculation from collinear factoriza-
tion can describe data in the large-p⊥ region; and also, with
exact kinematics (which simply removes the plus function),
the perturbative QCD calculation analytically matches the
large-p⊥ expansion of the results from small-x factorization
at next-to-leading order in αs. Therefore, the nuclear
modification factor RpA measured in pA collisions at large
p⊥ [p⊥ ≫ QsðAÞ > QsðpÞ] becomes

RpA ≡ dσpA=dyd2p⊥
Ncolldσpp=dyd2p⊥

≃ SA⊥Q2
sðAÞ

ASp⊥Q2
sðpÞ

¼ xGAðxÞ
AxGpðxÞ≃ 1:

ð35Þ

Here the number of binary collisions Ncoll is A in pA
collisions. (Ncoll is A1=3 if RpA is computed from the
measured yields.) This has been repeatedly seen in a lot
of experimental data, for example PHENIX [8], BRAHMS
[9], STAR [10], ALICE [15], CMS [19] and ATLAS [21].
As indicated by both the experimental data and our NLO
analysis, it seems more and more clear that, at sufficiently
high energy and forward rapidity, the saturation effect is
dominant in the low-p⊥ region where RpA < 1. On the
other hand, the moderate and large-p⊥ region, where
RpA ≥ 1, is described by simple perturbative QCD, with
the saturation effects encoded in the subleading power
corrections OðQ2

s
p2⊥
Þ as shown in e.g. Eqs. (28) and (29) of

Ref. [69]. To search for clear and compelling evidence of

gluon saturation in single inclusive hadron production, one
should focus on the low-p⊥ part of spectra in the forward
rapidity region of the proton beam in pA collisions, which
is dominated by semi-hard scattering in the vicinity of the
saturation scale Qs. Having said that, one should also be
aware that p⊥ of the measured hadron should be kept
sufficiently large (at least 0.5 GeV) to avoid nonperturba-
tive QCD effects.

V. CONCLUSION

In this paper, we have investigated the details of applying
the dipole formalism to inclusive hadron production in
forward pA collisions at the energy ranges of the RHIC and
the LHC. In particular, we derived two additional terms by
considering the kinematical constraint (2) in the dipole
formalism at next-to-leading order. These two terms were
assumed to be negligible in the high-energy limit s → ∞ in
previous studies. In order to do more precise and reliable
numerical calculations for phenomenological studies of
saturation physics, we have to include these additional
terms at finite center-of-mass energy

ffiffiffiffiffiffiffiffi
sNN

p
. From an

extensive phenomenological study, we found that these
additional terms extend the applicability of the NLO cross
section in the small-x saturation physics formalism to
higher values of the produced hadron momentum p⊥.
Matching to the perturbative collinear factorization will
further extend the kinematic coverage of the theoretical
predictions for this process [50].
From the explicit NLO analysis of the single inclusive

hadron spectrum in pA collisions, we argue that the nuclear
modification factor RpA shall approach 1 at sufficient large
transverse momentum, where the collinear factorization
calculations apply to both pp and pA collisions. In the
low transverse momentum region p⊥ ≤ Qs, the small-x
factorization approach is the appropriate framework to

FIG. 7 (color online). Comparison of mid-rapidity data at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV at y ¼ 0 from ALICE [15] and ATLAS [21] with SOLO

results for the GBWand rcBK models. Both data sets correspond to the same kinematic parameters. Again, the color scheme is the same
as in Fig. 4. These results display the breakdown of the dilute-dense factorization approach when the separation between xp and xg is not
sufficiently large. xg

xp
is roughly on the order of 1.
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compute inclusive hadron production in pA collisions,
where the gluon saturation effects can be systematically
included. Therefore, this process pA → hþ X provides a
unique opportunity to investigate the interplay between two
important QCD dynamical effects (small-x resummation
and the collinear factorization calculation) in high-energy
hadronic reactions.
In our calculations, by including the kinematical con-

straint and the newly added NLO correction terms, we are
able to improve the results of SOLO and achieve excellent
agreement with the forward rapidity RHIC data in dAu
collisions. Furthermore, we have significantly improved the
numerical accuracy of the SOLO package, which allows us
to compute forward rapidity observables at LHC energy
with small uncertainties and obtain remarkable agreement
with the forward rapidity ATLAS data at

ffiffiffiffiffiffiffiffi
sNN

p ¼
5.02 TeV in the relatively low-p⊥ region. These results
could be additional compelling evidence for the observa-
tion of the onset of saturation effects at the LHC.
Our results provide a benchmark framework for the

small-x saturation calculation for high-energy processes in
pA collisions at the next-to-leading order. Recent theoreti-
cal developments have revolutionized the test of the
saturation physics from the qualitative level to the quanti-
tative level. With more and more experimental data
available from the LHC, we will be able to tell whether
and when gluon saturation has an effect at extremely small
x and large nucleus mass numbers. The theoretical
advances in computing these processes at the next-to-
leading order will be crucial to help identify the signature
of gluon saturation phenomena. We expect more develop-
ments along the line discussed in this paper.
Phenomenologically, the SOLO program has been devel-

oped from a single-purpose program, for specific formulas
under RHIC conditions only, to a more general-purpose

program that can easily be adapted to different expressions
and produce results for both the RHIC and the LHC.
During the development process, we have found an
efficient method to perform the numeric computations
involved. This will become useful and applicable to other
interesting processes.
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APPENDIX A: THE EVALUATION OF SOME
INTEGRALS

First of all, all the Fourier transform formulas used in this
paper can be derived with the following two identities for
u⊥ > 0 together with analytical continuation:

GðαÞ≡
Z

∞

0

dl⊥l1þα⊥ J0ðl⊥u⊥Þ ¼
21þαΓ½1þ α

2
�

u2þα⊥ Γ½− α
2
� ; ðA1Þ

Z
∞

0

dl⊥l⊥J0ðl⊥u⊥Þlnnl⊥ ¼ dnGðαÞ
dα

				
α→0

: ðA2Þ

Let us now provide some essential details for deriving
L1ðk⊥Þ, which comes from the following integral:

−
αsNc

π2

Z
d2x⊥d2y⊥d2b⊥

ð2πÞ2 e−ik⊥·ðx⊥−y⊥ÞSðx⊥ − y⊥Þ

×

�
1

ðx⊥ − b⊥Þ2
ln
k2⊥ðx⊥ − b⊥Þ2

c20
−
ðx⊥ − b⊥Þ · ðy⊥ − b⊥Þ
ðx⊥ − b⊥Þ2ðy⊥ − b⊥Þ2

ln
k2⊥jx⊥ − b⊥jjy⊥ − b⊥j

c20

�

¼ lim
ρ→0

αsNcS⊥
2π

Z
d2r⊥
ð2πÞ2 e

−ik⊥·r⊥Sðr⊥Þ
�
−
�
ln
k2⊥
ρ2

�
2

þ 4

Z
∞

ρ

dl⊥
l⊥

ln
k2⊥
l2⊥

J0ðl⊥r⊥Þ
�

¼ −
αsNcS⊥
4π2

Z
d2r⊥
2π

e−ik⊥·r⊥Sðr⊥Þ
�
ln
k2⊥r2⊥
c20

�
2

; ðA3Þ

where we have used ρ as an infrared cutoff to compute the above integration. It is important to notice that the above result is
independent of the regularization scheme, since the whole expression is finite. Furthermore, by using the following trick
(see also Ref. [70]), we can evaluate L1ðk⊥Þ analytically. Let us define

IðβÞ≡
Z

∞

0

dr⊥r⊥1þβJ0ðk⊥r⊥Þ exp
�
−
Q2

sr2⊥
4

�
¼

21þβΓ½1þ β
2
�L½−1 − β

2
;− k2⊥

Q2
s
�

Q2þβ
s

; ðA4Þ
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where L½−1 − β
2
; x� is defined as the multivariate Laguerre

polynomial. It is then trivial to find that

Lq1ðk⊥Þ ¼ −4
�
I00ð0Þ þ 2 ln

k⊥
c0

I0ð0Þ þ
�
ln
k⊥
c0

�
2

Ið0Þ
�
;

ðA5Þ
which gives Lq1ðk⊥Þ found above. It is useful to note that
L½−1; x� ¼ ex and its first derivative on its first argument
Lð1;0Þ½−1; x� ¼ −½γE þ Γ½0; x� þ ln x�ex.
Now let us further evaluate L1ðk⊥Þ in the limit of

k⊥ → ∞. We can rewrite the integral in question as follows:

−
1

k2⊥

Z
∞

0

dzzJ0ðzÞ exp
�
−

Q2
s

4k2⊥
z2
��

ln
z2

c20

�
2

¼ −4
k2⊥

lim
λ→0

Z
∞

0

dzzJ0ðzÞ exp
�
−

Q2
s

4k2⊥
z2
�

×

�
K0ðλÞ − K0

�
λ
z
c0

��
2

: ðA6Þ

It is straightforward to show that the leading power

expansion of the above integral gives 8Q2
s

k4⊥
.

APPENDIX B: SOME IMPORTANT FOURIER
TRANSFORMS

Although the original derivation [40,41] of the NLO
correction for hadron productions in pA collisions was
completed in the coordinate space, in order to achieve
better numerical accuracy, we have used Fourier transforms
to convert most of the NLO corrections into momentum
space in Ref. [43] when the first version of the SOLO

package was developed (see Ref. [44] for more details of
the implementation). We only evaluate a couple of NLO
terms, for example Hð1Þ

2qq, in coordinate space, since the
evaluation can be done pretty accurately even in the
coordinate space for the forward rapidity kinematical
region at the RHIC and the LHC.
However, when we try to compare to LHC data at middle

rapidity, those terms which are left in the coordinate space,
suddenly give huge numerical uncertainty. The typical
integration which poses a challenge to numerical integra-
tions is

Z
d2x⊥
ð2πÞ2 Sðx⊥Þ ln

c20
x2⊥μ2

e−ik⊥·x⊥ : ðB1Þ

In the LHC middle rapidity kinematical region, the allowed
region of k⊥ is quite large. Note that k⊥ ≡ p⊥

z , which is the
transverse momentum of the produced parton, can be much
larger than p⊥ which is the transverse momentum of the
measured hadron. Although the expression is well defined

analytically, the above integration oscillates too fast when
k⊥ is large, and therefore it causes a lot of numerical
uncertainty. Luckily, we manage to find a way to convert
the above integration into momentum space which is much
more stable. Using the identity

Z
d2x⊥
ð2πÞ2 ln

c20
x2⊥μ2

e−ik⊥·x⊥

¼ 1

π

�
1

k2⊥
− 2πδð2Þðk⊥Þ

Z
∞

0

dl⊥
l⊥

J0

�
c0
μ
l⊥
��

; ðB2Þ

we find

Z
d2x⊥
ð2πÞ2 Sðx⊥Þ ln

c20
x2⊥μ2

e−ik⊥·x⊥

¼ 1

π

Z
d2l⊥
l2⊥

�
Fðk⊥ þ l⊥Þ − J0

�
c0
μ
l⊥
�
Fðk⊥Þ

�
: ðB3Þ

It is straightforward to test the above identity and find the
momentum-space expression stable and finite.
In addition, for the same reason, the new Lq1 contribu-

tion that we found in this paper, as shown in Eq. (15), is
even more unstable in the coordinate space at the LHC
kinematical region. Again, we managed to find a nice trick
to convert that expression into momentum space. Using
dimensional regularization in the MS scheme, we can find
the following results:

Z
d2l⊥

ð2πÞ2l2⊥
e−il⊥·R⊥ ln

k2⊥
l2⊥

¼ 1

4π

�
1

ϵ2
−
1

ϵ
ln
k2⊥
μ2

þ 1

2

�
ln
k2⊥
μ2

�
2

−
1

2

�
ln
k2⊥R2⊥
c20

�
2

−
π2

12

�
; ðB4Þ

Z
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ð2πÞ2l2⊥
ln
k2⊥
l2⊥

				
l2⊥≤k2⊥

¼ 1

4π

�
1

ϵ2
−
1

ϵ
ln
k2⊥
μ2

þ 1

2

�
ln
k2⊥
μ2

�
2

−
π2

12

�
; ðB5Þ

The derivation of the first expression can be found in
Eq. (A4) of Ref. [52], while the second expression can be
computed directly. This trick is inspired by the computa-
tions of the Sudakov factors in the saturation formalism.
Subtracting Eq. (B5) from Eq. (B4) and taking ϵ → 0 gives
the identity

�
ln
k2⊥R2⊥
c20

�
2

¼ 8π

Z
d2l⊥

ð2πÞ2l2⊥
ln
k2⊥
l2⊥

½θðk⊥ − l⊥Þ − e−il⊥·R⊥ �:

ðB6Þ

At the end of the day, one can easily find
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Z
d2r⊥
ð2πÞ2 Sðr⊥Þ

�
ln
r2⊥k2⊥
c20

�
2

e−ik⊥·r⊥ ¼ 2

π

Z
d2l⊥
l2⊥

ln
k2⊥
l2⊥

½θðk⊥ − l⊥ÞFðk⊥Þ − Fðk⊥ þ l⊥Þ�: ðB7Þ

Up to this point, we have transformed all the NLO corrections into momentum space in the SOLO package, which is
relatively more stable numerically at both the RHIC and the LHC kinematical regions.
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