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We compute the entanglement entropy of soft gluons in the wave function of a fast moving hadron and
discuss its basic properties. We also derive the expression for entropy production in a high energy hadronic
collision within the color glass formalism. We show that long range rapidity correlations give negative
contribution to the production entropy. We calculate the (naturally defined) temperature of the produced
system of particles, and show that it is proportional to the average transverse momentum of the produced
particles. Our calculations apply to the situation when at least one of the colliding objects is dilute.
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I. INTRODUCTION

High energy hadronic scattering is of great current
interest. The structure of the hadronic wave function has
been the subject of study in the recent years with the aim of
better understanding possible manifestations of gluon
saturation [1]. The evolution of this wave function with
energy, which drives the evolution of high energy scat-
tering amplitude is encoded in the so-called JIMWLK
equation [2–4].
The standout property of this color glass condensate

(CGC) wave function is that the soft gluons state “grows”
out of that of the valence modes. More specifically the wave
function of the soft modes is determined by the color charge
density of the valence part of the wave function. This
suggests a certain “order” in the system, since the soft
gluons are entangled with the valence ones. The measure of
(dis)order in a quantum system is entropy. In particular
entanglement entropy measures the degree of entanglement
between different subsets of degrees of freedom in a
quantum state. Entanglement entropy measures both how
far the system is from a pure state, but also how close it is to
a thermal one. It is therefore interesting to ask what is the
entanglement entropy of a CGC wave function.
Although entanglement entropy is a characteristic of a

hadronic wave function, it also indirectly carries some
information about the structure of the final state in collision
of this hadron with a hadronic target. For example recently
we have shown that Bose-Einstein correlations present in
an incoming CGC state [5] manifest themselves as ridge
type correlations between particles produced in the final
state of an energetic collision. The CGC based calculation
of such correlations [6] provides a possible explanation of
the ridge correlations observed by the LHC experiments in
high multiplicity p-p and p-Pb events [7–10].

In this paper we calculate the entanglement entropy of
the soft modes in the CGC wave function. By soft we mean
the gluon field modes with the longitudinal momentum
in the “last” rapidity bin η < ΔY ∼ 1=αs which are still
energetic enough to participate in scattering at relevant
energy. A similar question has been addressed in [11] and
more recently in [12], where a definition of dynamical
entropy has been proposed. In the present paper we do not
use an ad hoc definition, but rather directly calculate the
standard entanglement entropy of a quantum state.
We also consider the entropy of the produced system of

soft particles. An earlier attempt in this direction is
presented in [13], while a different approach to the entropy
production problem can be found in [14,15] (see also the
review [16] and references therein). The knowledge of the
outgoing wave function in the CGC formalism allows us to
directly calculate the entropy of the final state. We show
that the correlations between produced particles give a
well-defined contribution to this entropy. This contribution
is negative in accordance with one’s naive expectation that
stronger correlations mean a more ordered state. We define
in a natural way the temperature of the produced system of
particles. We show that in the weak field limit the temper-
ature is given by T ¼ πhk⊥i=2, where hk⊥i is the average
transverse momentum of the produced particles.

II. THE DENSITYMATRIX AND RENYI ENTROPY

At high energy a hadronic wave function has a large soft
gluon component. These are the softest gluons in the wave
function which are energetic enough to scatter on a
hadronic target. They occupy the rapidity interval 0 < η <
ΔY with ΔY ∼ 1=αs. In what follows we will calculate the
entanglement entropy of this component of the wave
function.
In the CGC approach the hadronic wave function has the

form [17]*lublinm@bgu.ac.il
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Ψ½a; A� ¼ ψ ½A�χ½a; ρ� ð2:1Þ

where a is the soft gluon field modes, A are the valence
modes (with rapidities η > ΔY) and ρaðxÞ is the color
charge density due to the valence gluons. For parametri-
cally color charge density which is parametrically not large,
ρ ≪ 1=αs the soft part of the wave function is given by a
simple coherent state

χ½a; ρ� ¼ exp

�
i
Z
k
biaðkÞ½a†ia ðkÞ þ aiað−kÞ�

�
j0i; ð2:2Þ

with the Weizsäcker-Williams field biaðkÞ ¼ gρaðkÞ ikik2 .
We will use this functional form of χ throughout the

paper. For parametrically large color charge density ρ ∼
1=αs the relation between the Weizsäcker-Williams field
and ρ becomes nonlinear, and additionally the operator χ is
modified by a Bogolyubov factor [18]. This significantly
complicates the calculation of entropy, and we will not
attempt this generalization here.
The creation and annihilation operators entering the

above equation are the gluon operators integrated over
rapidity,

aai ðkÞ≡ 1ffiffiffiffiffiffiffi
ΔY

p
Z
η<ΔY

dη
2π

aai ðη; kÞ: ð2:3Þ

This structure is typical of the Born-Oppenheimer approxi-
mation, where the wave function of the fast degrees of
freedom (soft gluons) is determined by the background of
slow degrees of freedom (valence gluons). The valence part
of the wave function depends on the energy of the process,
or in the present context on the total rapidity by which the
hadron has been boosted from the rest frame, and is subject
to JIMWLK evolution [2]. At any fixed energy a valence
observable that depends only on the color charge density
O½ρ� is calculated as

hOi ¼
Z

D½ρ�WY ½ρ�O½ρ�: ð2:4Þ

The rapidity dependence ofWY is determined by JIMWLK
evolution. In this paper we will not insist that W½ρ� solves
the JIMWLK equation, but instead will consider the
(somewhat generalized) McLerran-Venugopalan model
[19]

WP½ρ� ¼ N e
−
R
k

1

2μ2ðkÞρaðkÞρað−kÞ ð2:5Þ

where N is a normalization factor.
Note that the soft wave function Eq. (2.2) depends on a

single longitudinal degree of freedom, i.e. the gluon field
mode integrated over rapidity in the interval ΔY. Only this
mode is relevant to our discussion in this paper. Rapidity
dependence becomes significant only when the rapidity

interval considered as soft becomes large enough
ΔY > 1=αs. For such large rapidity intervals additional
rapidity dependence of the wave function appears and our
discussion would have to be amended. Wewill not consider
this in the present paper.
The reduced density matrix of the soft gluons in the

McLerran-Venugopalan model is [5]

ρ̂ ¼ N
Z

D½ρ�e−
R
k

1

2μ2ðkÞρaðkÞρað−kÞ

× e
i
R
q
bibðqÞϕi

bð−qÞj0ih0je−i
R
p
bjcðpÞϕj

cð−pÞ

where we have defined ϕi
aðkÞ ¼ aiaðkÞ þ a†ia ð−kÞ. The

integral over the charge density ρ can be performed with
the result

ρ̂ ¼
X
n

1

n!
e−

1
2
ϕiMijϕj

�Yn
m¼1

Mimjmϕim j0ih0jϕjm

�
e−

1
2
ϕiMijϕj :

ð2:6Þ

Here we have introduced compact notations:

ϕi ≡ ½a†ai ðxÞ þ aai ðxÞ�;

Mij ≡ g2

4π2

Z
u;v

μ2ðu; vÞ ðx − uÞi
ðx − uÞ2

ðy − vÞj
ðy − vÞ2 δ

ab: ð2:7Þ

Here M bears two polarization, two color, and two
coordinate indices, collectively denoted as fijg. In
Eq. (2.6) summation over discrete and integration over
continuous indices is implied.
Our goal is to calculate the Von Neumann entropy of the

reduced density matrix Eq. (2.6). As a warm-up exercise we
first compute the Renyi entropy. To this end we have to
evaluate tr½ρ̂2�:

tr½ρ̂2� ¼
X
n;n0

1

n!n0!
h0je−ϕiMijϕj

×

�Yn
m¼1

Yn0
m0¼1

MimjmMim0 jm0ϕjm0ϕim j0ih0jϕjmϕim0

�

× e−ϕiMijϕj j0i: ð2:8Þ

Computation of the matrix elements is straightforward as it
involves calculation of two vacuum matrix elements, which
can be performed by summing over all possible Wick
contractions. The explicit form of the light front vacuum
wave function is

hϕj0i ¼ Ne−
π
2
ϕiϕi : ð2:9Þ

As this is a Gaussian, it is convenient to introduce
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Gij ≡ h0je−ϕiMijϕjϕiϕjj0i=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½π=ðπ þ 2MÞ�

p
¼ ½π þ 2M�−1ij ð2:10Þ

where we use the shorthand notation π ≡ πδijδ
abδ2ðx − yÞ.

The matrix elements in Eq. (2.8) do not vanish only when
the total number of ϕ insertions in each one is even, that is

nþ n0 ¼ 2m: ð2:11Þ

The result for tr½ρ̂2� is a sum of all possible contractions of
MGweighted with combinatoric factors. Given that bothM
andG are diagonal in color, the expansion can be organized
in terms of color loops:

L1 ≡ tr½MG�; L2 ≡ tr½MGMG�;
L4 ≡ tr½MGMGMGMG�…: ð2:12Þ

Each trace over color gives a factor N2
c. Performing the

averaging over the vacuum state we obtain

tr½ρ̂2� ¼ det

�
π

π þ 2M

�X
m

X2m
n¼0

1

n!ð2m − nÞ! ½L
m
2 ð2m − 1Þ!!

þ Lm−2
2 L46ð2m − 5Þ!!þ � � ��: ð2:13Þ

Using the identity

X2m
n¼0

1

n!ð2m − nÞ! ð2m − 1Þ!!

¼
X2m
n¼0

1

n!ð2m − nÞ!
ð2m − 1Þ!

2m−1ðm − 1Þ! ¼
2m

m!
ð2:14Þ

we find that the summation over m exponentiates:

tr½ρ̂2� ¼ exp

�
−tr
�
ln

�
1þ 2M

π

��
þ 2L2 þ � � �

�
≃ exp ½−2L1 þ L2 þ � � ��: ð2:15Þ

After a more careful examination we find that the other
terms exponentiate as well

tr½ρ̂2� ¼ exp

�
−tr
�
ln

�
1þ 2M

π

��
þ
X
n

22n−1

n
L2n

�

¼ exp

�
−tr
�
ln

�
1þ 2M

π

��
−
1

2
tr½lnð1 − ð2MGÞ2Þ�

�
:

ð2:16Þ

Finally using the definition Eq. (2.10) we arrive at the
closed-form expression

tr½ρ̂2� ¼ exp

�
−
1

2
tr

�
ln

�
1þ 4M

π

���
ð2:17Þ

from which the Renyi entropy is found as

σ2 ≡ − ln tr½ρ̂2� ¼ 1

2
tr

�
ln

�
1þ 4M

π

��
: ð2:18Þ

III. VON NEUMANN ENTROPY

We are now ready to compute the Von Neumann entropy
of the reduced density matrix defined as

σE ¼ −tr½ρ̂ ln ρ̂�: ð3:1Þ

The following identity is very useful for this purpose

ln ρ̂ ¼ lim
ϵ→0

1

ϵ
ðρ̂ϵ − 1Þ: ð3:2Þ

We first compute tr½ρ̂N �, for arbitrary N, and then take the
limit N → 1þ ϵ.
Consider the generalization of Eq. (2.8) to the calculation

of ρ̂N . This expression contains a product of N vacuum
matrix elements of operators that depend on the field ϕ.
Each one of these matrix elements is calculated independ-
ently, and thus the fields entering the calculation of
different matrix elements can be considered as independent.
We thus define the multiplet of replica fields ϕα

i ,
α ¼ 1;…; N. Thus we can write

tr½ρ̂N � ¼ h0je−
P

N
α¼1

ϕα
i Mijϕ

α
jþ
P

N
α¼1

ϕα
i Mijϕ

αþ1
j j0i ð3:3Þ

where now j0i is the light front vacuum of all the replica
fields ϕα. Notice the nearest neighbor “interaction”
between the replica fields. The replica fields in Eq. (3.3)
satisfy periodic boundary conditions ϕNþ1 ¼ ϕ1.
We further rewrite (3.3)

tr½ρ̂N � ¼
�
det½π�
2π

�
N=2
Z YN

α¼1

½Dϕα� exp
�
−
π

2

XN
α¼1

ϕα
i ϕ

α
i

−
1

2

XN
α¼1

ðϕα
i − ϕαþ1

i ÞMijðϕα
j − ϕαþ1

j Þ
�
: ð3:4Þ

This is a partition function of a spin chain on a replica space
lattice. Equation (3.4) obviously has the discrete transla-
tional symmetry in the replica space. The “action” is
diagonalized by Fourier transforming in α:

~ϕn ¼ 1

N

XN
α¼1

ei
2π
Nαnϕα; ϕα ¼

XN−1

n¼0

e−i
2π
Nαn ~ϕn: ð3:5Þ

Notice the periodicity relation ~ϕN−n ¼ ~ϕ�n. The nearest-
neighbor interaction in Fourier space reads
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ðϕα
i − ϕαþ1

i Þðϕα
j − ϕαþ1

j Þ
¼
X
n;m

ðe−i2πNn − 1Þðe−2π
Nm − 1Þe−i2πNαðnþmÞ ~ϕn

i
~ϕm
j : ð3:6Þ

Using

X
α

e−i
2π
NαðnþmÞ ¼ Nδnþm;N ð3:7Þ

we have

X
α

ðϕα
i − ϕαþ1

i Þðϕα
j − ϕαþ1

j Þ

¼ N
X
n

ðe−i2πNn − 1Þðe−i2πNn − 1Þ ~ϕn
i
~ϕ�n
j

¼ 4N
X
n

sin2
�
π

N
n

�
~ϕn
i
~ϕ�n
j ð3:8Þ

tr½ρ̂N � ¼ NN=2

�
det½π�
2π

�
N=2
Z Y

n

½D ~ϕn�

× exp

�
−
N
2

XN−1

n¼0

~ϕn
i

�
π þ 4Msin2

�
π

N
n

��
ij

~ϕ�n
j

�

ð3:9Þ

where NN=2 is the Jacobian of the transformation (3.5).
Using the identity

π þ 4Msin2
�
π

N
n

�
¼
�
π þ 2M

�
1 − cos

�
2π

N
n

���
ð3:10Þ

the Gaussian integral in (3.9) is easily computable

tr½ρ̂N � ¼ det½π�N=2 det

×

�YN−1

n¼0

�
π þ 2M

�
1 − cos

�
2π

N
n

���
−1=2

�
:

ð3:11Þ

Now we apply (1.396) of Ref. [20], with 1 > 2MG > 0:

YN−1

n¼0

�
π þ 2M

�
1 − cos

�
2π

N
n

���

¼ ð2MÞN
YN−1

n¼0

�
1 − cos

�
2π

N
n

�
þ π

2M

�

¼ 2ðMÞN
�
cosh

�
N arcCosh

�
1þ π

2M

��
− 1

�
: ð3:12Þ

We finally arrive at the following expression for tr½ρ̂N �:

tr½ρ̂N � ¼ exp

�
−
1

2
ln 2 −

N
2
tr

�
ln
M
π

�

−
1

2
tr

�
ln

�
cosh

�
N arcCosh

h
1þ π

2M

i�
− 1

���
:

ð3:13Þ

The entropy is computed by taking N ¼ 1þ ϵ and keeping
the terms linear in ϵ:

tr½ρ̂1þϵ�

≃exp

(
−
1

2
ln2−

1þϵ

2
tr

�
ln
M
π

�

−
1

2
tr

"
ln

 
π

2M
þϵ

π

2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4M

π

r
arcCosh

h
1þ π

2M

i�#)

¼1þ ϵ

2
tr

"
ln

π

M
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4M

π

r
arcCosh

h
1þ π

2M

i#
: ð3:14Þ

Thus we arrive at a closed expression for the entanglement
entropy

σE ¼ 1

2
tr

�
ln
M
π
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M

π

r
arcCosh

�
1þ π

2M

��

¼ 1

2
tr

(
ln
M
π
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M

π

r

× ln

"
1þ π

2M

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M

π

r !#)
: ð3:15Þ

To understand the basic properties of this expression let
us consider the translationally invariant case. In this case
the matrix M is diagonal in momentum space,

Mab
ij ðpÞ ¼ g2μ2ðp2Þpipj

p4
δab: ð3:16Þ

In the original McLerran-Venugopalan (MV) model μ2 is a
constant and does not depend on momentum, but the
momentum dependent Gaussian width has been used in
recent applications (see e.g. [21]). The contribution to the
entropy from large transverse momentum modes can be
calculated by expanding the expression Eq. (3.15) to
leading order in M, since for large momenta (g2μ2 < p2)
the eigenvalues of M are all small. The expression for the
entropy in the weak field limit is

σEM≪1 ¼ tr

�
M
π
ln
πe
M

�
: ð3:17Þ

Here we have kept the first two terms in the small M
expansion, which are not suppressed by powers of M.
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Thus the dominant ultraviolet contribution is

σEUV ≃ −
g2

π
ðN2

c − 1ÞS
Z

d2p
ð2πÞ2

μ2ðp2Þ
p2

× ln
g2μ2ðp2Þ
eπp2

θ

�
p2 −

g2

π
μ2ðp2Þ

�
ð3:18Þ

where S is the total area of the projectile. For the original
MV model with momentum independent μ this expression
is logarithmically divergent in the UV. Introducing a UV
cutoff Λ we find

σEUV ≃ Q2
s

4πg2
ðN2

c − 1ÞS
�
ln2

g2Λ2

Q2
s

þ ln
g2Λ2

Q2
s

�
ð3:19Þ

where we have identified the saturation momentum in the
standard way as Q2

s ¼ g4μ2=π. The UV divergence in this
expression is of course the artifact of the eikonal approxi-
mationwhich in theCGCcontext is applied for all transverse
momentummodes. In fact the eikonal approximation breaks
downwhen the transversemomentumof the soft gluons is of
the order of their longitudinalmomentum. The natural cutoff
on the transversemomentum is of orderΛ ∼ Pþe−Y ∼meY0,
where Pþ is the total energy of the hadron andm is a typical
hadronic scale and Y0 is the rapidity of the soft gluons. This
cutoff does not depend on the total energy of the hadron, but
rather on some initial energy at which the eikonal approxi-
mation is assume to be valid [22].
The contribution from the infrared modes can also be

calculated. At small momenta p2 < Q2
s=g2 one can for-

mally expand in M−1 [23]. In this limit the entropy is
dominated by the first term in Eq. (3.15). Here we also keep
the first subleading correction:

σEM→∞ ≃ 1

2
tr
�
ln
e2M
π

�
ð3:20Þ

and the infrared contribution is

σEIR ≃ 1

2
ðN2

c − 1ÞS
Z

d2p
ð2πÞ2 ln

e2g2μ2ðp2Þ
πp2

θðQ2
s − g2p2Þ

¼ 3

8πg2
ðN2

c − 1ÞSQ2
s : ð3:21Þ

Note that we have chosen to separate the integration region
into UVand IR at exactlyp2 ¼ Q2

s=g2 in Eqs. (3.18), (3.21).
Although the parametric dependence of the separation scale
is clear, its exact value is somewhat arbitrary. Our reason for
choosing the above value is that at this value of p2 the
integrands in Eqs. (3.18), (3.21) exactly coincide. Thus this
is a unique choice for which the approximation of the total
momentum space entropy density by the sum of its asymp-
totic expressions is a continuous function of momentum.

Combining the two expressions we find approximately
for the MV model

σE ≈ σEUV þ σEIR ¼ SQ2
s

4πg2
ðN2

c − 1Þ
�
ln2

g2Λ2

Q2
s

þ ln
g2Λ2

Q2
s

þ 3

2

�
:

ð3:22Þ
Aword on the dependence of the entropy on the energy

(rapidity) of the hadron. The above calculation is performed
at fixed rapidity. The hadronic wave function evolves to
higher rapidity via JIMWLK evolution. Since this evolution
is nonlinear, the soft gluon wave function is not given by a
Gaussian anymore, especially in the saturation regime.
Calculating the entropy for a non-Gaussian wave function
is significantly more difficult, although we will describe
some steps toward such a calculation in the last section.
However, as has been suggested in the past, approximating
the soft gluon wave function by a Gaussian is not a bad
approximation for phenomenological purposes as long as
the parameters of the Gaussian are taken to evolve with
rapidity in a way consistent with JIMWLK evolution [24].
In particular one can still use the MV type ansatz but

with the function μYðp2Þ taken to be a solution of the
Balitsky, Fadin, Kuraev and Lipatov (BFKL) [25] (or
Balitsky and Kovchegov (BK) [4,26]) evolution equation.
Within this approximation one can derive the evolution of
the entropy with the total energy of the hadron. In the weak
coupling limit, where the evolution of μ is given by the
BFKL equation, differentiating the weak field expression
Eq. (3.17) we find

dσE

dY
¼−ðN2

c−1ÞS
Z

d2p
ð2πÞ2

d2k
ð2πÞ2 ln½ϕðp

2Þ�KBFKLðp;kÞϕðk2Þ

ð3:23Þ

where ϕðk2Þ≡ g2

π
μ2ðk2Þ
k2 is the gluon unintegrated density,

and KBFKL is the kernel of the BFKL equation.
In contrast to the MV model, the solution of the BFKL/

BK equation at large rapidity exhibits an anomalous
dimension which slowly varies with transverse momentum

g2

π
μ2Yðp2Þ ∼ pγðpÞ; ð3:24Þ

with γðp ≫ QsÞ → 1; γðp ∼QsÞ ≈ :67 and γðp < QsÞ ¼
0. Note that with such an anomalous dimension the entropy
diverges as a power of the cutoff in the ultraviolet
as σUV ∝ Λγ.
Some properties of the entanglement entropy of CGC are

worth noting. First, it is proportional to the transverse area
of the hadron. This conclusion holds for the MV model
calculation, and is also preserved by the BFKL evolution
Eq. (3.23). This is a natural property of any extensive
observable. However σE is not extensive in the longitudinal
direction.Recall that σE as calculated above is the entropyon
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the rapidity slice of width ΔY, but σE is not proportional to
ΔY. The reason for this is of course clear, since only a single
rapidity independent mode on the interval ΔY is entangled
with the valence degrees of freedom of the hadron. For the
same reason the entropy does not have any longitudinal UV
divergence associated with the fact that we have a sharp
boundary between soft and valence degrees of freedom in
rapidity space. This is very different from a situation one
encounters in calculating entanglement entropy of a finite
region of spaceA in a local field theory when integrating out
degrees of freedom in the rest of spaceB. In the latter case the
local interaction between the degrees of freedom along the
boundary between A and B leads to a UV divergence which
depends on the ratio of the correlation length to the
(vanishing) width of the boundary region. In our case
the interaction in the longitudinal direction is nonlocal.
The eikonal interaction between soft and valence degrees of
freedomextends over large distances in rapidity, so that there
is no significant contribution to the entropy from the (sharp)
boundary. In this sense the entanglement entropy of theCGC
is akin to the “topological entropy” [27] frequently dis-
cussed in the context of condensed matter systems, which is
a constant independent of the boundary or volume of the
spatial region under consideration.
Recently, the “momentum space” entanglement entropy

has been discussed in connection with Wilsonian renorm-
alization group flow [28]. It would be interesting to explore
the relation of these ideas with Eq. (3.23) as σE is indeed
calculated by separating degrees of freedom in momentum
space, while the BFKL equation has been interpreted in the
past as RG flow in rapidity variable [29].

IV. ENTROPY PRODUCTION IN COLLISION

Our next quantity of interest is the entropy production
during collision of two hadrons. We calculate the entropy in
the rapidity bin of width ΔY at rapidity Y away from the
valence charges. All the glue at rapidities η < Y þ ΔY
relative to the forward moving particles is considered to be
part of the target wave function and as in the standard
saturation approach is represented by the eikonal scattering
matrix SðxÞ. Just like in the previous section, we consider
the situation where the projectile is dilute (projectile color
charge density parametrically is ρ ≪ 1=αs).
According to the eikonal paradigm the effect of the

collision is to color rotate the valence as well as the soft
gluon field in the wave function, so that at time t ¼ 0 right
after the collision

ψ ½A�χ½a; ρ�
→ Ŝψ ½A�χ½a; ρ� ¼ ψ ½SA�χ½Sa; Sρ�

¼ ψ ½SA� exp
�
i
Z
x

~biaðxÞSðxÞ½a†ia ðxÞ þ aiaðxÞ�
�
j0i;

ð4:1Þ

where ~bai ðxÞ is the Weszacker-Williams field produced by
the rotated color charge density ~ρbðzÞ ¼ SbcðzÞρcðzÞ. Here
Ŝ is the second quantized operator of eikonal S-matrix. The
action of Ŝ to the right (and Ŝ† to the left) is equivalent to
the multiplication of aaðxÞ; a†aðxÞ and ρaðxÞ by the unitary
matrix SðxÞ. Since Ŝ is a unitary operator which does not
mix valence and soft degrees of freedom, it is clear that the
initial scattering does not modify the entanglement entropy.
To see this explicitly we note that in the basis ~ρðxÞ ¼
SðxÞρðxÞ and ~ϕðxÞ ¼ SðxÞϕðxÞ the form of the scattered
wave function is identical to that of the incoming one in the
original basis. Since the integration measure for ρ as well as
the vacuum wave function for ϕðxÞ Eq. (2.9) are invariant
under this local unitary transformation, changing variables
to ~ρ and ~ϕ in the calculation of the entropy immediately
establishes that the entropy is the same.
However the entropy produced in collision is not the same

as the entanglement entropy of the final state. Here one is
interested only in characteristics of inelastically produced
gluonic state, and not, say in the contribution of soft gluons
which are part of thewave function of outgoing “bound state”
hadrons. Thus the relevant quantity for calculating the
production entropy is not the wave function evolved to
t → ∞, but only its “inelastically produced” part. This is a
similar problem to the one we are faced with when calculat-
ing any soft gluon observable produced in collision, i.e.
single or double gluon inclusive cross section. In that context
the solution is well known. Recall, that a gluonic observable
Oða; a†Þ at t → ∞ is given by the expression [30]

hOi ¼
Z

dρW½ρ�h0je−i
R
x
bia½ρ�ðxÞϕi

aðxÞŜ†ei
R
x
bia½ρ�ðxÞϕi

aðxÞ

×Oða; a†Þe−i
R
x
bia½ρ�ðxÞϕi

aðxÞŜei
R
x
bia½ρ�ðxÞϕi

aðxÞj0i:
ð4:2Þ

The multiplication by the extra coherent operator factor
accounts for the evolution of the wave function from time
t ¼ 0 to time t → ∞ as well as restricting Hilbert space for
the calculation of O to that of inelastically produced
gluons only.
Since this formula is valid for an arbitrary soft observ-

able Oða; a†Þ, clearly this means that the density matrix
that describes the produced soft gluons has exactly the
same form as Eq. (2.6) but with the matrixM substituted by

MP ≡ g2

4π2

Z
u;v

μ2ðu; vÞ ðx − uÞi
ðx − uÞ2

ðy − vÞj
ðy − vÞ2

× ½ðSðuÞ − SðxÞÞðS†ðvÞ − S†ðyÞÞ�ab: ð4:3Þ

Thus the entropy produced in a hadronic collision, which is
the Van Neumann entropy of the density matrix specified
by Eq. (4.3) is given by

ALEX KOVNER AND MICHAEL LUBLINSKY PHYSICAL REVIEW D 92, 034016 (2015)

034016-6



σP ¼ 1

2
tr

(
ln
MP

π
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4MP

π

r

× ln

"
1þ π

2MP

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4MP

π

r !#)
: ð4:4Þ

Although the formal expression for σP is similar to that for
σE, it has a different meaning and its properties are
significantly different. We stress that σP is not an entan-
glement entropy like σE, but rather the entropy of the state
produced inelastically in the hadronic collision. As a result
σP is UV finite. This is clear, since the UV divergence in
the calculation of σP came from the coordinate region
x → y → u → v, andMP vanishes in this limit, as opposed
to M.
Another important property is that σP as defined in

Eq. (4.4) is calculated for a single scattering event char-
acterized by a given eikonal profile SðxÞ. Although it
certainly makes sense to talk about event by event entropy
production, a more global characteristic of scattering would
be an event averaged quantity. We will next consider such
an average production entropy and will relate it to inclusive
gluon production amplitudes.
Note that Eq. (4.3) can be written as a product of single

inclusive gluon production amplitude Qi defined in [30]
averaged over the projectile wave function

MP
ij ¼

Z
D½ρ�QiQjWP½ρ�≡ hQiQjiP ð4:5Þ

where

Qa
i ðxÞ ¼

g
2π

Z
u

ðx − uÞi
ðx − uÞ2 ½SðuÞ − SðxÞ�abρbðuÞ ð4:6Þ

with S being in the adjoint representation.
The target average of this expression is directly related

to the single inclusive gluon production probability, or
rather the phase space density n ¼ dN=dkdydb is

nðkÞ ¼ dN
d2kdyd2b

¼
Z
xy
⟪Qa

i ðxÞQa
i ðyÞ⟫P;Teikðx−yÞ ð4:7Þ

where as usual the averaging over the target fields has to be
performed with some weight function W½S�.
In order to relate the average entropy to inclusive

gluon production amplitudes we expand it in powers
of the fluctuation of the matrix MP around its target
average

MP ¼ M̄P þ ðMP − M̄PÞ; M̄P ≡
Z

DSW½S�MP½S�:
ð4:8Þ

The target average has the form

M̄P ¼ −δab
g2

4π2

Z
u;v

μ2ðu; vÞ ðx − uÞi
ðx − uÞ2

ðy − vÞj
ðy − vÞ2 ½PAðx; yÞ

þ PAðu; vÞ − PAðx; vÞ − PAðu; yÞ�
ð4:9Þ

where the “adjoint Pomeron” is defined as

PAðx; yÞ ¼ 1 −
1

N2
c − 1

htr½S†ðxÞSðyÞ�iT: ð4:10Þ

Although M̄P is related to the single inclusive gluon
production probability, the two are not equal to each other.
Assuming translational invariance of μ and PA we have

M̄P ¼ δabg2
Z
k;q

e−ikðx−yÞKijðk; qÞμ2ðk − qÞPAðqÞ

ð4:11Þ

where

Kijðp; qÞ ¼
ðk − qÞi
ðk − qÞ2

ðk − qÞj
ðk − qÞ2 þ

ki
k2

kj
k2

−
ðk − qÞi
ðk − qÞ2

kj
k2

−
ðk − qÞj
ðk − qÞ2

ki
k2

: ð4:12Þ

Conveniently assuming parity invariant target, we can
decompose hMPiT in momentum space as

M̄PðkÞ ¼ δab
�
Mlðk2Þ

kikj
k2

þMtðk2Þ
�
δij −

kikj
k2

��
:

ð4:13Þ

As opposed to M, the matrixMP has both longitudinal and
transverse components. These correspond to gluons pro-
duced with polarizations parallel and perpendicular to their
transverse momentum. Clearly both polarizations in gen-
eral are produced, since the gluons in question are free
gluons rather than a part of the dressing of the wave
function of some faster moving valence color charges. The
inclusive gluon production cross section [31] is related to
the sum of the two polarizations

nðkÞ ∝ MlðkÞ þMtðkÞ: ð4:14Þ

Let us consider the case of small MP, which is relevant
for the UV regime. We can then use Eq. (3.17)
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σ̄P ¼
	
tr
�
MP

π
ln

πe
MP

�

T

¼ tr

�
M̄P

π
ln

πe
M̄P

�

−
1

2π
tr½fhMPMPiT − ðM̄PÞ2gðM̄PÞ−1�…: ð4:15Þ

Using the representation (4.13), the first term in (4.15) can
be written as

tr

�
M̄P

π
ln

πe
M̄P

�
¼ −

N2
c − 1

π

Z
d2k
ð2πÞ2

�
Mlðk2Þ ln

Mlðk2Þ
eπ

þMtðk2Þ ln
Mtðk2Þ
eπ

�
: ð4:16Þ

This has the standard form σ ¼ −
P

ini ln ni for the system
of noninteracting particle species. The index i here refers to
transverse momentum as well as the longitudinal and
transverse gluon polarizations. Note that it cannot be
expressed in terms of the total particle spectrum nðkÞ,
unless the longitudinal and transverse eigenvalues of MP

are proportional to each other. Generically we do not see a
reason to expect that this is the case. Nevertheless, up to
logarithmic corrections the entropy production is propor-
tional to the number of produced gluons. For a parametri-
cally large number of produced particles (αsdN=dη ∼ 1),
the entropy is parametrically of order 1=αs. Although our
calculation literally taken is only valid for dilute produced
systems, we believe that the parametric estimate of entropy
based on Eq. (4.16) remains correct in the dense situation
as well.
The second term in (4.15) is related to correlated

inclusive two gluon production [6,32–39]. Pictorially this
term can be represented in Fig. 1(a). This diagram (apart
from the fact that two of the gluon polarization indices do
not close) is the same as the connected “glasma graph”
contribution to the two gluon correlation [34]. The

“disconnected” diagram in Fig. 1(b) is not included in
the expression Eq. (4.15). Note that although the diagram in
Fig. 1(b) has a disconnected topology, it does in fact
contribute to the correlated production in the large Nc limit
if the target averages do not factorize [37,40]. In the
language of the Reggeon field theory, this contribution is
due to correlated production from two Pomerons, while the
diagrams in Fig. 1(a) are due to correlated production from
the B-reggeon [41].
With this in mind we can write

δσP ¼ 1

2π
tr½fhMPMPiT − ðM̄PÞ2gðM̄PÞ−1�

∝
Z

d2kd2p½ha†al ðpÞa†bi ðkÞacjðkÞaal ðpÞiðBÞ
− ha†al ðpÞaal ðpÞiha†bi ðkÞacjðkÞi�ðM̄PÞ−1cbji ðkÞ:

ð4:17Þ

Or in a less convoluted way:

δσP ¼ −
g4

32π5ðN2
c − 1Þ

Z
u;v;ū;v̄;y;x;x̄;k

μ2ðu; vÞμ2ðū; v̄Þeikðx−x̄Þ
�

1

Mlðk2Þ
kikj
k2

þ 1

Mtðk2Þ
�
δij −

kikj
k2

��

×
ðx − uÞi
ðx − uÞ2

ðy − vÞm
ðy − vÞ2

ðx̄ − ūÞj
ðx̄ − ūÞ2

ðy − v̄Þm
ðy − v̄Þ2

× trh½ðSðuÞ − SðxÞÞðS†ðvÞ − S†ðyÞÞ�½ðSðūÞ − Sðx̄ÞÞðS†ðv̄Þ − S†ðyÞÞ�iT þ 1

2π

Z
k
nðkÞ: ð4:18Þ

Again, we see that if the longitudinal and transverse parts
of M are proportional to each other at all momenta, the
extra contribution to entropy is proportional to the double
inclusive gluon correlation function integrated over the
gluon momenta. If MlðkÞ ≠ aMtðkÞ, the longitudinal and

transverse gluon polarizations are separately normalized to
their single inclusive production probability.
Interestingly the correlation function in Eq. (4.17) is

normalized by dividing by the first power of the single
inclusive gluon production and not its square. Recall that

(a) (b)

FIG. 1. Two contributions to the inclusive two gluon produc-
tion. Fig. 1(a)—“connected” part that contributes to entropy
Eq. (4.15). Fig. 1(b)—“disconnected part that does not contribute
to the entropy Eq. (4.15).
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the correlated gluon production normalized this way
remains finite in the CGC approach in the limit
Q2

sS → ∞, while the correlation function normalized to
the square of single inclusive gluon vanishes in this
limit [6,37].
The natural, but nevertheless interesting property of

Eq. (4.15), is that the contribution of correlations to entropy
is negative. This is in accordance with the intuition that a
correlated state contains more order and thus has a smaller
entropy.
As noted above, the produced entropy is UV finite, since

in the UV limit all adjoint Pomerons in Eq. (4.9) vanish,
and the divergent contribution to the momentum integral in
Eq. (4.15) disappears. This is even clearer from the
momentum space representation of MP Eq. (4.11). The
perturbative behavior of the adjoint Pomeron at large
momenta is PðqÞ ∝ Q2

T=q
4, which leads toMPðk → ∞Þ →

Q2
pQ2

T=g
2k4. Even accounting for the BFKL anomalous

dimension leads to the UV convergent integral in
Eq. (4.16). The integral in Eq. (4.16) is also IR finite,
since the expected IR behavior is Pðq → 0Þ → 1=Q2

T .
In general the consequence of Eq. (4.9) (neglecting the

rotational indices for the moment) is

MPðqÞ ¼ π
Q2

P

g2Q2
T
F

�
Q2

T

q2

�
ð4:19Þ

where F is a regular function with the limiting behavior
Fðx → 0Þ → constx2 and Fðx → ∞Þ → const. Using
Eq. (4.19) we can estimate the entropy production para-
metrically

σP ∼ aðN2
c − 1ÞS Q2

P

πg2
ln
bg2Q2

T

Q2
P

ð4:20Þ

where a and b are constants of order unity.

V. DISCUSSION

In this paper we have calculated the entanglement
entropy of the soft gluon modes in the CGC wave function,
as well as entropy produced in hadronic collision at high
energy. In these calculations we have relied on the MV
model to represent the valence part of the hadronic wave
function.
The entanglement entropy is an interesting theoretical

quantity, as it is a global characteristic of the soft gluon
density matrix. Its basic properties are determined by the
fact that only one longitudinal mode of the soft gluon field,
namely the rapidity independent mode is entangled with the
valence part of the wave function. The entropy therefore is
not extensive in the length of the rapidity interval, and in
this sense is akin to the topological entropy discussed these
days in condensed matter literature [27]. In a certain sense
the analogy is closer than it might seem, as the origin of the

topological entropy is in the long range quantum
entanglement.
We find that the entanglement entropy of CGC is

formally UV divergent and is dominated by the modes
with large transverse momentum p2⊥ > Q2

s=g2. The con-
tribution from the IR modes is finite and suppressed by a
square of the logarithm of the UV cutoff.
We have also derived an expression for the entropy

production in an hadronic collision. We have shown that it
is related to inclusive gluon production amplitudes, but is
not determined exclusively in terms of these amplitudes. In
particularly it depends on the production probabilities of
longitudinally and transversely (with respect to the direc-
tion of their transverse momentum) polarized gluons
separately. We also find that correlated gluon emission
gives a negative contribution to the produced entropy,
consistent with the view of entropy as measuring disorder
in the final state. Just like the entanglement entropy, the
produced entropy is not extensive in the rapidity interval
over which it is calculated. The reason is the same: in the
CGC approximation all final state particles are produced
from a single longitudinal boost invariant mode.
Having calculated the entropy, the natural question is

whether one can define the corresponding temperature. The
natural definition would be the usual thermodynamic one

T−1 ¼ dσ
dE⊥

ð5:1Þ

where E⊥ is the transverse energy of the system.
It is not clear whether this is a sensible quantity for the

entanglement entropy. If for E⊥ we take the obvious

E⊥ ∝
Z

d2kjkjMðkÞ ∝ Q2
sS
g2

Λ ð5:2Þ

we obtain for the “entanglement temperature”

TE ∝
Λ

ðN2
c − 1Þ ln Λ2g2

Q2
s

→ ∞ ð5:3Þ

which reflects the fact that the entanglement entropy is
dominated by the UV modes and is formally UV divergent.
On the other hand for the produced system of particles

Eq. (4.11) gives

E⊥ ∝ ðN2
c − 1ÞSQ

2
P

g2
QT: ð5:4Þ

This is just the statement that the average transverse
momentum of produced particles is proportional to QT ,
while the number of particles produced is of the order
Q2

P=g
2.

Since the entropy Eq. (4.20) is not only a function of E⊥,
the definition of temperature is somewhat ambiguous. To
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define the temperature one has to decide which combina-
tion of QP and QT has to be kept fixed. Choosing which
combination to keep fixed corresponds to deciding what is
the analog of increasing the energy in the same statistical
mechanical system. One reasonable choice is to keep QP
fixed, since this corresponds to increasing the energy of the
produced system by boosting the target, while keeping the
projectile unchanged. With this choice using Eq. (4.20) we
find

T ¼ cQT ¼ π

2
hk⊥i ð5:5Þ

where c is a constant of order unity and hk⊥i ¼ E⊥=Ntotal ¼R
d2kjkjMðkÞR
d2pMðpÞ is the average transverse momentum per pro-

duced particle. Note, that even though the relation between
hk⊥i and QT depends on the details of the function F in
Eq. (4.19), the relation between hk⊥i and temperature is
determined exactly. Equation (5.5) is an intuitively simple
result showing that the effective temperature is proportional
to average momentum per particle. We are nevertheless not
aware of a direct derivation of this result from the density
matrix of the system produced in collision.
All our calculations were performed in the MV model.

The Gaussian weight for the valence charge density
averaging made it possible to express the entropy directly
in terms of a single function MP. The actual weight
functional evolves with energy and is determined by
solving the JIMWLK equation. Although the calculation
of entropy in the case of non-Gaussian W½ρ� is more
complicated, one can try to approach it in a similar way.
We would have to calculate

tr½ρ̂N � ¼ tr
Z YN

β¼1

D½ρβ�WP½ρβ�ei
R
k
bβðkÞϕðkÞj0ih0j

× e−i
R
k
bβðkÞϕðkÞ: ð5:6Þ

Integrating over ρβ, and resorting to the same replica
trick yields

tr½ρ̂N � ¼
�
det½π�
2π

�
N=2
Z YN

α¼1

½Dϕα�

× exp

�
−
π

2

XN
α¼1

ϕα
i ϕ

α
i þ

1

2

XN
α¼1

Γ½ϕα − ϕαþ1�
�
:

ð5:7Þ

Here as before we have introduced N replicas—one for
each vacuum matrix elements. In Eq. (5.7) Γ is the effective
action. Interestingly, it is directly related to the projectile
scattering matrix, since

S ¼
Z

DρWP½ρ�eig
R
x;u

ρaðxÞðx−uÞiðx−uÞ2½ϕ
α
i ðuÞ−ϕαþ1

i ðuÞ� ≡ e−
1
2
Γ½ϕα−ϕαþ1�

ð5:8Þ

is precisely the scattering matrix element of the projectile
on the “target field” ϕα

i ðuÞ − ϕαþ1
i ðuÞ.

The action Γ can be expanded in terms of connected
correlators of the valence color charge density

Γ½ϕ� ¼ Γ2
ijϕiϕj þ Γ3

ijnϕiϕjϕn þ Γ4
ijnmϕiϕjϕnϕm þ…

ð5:9Þ

Γ2
ij ¼

δ2Γ½ϕ�
δϕiδϕj

����
ϕ¼0

¼ −
g2

4π2

Z
u;v

ðx− uÞi
ðx− uÞ2

ðy− vÞj
ðy− vÞ2 hρ

aðuÞρbðvÞiP

Γ3
ijn ¼

δ3Γ½ϕ�
δϕiδϕjδϕn

����
ϕ¼0

¼ −
g2

8π3

Z
u;v;w

ðx− uÞi
ðx− uÞ2

ðy− vÞj
ðy− vÞ2

ðz−wÞn
ðz−wÞ2

× hρaðuÞρbðvÞρcðwÞiP
Γ4
ijnm ¼ −

g2

16π4

Z
u;v;w;w0

ðx− uÞi
ðx− uÞ2

ðy− vÞj
ðy− vÞ2

ðz−wÞn
ðz0 −wÞ2

×
ðz0 −w0Þm
ðz0 −w0Þ2 hρ

aðuÞρbðvÞρcðwÞρdðw0ÞiconnP ð5:10Þ

where the connected correlators are calculated as

hρaðuÞρbðvÞiP
¼
Z

D½ρ�ρaðuÞρbðvÞWP½ρ�

hρaðuÞρbðvÞρcðwÞiP
¼
Z

D½ρ�ρaðuÞρbðvÞρcðwÞWP½ρ�

hρaðuÞρbðvÞρcðwÞρdðw0ÞiconnP

¼
Z

D½ρ�ρaðuÞρbðvÞρcðwÞρdðw0ÞWP½ρ�jconnected:

ð5:11Þ

If the connected correlators of ρ are small, these formulas
can serve as a starting point for perturbative calculation of
the entropy.
An alternative strategy could be to first integrate over ϕ

in Eq. (5.6). This leads to the following expression:
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tr½ρ̂N � ¼
Z YN

β¼1

Dρβ exp

�
−
XN
β¼1

�
− lnWP½ρβ�

þ 1

2π

Z
k;k0

ðbβþ1ðkÞ − bβðkÞÞðbβþ1ðk0Þ − bβðk0ÞÞ
��

ð5:12Þ

where bNþ1 ¼ b1. This has the form of a discrete lattice
model with the same “hopping term” as in Sec. II, but with
a different on site potential V½ρ� ¼ −ln½W½ρ��.
To take the limit N → 1þ ϵ one would need to perform

the integration over the replica fields analytically. If the
projectile is dilute, the potential V½ρ� is sharply peaked at
small ρ and the integral can be calculated in the “tight
binding approximation.” For the dense projectile on the
other hand, the potential is small since large fluctuations of
charge density are allowed. In this case one can expand
around the free “hopping term.” It would be interesting to
study the effects of non-Gaussianity on the entropy with the
help of these approximations for realistic W½ρ�.
In this paper, in order to compute the entanglement

entropy (and the entropy production), we have used the
density matrix of soft gluons derived after tracing over
valence gluons. As a further development of the above

ideas, one can consider a further reduction of the density
matrix. In particular, since gluons with very small trans-
verse momenta are unobservable, it could be interesting to
trace over gluons with momenta below some soft scale and
consider the entropy of the remaining modes. Another
interesting venue would be to relate two-particle correla-
tions, particularly long range rapidity correlations, to the
concept of mutual information. The latter is defined
through entanglement entropy of two different subsets of
modes in the hadronic wave function.
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