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We study the semileptonic decay B̄s → K�þl−ν̄l, which is induced by b → ul−ν̄l transitions at the
quark level. We take into account the standard model (SM) operator from W-boson exchange as well as
possible extensions from physics beyond the SM. The secondary decay K�þ → Kπ can be used to study a
number of angular observables, which are worked out in terms of short-distance Wilson coefficients and
hadronic form factors. Our analysis allows for an independent extraction of the Cabibbo-Kobayashi-
Maskawa matrix element jVubj and for the determination of certain ratios of B̄s → K� form factors.
Moreover, a future precision measurement of the forward-backward asymmetry in the B̄s → K�þl−ν̄l
decay can be used to unambiguously verify the left-handed nature of the transition operator as predicted by
the SM. We provide numerical estimates for the relevant angular observables and the resulting decay
distributions on the basis of available form-factor information from lattice and sum-rule estimates. In
addition, we pay particular attention to suitable combinations of angular observables in the decays B̄s →
K�þð→ KπÞl−ν̄l and B̄ → K�0ð→ KπÞlþl−, and find that they provide complementary constraints on the
relevant b → s short-distance coefficients. As a by-product, we perform a SM fit on the basis of selected
experimental decay rates in both inclusive and exclusive channels, and hadronic input functions. We find
jVubj ¼ ð4.07� 0.20Þ × 10−3.
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I. INTRODUCTION

The value of jVubj represents one of the least-well-
measured parameters in the Cabibbo-Kobayashi-Maskawa
(CKM) matrix of the standard model (SM). Moreover, at
present, its inclusive determination from B → Xulνl
decays and the extraction from exclusive semileptonic or
leptonic decay modes lead to somewhat different results
(see e.g. the review in [1]). Independent phenomenological
information on b → u transitions will clearly help to
better understand the origin of these discrepancies and
the underlying theoretical uncertainties. As the solution to
this jVubj puzzle might also be related to physics beyond
the SM, one should also take into account possible new
physics (NP) effects; see [2–4] for recent work in that
direction.
The proliferation of unknown parameters, which arises

in a model-independent approach with generic dimension-6
operators in the effective Hamiltonian, can be handled with
a sufficient number of independent experimental observ-
ables in b → u transitions. An example is B → ρð→
ππÞlνl where the analysis of the secondary ρ → ππ decay
introduces a large number of angular observables with
different sensitivities to the individual short-distance coef-
ficients [4]. This is similar to what has been extensively
used in the analysis of rare exclusive b → slþl−

transitions [5–10]. Because of the large hadronic width
of the ρ resonance and the question of the S-and P-wave
composition of the experimentally measured dipion final
state, a precision determination of jVubj from this decay
also requires a better theoretical understanding of the
B → ππlνl decay spectrum [11,12].
In this article, we focus on the decay

B̄s → K�þð→ KπÞl−ν̄l, which provides similar insight
into the short-distance couplings as the decay
B → ρð→ ππÞl−ν̄l. However, the width of the K� meson
is sufficiently smaller than that of the ρ resonance,
ΓK� ≃ Γρ=4≃ 50 MeV. Moreover, from studies of the
decay B̄ → K̄�J=ψ the S-wave background below the K�

resonance in B decays is constrained to small values,
with the S-wave fraction Fs ≲ 7% on resonance [13].
The decay B̄s → K�þð→ KπÞl−ν̄l thus provides a prom-
ising alternative channel for a precise determination of
jVubj in the SM, as has already been advocated for in [14].
For the same reason, it can also be used to constrain NP
contributions in b → u transitions, in particular, as we will
show below, to exclude possible effects from right-handed
currents.
Another benefit of the decay B̄s → K�þl−ν̄l is the

opportunity to combine it with the rare B̄ → K̄�lþl−

decay, which is currently in focus due to the tension
between some SM estimates and the LHCb results [15].
The secondary decay K� → Kπ is identical in both decays,
which leads to a one-to-one correspondence between
angular observables. Hadronic form factors in both decays
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are related by the SUð3Þf symmetry of the strong inter-
action, and therefore hadronic uncertainties in ratios of
angular observables from the two decays are expected to be
under control.1

Furthermore, these ratios of angular observables are
sensitive not only to jVubj, but also to bilinear combinations
of the Wilson coefficients describing semileptonic b → u
and radiative b → s transitions in the SM and beyond. In
light of the present deviations between LHCb measure-
ments and the respective SM predictions for a few angular
observables in the B̄ → K̄� channel (see e.g. [15,16], and
also [17]), we will show how this can be exploited to
obtain complementary information on the b → s Wilson
coefficients.
The outline of the article is as follows. In Sec. II we

introduce the effective Hamiltonian for semileptonic b →
ulν̄l transitions, including NP operators, and define the
angular observables for B̄s → K�ð→ KπÞlν̄l transitions. In
the following phenomenological section, Sec. III, we
identify SM null tests among the angular observables,
and derive expressions in a simplified scenario with only
right-handed NP contributions. We also define optimized
observables and highlight the synergies between the
angular observables in B̄s → K�þð→ KπÞlν̄l and
B̄ → K�ð→ KπÞlþl−. In the numerical section, Sec. IV,
we first perform a fit of the Wilson coefficients for (V − A)
and (Vþ A) currents to experimental data for
B̄ → πþl−ν̄l, B− → τ−ν̄τ and B̄ → Xul−ν̄l decays. On
the basis of this fit and theoretical estimates for the relevant
form factors, we then provide numerical predictions for the
angular observables and partially integrated branching
ratios for B̄s → K�þð→ KπÞlν̄l decays, before we con-
clude in Sec. V. The helicity basis for the B̄s → K� form
factors is defined in Appendix A, where we also infer the
form-factor parameters from light-cone sum rule and lattice
QCD results. Appendixes B and C are dedicated to details
on the determination of the hadronic amplitudes and the
angular observables of B̄s → K�þl−ν̄l decays within and
beyond the SM, respectively.

II. DEFINITIONS

A. Effective Hamiltonian for b → ulν̄l
We parametrize possible new physics contributions to

b → ulν̄l transitions in a model-independent fashion in
terms of a low-energy effective Hamiltonian, which can be
written in the form

Heff
b→u ¼ −

4GFVeff
ubffiffiffi

2
p

X
X

CXOX þ H:c: ð1Þ

Here the most general set of dimension-6 operators fOXg is
given by

OV;i ¼ ½ūγμPib�½l̄γμPLνl�;
OS;i ¼ ½ūPib�½l̄PLνl�;
OT ¼ ½ūσμνb�½l̄σμνPLνl�; ð2Þ

where Pi ∈ fPL; PRg are chiral projectors, and we have
restricted ourselves to (massless) left-handed neutrinos and
ignored the possibility of lepton-flavor violating couplings.
(The generalization to more exotic scenarios with light
right-handed invisible neutral fermions is straightforward,
see e.g. [3].) Since in the presence of NP the notion of Vub
becomes ambiguous, we normalize the operators in Eq. (1)
to an effective parameter Veff

ub, which can be taken, for
instance, as the value of Vub that one obtains from a global
CKM fit within the SM. If NP effects are small, one would
then have CV;L ≃ 1 (while in the SM CV;L ≡ 1 and
Vub ≡ Veff

ub , with all other Wilson coefficients vanishing).
Comparing with Ref. [2], where the modifications of left-
and right-handed quark currents has been parametrized in
terms of εL;R together with a new mixing matrix ~V for right-
handed currents, our conventions are related via

�
Vub

Veff
ub

�
εL ¼ CV;L − 1;

�
~Vub

Veff
ub

�
εR ¼ CV;R: ð3Þ

B. Angular distribution in B̄s → K�lν̄l
The fourfold differential decay rate for B̄s → K�þl−ν̄l is

defined in terms of the dilepton invariant mass q2, the polar
angles θl and θK� in the lν andK� rest frames, respectively,
and the azimuthal angle ϕ between the primary and
secondary decay planes,

8π

3

d4Γ½B̄s → K�lþν̄l�
dq2d cos θld cos θK�dϕ

¼ Ĵðq2; θl; θK� ;ϕÞ: ð4Þ

It can be expanded in a basis of trigonometric functions of
the decay angles. We define

1The B → K�lþl− decay amplitude also receives
corrections from nonfactorizable (i.e. not form-factor-like) con-
tributions involving hadronic operators in the b → s effective
Hamiltonian. Semileptonic b → u transitions are free of such
effects. A comparison of the two decays can thus also shed
light on the size of nonfactorizable hadronic matrix elements and
the validity of the underlying theoretical framework. A detailed
study along these lines is beyond the scope of the present
work.
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Ĵðq2; θl; θK� ;ϕÞ ¼ Ĵ1ssin2θK� þ Ĵ1ccos2θK� þ ðĴ2ssin2θK� þ Ĵ2ccos2θK� Þ cos 2θl þ Ĵ3sin2θK�sin2θl cos 2ϕ

þ Ĵ4 sin 2θK� sin 2θl cosϕþ Ĵ5 sin 2θK� sin θl cosϕþ ðĴ6ssin2θK� þ Ĵ6ccos2θK� Þ cos θl
þ Ĵ7 sin 2θK� sin θl sinϕþ Ĵ8 sin 2θK� sin 2θl sinϕþ Ĵ9sin2θK�sin2θl sin 2ϕ; ð5Þ

with angular observables ĴiðaÞ ≡ ĴiðaÞðq2Þ for i ¼ 1;…; 9
and a ¼ s; c. By construction, the functional dependence of
the angular distribution equation (5) on the angular ob-
servables is identical to the one for B → Vð→ P1P2Þlþl−

decays in [9], to which we refer for further details.
Explicit expressions for the angular observables in

terms of hadronic form factors and Wilson coefficients
for b → ulν̄l in the general operator basis (1) are derived
in the appendixes.

III. PHENOMENOLOGY

For the remainder of this article we restrict our analysis
to vectorlike couplings; i.e. we assume CS;i¼CT ¼CT5¼0
for simplicity. This leaves us with only two operators for
left- and right-handed b → u currents, which we refer to as
SMþ SM’. We emphasize that with future experimental
data one can also test for scalar and tensor currents on the
basis of the formulas provided in Appendix C.

A. Null tests of the SM

The twelve angular observables Ĵi as introduced in
Eq. (5) are not independent. Within the SM, they can be
expressed in terms of four real-valued quantities: jNj2 and
the three form factors F⊥;∥;0. This fact can be used to define
a series of eight null tests that hold within the SM,

4Ĵ2cĴ3 þ Ĵ25 − 4Ĵ24 ¼ 0;

8Ĵ1sĴ1c − 3Ĵ25 − 12Ĵ24 ¼ 0;

Ĵ1cĴ6s − 2Ĵ4Ĵ5 ¼ 0

16Ĵ21s − 36Ĵ23 − 9Ĵ26s ¼ 0;

Ĵ6c ¼ Ĵ7 ¼ Ĵ8 ¼ Ĵ9 ¼ 0: ð6Þ

Deviations from these relations are immediate signs of
physics beyond the SM. This is in contrast to exclusive
b → slþl− decays, where such relations are broken by
nonfactorizing long-distance contributions.

B. Angular observables for SMþ SM’

In the SMþ SM’ scenario, we obtain a very simple
structure of the angular observables, which can be
expressed in terms of hadronic form factors (defined in
the transversity basis, see Appendix A) and three indepen-
dent combinations of Wilson coefficients,

σ�1 ≡ jCV;L � CV;Rj2;
−2σ2 ≡ ðCV;L − CV;RÞðCV;L þ CV;RÞ�; ð7Þ

which depend on the absolute values jCV;Lj and jCV;Rj
and the relative phase of the two Wilson coefficients
(the absolute phase is irrelevant in the angular observables).
Notice that σ�1 is even under parity transformations
(L ↔ R), while σ2 is odd. Neglecting the charged-lepton
mass (which is valid as long as ml=

ffiffiffiffiffi
q2

p
≪ 1), we find

Ĵ1s ¼ 3Ĵ2s ¼ 9jNj2M2
Bs
½σþ1 jF⊥j2 þ σ−1 jF∥j2�;

Ĵ1c ¼ −Ĵ2c ¼ 12jNj2 M
4
Bs

q2
σ−1 jF0j2;

Ĵ3 ¼ 6jNj2M2
Bs
½σþ1 jF⊥j2 − σ−1 jF∥j2�;

Ĵ4 ¼ 6
ffiffiffi
2

p
jNj2 M

3
Bsffiffiffiffiffi
q2

p σ−1F∥F0; ð8Þ

and

Ĵ5 ¼ 24
ffiffiffi
2

p
jNj2 M

3
Bsffiffiffiffiffi
q2

p Refσ2gF⊥F0;

Ĵ6s ¼ 48jNj2M2
Bs
Refσ2gF⊥F∥;

Ĵ8 ¼ 12
ffiffiffi
2

p
jNj2 M

3
Bsffiffiffiffiffi
q2

p Imfσ2gF⊥F0;

Ĵ9 ¼ 24jNj2M2
Bs
Imfσ2gF⊥F∥; ð9Þ

together with Ĵ6c ¼ Ĵ7 ¼ 0 (all relations valid in the
SMþ SM’ scenario). Here, we introduce a normalization
factor,

jNj2 ≡G2
FjVeff

ub j2q2
ffiffiffi
λ

p

3 × 210π3M3
Bs

; ð10Þ

and λ≡ λðM2
B;M

2
K� ; q2Þ denotes the usual kinematic

Källén function. The normalization jNj2 is chosen such that

dΓ
dq2

¼
X

λ¼0;⊥;∥
jAL

λ j2

¼ jNj2M2
Bs

�
σþ1 jF⊥j þ σ−1

�
jF∥j2 þ

M2
Bs

q2
jF0j2

��
;

ð11Þ
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where the transversity amplitudes AL
λ are defined in

Appendix B.
In addition to the decay rate, one can also define the

leptonic forward-backward asymmetry AFB via the
weighted integral

AFB ≡ 1

dΓ=dq2

Z þ1

−1
d cos θl sgnðcos θlÞ

d2Γ
dq2d cos θl

:

ð12Þ

In the SMþ SM’ scenario, one finds that AFB takes the
rather simple form

AFB ¼ 2Refσ2gF⊥F∥

σþ1 jF⊥j2 þ σ−1 ðjF∥j2 þ M2
Bs
q2 jF0j2Þ

: ð13Þ

Note that the bilinear σ2 is unconstrained by present
experimental measurements of semileptonic b → u tran-
sitions. Therefore a measurement of AFB would provide
complementary information on the Wilson coefficients. In
particular, the sign of the forward-backward asymmetry
resolves the present ambiguity between CV;L versus CV;R,
see Sec. IV.
Similarly, the fraction of longitudinal K� mesons is

defined as

FL ≡ 1

dΓ=dq2

Z þ1

−1
d cos θK�ωFL

ðcos θK� Þ d2Γ
dq2d cos θK�

;

ð14Þ

where ωFL
ðzÞ ¼ ð5z2 − 1Þ=2. In the SMþ SM’ scenario

this yields

FL ¼ σ−1 jF0j2
σþ1 jF⊥j2 þ σ−1 ðjF∥j2 þ M2

Bs
q2 jF0j2Þ

: ð15Þ

C. Optimized observables in SMþ SM’

It is now possible to construct particular combinations
of angular observables where the hadronic form-factor
dependencies cancel (at least partially), and, as a conse-
quence, these observables are sensitive to the short-distance
Wilson coefficients only, or vice-versa.
We begin with observables where the form-factor

dependencies cancel. These can be defined in complete
analogy to what has been discussed in [9],

Ĥð1Þ
T ¼

ffiffiffi
2

p
Ĵ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−Ĵ2cð2Ĵ2s − Ĵ3Þ
q ;

Ĥð2Þ
T ¼ Ĵ5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2Ĵ2cð2Ĵ2s þ Ĵ3Þ
q ;

Ĥð3Þ
T ¼ Ĵ6s

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Ĵ2cÞ2 − ðĴ3Þ2

q ;

Ĥð4Þ
T ¼ 2Ĵ8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2Ĵ2cð2Ĵ2s þ Ĵ3Þ
q ;

Ĥð5Þ
T ¼ −Ĵ9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2Ĵ2cÞ2 − ðĴ3Þ2
q : ð16Þ

Within the SMþ SM’ scenario, the form-factor depend-
encies cancel exactly at every point in the q2 spectrum.
However, for integrated angular observables one has to take
into account the different kinematical prefactors, and a
residual form-factor dependence will remain.2 In the
SMþ SM’ scenario these optimized observables read

Ĥð1Þ
T ¼ 1;

Ĥð2Þ
T ¼ Ĥð3Þ

T ¼ 2
Refσ2gffiffiffiffiffiffiffiffiffiffiffi
σþ1 σ

−
1

p ;

Ĥð4Þ
T ¼ Ĥð5Þ

T ¼ 2
Imfσ2gffiffiffiffiffiffiffiffiffiffiffi
σþ1 σ

−
1

p : ð17Þ

We continue with the construction of observables
that are only sensitive to form-factor ratios. Just as in
B̄ → K̄�lþl−, we find that the SMþ SM’ scenario solely
allows us to extract one form-factor ratio, namely F0=F∥, in
five different ratios of angular observables,

MBsffiffiffiffiffi
q2

p F0ðq2Þ
F∥ðq2Þ

¼
ffiffiffi
2

p
Ĵ5

Ĵ6s
¼ −Ĵ2cffiffiffi

2
p

J4

¼ Ĵ4
2Ĵ2s − Ĵ3

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Ĵ2c

2Ĵ2s − Ĵ3

s
¼

ffiffiffi
2

p
Ĵ8

−Ĵ9
: ð18Þ

Inconsistencies among these relations would indicate NP
beyond the SMþ SM’ scenario.
In the absence of right-handed currents, a further ratio

F⊥=F∥ can be extracted via

2We emphasize again that the cancellation of form-factor
dependencies holds for the whole q2 spectrum, in contrast to
B̄ → K̄�lþl− where it can be spoiled by contributions with
intermediate photons dissociating into lþl−.
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F⊥
F∥

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ĵ1s þ 3Ĵ3
2Ĵ1s − 3Ĵ3

s
¼ −2Ĵ5

Ĵ4
¼ −3Ĵ6s

2ð2Ĵ1s þ 3Ĵ3Þ : ð19Þ

D. Synergies with B̄ → K̄�lþl−

The decay B̄ → K̄�ð→ K̄πÞlþl− is induced by the
flavor-changing neutral current transition b → slþl−. At
low hadronic recoil, q2 ≳ 15 GeV2, it is again dominated
by four-fermion operators which can be extended to a
SMþ SM’ scenario. The structure of angular observables
Jnðq2Þ in those decays is similar as for B̄s → K̄�þlν̄l. The
analogous combinations of Wilson coefficients which enter
the Jnðq2Þ now read ρ�1 and ρ2. (For the explicit definition
and a detailed phenomenological discussion, we refer the
reader to [9].)
With this we can define a number of useful ratios of

angular observables Jnðq2Þ in B̄ → K̄�lþl− and Ĵnðq2Þ in
B̄s → K̄�þlν̄l,

Rnðq2Þ≡ Jnðq2Þ
Ĵnðq2Þ

; ð20Þ

for n ¼ 1c; 2c; 4; 5; 6s; 8; 9, as well as

R1�ðq2Þ≡ 2J1sðq2Þ � 3J3ðq2Þ
2Ĵ1sðq2Þ � 3Ĵ3ðq2Þ

;

R2�ðq2Þ≡ 2J2sðq2Þ � J3ðq2Þ
2Ĵ2sðq2Þ � Ĵ3ðq2Þ

: ð21Þ

Within these ratios, the dependence on the hadronic form
factors can be expected to cancel up to corrections from the
violation of the SUð3Þf symmetry of strong interactions,
from the violation of heavy-quark spin symmetry in ratios
of tensor and (axial)vector form factors, and from nonfac-
torizing hadronic matrix elements in exclusive b → slþl−

transitions. In the limit where these corrections are
neglected, we find

Rn ≃ α2e
8π2

jVtbV�
tsj2

jVubj2

8>>>>>>>><
>>>>>>>>:

ρþ
1

σþ
1

for n ¼ 1þ; 2þ
ρ−
1

σ−
1

for n ¼ 1−; 1c; 2−; 2c
Refρ2g
Refσ2g for n ¼ 4; 5; 6s

Imfρ2g
Imfσ2g for n ¼ 8; 9.

ð22Þ

Of particular interest are ratios that are proportional to
the combination ρ2 ∝ RefC79ðq2ÞC�10g, where in the SM
C79ðq2Þ is a linear combination of the Wilson coefficients
Ceff7 and Ceff9 ðq2Þ in b → s transitions (see [9] for the explicit
definitions). Optimized observables in B̄ → K̄�lþl− only

allow to access the ratio jCeff9 =C10j, whereas the ratios Rn are
sensitive to Ceff9 · C10. Measuring the corresponding ratios
Jn=Ĵn thus allows us to directly access the q2 dependence
of Ceff9 and to test the theoretical predictions which are
based on an operator product expansion in the heavy
b-quark limit. This is of particular interest in light of the
present discussion of charmonium resonances in the q2

spectrum of exclusive b → slþl− decays [18].

IV. NUMERICAL RESULTS

In this section we derive numerical results for the angular
observables Ĵn as introduced in Sec. II B. Our analysis
is carried out within a Bayesian framework, for which
we use and extend EOS [19] for all numerical evaluations.
As prerequisites to our numerical study of the angular
observables, information on the B̄s → K� form factors and
constraints on the b → u Wilson coefficients are needed.
These will be expressed through a posteriori probability

density functions (PDFs) labeled Pð~θFFjtheoryÞ and

Pð~θΔBjexp:dataÞ, respectively. We refer to Appendix A

for the precise definition of Pð~θFFjtheoryÞ.

A. Determination of CV;L and CV;R

For the following numerical analysis we consider exper-
imental data on the branching ratios for leptonic B− → τ−ν̄τ
and semileptonic B̄0 → πþμ−ν̄μ decays as summarized in
Table I, together with the averaged value for jVubj from the
inclusive determination [1],

jV incl:
ub j ¼ ð4.41� 0.21Þ × 10−3: ð23Þ

Within the SMþ SM’ scenario, the additional right-handed
operator contributes differently to the individual decay
rates, corresponding to (see e.g. [2])

jVB→τν
ub j2 → jVeff

ub j2jCV;L − CV;Rj2;
jVB→πlν

ub j2 → jVeff
ub j2jCV;L þ CV;Rj2;

jV incl:
ub j2 → jVeff

ub j2ðjCV;Lj2 þ jCV;Rj2Þ: ð24Þ

In order to illustrate the NP reach of our analysis, we fix the
auxiliary parameter Veff

ub to a value that lies between the
exclusive and inclusive determinations of jVubj within
the SM,

jVeff
ub j≡ 3.99 × 10−3:

With this we can constrain the absolute values and the
relative phases of the Wilson coefficients CV;L and CV;R,
where the SM-like solution would correspond to jCV;Lj ∼ 1

and CV;R ∼ 0.
We construct a likelihood Pðdataj~θΔB;MÞ from (multi)

normal distributions as indicated in Table I and Eq. (23).
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Note that we assume that the results for the B− → τ−ν̄τ
branching ratios [24] and [26] are uncorrelated, since the
underlying sets of events use different tagging methods for
the selection process. The same assumption applies to the
results of [27] and [25]. At this time, we only use
theoretical input from light-cone sum rules (LCSRs) for
the B → π transition form factors, and therefore restrict
ourselves to the kinematic range q2 ≤ 12 GeV2. For a
consistent inclusion of lattice results on the B → π form
factor in the high-q2 region (see e.g. [28–30], but also note
added below), we presently do not have access to the
necessary correlation information required for our statis-
tical procedure.
Within our analysis, we address the theoretical uncer-

tainties using nuisance parameters for the hadronic matrix
elements. These are the B-meson decay constant fB− and

the parameters of the B → π vector form factor fBπþ ðq2Þ, i.e.
its normalization fBπþ ð0Þ as well as two shape parameters
bBπ1;2 (see [31] for their definition). For the B-meson decay
constant we use a Gaussian prior with central value and
minimal 68% probability interval fB− ¼ ð210� 11Þ MeV,
as obtained from a recent 2-point QCD sum rule at next-to-
next-to-leading order accuracy [32]. As prior for the form-
factor parameters we use the a posteriori distribution
obtained from a recent Bayesian analysis of the LCSR
prediction at next-to-leading order accuracy [31].
In order to assess the physical implications of possible

deviations from the SM expectations, we compare the fit
results for three different scenarios. In all cases we assume
CV;L to be real valued (i.e. a possible NP phase in the
left-handed b → u transition should be associated to Veff

ub).
As already mentioned, the fit to the considered data is
only sensitive to the relative phase between the Wilson
coefficients CV;L and CV;R, and consequently we will
always encounter an irreducible degeneracy related to
CV;L=R→−CV;L=R.
(1) First, we consider the scenario “left” that features

only the left-handed current. In this case the

number of parameters is five, ~θleftΔB ¼
ðCV;L; fBπþ ð0Þ; bBπ1 ; bBπ2 ; fB−Þ.

(2) Next, we consider the scenario “real”, in which CV;R is
present and real valued. The set ofΔB parameters then

reads ~θrealΔB ¼ ðCV;L;ReCV;R; fBπþ ð0Þ; bBπ1 ; bBπ2 ; fB−Þ.
(3) Last but not least, we also consider the scenario

“comp”, which includes a complex-valued CV;R, with

the full seven parameters, ~θcomp
ΔB ¼ðCV;L;ReCV;R;

ImCV;R;fBπþ ð0Þ;bBπ1 ;bBπ2 ;fB−Þ.
For all scenarios (M ¼ left; real; comp), we obtain the

a posteriori PDF as usual via Bayes’ theorem,

Pð~θΔBjdata;MÞ ¼ Pðdataj~θΔB;MÞP0ð~θΔB;MÞ
Pðdata;MÞ ; ð25Þ

where

Pðdata;MÞ≡
Z

d~θΔBPðdataj~θΔB;MÞP0ð~θΔB;MÞ ð26Þ

is the evidence for the scenario M. The likelihood

Pðdataj~θΔB;MÞ has already been introduced earlier. In
all three scenarios, we use for the priors of the Wilson
coefficients uncorrelated, uniform distributions with the
support −2 ≤ Ci ≤ þ2. For model comparisons, we nor-
malize the model priors for the various fit scenarios. The
corresponding relations read

P0ðcompÞ∶P0ðrealÞ∶P0ðleftÞ ¼ 1∶4∶16: ð27Þ

1. Scenario “left”

Our findings for the scenario “left” can be summarized
as follows. We find two degenerate best-fit points

TABLE I. Summary of the experimental likelihoods for branch-
ing fractions of the exclusive b → u transitions. We assume no
correlation among the B− → τ−ν̄τ data, and use the correlation
matrices as given in Tables XI and XII of [20], Tables III and IVof
[21], Tables XXIX and XXXII of [22] and Table XVII of [23] for
the respective data on B̄0 → πþμ−ν̄μ decays.

Decay q2 ½GeV2� Measurement Reference

B−→τ−ν̄τ

� � � ð1.70�0.80�0.20Þ×10−4 [24]

� � � ð1.25�0.28�0.27Þ×10−4 [25]

� � � ð1.83þ0.53
−0.59 � 0.24Þ × 10−4 [26]

� � � ð0.72þ0.27
−0.25 � 0.11Þ × 10−4 [27]

B̄0 → πþμ−ν̄τ

[0,2] ð1.280� 0.196Þ × 10−5 [20]
[2,4] ð1.192� 0.135Þ × 10−5

[4,6] ð1.446� 0.108Þ × 10−5

[6,8] ð1.437� 0.105Þ × 10−5

[8,10] ð1.525� 0.106Þ × 10−5

[10,12] ð1.490� 0.111Þ × 10−5

[0,2] ð1.173� 0.219Þ × 10−5 [21]
[2,4] ð1.526� 0.103Þ × 10−5

[4,6] ð1.213� 0.105Þ × 10−5

[6,8] ð1.465� 0.102Þ × 10−5

[8,10] ð1.473� 0.108Þ × 10−5

[10,12] ð1.404� 0.124Þ × 10−5

[0,2] ð1.225� 0.182Þ × 10−5 [22]
[2,4] ð1.277� 0.128Þ × 10−5

[4,6] ð1.274� 0.109Þ × 10−5

[6,8] ð1.498� 0.103Þ × 10−5

[8,10] ð1.405� 0.115Þ × 10−5

[10,12] ð1.617� 0.104Þ × 10−5

[0,2] ð1.95� 0.32Þ × 10−5 [23]
[2,4] ð1.06� 0.27Þ × 10−5

[4,6] ð1.51� 0.28Þ × 10−5

[6,8] ð0.97� 0.23Þ × 10−5

[8,10] ð0.78� 0.22Þ × 10−5

[10,12] ð1.59� 0.28Þ × 10−5
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corresponding to jCV;Lj≃ 1. The best-fit point (with
positive CV;L) reads

~θleft;�ΔB ¼ ð1.016; 0.232;−3.163;þ0.425; 0.206Þ: ð28Þ

We find at this point χ2left ¼ 18.54, for 28 degrees of
freedom (from 29 measurements reduced by 1 fit param-
eter). As a consequence, this represents an excellent fit with
a p-value of 91%. The significances of the individual
experimental inputs are collected in Table II. The one-
dimensional marginalized posterior is approximately
Gaussian, and yields

jCV;Lj ¼ 1.02� 0.05 at 68% probability: ð29Þ

Equivalently, this result can be expressed as jVubj ¼
ð4.07� 0.20Þ × 10−3 at 68% probability.

2. Scenario “real”

For the scenario “real”, we find a fourfold ambiguity in
the data; see Fig. 1 for an illustration. All local modes are
degenerate. We calculate the goodness of fit in the local
mode closest to the SM,

~θreal;�ΔB ¼ ð1.025;−0.079; 0.251;−2.884;þ0.196; 0.200Þ;
ð30Þ

and obtain χ2real ¼ 20.47. This fit’s p-value of 81% is very
good. However, note that the χ2 value has increased in
comparison to the previous scenario. This result warrants a
comment. The additional degree of freedom in the form of
CV;R allows the fit to move the form-factor parameters fþBπ ,
b1 and b2 closer to the central values of the prior. This shift
occurs at the expense of increasing the significances of the
experimental data, while simultaneously reducing the
significance of the nuisance parameters. For completeness,
we also list these significances for all scenarios in Table II.
The one-dimensional marginalized posterior distributions
for this scenario are approximately Gaussian and symmet-
ric under the exchange CV;L ↔ Re CV;R. We find (at 68%
probability)

jCV;Lj ¼ 1.02� 0.05 and jReCV;Rj ≤ 0.10; ð31Þ
or

jReCV;Rj ¼ 1.02� 0.05 and jCV;Lj ≤ 0.10: ð32Þ

TABLE II. Significances of the measurements at the best-fit
point closest to the SM point for all three fit scenarios. Notice that
the pull for the LCSR calculation of the B → π vector form factor
fþ, marked by a †, does not enter the goodness-of-fit calculation.

Significance [σ]

Quantity “left” “real” “comp”
Degrees

of freedom Reference

fþð†Þ 3.11 2.36 2.36 3 [31]

B− → τ−ν̄τ

þ0.57 þ0.39 þ0.39 1 [24]
þ0.64 þ0.34 þ0.34 1 [25]
þ0.99 þ0.75 þ0.75 1 [26]
−1.84 −2.35 −2.35 1 [27]

B̄0 → πþμ−ν̄τ

0.85 1.08 1.08 6 [20]
0.87 0.98 0.98 6 [21]
1.70 1.97 1.97 6 [22]
2.53 2.46 2.46 6 [23]

B̄ → Xul−ν̄l þ1.67 þ1.45 þ1.45 1 [1]

FIG. 1 (color online). (left) Contours of the 68% (dark orange area) and 95% (orange area) probability regions for the Wilson
coefficients CV;L and CV;R as obtained from our fit. See the text for details. Overlaid are the 68% and 95% contour lines for B̄0 → πþl−ν̄l
(blue solid lines, negative slope), B− → l−ν̄l (blue solid lines, positive slope) and inclusive B̄ → Xul−ν̄l (green solid rings). The black
diamond marks the SM point. (right) Contours of the 68% and 95% probability regions for the Wilson coefficients (solid orange lines)
overlaying the 68% (dark gray area) and 95% (light gray area) probability regions as obtained from a hypothetical measurement
of AFB ¼ ASM

FB � 10%.
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3. Scenario “comp”

We repeat the fit in scenario “comp”. As a consequence
of the additional degree of freedom, the four solutions from
the previous scenario now become connected. This is
illustrated in Fig. 2. We calculate the goodness of fit in
the local mode closest to the SM, which now reads

~θcomp;�
ΔB

¼ ð1.025;−0.080;0.000;0.251;−2.885;þ0.196;0.200Þ:
ð33Þ

The individual significances are listed in Table II, and
amount to a total χ2 ¼ 20.48. For the increase of χ2 with
respect to the “left” scenario, see our earlier comment. With
26 degrees of freedom the p-value is 77%, which is still
very good. It is not sensible to provide the 68% probability
interval of the one-dimensional marginalized posterior,
since the solutions are strongly connected. We show the
contours of the probability regions at 68% and 95%
probability in Fig. 2.

4. Comparison

We proceed with a comparison of the various fit
scenarios by means of the posterior odds. The latter can
be calculated as

PðM1jdataÞ
PðM2jdataÞ

¼ PðdatajM1Þ
PðdatajM2Þ

P0ðM1Þ
P0ðM2Þ

: ð34Þ

We find

Pð}left}jdataÞ
Pð}real}jdataÞ ¼ 27.8∶1 ð35Þ

and

Pð}real}jdataÞ
Pð}comp}jdataÞ ¼ 3.62∶1: ð36Þ

Using Jeffreys’ scale for the interpretation of the posterior
odds [33], we find that the data favor the interpretation with
purely left-handed b → u currents over the other scenarios
very strongly. Moreover, the scenario “real” is substantially
favored over the scenario “comp”.
This means that, despite the observed tensions between

the different SM determinations of jVubj, a NP scenario
with right-handed currents does not lead to a more efficient
description of the experimental data. We emphasize again
that the statistical treatment of the theoretical uncertainties
on the hadronic input parameters, which are still relatively
large at present, has been crucial for this argument. On
the other hand, the experimental data on the inclusive
and exclusive decay rates alone also cannot exclude large
right-handed currents.

B. Predictions for angular observables Ĵn
We can now proceed to produce predictive distributions

for the angular observables Ĵn in B̄s → K�þð→ KπÞlν̄l,
for which we have two main applications in mind.

1. SM Scenario

First, we assume the SM case; i.e. we go back to
Veff
ub → Vub with CV;L ≡ 1 and Ci ≡ 0. In this case, only

the a posteriori PDF on the B̄s → K� form factors is
needed. We obtain the joint posterior-predictive distribution
for the angular observables by means of

Pð~̂JÞ ¼
Z

d~θFF Pð~θFFjtheoryÞδð~̂J − Ĵð~θFFÞÞ: ð37Þ

In practice, the above is carried out by calculating the Ĵn for
a set of samples drawn from the a posteriori PDF. In our
analysis 106 samples are used. Our results for the angular
observables, normalized to the decay width, are compiled
in Table III. We single out the branching ratio, which
appears to be the most immediate candidate for upcoming
measurement. We present our results in units of jVubj−2,

FIG. 2 (color online). Contours of the 68% (dark orange area) and 95% (orange area) probability regions for the Wilson coefficients
CV;L and CV;R as obtained from our fit in scenario “comp”. See the text for details. The black diamond marks the SM point.
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which is convenient to extract jVubj from future data. Our
results read

Z
6 GeV2

1 GeV2

dq2
dB
dq2

¼ ð5.08þ0.95
−0.64ÞjVubj−2;Z

q2max

14.18 GeV2

dq2
dB
dq2

¼ ð8.50þ0.29
−0.32ÞjVubj−2;Z

q2max

q2min

dq2
dB
dq2

¼ ð27.25þ2.15
−1.93ÞjVubj−2: ð38Þ

In the above, q2min ¼ 0.02, and q2max ¼ ðMBs
−MK� Þ2.

2. SMþ SM’ scenario

Second, we consider the interesting prospect of NP
effects entering the b → u transitions, which, according
to the discussion in the previous subsection, cannot yet
be ruled out. Based upon our model comparison, we choose
to give predictions for the scenario “real” only. In order
to investigate the NP effects on the angular observables in
B̄s → K�lν̄l, we compute the joint predictive distribution

that arises from both posteriors Pð~θΔBjdataÞ and

Pð~θFFjtheoryÞ. Our findings are listed in Table IV for
our three nominal choices of q2 bins. In addition, we find
for the partially integrated branching ratios in the scenario
“real”Z

6 GeV2

1 GeV2

dq2
dB
dq2

¼ ð9.5� 1.9Þ × 10−5;Z
q2max

14.18 GeV2

dq2
dB
dq2

¼ ð1.55� 0.19Þ × 10−4;Z
q2max

0.02 GeV2

dq2
dB
dq2

¼ ð4.92� 0.69Þ × 10−4: ð39Þ

We also consider suitable ratios of partial decay widths in
B̄s → K�þμ−ν̄μ over either the B̄0 → πþμ−ν̄μ or B− → τ−ν̄τ
widths. We define three such ratios,

~R0 ≡
R q2max

q2min
dq2jAL

0 j2
ΓðB− → τ−ν̄τÞ

¼ 3Ĵ1c − Ĵ2c
3ΓðB− → τ−ν̄τÞ

;

~R∥ ≡
R q2max

q2min
dq2jAL

∥ j2
ΓðB− → τ−ν̄τÞ

¼ 8Ĵ1s − 12Ĵ3
9ΓðB− → τ−ν̄τÞ

;

~R⊥ ≡
R q2max

q2min
dq2jAL⊥j2

hΓðB̄0 → πþμ−ν̄μÞi
¼ 8Ĵ1s þ 12Ĵ3

9hΓðB̄0 → πþμ−ν̄μÞi
; ð40Þ

where, as already explained above, we only use the LCSR-
accessible part of the B̄0 → πþμ−ν̄μ phase space,

hΓðB̄0 → πþμ−ν̄μÞi ¼
Z

12 GeV2

q2min

dq2
dΓðB̄0 → πþμ−ν̄μÞ

dq2
:

ð41Þ
The ratios ~R0;∥;⊥ are independent of NP effects in this
scenario. We find numerically

~R0 ¼ 2.00þ0.39
−0.32 ;

~R∥ ¼ 1.36þ0.17
−0.14 ;

~R⊥ ¼ 0.79þ0.14
−0.10 ; ð42Þ

where the uncertainties are purely due to the imprecise
theoretical knowledge of the B̄s → K� form factors, the

TABLE III. Estimates for the normalized nonvanishing
angular observables in the SM. The integration ranges are
(a) 1GeV2≤q2≤6GeV2, (b) 14.18GeV2≤q2≤19.71GeV2,
and (c) 0.02 GeV2 ≤ q2 ≤ 19.71 GeV2. We normalize the in-
tegrated angular observables hĴni to the partially integrated decay
width hΓi for the same integration range.

hĴni=hΓi
n (a) (b) (c)

1s 0.144þ0.020
−0.020 0.368þ0.008

−0.006 0.283þ0.018
−0.020

1c 0.558þ0.027
−0.027 0.260þ0.008

−0.010 0.373þ0.026
−0.024

2s 0.048þ0.007
−0.007 0.123þ0.003

−0.002 0.094þ0.006
−0.007

2c −0.558þ0.027
−0.027 −0.260þ0.010

−0.008 −0.373þ0.024
−0.026

3 −0.010þ0.006
−0.007 −0.129þ0.007

−0.007 −0.061þ0.007
−0.009

4 0.168þ0.009
−0.008 0.220þ0.003

−0.003 0.198þ0.004
−0.003

5 −0.304þ0.023
−0.021 −0.242þ0.007

−0.008 −0.294þ0.010
−0.009

6s −0.189þ0.024
−0.030 −0.407þ0.014

−0.013 −0.346þ0.026
−0.024

TABLE IV. Estimates for the nonvanishing angular observables
Ĵn in the SMþ SM’ basis for real-valued Wilson coefficients.
Constraints on the Wilson coefficient are taken from data on
exclusive semileptonic b→u transitions, see text. The integration
ranges are (a) 1 GeV2 ≤ q2 ≤ 6 GeV2, (b) 14.18 GeV2 ≤
q2 ≤ 19.71 GeV2, and (c) 0.02 GeV2 ≤ q2 ≤ 19.71 GeV2. We
normalize the angular observables to the partially integrated
decays width hΓi. Note that the quoted sign for the angular
observables Ĵ5 and Ĵ6s corresponds to the SM-like solution (31)
with dominating left-handed current. For the solution (32), one
simply has to flip the sign of Ĵ5 and Ĵ6s.

hĴni=hΓi
n (a) (b) (c)

1s 0.132þ0.025
−0.017 0.362þ0.009

−0.010 0.272þ0.021
−0.021

1c 0.574þ0.023
−0.033 0.268þ0.013

−0.011 0.387þ0.028
−0.028

2s 0.044þ0.008
−0.006 0.121þ0.003

−0.003 0.091þ0.007
−0.007

2c −0.574þ0.033
−0.023 −0.268þ0.011

−0.013 −0.387þ0.028
−0.028

3 −0.022þ0.013
−0.009 −0.151þ0.018

−0.016 −0.082þ0.020
−0.013

4 0.171þ0.009
−0.009 0.228þ0.007

−0.008 0.207þ0.008
−0.008

5 −0.271þ0.033
−0.036 −0.221þ0.023

−0.019 −0.264þ0.021
−0.029

6s −0.172þ0.028
−0.031 −0.370þ0.035

−0.035 −0.312þ0.031
−0.041
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B̄ → π form factors and the B-meson decay constant. Here,
correlation information among the various hadronic matrix
elements would help in reducing these uncertainties.

V. CONCLUSIONS

The angular analysis of exclusive B̄s → K�þð→ KπÞlν̄l
decays provides a powerful tool to measure the CKM
element jVubj in the SM and to constrain NP contributions
to the underlying semileptonic b → ulν̄l transition. In this
article, we have identified relations among the angular
observables that serve as null tests of the SM. Furthermore,
we have constructed optimized observables where, also in
the presence of NP, the dependence on either the hadronic
form factor or the short-distance coefficients drops out. The
fact that the same secondary decay, K� → Kπ, is used for
the angular analysis of the rare B → K�lþl− decay can be
phenomenologically exploited by measuring certain ratios
Rn of angular observables from both decays. In the limit
where nonfactorizable effects in B → K�lþl− as well as
SUð3Þf symmetry corrections to form-factor ratios can be
neglected, the ratios Rn are only sensitive to short-distance
coefficients. In particular, we have shown that in this way
one can directly access the q2 dependence of the effective
Wilson coefficient function Ceff9 ðq2Þ in B → K�lþl−

transitions.
We have combined presently available experimental data

on inclusive and exclusive leptonic and semileptonic b → u
transitions with theoretical information on hadronic form
factors and decay constants, thereby obtaining detailed
numerical estimates for angular observables and partially
integrated decay widths in B̄s → K�þð→ KπÞlν̄l. Here, we
also allowed for the presence of right-handed currents that
could arise from physics beyond the SM. Using a Bayesian
approach for the statistical treatment of theoretical uncer-
tainties, we have found that—despite the present tensions
between different jVubj determinations—the SM is still
more efficient in describing the experimental data than
its right-handed extension. In a simultaneous SM fit to
B̄0 → πþμ−ν̄μ (using light-cone sum rule results for low
dilepton mass), B− → τ−ν̄τ and B → Xulνl data, we find
jVubj ¼ ð4.07� 0.20Þ × 10−3 with a p-value of 91%.
On the other hand, right-handed contributions cannot be

excluded either. In a SM-like scenario with dominating left-
handed currents, we found that the ratio of right-handed
over left-handed currets is constrained to ≲10%. Since the
decay rates alone are invariant under parity transformations,
a second solution, with the role of left-and right-handed
quark currents interchanged, is always present.3 Again,
some of the angular observables in B̄s → K�þð→ KπÞlν̄l,
e.g. the leptonic forward-backward asymmetry, are “par-
ity”-odd and can thus unambiguously test the (dominating)

left-handed nature of semileptonic b → u currents. In this
case, one would obtain strong constraints on the flavor
sector of NP models with generic right-handed currents.
(For a recent attempt to construct a left-right symmetric
NP model based on the Pati-Salam gauge group, which can
accommodate naturally small right-handed b → u currents,
see [34].)
A crucial ingredient of our analysis has been the

implementation of hadronic uncertainties. Improvements
of our theoretical understanding of nonperturbative QCD
effects (see also note added below) would lead to more
stringent constraints on the value of jVubj and the possible
size of right-handed b → u currents. In particular, predic-
tions from lattice or light-cone sum rules for form-factor
ratios with B̄ and B̄s initial states (including correlations
between input parameters), and similarly between B → π
form factors and the B-meson decay constant, would be
helpful in this respect.
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Note added.—Recently, the LHCb Collaboration measured
the ratio of the exclusive semileptonic branching fractions
of Λb → pμ−ν̄μ and Λb → Λcμ

−ν̄μ [35,36]. Assuming SM-
like b → cμ−ν̄μ transitions, with knowledge of the magni-
tude of jVcbj and using information on the relevant form
factors [37], this ratio can be used to extract the branching
fraction BðΛb → pμ−ν̄μÞ. As such, the branching fraction is
a very powerful new constraint. However, in light of the
present tension in the determination of Vcb from both
inclusive and exclusive b → clν̄l decays, and in order to
follow the logical line of this article, the new LHCb
measurement should only be used in a setup that accounts
for NP in both b → u and b → c transitions.
Another article [38] that was recently published provides

updated LCSR results for the hadronic form factors for
B̄s → K� transitions, which include correlation information
among the form factors. This development will help to
further reduce theory uncertainties for this decay.
In recent lattice studies of the B → π form factors

[39,40], the correlation matrix between the relevant had-
ronic fit parameters has also been provided. This will also
allow to include the high-q2 data for the B̄ → πlν̄l decay in
our statistical procedure, which could and should be used
in future updates of our results.

3Notice that the lepton current with a light SM-like neutrino is
always considered to be left-handed only.
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APPENDIX A: FORM FACTORS

There are in general seven independent hadronic form
factors for Bs → K� transitions. Commonly, these are
denoted as V, A0;1;2, T1;2;3, see e.g. the definition in
[41]. For our purpose, it is more convenient to start with
a definition of form factors in a helicity basis,

F� ≡ i
MBs

hK�ðk; ηÞjūε��ð1 − γ5ÞbjB̄sðpÞi;

F0 ≡ −i
ffiffiffiffiffi
q2

p
M2

Bs

hK�ðk; ηÞjūε�0ð1 − γ5ÞbjB̄sðpÞi;

Ft ≡ i
ffiffiffiffiffi
q2

p
M2

Bs

hK�ðk; ηÞjūε�t ð1 − γ5ÞbjB̄sðpÞi; ðA1Þ

and

FT
� ≡ 1

M2
Bs

hK�ðk; ηÞjūσμνϵμ�� qνð1þ γ5ÞbjB̄sðpÞi;

FT
0 ≡ 1

MBs

ffiffiffiffiffi
q2

p hK�ðk; ηÞjūσμνϵμ�0 qνð1þ γ5ÞbjB̄sðpÞi;

ðA2Þ

which is related to the one proposed in [42]. However,
compared to [42], we have chosen a normalization con-
vention such that all form factors are finite in the limit
q2 → t− ≡ ðMBs

−MK�Þ2, and nonzero in the limit q2 → 0.
In the above definition, η denotes the physical polarization
of the K� meson, and ϵ stands for an auxiliary polarization
vector of the dilepton system with polarization states
t;�1; 0. Notice that the form factor for the pseudoscalar
current is not independent, but from the equations of
motion can be related to Ft,

hK�ðk; ηÞjūγ5bjB̄si ¼ −i
M2

Bs

mb þmu
Ft: ðA3Þ

Instead of the helicity form factors F�, we will use the
linear combinations

F∥ð⊥Þ ≡ 1ffiffiffi
2

p ðF− � FþÞ; FT
∥ð⊥Þ ≡

1ffiffiffi
2

p ðFT
− � FTþÞ;

ðA4Þ

which simplify the analytical expressions for the angular
observables. The explicit relations between our form-factor
basis and the traditional one read

F⊥ ¼
ffiffiffiffiffi
2λ

p

MBs
ðMBs

þMK� ÞV ðA5Þ

for the vector form factor,

F∥ ¼
ffiffiffi
2

p MBs
þMK�

MBs

A1;

F0 ¼
ðMBs

þMK� Þ2ðM2
Bs
−M2

K� − q2ÞA1 − λA2

2MK�M2
Bs
ðMBs

þMK� Þ

¼ 8MK�A12

MBs

;

Ft ¼
ffiffiffi
λ

p

M2
Bs

A0 ðA6Þ

for the axialvector currents, and

FT⊥ ¼
ffiffiffiffiffi
2λ

p

M2
Bs

T1;

FT
∥ ¼

ffiffiffi
2

p ðM2
Bs
−M2

K� Þ
M2

Bs

T2;

FT
0 ¼ ðM2

Bs
−M2

K� ÞðM2
Bs
þ 3M2

K� − q2ÞT2 − λT3

2MK�MBs
ðM2

Bs
−M2

K� Þ

¼ 4MK�T23

MBs
þMK�

ðA7Þ

for the tensor current. In the above equations, the form
factors A12 and T23 are defined as in [43].
The form factors fulfill endpoint relations [42,44]4 which

in our convention read

lim
q2→t−

F⊥ ¼ lim
q2→t−

Ft ¼ 0;

lim
q2→t−

F∥

F0

¼
ffiffiffi
2

p
MBs

MBs
−MK�

; ðA8Þ

with t� ≡ ðMBs
�MK� Þ2. We will use these relations for

our form-factor parametrization in the numerical fit. To this
end, we consider a modified “z expansion” and write

F⊥ðq2Þ ¼
ffiffiffi
λ

p

M2
Bs
−M2

K�
Pðq2;M2

B� ÞF⊥ð0Þ

× ½1þ b⊥ðzðq2; t0Þ − zð0; t0ÞÞ�;
F∥;0ðq2Þ ¼ Pðq2;M2

B1
ÞF∥;0ð0Þ

× ½1þ b∥;0ðzðq2; t0Þ − zð0; t0ÞÞ�;

Ftðq2Þ ¼
ffiffiffi
λ

p

M2
Bs
−M2

K�
Pðq2;M2

BÞFtð0Þ

× ½1þ btðzðq2; t0Þ − zð0; t0ÞÞ�: ðA9Þ

Here, the prefactors contain global kinematic factors, the
form-factor normalization at q2 ¼ 0, together with the

4Note that the endpoint relation for the ⊥ form factor in
Appendix B of [42] should read limq2→t−BV;1=BV;2 ¼ 0.
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leading pole behavior from the lowest resonances above the
semileptonic decay region, Pðq2;M2Þ−1 ≡ 1 − q2=M2. The
remaining q2 dependence for each form factor is para-
metrized by a shape parameter bi. The variable zðq2; t0Þ is
obtained from the conformal mapping (see e.g. [45–47]),

zða; bÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − a

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − b

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − a

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − b

p : ðA10Þ

Here we choose t0 ¼ tþ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþðtþ − t−Þ

p
which minimizes

jzj in the decay region. For the resonance masses
we use MB ¼ 5279 MeV, MB� ¼ 5325 MeV and MB1

¼
5724 MeV [48]. The above parametrization equation (A9)
automatically fulfills the end-point relation equation (A8)
for F⊥. The end point relation for F∥=F0 is fulfilled by
imposing

b0 ≡ 1

zð0; t0Þ − zðt−; t0Þ
�
1 −

F∥ð0Þ
F0ð0Þ

ffiffiffiffiffiffiffiffiffiffiffi
t−

2M2
Bs

s
½1þ b∥ðzðt−; t0Þ − zð0; t0ÞÞ�

�
: ðA11Þ

We fit the Bs → K� helicity form factors F⊥;∥;0 to the
nine constraints listed in Tables V and VI. Our fit uses five
parameters,

~θFF ¼ ðF⊥ð0Þ; F∥ð0Þ; F0ð0Þ; b⊥; b∥Þ; ðA12Þ

which represent the three normalizations F⊥;∥;0ðq2 ¼ 0Þ, as
well as two independent shape parameters b⊥;∥. As a priori

probability P0ð~θFFÞ we choose uncorrelated uniform dis-
tributions with a generous support [to be compared with
(A15) below],

0 ≤ F⊥;∥;0ð0Þ ≤ 1; −10 ≤ b⊥ ≤ 0; −5 ≤ b∥ ≤ þ5:

ðA13Þ

The likelihood Pðtheoryj~θFFÞ is constructed as the product
of uncorrelated Gaussian likelihoods for each of the LCSR
results for the form factors V, A1 and A2, as well as the joint
multivariate Gaussian likelihood for the lattice QCD
results. All of these are listed in Tables V and VI.
The a posteriori PDF is obtained as usual via Bayes’

theorem,

Pð~θFFjtheoryÞ ¼
Pðtheoryj~θFFÞP0ð~θFFÞR

d~θFFPðtheoryj~θFFÞP0ð~θFFÞ
: ðA14Þ

For all applications here and in Sec. IV, we draw 106

samples from the a posteriori distribution.
The best-fit point, and the 1D-marginalized minimal

intervals at 68% probability are found to be

F⊥ð0Þ ¼ 0.349� 0.037; b⊥ ¼ −4.9þ1.0
−1.1 ;

F∥ð0Þ ¼ 0.379� 0.031; b∥ ¼ þ0.07� 0.40;

F0ð0Þ ¼ 0.314� 0.041: ðA15Þ

Although the 1D-marginalized distributions are symmetric
and resemble Gaussian distributions, we find that the
distribution in Eq. (A14) is distinctly non-Gaussian. We
therefore use the posterior samples to carry out the
uncertainty propagation.

APPENDIX B: B̄s → K�ð→ KπÞl−ν̄l DECAY
AMPLITUDE

In this appendix we give details on the parametrization
of the matrix element for the decay B̄s → K�þl−ν̄l, with
the subsequent decay K�þ → ðKπÞþ. We decompose the
matrix element as in [9],

TABLE V. Theory inputs for the Bs → K� form-factor fits.
Form-factor values at q2 ¼ 0 are taken from LCSR calculations
in [41]; values at q2 ¼ 15 GeV2 and q2 ¼ 19.21 GeV2 are taken
from lattice QCD simulations [43]. Correlation information for
the lattice QCD inputs. The lattice QCD values and correlations
are produced from the joint PDF given in Table XXIX of [43]
using 5 × 105 samples.

q2 ½GeV2� 0 15.00 19.21

Vðq2Þ 0.311� 0.026 0.872� 0.066 1.722� 0.062
A1ðq2Þ 0.233� 0.023 0.427� 0.015 0.548� 0.015
A2ðq2Þ 0.181� 0.025 � � � � � �
A12ðq2Þ � � � 0.342� 0.016 0.408� 0.016

TABLE VI. Theory inputs for the Bs → K� form factor fits.
Correlation information for the lattice QCD inputs. The lattice
QCD values and correlations are produced from the joint PDF
given in Table XXIX of [43] using 5 × 105 samples.

V A1 A12

q2 ½GeV2� 15.00 19.21 15.00 19.21 15.00 19.21
15.00 1.000 0.271 1.000 0.305 1.000 0.334
19.21 � � � 1.000 � � � 1.000 � � � 1.000
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M ¼ FfXS½l̄ν� þ XP½l̄γ5ν�
þ Xμ

V ½l̄γμν� þ Xμ
A½l̄γμγ5ν� þ Xμν

T ½l̄σμνν�g; ðB1Þ

with the prefactor

F ¼ i
ffiffiffi
2

p
GFVubgK�KπDK� j~kRFj; ðB2Þ

and j~kRFj≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðM2

K� ;M2
K;M

2
πÞ

p
=2MK� . In the small-width

approximation we replace the K� resonance by

jDK� ðk2Þj2 ≃ 1

ðk2 −M2
K� Þ2 þM2

K�Γ2
K�

→
π

MK�ΓK�
δðk2 −M2

K�Þ ðB3Þ

where ΓK� denotes the total decay width of the K� meson.
Since ΓK� ≃ Γ½K� → Kπ� to very good approximation,
we use

ΓK� ¼ jgK�→Kπj2j~kRFj3
48πM5

K�
: ðB4Þ

Our parametrization of the hadronic matrix element of
B → Vð→ P1P2Þl−ν̄l decays differs from the one in [9]
due to different conventions for the Levi-Civita tensor,
the phase convention for the polarization vectors, and the
fact that in this decay only left-handed lepton currents
contribute. We use

NXS ¼
i
4
cos θVAL

t ¼ −NXP; ðB5Þ
and

NXμ
V ¼ −NXμ

A

¼ þ i
4
cos θVεμð0ÞAL

0

þ i
8
sin θVεμðþÞeþiϕ½AL⊥ þ AL

∥ �

þ i
8
sin θVεμð−Þe−iϕ½AL⊥ − AL

∥ �; ðB6Þ
and

NXμν
T ¼ cos θVεμðþÞενð−ÞA∥⊥ þ sin θVffiffiffi

2
p εμðtÞενðþÞeþiϕAt⊥

þ sin θVffiffiffi
2

p εμðtÞενð−Þe−iϕAt⊥

−
sin θVffiffiffi

2
p εμð0ÞενðþÞeþiϕA0∥

−
sin θVffiffiffi

2
p εμð0Þενð−Þe−iϕA0∥: ðB7Þ

Using the normalization constantN as given in Eq. (10) and
the general operator basis (2), we obtain for the individual
amplitude contributions

AL
0 ¼ −4N

M2
Bsffiffiffiffiffi
q2

p ðCV;L − CV;RÞF0ðq2Þ;

AL⊥ ¼ þ4NMBs
ðCV;L þ CV;RÞF⊥ðq2Þ;

AL
∥ ¼ −4NMBs

ðCV;L − CV;RÞF∥ðq2Þ;

AL
t ¼ −4N

�
mlMBs

q2
ðCV;L − CV;RÞ

þM2
Bs

mb
ðCS;L − CS;RÞ

�
Ftðq2Þ; ðB8Þ

and

A∥⊥ ¼ þ8NMBs
CTFT

0 ðq2Þ;

At⊥ ¼ 4
ffiffiffi
2

p
N

M2
Bsffiffiffiffiffi
q2

p CTFT⊥ðq2Þ;

A0∥ ¼ 4
ffiffiffi
2

p
N

M2
Bsffiffiffiffiffi
q2

p CTFT
∥ ðq2Þ: ðB9Þ

APPENDIX C: ANGULAR OBSERVABLES
FOR B → Vlνl

In the limit ml → 0, the angular observables Ĵn read

Ĵ1s ¼
3

16
½3jAL⊥j2 þ 3jAL

∥ j2 þ 16jA0∥j2 þ 16jAt⊥j2�;

Ĵ1c ¼
3

4
½jAL

0 j2 þ 2jAL
t j2 þ 8jA∥⊥j2�;

Ĵ2s ¼
3

16
½jAL⊥j2 þ jAL

∥ j2 − 16jA0∥j2 − 16jAt⊥j2�;

Ĵ2c ¼ −
3

4
½jAL

0 j2 − 8jA∥⊥j2�;

Ĵ3 ¼
3

8
½jAL⊥j2 − jAL

∥ j2 þ 16jA0∥j2 − 16jAt⊥j2�;

Ĵ4 ¼
3

4
ffiffiffi
2

p RefAL
0A

L�
∥ − 8

ffiffiffi
2

p
A∥⊥A�

0∥g; ðC1Þ

and

Ĵ5 ¼
3

2
ffiffiffi
2

p RefAL
0A

L⊥ þ 2
ffiffiffi
2

p
A0∥AL�

t g;

Ĵ6s ¼
3

2
RefAL

∥A
L�⊥ g;

Ĵ6c ¼ −6RefA∥⊥AL�
t g;

Ĵ7 ¼
3

2
ffiffiffi
2

p ImfAL
0A

L�
∥ − 2

ffiffiffi
2

p
At⊥AL�

t g;

Ĵ8 ¼
3

4
ffiffiffi
2

p ImfAL
0A

L�⊥ g;

Ĵ9 ¼
3

4
ImfAL⊥AL�

∥ g: ðC2Þ
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