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We investigate the stability of an inhomogeneous chiral condensed phase against low energy fluctuations
about a spatially modulated order parameter. This phase corresponds to the so-called dual chiral density
wave in the context of quark matter, where the chiral condensate is spatially modulated with a finite wave
vector in a single direction. From the symmetry viewpoint, the phase realizes a locking of flavor and
translational symmetries. Starting with a Landau-Ginzburg-Wilson effective Lagrangian, we find that the
associated Nambu-Goldstone modes, whose dispersion relations are spatially anisotropic and soft in the
direction normal to the wave vector of the modulation, wash out the long-range order at finite temperatures,
but support algebraically decaying long-range correlations. This implies that the phase can exhibit a quasi-

one-dimensional order as in liquid crystals.
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I. INTRODUCTION

Unveiling the phase diagram of quantum chromodynamics
(QCD) is among the most fundamental issues in quark-
hadron physics. So far, considerable theoretical and exper-
imental efforts have been devoted to exploring the QCD phase
diagram [1]; the properties of the high temperature regime
are studied experimentally in ultrarelativistic heavy-ion
collisions, and in ab initio lattice QCD simulations. The
latter are subject to technical difficulties at nonzero net
baryon-number density, the so-called sign problem. In the
near future, data at lower beam energies, relevant for the
exploration of the phase diagram at nonvanishing baryon
density, will be forthcoming. In order to exploit this oppor-
tunity in an optimal way, it is necessary to find appropriate
observables for deciphering the properties of dense and
moderately hot matter in such collisions [2].

In recent theoretical studies of QCD at finite temperature
and density, various inhomogeneous chiral condensed
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phases have been proposed (for a recent review see
Ref. [3]). These studies suggest that the conventional
QCD phase diagram should be redrawn. Indeed, it is
possible that the phase structure at high net baryon densities
and moderate temperatures is modified considerably by the
presence of inhomogeneous phases. Thus, the region of the
chiral transition may be extended and the order of the phase
transition may change. These features are gleaned primarily
from mean-field calculations in the Nambu-Jona-Lasinio
(NJL) and quark-meson (QM) models [4,5], and the
Dyson-Schwinger approach to dense QCD [6]. It is also
interesting to note that within the Gor’kov approach to
chiral effective models [7,8] it is found that the QCD
critical endpoint is a Lifshitz point, where the normal,
homogeneous, and inhomogeneous chiral condensed
phases meet. In the large N, approach to dense QCD,
early studies suggested the emergence of the so-called
chiral density wave [9,10], while in the context of quar-
kyonic matter [11] another inhomogeneous phase, the
so-called quarkyonic chiral spiral, was discussed [12].
The inhomogeneous chiral condensed phases mentioned
above correspond to a one-dimensional modulation
embedded in three spatial dimensions. Some of these
structures are based on extrapolations from analytic sol-
utions obtained for purely (1 + 1)-dimensional systems
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[13]. Possible extensions to higher-dimensional modula-
tions have been studied, with the result that the one-
dimensional modulation tends to be favored close to the
Lifshitz point [14] and/or at zero temperature [15].

Let us start by classifying the modulations for inhomo-
geneous phases, according to the convention employed in
condensed matter physics. There are basically two types of
one-dimensional modulations: one is of the Fulde-Ferrell
(FF) type [16], characterized by modulations of the phase
of a complex order parameter with constant amplitude,
while the other is of the Larkin-Ovchinnikov (LO) type
[17], where by contrast only the amplitude is modulated.
The FF type includes the dual chiral density wave (DCDW)
[4] and the quarkyonic chiral spiral [12]. On the other hand,
the chiral density wave (a plane wave) [9,10] and periodic
domain walls [5] are of the LO type. In the present paper
we focus on the DCDW, which is of FF type. The DCDW is
characterized by modulated scalar and pseudoscalar
condensates with a constant amplitude A and a wave
number g [4],

(pw) = Acosqz,  (piystay) = Asingz, (1)
where y is the quark field for two flavors, and 73 a Pauli
matrix diagonal in the isospin space. This configuration is
akin to 670 condensation, obtained in neutron matter within
the sigma model [18], and is thus expected to smoothly
connect between nuclear and quark matter.

Most studies of inhomogeneous chiral condensed phases
so far are based on mean-field calculations. Thus, effects of
thermal and quantum fluctuations have yet to be studied. In
the context of pion condensation, the stability of modulated
condensates against thermal fluctuations has been studied
on the basis of Landau-Peierls arguments [19]. It was found
that in such systems there is no true long-range order with a
nonvanishing order parameter [20]. Instead, such systems
can develop a quasiordered one-dimensional condensate,
with correlation functions that decay algebraically in
space.1 In this paper, we investigate the stability of the
DCDW phase against low-energy fluctuations of Nambu-
Goldstone (NG) modes associated with the spontaneous
symmetry breaking, along the lines of Ref. [20].

The paper is organized as follows. In the next section, we
construct a (3 4 1)-dimensional Landau-Ginzburg-Wilson
effective Lagrangian for general order parameters of the
chiral condensate, which are allowed to be spacetime
dependent, and then apply the formalism to the DCDW
phase. In Sec. III, we discuss the symmetry breaking
pattern and the corresponding NG modes in the DCDW
phase. We also present the dispersion relations for these
low-energy collective excitation modes, by introducing

'A similar state is found, e.g., in smectic liquid crystals
[21,22]. See also Refs. [23,24] for a corresponding discussion
on FFLO superconductors/superfluids.
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fluctuations such as amplitudons and phonons/phasons
(NG modes) on the ground state of the DCDW. In
Sec. 1V, we investigate the impact of low-energy fluctua-
tions on the order parameter by evaluating the long-range
correlation functions. Finally, Sec. V is devoted to summary
and outlook.

II. LANDAU-GINZBURG-WILSON
EFFECTIVE LAGRANGIAN

We start by introducing a 2 x 2 matrix field M as the
(1/2,1/2) representation of the chiral SU(2);, x SU(2)g
symmetry. In the following, we shall use the fact that
SU(2); x SU(2) is isomorphic to the four-dimensional
rotation group O(4). The matrix M can be expressed in
terms of the right and left handed quark fields
[25], M =wy;ywg. Under the transformations Upg; =

exp[—i(a % ) - 7/2], where 7 is the isospin Pauli matrix
and @ and ,B are two three-dimensional vector parameters,
the matrix M transforms (to leading order in @ and B) as
M — M +ia- 7, M];; +§ﬁ {z.M},;. With the para-
metrization M = 6 + iz - 7, one finds the corresponding
transformation laws for ¢ and 7: 6 — 6 — E -7 and
ToT—axX71T+ Ea. Thus, the rotation with & corresponds

to the vector (isospin) rotation while that with ,B to an axial
vector (chiral or axial isospin) rotation, respectively. We
can then introduce a four-component composite field
¢" = (o, 7), which transforms as a four-dimensional vector
under O(4) rotations.

Now, we construct a low energy effective Lagrangian
density £ with O(4) symmetry in terms of ¢ and its
derivatives,

L= C260¢ . 80¢ - V, (2)

V=ayp-¢+as(p-$)*+as,Ve -V
+ a6 V) - V) + ag2 (Vo - Vi) (¢ - p)
+ ag3(p - P)° + aca( - V). (3)

Note here that we have assumed that this Lagrangian is
obtained from a microscopic theory, i.e., QCD, by inte-
grating out all higher energy modes. Moreover, in-medium
effects are by assumption implicitly subsumed in the
coefficients, implying a loss of explicit Lorentz invariance.
Thus, in the following, we deal only with the low energy
modes, and study effects of low energy fluctuations on the
inhomogeneous phase. The potential term )V is expanded up
to sixth order in powers of the field and fourth order in its

*For nonzero isospip charges, a term of the forrp % eijkluijQij is
added to the Lagrangian. Here €;;5; (€234 = 1) is the antisym-
metric tensor, and yu;; = —u;; the chemical potential for the

isospin density Q;; = i(¢h;00¢; — ¢;000;).
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derivatives, as required for stability of the inhomogeneous
phase at the mean-field level.

Hereafter we set ¢, = 1 for simplicity. The expansion
coefficients @; ; in V can be evaluated within effective chiral
models, like the NJL [7] and QM [5,8] models. In the
former, one finds the following relations among them
ag1 = agy and (g1, a6, asa) = (1/2.3.2)ag 5.

III. LOW ENERGY EFFECTIVE MODES
IN DCDW PHASE

We consider an inhomogeneous time independent chiral
condensate of the DCDW type,

#& = A(cos qz,0,0,sin gz), (4)
where A is a constant amplitude corresponding to
(e's797Ty ) and ¢ is the wave number of modulation in
the z direction. The values of A and g are determined by

minimizing the potential term of the Lagrangian. For the
condensate ¢, the potential term reads

V(¢0) = aQAZ + 04,1A4 + a4.2q2A2
+ ag1q* A% + ag,q* A* + ag ;3 A°. (5)

Stability of the inhomogeneous phase is guaranteed by

ag.| > 0(or ags > O), and e 1063 — (1% 2/4 > 0.

(6)
The stationary conditions for g and A, g—z = ‘?—z =0,
yield
2gA*(ay; +2a6,9” + agaA*) =0, (7)
2A[ay + a42q* + ag1q*

+2(a4 + a62q°) A% + 3as3A% = 0. (8)

They admit three types of solutions:

(i) Normal phase: A =0,
(ii) Homogeneous chiral condensed phase: ¢ =0,
A #0,

(iii) Inhomogeneous chiral condensed phase: ¢> =

—(ag2 + agA%)/2a6,1, A # 0.

For a given set of coefficients, the phase with the
lowest energy is realized on the classical level. The
coefficients implicitly depend on the medium, and
are thus functions of thermodynamic variables, like
temperature and chemical potentials. Throughout the
paper we do not fix the coefficients, assuming the
DCDW phase is realized for a given set of coefficients.
The general feature of phase boundary is discussed in
Appendix A.
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A. Symmetry breaking and Nambu-Goldstone
modes in DCDW phase

In the DCDW phase with nonvanishing A and ¢, the
SU(2), x SU(2), chiral symmetry, as well as the
translational invariance in the z direction and the
symmetry under rotations about the x and y axes are
spontaneously broken. To see the symmetry breaking
pattern explicitly, we first perform infinitesimal trans-
formations corresponding to a spatial translation in the z
direction with a displacement parameter s and a chiral

rotation through the angles a and f)’:

—(sq + p3) singz

B cosqz—aysingz

ho = ¢o+ A 9)

Prcosqz + a;ysingz
(sq + pB3) cos gz

The form of the first and the fourth components implies
that ¢, is invariant under a simultaneous spatial trans-
lation and axial isospin rotation about the z axis through
the angle f;, if gs + 3 = 0. Thus, in the DCDW phase a
locking of axial isospin rotations with translations is
realized. In terms of symmetry generators, there are two
unique orthogonal linear combinations of s and f5; one
corresponding to a broken generator, the other to an
unbroken one. Consequently, the corresponding NG
mode is generated by a transformation with ¢gs+
B3 #0, i.e., by one whose generator is broken in the
DCDW phase. In the following, we use fB; = f5(t,X)
and s = 0 to generate the NG mode associated with the
broken generator. Similar arguments for the spontane-
ous breakdown of internal and spacetime symmetries
are given in Refs. [26,27].

The rotations through f$; and a, generate variations
in the second component in Eq. (9). However, the
corresponding NG modes are linearly dependent in
the sense discussed in Ref. [28]. In case of a vanishing
wave number g =0, only S, is relevant. Thus, we
generate the corresponding NG mode using f; =
pi(1,X) and a, =0. Analogous arguments can be
applied the third component in Eq. (9), thus eliminating
a; in favor of f,.

Spatial rotations about the x-axis by an angle 6,
yields a transformation, which is nonuniform in space:
7 — zcosO, + ysin6,. Similarly, the rotations about the
y-axis by 60, yields the analogous transformation. However,
the corresponding NG modes and those generated by
translations are also linearly dependent [28].

We conclude that, although there are eight broken
generators for internal and space time symmetries in the
DCDW phase, only three independent NG modes remain.
These can be chosen as the axial isospin rotations generated

by f = (1, %).
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B. Low energy collective excitations
We now consider a general fluctuation in the DCDW
phase:
cos 3, cos B,
cos f, sin f3

sin ﬁz

(qz + Ps

cos (gz + s

(qz+p3

gz + s

cos (qz)
0

—@+aum)| | (10)

sin (¢z)

Here 6 is the amplitude fluctuation, the parameters ,B =
{P1, P>, B3} specifies a rotation in the four-dimensional
space spanned by the ¢ and 7 fields. Finally, U(f,_;,3) =
ePiligibolaeifsls where Ly, 5 are the O(4) (axial isospin)
generators [25]. This parametrization clearly shows that the
displacement in the z direction is equivalent to a chiral
rotation through f;. To leading order in the fluctuations,
Eq. (10) yields

~— ~—

= (A+9)

~—

sin

—
~—

—p3singz
 CoS gz

¢ =(1+8)py+A Preosqz +0(
P> cos gz

Pz cosqz

7.0p.0%).  (11)

which exhibits the fluctuation of the amplitude in addition
to the fluctuations corresponding to the NG modes. In the
following we consider local fluctuations, promoting the

parameters & and 3 to fields 5(x) and f)’(x), where we use

the compact notation x = {¢, x}.
|

_S, = Aﬂdr/cﬁxﬁb‘ = }jdk<Aﬂ§](€11)> < g(

1 AﬁT(k)
+-¥ dk < .
4 i ABr(k + 2g3)

where we have used the shorthand notation: ¥dk=T),

PHYSICAL REVIEW D 92, 034024 (2015)

Plugging the above parametrization into the Lagrangian,
we can systematically derive a low energy effective theory
by expanding in powers of the fluctuation fields § and . Up
to the second order in the fields, the Lagrangian L =
[ @xL reads

L = (9y0)* + A2(80/}U)2 + A%(0of5)?
— (V(s + Vgﬂ + Vﬂ), (12)

where

V5 = M252 + 616’4A2 (V5)2
+ 4a6,19*(V.6)* + a6, (V?6)?, (13)

Vsp = 4CIA[%,2A25 - 2“6,1v25]vzﬂ3’ (14)

V= a6,1A2(VZEU + QZEU)Z
+ag  A*[(V243)* + 44 (V.p3)7), (15)

with the mass term M? = 4(a41 + ag2q*) A% + 12a6 JA*

and the transverse field ﬁU = ﬂT cos gz where ﬂT =
{p1,P>}. In the above equations the stationary condition
asn + agaA? 4+ 2q%ag; = 0 has been used. For details of
the derivation, see Appendix B. Here we are interested
in the low energy NG modes in the DCDW phase. To this
end, the Lagrangian given above is sufficient.

In order to investigate the thermodynamics of the system,
we now move to Euclidean space: t — —iz with the period
0 <7 <p where = 1/T is the inverse temperature. For
Gaussian fluctuations, we obtain the Euclidean action in
Fourier space (for details we refer the reader to
Appendix C),

50 (k) —g(k)

) i)
) (5

Pk
2 )39

G(k) Apr(k)
, 16
Syt (k +2¢2) ) (ABT(k +243) ) (16)

and k= (wn,%) with the Matsubara frequency

w, = 2znT(=iw). The inverse propagators in the above matrix notatlon are given by

Sil (k) = @ — [M? + ag s A2 +4ag 147 (k,)? + ag, (k)2
g(k) = 2iglag, A% + 2a61k ]k
Syl (k) = @* — ag 1 [4g7k: + (k )2]
and G(k) = ? — ag, (K + 2qk,). (17)

We note that for a nonvanishing wave number ¢, the § and 5 fluctuations mix. Moreover, transverse fluctuations f; with
different momenta k and k + 2¢Z mix, owing to the scattering of fluctuations off the background modulation.
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The determinant of the first matrix, Sy (k)Sy!(k)-+
g*(k) = 0, yields the dispersion relations of the normal
modes involving § and f;,

722
@} =M+ ag[uZ k2 + (k)]
+ a6’4A2]_€>2 + A%zkg + Bkéz‘,

(18)

w2 = ag, k2 + (K)’] = ACKZ = BKY,  (19)
where u2, =4¢*(1+ %), A =4q’Nag,(4MPag, ~
A*agrae4)/M*, and B = —(2gA%aq,)* /MO, Note that in
the massless mode w_, the sign of u2_ is always positive in
the inhomogeneous phase, and the dependence on the
transverse momentum is subleading, O(k*). Consequently,
the transverse fluctuations are softer than the longi-
tudinal ones.

Similarly, equating the determinant of the second matrix
to zero, Sy'(k)Sy'(k)—G*(k) =0, we obtain the

N

dispersion relation for fr,
22(K°)
4q% + 6qk, +2k2 + K
(20)

W} = ag1[4¢7k; + (k)] — ag,

The second term with the negative sign is a higher order
correction of O(k%), stemming from interactions with the
background modulation. This term is irrelevant for the
effects of low energy fluctuations and is therefore dropped
in the following discussion.

IV. IMPACTS OF LOW ENERGY FLUCTUATIONS

At low temperatures, the low energy fluctuations about
the classical DCDW state dominate. We evaluate the
contribution of Gaussian fluctuations to the partition
function

zZ= / [D8|[DAS)eSE. (21)
Higher-order derivative corrections are dropped, with the
assumption that fluctuations at energies above some cutoff
A have been integrated out in the effective Lagrangian (2),
which then involves only the low-energy fluctuations, &
and S, explicitly.

We first explore the impact of low energy fluctuations on
the order parameter,

((A+8)U(Bi)go) = AU(Bi)bo) + (BU(Bi) o), (22)

where we use the compact notation (---)=

| D¢ [DAB] ---e™5¢/Z. In the Gaussian approximation,
the two contributions to the expectation value reduce to

PHYSICAL REVIEW D 92, 034024 (2015)

cos(gz)e” PRAlE

Wb = | 23)
sin(gz)e~ /2
and
— sin(qz) (83)e™ 212
(BUBIpo) = | (24
cos(qz)(6f5)e P/
Here the second order fluctuations are given by
(8(x)B3(x)) =0, (25)
200 =5 [ i (26)
wd 2y =3 [SLL @)

where the fluctuations (f7,;(x)) are all logarithmically
divergent due to the soft modes in the transverse directions.
Details of the derivation are given in Appendix D.
Consequently, the low-energy fluctuations wash out the
order parameter, i.e., they destroy the off-diagonal long-
range order,

((A+8)U(B:)bo) = 0. (28)

This result implies that a DCDW phase with true long-
range order strictly speaking does not exist at nonzero
temperature. Such a phase may, however, be realized in a
modified form, with a quasi-long-range order (QLRO),
analogous to that in the Berezinsky-Kosterlitz-Thouless
phase in two-dimensional systems [29] and in smectic
liquid crystals [22]. As we discuss in the next section, the
quasi-long-range order is characterized by a power-law
decay of the order parameter correlation function.

At zero temperature, on the other hand, quantum
fluctuations are not strong enough to break the modulating
order. In fact, at 7 = O the second order fluctuations are
given by the infrared convergent integral A2 <ﬂ%’2(3>(x))=

1Bk 1
) (27)° @y

of Egs. (D6) and (D12) in Appendix D.

The results of this section imply that within the Gaussian
approximation the transition temperature of the true
DCDW phase is Tpcpw = 0, and the region of 7> 0 is
critical (QLRO). Now assume that there is a critical
temperature 7. > 0, where the system becomes unstable
with respect to the formation of a state with a modulated

obtained by taking the zero temperature limit
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order parameter. Then a quasi-one-dimensionally ordered
phase or a phase with true long-range order in two- or three-
dimensional modulations may be realized below 7', [20].
To determine which phase is preferred, one must, in
principle, compare their free energies. Considering the
different nature of these phases, this is a challenging task.

A. Long-range correlations

We now explore the behavior of the correlation functions
in the Gaussian approximation. Since the order parameter is
vectorlike, we define correlation functions among the
components:

fij(x) = (#i(x)#7(0)). (29)

These correlation functions are spatially anisotropic owing
to the one-dimensional modulation of the background. We
compute the dependence of the isoscalar correlation func-
tion on z. The diagonal components which contribute to the
scalar channel are of the form:

1 _ _
f“ (2Z) ~ g AZ cos gze Ei:mg((ﬂ, )2>/2, (30)

For details we refer to

where 7 = Bi(z) — pi(0).
Appendix E.
Similar results are obtained for the other components:

1 _ —\2
f(22) = 5 A% cos gze™ 2 U231
1 _ _
fra(22) = A% cos gze s N2 (3

1 2
and  fu4(27) = EAz cos gze~{F5)/2, (33)

Here the exponents, ((87)?), exhibit the following func-
tional form at large z,

(Brap))/2

T 2A? (2r)3 a)i(_>

T zA\?
=-=-——— n—
167'[(16’1A2MZ_ 2q

T / d*k 1—cosk,z

, (34)

where A is an ultraviolet cutoff.
Putting it all together, we obtain the long-range scalar
correlation in the z direction,

i) ar o)~ gaeosas( )T e

20

where 7o =2¢q/A?, and Ty = 16mas;A%u._. In a similar
manner, we compute the form of the long-range correlation
function in transverse directions,

PHYSICAL REVIEW D 92, 034024 (2015)

sy~ g2 (2) 7 o)

2 X0

where x, = A~!, x, is the transverse distance, and the
factor 2 in the exponent of x,/x, reflects the number of
transverse directions. Note that, in contrast to the longi-
tudinal direction, there is no modulation of the correlation
function in the transverse directions.

In this section we have shown that quasi-long-range
order of the one-dimensional DCDW phase features
algebraically decaying correlation functions at large
distances. The slow decay of the spatial correlations
distinguish the quasiordered phase from normal or dis-
ordered phases, characterized by exponential decays.
Depending on the experimental resolution and finite size
effects, the algebraic correlations can effectively mimic
true long-range order [20,21,29].

V. SUMMARY AND OUTLOOK

In this paper we have explored the soft modes
of an inhomogeneous chiral condensed phase with one-
dimensional modulation, the DCDW phase. We found that
this phase exhibits a flavor-translation locking symmetry
and clarified the counting of Nambu-Goldstone modes. The
dispersion relations for collective excitations, including the
NG modes, were derived. The low-energy modes are
spatially anisotropic and particularly soft in the directions
transverse to the modulation, owing to the lack of terms
quadratic in the transverse momentum in the dispersion
relations. As in smectic liquid crystals, the absence
of such terms is a consequence of the symmetry under
rotations about any axis orthogonal to the modulation
direction [19,22].

Moreover, we have shown that at nonzero temperatures
the DCDW phase exhibits a Landau-Peierls instability,
1.e., the long range order is destroyed by low-energy
(long-wavelength) fluctuations of the order parameter.
Nevertheless, a phase similar to the smectic phases of
liquid crystals, characterized by a quasi-long-range order
with algebraically decaying order parameter correlation
functions, is possible. Such an “algebraic order” can,
depending on the conditions, emulate true long-range
order. In particular, this would be the case, in a finite
systems, where the range of the order-parameter corre-
lations exceeds the size of the system.

The experimental verification of “algebraic order” can
be challenging. The slow decay of the correlations has
been observed by light scattering in smectic-A liquid
crystals [21], by neutron scattering in Bragg glass [30]
and only recently in a two-dimensional system of the
Berezinsky-Kosterlitz-Thouless type [31], by measuring
the coherence of photons emitted in quasiparticle
decays. Whether the quasi-one-dimensionally ordered
DCDW phase could be observed by an appropriate
choice of probes is still an open question. Hence, it

034024-6
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would be important to systematically explore how the
collective modes in the DCDW phase interact with
external probes such as hadrons (quarks) and photons
(gauge fields).

There are also several theoretical issues, that deserve
further study. In particular, it is known that inhomo-
geneous chiral phases are favored in systems with
vector-vector type interactions, which tend to enhance
the size of the inhomogeneous area [32], and that in the
presence of an external magnetic field the FF type
phase is stabilized, also at finite temperatures, by topo-
logical aspects [33,34]. Moreover, since two- and three-
dimensional condensates with true long-range order are
allowed at any temperature [19], it would be important to
compare the free energy of such phases with that of a
one-dimensional condensate. It would also be interesting
to understand how higher order interactions among the
collective modes modify the soft modes. These may
affect the Landau-Peierls instability of inhomogeneous
phases discussed here.

Finally, the topics discussed here may have an impact
on the physics of compact stars. It has been speculated
that various spatially inhomogeneous phases, like nuclear
pasta phases [35] and hadron-quark mixed phases [36],
could be realized in the interior of such stars. These
could have phenomenological implications, allowing,
e.g., novel cooling scenarios [37]. Thus, it would be
interesting to study the properties of inhomogeneous
chiral condensed phases under conditions relevant for
neutron stars in general and compact stars with quark
cores in particular [38], i.e., in charge neutral matter in j
equilibrium but also at nonzero isospin density [39] and
finite strangeness [40], and also to see how the NG
modes in such phases affect transport properties in the
inner core of compact stars. These topics give interesting
directions for future works.
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APPENDIX A: DISCUSSION ON
PHASE BOUNDARY

We give a general phase structure for the DCDW
type inhomogeneous phase in the coefficient space.
Here we define V(A% ¢?) =V(¢y) for the potential
Eq. (5). The potential at the stationary point with respect

to g, 3—;’2 — 0 where g5 = —(ass + ag2A%)/2ag,, is

given by

PHYSICAL REVIEW D 92, 034024 (2015)

a’ as,a
V(AZ, g2 = _ 42 | A2 _ 742762 ) A4
(4% 40) (a2 4ag, s 2a,
ag,
+ <06.3 - 4a$ 1)A6 (A1)
= AA? + BA* + CA°®, (A2)

V(A?, g3) has stationary points with respect to A at A = 0,
A2, and A%, where

,  —B+ VB -3AC

and A2 corresponds to the nontrivial phase.
To determine the phase boundaries we define the differ-
ence of the potential energies between ¢ = 0 and g # 0 by

Va(A?, %) = V(A% ¢*) — V(A2,0)

= ¢°A%(asy + a.1q” + agaA?). (Ad)
At the stationary point where ¢ = ¢, it becomes negative
semidefinite

VA2, q3) = q5A*(agn + ag. g3 + agaA?)

= —a6.19pA* <0, (AS)
because ag; > 0 for the stability. The above result
shows that possible phase transitions from (g # 0,
A#0) to (g=0,A#0) take place at V (A3, 43) =0
and V(0,0) > V(A3,0), where A, satisfies the stationary
OV(A2,0) _ Vu(Adg]

. ) _
condition =7 |A=A0 =—7x |A=A0 =0 only at
(g0 = 0,A% = —ay,/ag,). This gives the transition con-
dition for ay, < 0 and ag ag3 > az,/4:

—ay1 + \ ail - 3612616_1 _ _% (A6)

3ag. de2

Therefore, at the phase boundaries between inhomo-
geneous to homogeneous chiral condensed phases, ¢
continuously drops to zero, and A also changes continu-
ously but may not smoothly, because the potential mini-
mum switches from V(A?,0) to V(A2, g3). In this case the
potential shape for A is of the first or the second order
type, depending on a, > 0,a4; <0 or a, <0,a4; >0,
respectively.

On the other hand, the possible transitions from
(g #0,A #0) to (A =0) may be of the first (discontinu-
ous) or the second order (continuous) for both g and A. In
this case the above argument is also applicable; only
difference is that at the phase boundaries V(AZ,0) >
V(83.43) = V(0.0).
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Note here that the phase structures obtained above do not
describe a first order transition from the DCDW phase to the
hadronic phase obtained in the NJL. model in the mean-field
approximation [4], where g becomes discontinuous. It
implies that we need higher order derivative terms of O(V®),
and consequently need terms of eighth order of the mass
dimension for the description of the first order transition
from (¢ #0,A # 0) to (¢ = 0, A # 0). While, the DCDW
phase obtained from Dyson-Schwinger type approximation
to QCD [6] has boundaries of the first and the second order.
The order of phase transitions depends on microscopic
models and approximations. Since our main purpose is to
investigate the stability of the inhomogeneous chiral con-
densed phase against the low energy fluctuations, the
inclusion of higher derivative terms does not change con-
clusion qualitatively. Also, we do not discuss the fluctuation
effects on the possible modification of the effective potential.

APPENDIX B: EFFECTIVE ACTION
OF FLUCTUATIONS

We derive the effective action of the fluctuations to the
second order of field expansion. It mostly comes from
derivative terms: (V¢)? and (V?¢)2. First of all, we rewrite
the field as

$(x) = (A +8)U(B:)do(x) = (A + 8V (B:)do,

where V = US with § = ¢%55, and ¢ = (1,0,0,0)7.

(B1)

1. (V¢)? term

We derive the derivative term (V¢)? up to the second
order of fluctuation fields:

V-V = dLl[Vov-"+ (A +8VV]
x [V6V + (A + 6)VV],

= (V5)? + ¢*6* + 2A6(q* + 24V B3), (B2)

where §§[VV'VVIdy = ¢* + 29V + @3 + (V)%
and we have used the stationary condition under which
aso, ag 1, and ag, terms disappear.
2. (V2)?* term
We next derive the derivative term (V2¢)?:
Vi - V2 = i [V (V") + AVV]
x [V2(8V) + AV2V] g,
= (V2(sV-H)V2(sV)) + A(V2(5V-1V2V)
+ A(VZVTIV2(8V)) + AXV2V-IV2Y),
(B3)

where (---) =@ ---¢,. We expand each term up to
second order of the fluctuation fields. Hereafter we chop

PHYSICAL REVIEW D 92, 034024 (2015)

off terms which will disappear together with ay », a¢ |, and
ag, terms under the stationary condition, and the constants.
Omitting total derivatives, we obtain

(V2(6V-NV2(8V)) = (V25 — ¢*6)* + 4¢*(V.6)>, (B4)
(VA6V1)V2V) = g*6 + 49V>V. 085 — 4¢°V 805 (BS)
(V2V-IV2(§V)) = (V2(sV-1)V2V), (B6)

(V2V=IV2Y) = (V2 +¢*) (ST AII(V2 +¢*)(AS)]). (BT)
where f =53 | BiL;.

APPENDIX C: PROPAGATORS
The following propagators are derived from Eq. (17):

( (0(k)s=(k))  (8(k)Ap5(k)) >

(AR5 () (BB (K AB(K))
1 1 So' (k) glk)
S35 05 (K) - ) ( oK) S5 (k) ) (€D

( (AB(k)AB (k)

(AB(k+2q2) ABL (k)
1 1

T 255 (k + 242) S5 (k) — G2 (k)
y (Sg'(k+2q2) —G(k))
—G(k)  S3'k))

(ABi (k) AP (k +242)) )
(Api(k +2q2)AB; (k +242))

(€2)

Here note that each component of the latter matrix S(k)
corresponds to summing all tree diagrams of the
absorption/emission processes, for instance, the {1,1}
component reads

S1(0) = So(k) S [GE)So k + 242G (R)So (R)]"
n=0
B Sol(k +2q2)
= ST+ 2055 (6 — G0 (©3)

APPENDIX D: FLUCTUATION EFFECTS
ON THE ORDER PARAMETER

In averaging the order parameter over quadratic fluctua-
tions in Eq. (22), we have used following results:

(cos (g2 + ) = cos gz i ((;l;, )
n=0 :

= cos gze~ )12,

034024-8
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(6cos (qz + f3)) = —singz

(-1
XZ(2n+1)!<

n=0

") (2n + 1)(8p5)

= —sin gz(8p;)e” 32, (D2)

and similarly for the other contributions.
Also, the following finds useful in evaluating integrals
like [d*kT/a?,

) 1 r (1 1
Ak =\ T )
—o aki+b+cki; 2Ac\B_. B,
where (@,b) = (a,b)/c, A2 =%~ >0, andBiEE:tA In

the general case where a = ¢ + c,k?, b = c3k?, and
¢ = 1, for small k,, the above integral results in as follows:

1 1 1 1
T(L_ T\ _” ﬁ_z_ ., (D4)
2Ac \B_ B+ C1 C3kt vV C1

(D3)

where
2
¢ C c3 c1 + ek;
A=2+ 2=k Bi:{%k? . (Ds)

Here, in a case that a = 4¢* +2k?, b = k}, and ¢ = 1,
which leads to f dkza)jz, the integral can be evaluated as
n/2qk?, where k, is the momentum in the x-y plane.

Hereafter we consider the expectation values of second
order fluctuations in Eq. (22).

1. Second order fluctuations for é and f;

We evaluate the second order fluctuations by considering
infrared (IR) singularities, and in high-temperature and
low-energy expansion.

First of all, the second order fluctuations for 5 result in
as follows:

Sy (k

S3(k) = 2(ABs (R AF5(0) = (k)S;lO(EC))-F g (k)
i —wy wj—w> |

Y ol ar—al o —ata?—a?

W, —0-0° -0, 0] - 00" — o

@* — w?

k) =TS emSy(k)

0 =@ n(@,)e” + (n(w,) + Deo-s

0k - a? 20,
w3 — 0% n(w_)e”" + (n(w_) + 1)e™-*
0l —w? 20_ ’
(D6)
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for small|z| and w./T,

H=— (07)

S3(0, k) = P

where @3 = M? + a4 A2k + dag g2 (k,)? + ag, (k)2
and n(x) = (e*/" —1)7! the Bose distribution function.
Here the T = 0 limit of (D6) reads S5(0, k)

Second, the second order fluctuations for & result in as
follows:

2a)

-1
$3(k) =202(0)3" () = = (k)saol ((:))+ 7 ()
w%r_wZ 1 a)z—w% 1
=— g 5 2+ 2ﬁ > 2 2

Wi -0 -0, o] -0lo"—o

1 >
=——— forsmall k|,
w°— w7

K)=TY emS5(k)

B 0% =G n(w,)e? 4 (n(w, ) +1)e+*

Wl —w? 20,
05 =2 n(w_)e”" + (n(w_) +1)e -7
0% —w? 2w .+ (D3)
+ - -_—

- T -
S(;(O,k)=w—2 for small|k| and w. /T,
+

(D9)

where @} = ag, [4¢*k2 + (K)?], and the T =0 limit of
(D8) reads S3(0, k)

Finally, the second order fluctuations for § and f; result
in as follows:

2‘”+

g(k)
Ss3(k) = 2(8(k) ABL(K)) = E
63 ) < 3( )> S (k)SO]U() gz<k)
_g(k) 1 1
02—k \? -0} o —a?)
Sp3(w. k) = Tze_iw”TS(ss(k)
g(k) n(a)_)e‘”-T + (n(a)_) + 1)e—w_r
R 2w_
n(wy)e™* + (n(w,) + 1)e " D10)
20, ’
P gy [T T
S (0,k) =22 | LT
2igA’ag k, T -
~ %w—% for small |k| and a)i/T
(D11)

From the above results, the second order fluctuations
=1/5 d”z S5(0: k)=
=1 f d3’< < S53(0;%) = 0.

for § and f3; in real space read A (3 (x

zfd3" L and A{5(x

27[3 29

034024-9
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2. Second order fluctuations for #; and f,

Here for later convenience, we calculate the imaginary time correlations of mean square fluctuation of the g ,.
For the f;, with same momentum,

Syl (k+2q2)
So' (k+242)S5" (k) = G*(k)”

Si(k) = 2<Aﬁ1,z<k)AﬁT.z<k)> =

k
Si(z.k) = TZe"“’"TS (k) = lecf)k)[( ) et + (n(wy) + 1)e7), (D12)
- T -
S11(0,k) =— for small|k| and /T, (D13)
Dk

where w; is the dispersion relation for g, given by Eq. (20), and fl(%) = (1 -2 =1 for |l_€| =0 with

Y=Yy
Yo, := (k -q )k —kng- Here the T = 0 limit of (D12) reads $y;(0, k) =5
Similarly, for the f; , with different momentum,

—G(k)
So!(k +2¢2)Sy" (k) = G* (k)

Sia(k) = 2(Ap12(k)AB 5 (k +2q2)) =

-

( )

Sia(z. k) TZe 0§, (k) = [n(wp)e™™ + (n(wy) + 1)e™*7], (D14)
Oy
kK T .
S12(0, k) —  for small k| and /T, (D15)
84> wy

|k| 0. Here S},(0, k) 8;2 2(1) for T = 0 limit of (D14).

TN Y-y Yo-Yo\-2
where f5(k) = yo5 (- v =

From the above results, the real space fluctuation reads

82,1 (%) Zfijdpdke (405 (A (p) B (K))
=2cos 2qzi:dkRe<Aﬁf (k +2q2)Ap;(k)) + 2sin 2qzz:dklm<Aﬁf (k+2q2)Api(k))
+ Y ak(AB (-)84,(0)

Bk Sy, (0;k) Bk S,,(0:k)
— 2cos2 , D16
€08 24z / 2 2 / 2z} 2 (D16)

where in the last line the first term gives zero due to the odd function, and the second diverges logarithmically at k = 0O at
finite temperature.

APPENDIX E: ORDER PARAMETER CORRELATIONS

The following integral is useful in evaluation of order parameter correlation functions at long range,

/ gk o08kea) _ m (e e (E1)
o ak?+b+ckt 2cA\ B_. B_ )’

where A? = “ —b>0,B= ¢+ A, and (@,b) = (a,b)/c. In general case where a = ¢| + ¢,k7, b = 3k}, for small k,,
the above 1ntegral results in as follows:
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C C31.2 <
1 c_lkf c

n [eB-r 7Bz z e_\/jk’ZZ e VE
o (E2)

2ch B )74 - ’

where

C1+C2k 3
. E
ﬁk;‘ ( )

¢ ¢ ¢
A—E1 Ezk?—é—jk;‘ and B2~{

With the above results, we can evaluate the following integral,

1 o A 1 —cos(k.z)
o L | M e o
(27)° J-w 0 (c1 + coki)k; + c3ki + ck;
—\ /342 /4
A dk,k 1 1 VAR Vi
2/ z;ﬁ L D I for IR region of ,
0o (2m)*c a2 4 G2 5

c

352
Ndk, 1 — Ve 1
:/ 27 T forlaree z=-———1In <1 /ﬁzM). (E4)
o 4r ¢ %kt 8 /cicsm €1

where A is the ultraviolet cutoff.
Similarly, the following integral is also useful,

/- _sinkake _ Fn_gn) (ES)

“ak? +b+ckt 2cA

In general case where a = ¢, + ¢,k?, b = c3k?, for small k,, we obtain

L(e—B_z_e—&Z z_< sz g—\/%), (E6)

2cA c
With this result, we can evaluate the following integral,
sin(k.z)k. dkk, m ( — fF. .
/ dk, / kik; k2+b+ck4 A (207 ( \/7' —e fz) for IR region of &,

Adk, - /m
= / ke VK for large z
o 4rmcy
1 1
P —— (E7)
8m,/CiC3 2

1. Long-range correlations of diagonal components

In evaluating the long-range correlation functions of diagonal components (29), the following expectation values with

B = Bi(z) £+ B:(0) are useful:

(cos(gz +ﬂli:1,2,3)> = cos gze~ )2, (E8)
(8(x) cos(gz + fiF)) = F sin gz (5(x)B5(0))e /2, (E9)
—(B.)/ (E10)

(6(0) cos(qz + fi5)) = — sin gz(5(0)B(x) e

034024-11
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(8(x)8(0) cos(qz + F)) = cos gze™#)/2[(5(x)5(0)) F (5(x)B5(0)) (5(0) 35 (x))]. (E11)
where
Al6(x)83(0)) = Y ke (506)8s (k)
3 - >
agrqAT 1
8761:26 M2 gz’ (E12)
(8(0)B5(x)) = —(8(x)p5(0)), (E13)
552)/2 = Yoak(1 £ ) (s )5 0)
1 dk
2A2/(2 7 7 (I £ cos k,z)85(0; k)
T &k 1+ cosk,z
- W/ 2z} @2
P e 514
167ag A%u._— 24
and

(B2 = i:dk[w,-(k)ﬁ:f(k»(l + ) & ((Bi(k)B; (k + 2q2))e™* + c.c.)]

1 &’k > -
/ ( 5 [(1 £ cosk,2)8,,(0; k) + (sin k,zImS,(0; k)+ cos k.zReS,(0; k))]

A2 (22)?
~i/ &3k 1 £cosk,z
20% ) (27)° w}
S
16]16161A2 Zq

From the above results, for instance, the {1, 1} component in the z direction reads

f11(22) = (A + 6(2))(A + 6(0)) cos(gz + f3(z)) cos f53(0) cos fi>(z) cos 1 (0) cos 1 (z) cos 1 (0))

((A+5(2))(A +6(0))[cos(gz + B3 ) + cos(qz + B5)]){(cos 3 + cos By )(cos B + cos fiy))

1
g
— LS A2 cos ga(1 - (8(2)3(0))?)+24 sin g2(3()63 (0))

1 - _
=3 A? cos qze iV (E16)

where we have used the fact that ($;2) are logarithmically divergent, and terms including (5(z)p5(0)) & z=! drop faster

than others for a large distance in the z direction. Also, (6(z)8(0)) corresponds to a massive mode, which does not
contribute to the long-range correlations.
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Similarly, in the x-y directions, we can obtain the following results:

where f;" = pi(x,) £ ;(0), and

(cos iy 530 = €02, (E17)

(6(x,) cos 57) = 0, (E18)

(8(0)cos p5) =0, (E19)

(8(x,)5(0) cos f) = e~ 372 [(8(x,)5(0)) F (5(x,)B3(0)) (8(0)B3 (x.))]. (E20)
® (E21)

<ﬂ£1,2,3>/2 = {

~— T
6mag A%u,_

In (x,A)?"
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