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Analyzing b — u transitions in semileptonic B, — K**(— Kn)¢/~v, decays
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We study the semileptonic decay B, — K**#~D,, which is induced by b — u#~7, transitions at the
quark level. We take into account the standard model (SM) operator from W-boson exchange as well as
possible extensions from physics beyond the SM. The secondary decay K** — K can be used to study a
number of angular observables, which are worked out in terms of short-distance Wilson coefficients and
hadronic form factors. Our analysis allows for an independent extraction of the Cabibbo-Kobayashi-
Maskawa matrix element |V,,| and for the determination of certain ratios of B, — K* form factors.
Moreover, a future precision measurement of the forward-backward asymmetry in the B, — K**£7 0,
decay can be used to unambiguously verify the left-handed nature of the transition operator as predicted by
the SM. We provide numerical estimates for the relevant angular observables and the resulting decay
distributions on the basis of available form-factor information from lattice and sum-rule estimates. In
addition, we pay particular attention to suitable combinations of angular observables in the decays B, —
Kt (= Kn)¢" 0y and B — K*°(— Kz)£*¢~, and find that they provide complementary constraints on the
relevant b — s short-distance coefficients. As a by-product, we perform a SM fit on the basis of selected
experimental decay rates in both inclusive and exclusive channels, and hadronic input functions. We find

[V = (4.07 £0.20) x 1073,
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I. INTRODUCTION

The value of |V,,| represents one of the least-well-
measured parameters in the Cabibbo-Kobayashi-Maskawa
(CKM) matrix of the standard model (SM). Moreover, at
present, its inclusive determination from B — X, fv,
decays and the extraction from exclusive semileptonic or
leptonic decay modes lead to somewhat different results
(see e.g. the review in [1]). Independent phenomenological
information on b — u transitions will clearly help to
better understand the origin of these discrepancies and
the underlying theoretical uncertainties. As the solution to
this |V ;| puzzle might also be related to physics beyond
the SM, one should also take into account possible new
physics (NP) effects; see [2—4] for recent work in that
direction.

The proliferation of unknown parameters, which arises
in a model-independent approach with generic dimension-6
operators in the effective Hamiltonian, can be handled with
a sufficient number of independent experimental observ-
ables in b — u transitions. An example is B — p(—
7m)¢v, where the analysis of the secondary p — zz decay
introduces a large number of angular observables with
different sensitivities to the individual short-distance coef-
ficients [4]. This is similar to what has been extensively
used in the analysis of rare exclusive b — s£Zt¢~
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transitions [5—10]. Because of the large hadronic width
of the p resonance and the question of the S-and P-wave
composition of the experimentally measured dipion final
state, a precision determination of |V,,| from this decay
also requires a better theoretical understanding of the
B — zrfv, decay spectrum [11,12].

In this article, we focus on the decay
B, - K*"(— Kn)¢~v;, which provides similar insight
into the short-distance couplings as the decay
B — p(— nn)¢~v,. However, the width of the K* meson
is sufficiently smaller than that of the p resonance,
g =T,/4 =50 MeV. Moreover, from studies of the
decay B — K*J/y the S-wave background below the K*
resonance in B decays is constrained to small values,
with the S-wave fraction F; < 7% on resonance [13].
The decay B, - K**(— Kr)¢~ b, thus provides a prom-
ising alternative channel for a precise determination of
|V.s| in the SM, as has already been advocated for in [14].
For the same reason, it can also be used to constrain NP
contributions in b — u transitions, in particular, as we will
show below, to exclude possible effects from right-handed
currents.

Another benefit of the decay B, — K*t£~i, is the
opportunity to combine it with the rare B — K*¢/T¢~
decay, which is currently in focus due to the tension
between some SM estimates and the LHCb results [15].
The secondary decay K* — K is identical in both decays,
which leads to a one-to-one correspondence between
angular observables. Hadronic form factors in both decays

© 2015 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.92.034013
http://dx.doi.org/10.1103/PhysRevD.92.034013
http://dx.doi.org/10.1103/PhysRevD.92.034013
http://dx.doi.org/10.1103/PhysRevD.92.034013

FELDMANN, MULLER, AND VAN DYK

are related by the SU(3), symmetry of the strong inter-
action, and therefore hadronic uncertainties in ratios of
angular observables from the two decays are expected to be
under control.'

Furthermore, these ratios of angular observables are
sensitive not only to |V, |, but also to bilinear combinations
of the Wilson coefficients describing semileptonic b — u
and radiative b — s transitions in the SM and beyond. In
light of the present deviations between LHCb measure-
ments and the respective SM predictions for a few angular
observables in the B — K* channel (see e.g. [15,16], and
also [17]), we will show how this can be exploited to
obtain complementary information on the b — s Wilson
coefficients.

The outline of the article is as follows. In Sec. II we
introduce the effective Hamiltonian for semileptonic b —
ufv, transitions, including NP operators, and define the
angular observables for B; — K*(— Kr)¢1, transitions. In
the following phenomenological section, Sec. III, we
identify SM null tests among the angular observables,
and derive expressions in a simplified scenario with only
right-handed NP contributions. We also define optimized
observables and highlight the synergies between the
angular observables in B; —» K*'(— Kz)¢fv, and
B — K*(— Kz)¢*¢~. In the numerical section, Sec. 1V,
we first perform a fit of the Wilson coefficients for (V — A)
and (V4 A) currents to experimental data for
B— nt¢" v, B-—> 10, and B— X,/ i, decays. On
the basis of this fit and theoretical estimates for the relevant
form factors, we then provide numerical predictions for the
angular observables and partially integrated branching
ratios for B, - K**(— Kr)£0, decays, before we con-
clude in Sec. V. The helicity basis for the By — K* form
factors is defined in Appendix A, where we also infer the
form-factor parameters from light-cone sum rule and lattice
QCD results. Appendixes B and C are dedicated to details
on the determination of the hadronic amplitudes and the
angular observables of B, — K**#~1, decays within and
beyond the SM, respectively.

'The B — K*¢*¢~ decay amplitude also receives
corrections from nonfactorizable (i.e. not form-factor-like) con-
tributions involving hadronic operators in the b — s effective
Hamiltonian. Semileptonic b — u transitions are free of such
effects. A comparison of the two decays can thus also shed
light on the size of nonfactorizable hadronic matrix elements and
the validity of the underlying theoretical framework. A detailed
study along these lines is beyond the scope of the present
work.
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II. DEFINITIONS

A. Effective Hamiltonian for b — uc/v,

We parametrize possible new physics contributions to
b — ufv, transitions in a model-independent fashion in
terms of a low-energy effective Hamiltonian, which can be
written in the form

4GpVel
ML= =Y GO ke (1)
X

Here the most general set of dimension-6 operators { Oy } is
given by

Oy, = [L_W”Pib] {Zy/APLDf]’
Oy, = [aP;b][£Pryy),
OT = [ﬁaﬂyb] [26;4DPLUK]’ (2)

where P; € {P;, Py} are chiral projectors, and we have
restricted ourselves to (massless) left-handed neutrinos and
ignored the possibility of lepton-flavor violating couplings.
(The generalization to more exotic scenarios with light
right-handed invisible neutral fermions is straightforward,
see e.g. [3].) Since in the presence of NP the notion of V
becomes ambiguous, we normalize the operators in Eq. (1)
to an effective parameter Viflf, which can be taken, for
instance, as the value of V,,;, that one obtains from a global
CKM fit within the SM. If NP effects are small, one would
then have Cy ;=1 (while in the SM Cy; =1 and
V. = VI with all other Wilson coefficients vanishing).
Comparing with Ref. [2], where the modifications of left-
and right-handed quark currents has been parametrized in
terms of &, p together with a new mixing matrix V for right-
handed currents, our conventions are related via

Vub Vub
<Vbef) e, =Cyp—1, (V—efg> Ep = CV,R~ (3)

B. Angular distribution in B, - K*¢i,

The fourfold differential decay rate for B, — K*T¢ "0, is
defined in terms of the dilepton invariant mass ¢, the polar
angles 6, and fx- in the £v and K* rest frames, respectively,
and the azimuthal angle ¢ between the primary and
secondary decay planes,

8_71' d4F[B‘ - K*f+l7f]
3 dg*dcos8,d cos Og-dep

- j(q2’91f770[(*7¢)' (4)

It can be expanded in a basis of trigonometric functions of
the decay angles. We define
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J(g%. 0., 0k, §p) = J1sinOg. + J,.cos20x: + (Jssin®Og. + J5.co820x- ) cos 20, + J3sin?Ox-sin6, cos 2

+ J 4 sin 20 sin 260, cos ¢ + J5 sin 20x- sin 0, cos ¢ + (J,5in20x+ + J.c08%0x- ) cos 0,

+ J; 5in 204 sin 0, sin ¢p + Jg sin 20x- sin 20, sin ¢ + Josin*O-sin?6, sin 24, (5)

with angular observables fi(a) = fi(a)(qz) fori=1,...,9
and a = s, c. By construction, the functional dependence of
the angular distribution equation (5) on the angular ob-
servables is identical to the one for B — V(— P P,){ "¢~
decays in [9], to which we refer for further details.

Explicit expressions for the angular observables in
terms of hadronic form factors and Wilson coefficients
for b — ufv, in the general operator basis (1) are derived
in the appendixes.

III. PHENOMENOLOGY

For the remainder of this article we restrict our analysis
to vectorlike couplings; i.e. we assume Cg; =Cr =Cps =0
for simplicity. This leaves us with only two operators for
left- and right-handed b — u currents, which we refer to as
SM + SM’. We emphasize that with future experimental
data one can also test for scalar and tensor currents on the
basis of the formulas provided in Appendix C.

A. Null tests of the SM

The twelve angular observables J; as introduced in
Eq. (5) are not independent. Within the SM, they can be
expressed in terms of four real-valued quantities: |N|* and
the three form factors F | | o. This fact can be used to define
a series of eight null tests that hold within the SM,

4], 5+ J2 =473 =0,
8J1J1c = 3J2 =12 =0,
JieJos =2J4Js =0

1672, —36J% —9J% =0,

S S

Joe =J7=Jg=17y=0. (6)

Deviations from these relations are immediate signs of
physics beyond the SM. This is in contrast to exclusive
b — s¢t¢~ decays, where such relations are broken by
nonfactorizing long-distance contributions.

B. Angular observables for SM + SM’

In the SM + SM’ scenario, we obtain a very simple
structure of the angular observables, which can be
expressed in terms of hadronic form factors (defined in
the transversity basis, see Appendix A) and three indepen-
dent combinations of Wilson coefficients,

G?E =|Cy, £ CV.R|2,

=205, = (Cy —Cy)(Cvr +Cyr)", (7)

which depend on the absolute values |Cy ;| and |Cy x|
and the relative phase of the two Wilson coefficients
(the absolute phase is irrelevant in the angular observables).
Notice that oF is even under parity transformations
(L <> R), while o0, is odd. Neglecting the charged-lepton

mass (which is valid as long as m,/+/q*> < 1), we find

Jis =30 = 9INPM3, [6] |F L[> + o7 |Fy .
R . My
ch = _J2C = 12|N‘2q—2‘01_|F0|2’

J5 = 6INPMj [of |[F > = o7 |Fy ],
J, = 6f2|N|273“'201_F||F0’ (8)

Ve

and
M3
js = 24\/§|N|2 \/%Re{dz}FlFo,
q
j6s = 48|N|2MéyRe{62}FlF”,
M3
Js = 12V2INP —2Im{0, }F | F,

Ve

Jo = 24|N|>M3 Im{0,}F | F), (9)

together with Je. =J; =0 (all relations valid in the
SM + SM’ scenario). Here, we introduce a normalization
factor,

|N|2 — G%|V3fbf|2qzﬂ

= , (10)
3x 207

and 1= A(M%,M%.,q*) denotes the usual kinematic
Killén function. The normalization |N|? is chosen such that

dr
i > AL
A=0 L.l

M
= |N|2M%S [aﬂFl +o7 <|F”|2 +(]2"‘|F0|2>},

(11)

034013-3



FELDMANN, MULLER, AND VAN DYK

where the transversity amplitudes Al are defined in
Appendix B.

In addition to the decay rate, one can also define the
leptonic forward-backward asymmetry Agpg via the
weighted integral

Appg = —1 - dcos @ 0 —dZF
B = drjdg /_1 cos 6,sgn(cosb,) i7dcos,’

(12)

In the SM + SM’ scenario, one finds that Apg takes the
rather simple form

2RC{O'2}FJ_F”

2
MB

AFB - 5 .
o)

(13)

of |F > + o7 (IFy|* +

Note that the bilinear o, is unconstrained by present
experimental measurements of semileptonic b — u tran-
sitions. Therefore a measurement of Agg would provide
complementary information on the Wilson coefficients. In
particular, the sign of the forward-backward asymmetry
resolves the present ambiguity between Cy ; versus Cy g,
see Sec. IV.

Similarly, the fraction of longitudinal K* mesons is
defined as

F —1 " dcos@ 0 7(121—‘
L= dr/de? /_1 cos O, (cos ) dg*dcos O’

(14)

where wp, (z) = (5z2 = 1)/2. In the SM + SM’ scenario
this yields

o7 |Fol?

- Mz ’
ol [FL > + o7 (|Fy > +—2Fol?)

F, = (15)

C. Optimized observables in SM + SM’

It is now possible to construct particular combinations
of angular observables where the hadronic form-factor
dependencies cancel (at least partially), and, as a conse-
quence, these observables are sensitive to the short-distance
Wilson coefficients only, or vice-versa.

We begin with observables where the form-factor
dependencies cancel. These can be defined in complete
analogy to what has been discussed in [9],

PHYSICAL REVIEW D 92, 034013 (2015)

m_ V2

A - ,
_J26(2‘12s - '13)
. J
Ay = > :
_2‘12(, (2‘]25' + J3)
. J
Hg?) _ 65 ,
24/(25)* = (J3)?
. 2J
Ay = 8 :
\/_2J2C (2‘]2s + J3)
. —J
AY = d . (16)

(2050)* = (J5)?

Within the SM 4 SM’ scenario, the form-factor depend-
encies cancel exactly at every point in the g> spectrum.
However, for integrated angular observables one has to take
into account the different kinematical prefactors, and a
residual form-factor dependence will remain.” In the
SM + SM’ scenario these optimized observables read

Ay =1,

N R

A2 — i~ 2 e{o2}
oy oy

NP I

A9 — g — i) (17)
oy oy

We continue with the construction of observables
that are only sensitive to form-factor ratios. Just as in
B — K*¢*¢~, we find that the SM + SM’ scenario solely
allows us to extract one form-factor ratio, namely F/F, in
five different ratios of angular observables,

MBs FO(q2) _ \/ijS o _j2c

VA Je V24
PR = S N,
2j2s_j3 2j2s_j3 _j9 '

Inconsistencies among these relations would indicate NP
beyond the SM + SM’ scenario.

In the absence of right-handed currents, a further ratio
F/F) can be extracted via

*We emphasize again that the cancellation of form-factor
dependencies holds for the whole ¢> spectrum, in contrast to
B — K*¢*¢~ where it can be spoiled by contributions with
intermediate photons dissociating into £7£~.
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—3Js,

FL 20 +30 205 (19)
F) 20, =30y, 2020, +303)°

D. Synergies with B — K*/* ¢~

The decay B — K*(— Kn)¢T¢~ is induced by the
flavor-changing neutral current transition b — sZ*¢~. At
low hadronic recoil, ¢g> = 15 GeV?, it is again dominated
by four-fermion operators which can be extended to a
SM + SM’ scenario. The structure of angular observables
J,,(¢%) in those decays is similar as for By — K**#,. The
analogous combinations of Wilson coefficients which enter
the J,(¢?) now read pi and p,. (For the explicit definition
and a detailed phenomenological discussion, we refer the
reader to [9].)

With this we can define a number of useful ratios of
angular observables J,(¢?) in B — K*/*¢~ and J,(¢?) in
B s I_( *Jrf Df,

Ja(q)
R.(¢*) =551, (20)
Ju(q?)
for n = 1c¢,2c¢,4,5,6s,8,9, as well as
1i(612) = 2{1s(‘]§) + 3{3(4? ’
2J15(q°) £ 3J3(q)
2 2
2i(612) — 2{2;(42) + {3(‘]2) (21)
2]25(q )iJ%(CI )

Within these ratios, the dependence on the hadronic form
factors can be expected to cancel up to corrections from the
violation of the SU(3), symmetry of strong interactions,
from the violation of heavy-quark spin symmetry in ratios
of tensor and (axial)vector form factors, and from nonfac-
torizing hadronic matrix elements in exclusive b — s£+¢~
transitions. In the limit where these corrections are
neglected, we find

oL
o forn = 14,2+
. @2 |V, Vil ’;—1_ for n = 1—, 1¢,2—,2¢
n 2 2
87° Vi g:gﬁ for n =4,5,6s
Im{p, } _
Iﬁ{ﬁ'z} for n = 8§,9.

(22)

Of particular interest are ratios that are proportional to
the combination p, « Re{C79(¢*)C;,}, where in the SM
C9(g?) is a linear combination of the Wilson coefficients
Cs"and C™ (%) in b — s transitions (see [9] for the explicit
definitions). Optimized observables in B — K*#+#~ only
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allow to access the ratio |CST /C)o|, whereas the ratios R, are
sensitive to Cgff - C9. Measuring the corresponding ratios
J,,/J, thus allows us to directly access the ¢ dependence
of C and to test the theoretical predictions which are
based on an operator product expansion in the heavy
b-quark limit. This is of particular interest in light of the
present discussion of charmonium resonances in the ¢>
spectrum of exclusive b — s£T¢~ decays [18].

IV. NUMERICAL RESULTS

In this section we derive numerical results for the angular
observables J, as introduced in Sec. IIB. Our analysis
is carried out within a Bayesian framework, for which
we use and extend EOS [19] for all numerical evaluations.
As prerequisites to our numerical study of the angular
observables, information on the B, — K* form factors and
constraints on the » — u Wilson coefficients are needed.
These will be expressed through a posteriori probability
density functions (PDFs) labeled P(Opg|theory) and
P(éAB|exp.data), respectively. We refer to Appendix A

for the precise definition of P(éFp|theory).

A. Determination of Cy; and Cy p

For the following numerical analysis we consider exper-
imental data on the branching ratios for leptonic B~ — 777,
and semileptonic B — 7"y, decays as summarized in
Table I, together with the averaged value for |V ;| from the
inclusive determination [1],

Vel | — (4.41 +0.21) x 1072, (23)

Within the SM 4 SM’ scenario, the additional right-handed
operator contributes differently to the individual decay
rates, corresponding to (see e.g. [2])

|V5;TD : - |VZ%|2|CV,L -Cvr 2

Ve ™ = Vi PlCv.s + Cyr

(VI 2 — [VEE2(ICy 2 > + [Cy r[*)- (24)

s

2

’

In order to illustrate the NP reach of our analysis, we fix the
auxiliary parameter VI to a value that lies between the
exclusive and inclusive determinations of |V,;,| within
the SM,

|velt| = 3.99 x 1073,

With this we can constrain the absolute values and the
relative phases of the Wilson coefficients Cy; and Cy g,
where the SM-like solution would correspond to |Cy ;| ~ 1
and Cy g ~ 0. .

We construct a likelihood P(data|@,p, M) from (multi)
normal distributions as indicated in Table I and Eq. (23).
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TABLE L. Summary of the experimental likelihoods for branch-
ing fractions of the exclusive b — u transitions. We assume no
correlation among the B~ — 7~ 1, data, and use the correlation
matrices as given in Tables XI and XII of [20], Tables III and IV of

[21], Tables XXIX and XXXII of [22] and Table X VII of [23] for

the respective data on B — 7" 47D, decays.

Decay q* [GeV?] Measurement Reference
(1.70+£0.80+£0.20)x 107+ [24]
) (1.25+£0.28+£0.27)x107*  [25]
Brore (183703 £024) x 10 [26]
(0727937 £0.11) x 107*  [27]
[0.2] (1.280 4 0.196) x 1075 [20]
[2,4] (1.192 £ 0.135) x 10~
[4,6] (1.446 £0.108) x 1073
[6,8] (1.437 £0.105) x 1073
[8,10] (1.525 £0.106) x 1073
[10,12] (1.490 £0.111) x 1073
[0,2] (1.173£0.219) x 1075 [21]
(2,4] (1.526 £ 0.103) x 1073
[4,6] (1.213 £0.105) x 1073
[6.,8] (1.465 £0.102) x 1073
[8,10] (1.473 £0.108) x 1073
[10,12] (1.404 £0.124) x 1073
B - ntu o,
[0,2] (1.225+0.182) x 1075 [22]
(2,4] (1.277 £0.128) x 1073
[4,6] (1.274 £0.109) x 1073
[6.8] (1.498 £ 0.103) x 1073
[8,10] (1.405 £0.115) x 1073
[10,12] (1.617 £0.104) x 1073
[0.2] (1.95 +£0.32) x 10> [23]
(2.4] (1.06 £ 0.27) x 1073
[4.6] (1.51£0.28) x 107
(6.8] (0.97 £0.23) x 1073
[8,10] (0.78 +0.22) x 10>
[10,12] (1.59 4 0.28) x 1073

Note that we assume that the results for the B~ — 777,
branching ratios [24] and [26] are uncorrelated, since the
underlying sets of events use different tagging methods for
the selection process. The same assumption applies to the
results of [27] and [25]. At this time, we only use
theoretical input from light-cone sum rules (LCSRs) for
the B — x transition form factors, and therefore restrict
ourselves to the kinematic range ¢> <12 GeV?2. For a
consistent inclusion of lattice results on the B — x form
factor in the high-¢> region (see e.g. [28-30], but also note
added below), we presently do not have access to the
necessary correlation information required for our statis-
tical procedure.

Within our analysis, we address the theoretical uncer-
tainties using nuisance parameters for the hadronic matrix
elements. These are the B-meson decay constant fp- and

PHYSICAL REVIEW D 92, 034013 (2015)

the parameters of the B — x vector form factor f57(¢?), i.e.
its normalization f57(0) as well as two shape parameters
blfg (see [31] for their definition). For the B-meson decay
constant we use a Gaussian prior with central value and
minimal 68% probability interval fz- = (210 £ 11) MeV,
as obtained from a recent 2-point QCD sum rule at next-to-
next-to-leading order accuracy [32]. As prior for the form-
factor parameters we use the a posteriori distribution
obtained from a recent Bayesian analysis of the LCSR
prediction at next-to-leading order accuracy [31].

In order to assess the physical implications of possible
deviations from the SM expectations, we compare the fit
results for three different scenarios. In all cases we assume
Cy to be real valued (i.e. a possible NP phase in the
left-handed b — u transition should be associated to Veif).
As already mentioned, the fit to the considered data is
only sensitive to the relative phase between the Wilson
coefficients Cy; and Cy g, and consequently we will
always encounter an irreducible degeneracy related to
Cyr/r—=—Cvisr

(1) First, we consider the scenario “left” that features

only the left-handed current. In this case the

Hleft

number of  parameters is five, @xp =

(Cv... f57(0), bY", b, f5-).
(2) Next, we consider the scenario “real”, in which Cy  is
present and real valued. The set of AB parameters then

reads Oy = (Cy 1. ReCy g, f57(0), bB=, bB7 fp ).
(3) Last but not least, we also consider the scenario
“comp”, which includes a complex-valued Cy g, with

the full seven parameters, écﬁgn P=(Cy 1.ReCy g.
ImCV,R,fﬁ”(O),bB”,bg”,fo).
For all scenarios (M = left, real, comp), we obtain the
a posteriori PDF as usual via Bayes’ theorem,

P(data|f,. M)Po(Bsp. M)
P(data, M) '

P(0rp|data, M) = (25)

where
P(data, M) = / A0,z P(data|0,g. M)Py(0a5. M) (26)

is the evidence for the scenario M. The likelihood

P(data|§AB,M) has already been introduced earlier. In
all three scenarios, we use for the priors of the Wilson
coefficients uncorrelated, uniform distributions with the
support —2 < C; < +2. For model comparisons, we nor-
malize the model priors for the various fit scenarios. The
corresponding relations read

Po(comp): Py(real): Py(left) = 1:4:16.  (27)

1. Scenario “left”

Our findings for the scenario “left” can be summarized
as follows. We find two degenerate best-fit points
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TABLE II. Significances of the measurements at the best-fit
point closest to the SM point for all three fit scenarios. Notice that
the pull for the LCSR calculation of the B — # vector form factor
f., marked by a {, does not enter the goodness-of-fit calculation.

Significance [o]

Degrees
Quantity ~ “left” “real” “comp” of freedom Reference
f() 311 236 236 3 [31]
+0.57 +0.39 +0.39 1 [24]
B — 10 +0.64 +0.34 40.34 1 [25]
T 4099 +0.75 +0.75 1 [26]
—-1.84 =235 -2.35 1 [27]
0.85 1.08 1.08 6 [20]
B = i 0.87 098 098 6 [21]
170 197 197 6 [22]
253 246 246 6 [23]
B— X, 070, +1.67 +1.45 +1.45 1 [1]

corresponding to [Cy,|=1. The best-fit point (with
positive Cy ;) reads

left,*
0

Az = (1.016,0.232, -3.163, +0.425,0.206).

(28)

We find at this point )(%eﬂ = 18.54, for 28 degrees of
freedom (from 29 measurements reduced by 1 fit param-
eter). As a consequence, this represents an excellent fit with
a p-value of 91%. The significances of the individual
experimental inputs are collected in Table II. The one-
dimensional marginalized posterior is approximately
Gaussian, and yields

ICy | = 1.02£0.05 at 68% probability. (29)

—1.5 —1.0 —0.5 0.0
Cvr

FIG. 1 (color online).
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Equivalently, this result can be expressed as |V,;,| =
(4.07 £0.20) x 1073 at 68% probability.

2. Scenario ‘“‘real”

For the scenario “real”, we find a fourfold ambiguity in
the data; see Fig. 1 for an illustration. All local modes are
degenerate. We calculate the goodness of fit in the local
mode closest to the SM,

-

Hreal, *

g = (1.025,-0.079,0.251, —2.884, +0.196, 0.200),

(30)

and obtain )(fea] = 20.47. This fit’s p-value of 81% is very
good. However, note that the y? value has increased in
comparison to the previous scenario. This result warrants a
comment. The additional degree of freedom in the form of
Cy  allows the fit to move the form-factor parameters /7,
b, and b, closer to the central values of the prior. This shift
occurs at the expense of increasing the significances of the
experimental data, while simultaneously reducing the
significance of the nuisance parameters. For completeness,
we also list these significances for all scenarios in Table II.
The one-dimensional marginalized posterior distributions
for this scenario are approximately Gaussian and symmet-
ric under the exchange Cy; <> ReCy z. We find (at 68%
probability)

ICyr| =1.024005 and [ReCyg|<0.10, (31)

or

IReCy x| = 1.02+0.05 and [Cy | <0.10. (32)

1.0

0.0

Cvr

—-1.0

—1.5 —1.0 —0.5 0.0
Cvr

(left) Contours of the 68% (dark orange area) and 95% (orange area) probability regions for the Wilson

coefficients Cy;, and Cy p as obtained from our fit. See the text for details. Overlaid are the 68% and 95% contour lines for B’ = nt¢ o,
(blue solid lines, negative slope), B~ — £~ (blue solid lines, positive slope) and inclusive B — X,£~ 1, (green solid rings). The black
diamond marks the SM point. (right) Contours of the 68% and 95% probability regions for the Wilson coefficients (solid orange lines)
overlaying the 68% (dark gray area) and 95% (light gray area) probability regions as obtained from a hypothetical measurement

of Apg = ASY £ 10%.
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3. Scenario “comp”

We repeat the fit in scenario “comp”. As a consequence
of the additional degree of freedom, the four solutions from
the previous scenario now become connected. This is
illustrated in Fig. 2. We calculate the goodness of fit in
the local mode closest to the SM, which now reads

Jcomp,k
QAB

= (1.025,-0.080,0.000,0.251, —-2.885, +0.196,0.200).
(33)

The individual significances are listed in Table II, and
amount to a total y*> = 20.48. For the increase of y* with
respect to the “left” scenario, see our earlier comment. With
26 degrees of freedom the p-value is 77%, which is still
very good. It is not sensible to provide the 68% probability
interval of the one-dimensional marginalized posterior,
since the solutions are strongly connected. We show the
contours of the probability regions at 68% and 95%
probability in Fig. 2.

4. Comparison

We proceed with a comparison of the various fit
scenarios by means of the posterior odds. The latter can
be calculated as

P(M1|data) _ P(data|M]) Po(M]) (34)
P(M,|data)  P(data|M,) Po(M,)"
We find
P(”left”|dat
P(left"|data) _ ;0. (35)
P(“real”|data)
and
P(“real ”|dat:
Plreal”|da) _ 5 oy (36)
P(”comp”|data)

] | | 1 ]
-15 -1.0 =05 0.0 05 1.0 1.
CVJ‘

15 L

FIG. 2 (color online).

PHYSICAL REVIEW D 92, 034013 (2015)

Using Jeffreys’ scale for the interpretation of the posterior
odds [33], we find that the data favor the interpretation with
purely left-handed b — u currents over the other scenarios
very strongly. Moreover, the scenario “real” is substantially
favored over the scenario “‘comp”.

This means that, despite the observed tensions between
the different SM determinations of |V,,|, a NP scenario
with right-handed currents does not lead to a more efficient
description of the experimental data. We emphasize again
that the statistical treatment of the theoretical uncertainties
on the hadronic input parameters, which are still relatively
large at present, has been crucial for this argument. On
the other hand, the experimental data on the inclusive
and exclusive decay rates alone also cannot exclude large
right-handed currents.

B. Predictions for angular observables J,

We can now proceed to produce predictive distributions
for the angular observables J, in B, > K**(— Kn)¢p,,
for which we have two main applications in mind.

1. SM Scenario

First, we assume the SM case; i.e. we go back to
vell - v, with Cy; =1 and C;=0. In this case, only
the a posteriori PDF on the B, — K* form factors is
needed. We obtain the joint posterior-predictive distribution
for the angular observables by means of

P(}) = / d0e P(Gepltheory)s(d — J(@er)).  (37)

In practice, the above is carried out by calculating the J,, for
a set of samples drawn from the a posteriori PDF. In our
analysis 10° samples are used. Our results for the angular
observables, normalized to the decay width, are compiled
in Table III. We single out the branching ratio, which
appears to be the most immediate candidate for upcoming
measurement. We present our results in units of |V,,|72,

LS

1.0

ImCy g
(=)
o
T

—0.5 Foen

—10F-

) i i ; i ;
-15 —-1.0 -0.5 0.0 05 1.0 1.5
RCCVR

—1.5

Contours of the 68% (dark orange area) and 95% (orange area) probability regions for the Wilson coefficients

Cy; and Cy y as obtained from our fit in scenario “comp”. See the text for details. The black diamond marks the SM point.
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TABLE III. Estimates for the normalized nonvanishing
angular observables in the SM. The integration ranges are
(@) 1GeV?<g?><6GeV?, (b) 14.18GeV?<q?><19.71 GeV?,
and (c) 0.02 GeV? < ¢ < 19.71 GeV?. We normalize the in-
tegrated angular observables (J,) to the partially integrated decay
width (I') for the same integration range.

PHYSICAL REVIEW D 92, 034013 (2015)

TABLE IV. Estimates for the nonvanishing angular observables
J, in the SM + SM’ basis for real-valued Wilson coefficients.
Constraints on the Wilson coefficient are taken from data on
exclusive semileptonic b — u transitions, see text. The integration
ranges are (a) 1 GeV? <¢?> <6 GeV?, (b) 14.18 GeV? <
g*> <19.71 GeV?, and (c) 0.02 GeV? < ¢> < 19.71 GeV?. We
normalize the angular observables to the partially integrated
decays width (T'). Note that the quoted sign for the angular
observables Js and J, corresponds to the SM-like solution (31)
with dominating left-handed current. For the solution (32), one

(J,)/(0)

n (a) (b) (©)

Is 0.14410020 0.3680.008 0.28370038
lc 0.558+0927 0.26019:99% 0.37310:939
2s 0.048-0007 0.123703% 0.094+0:006
2¢ —~0.558:0027 ~0.260+0910 —0.373%00%
3 —0.01079:5% —0.12910:5%7 -0.061105%
4 0.168+0009 0.22040903 0.198:0004
5 —0.30475051 —0.2425506% 029470500
6s —0.189+0:024 —0.40713913 —0.3461005%

which is convenient to extract |V, | from future data. Our
results read

simply has to flip the sign of J5 and J,.

(Ja)/(0)

n (a) (b) (c)

Is 0.132:0025 0.36200% 0.2725 031
Ie 0.574+0023 0.26810913 0.387:00%
2s 0.044 3008 0.12179:003 0.091-3%07
2¢ —0.57470053 —0.26879911 —0.387+99%28
3 -0.022590% —0.15110918 —0.08210:929
4 0.171+0009 0.228+0007 0.207:000%
5 —0.27110933 -0.2211923 -0.26410921
6s —0.1721093% -0.37010932 -0.3124003!

6 GeV? dB
/ dg® 55 = (S08LE) V| 2,
1 GeV? q
max dB
dg> — = (8.50102)| V|2,
A4.18 GeV? a dg? ( 0.32)| bl
T dB
/ dg? 5 = (2725276 Vi| 2. (38)
qz q

min

In the above, g2, = 0.02, and gh, = (Mp — My )*.

2. SM + SM’ scenario

Second, we consider the interesting prospect of NP
effects entering the b — u transitions, which, according
to the discussion in the previous subsection, cannot yet
be ruled out. Based upon our model comparison, we choose
to give predictions for the scenario “real” only. In order
to investigate the NP effects on the angular observables in
B, - K*¢i,, we compute the joint predictive distribution
that arises from both posteriors P(5A3|data) and

P(éFF|theory). Our findings are listed in Table IV for
our three nominal choices of g? bins. In addition, we find
for the partially integrated branching ratios in the scenario
“real’$

6 GeV? dB
/ dqz—2 =(95+19) x 1079,
1 GeV? dg

rznax dB
/q dg? < = (155 £0.19) x 107,
1

4.18 GeV? q

g’laX dB
/q dq2—2 = (4.92£0.69) x 1074, (39)

0.02 GeV? dg

We also consider suitable ratios of partial decay widths in
By — K*"u~p, over either the B — zty~p, or B~ - 771,
widths. We define three such ratios,

Grax 3,21 AL|2 N A
o di SIASP 3 -0y,
°TrB —-tp,) (B —t0)
hax 12| AL|2 . .
- qui]ill dq |A”| _ 8J1T - 12‘]3
B~ —>77o,) (B -r11,)
Goax 1,2 AL |2 A .
- dgiAf] 87, +12J;

R=T@ S o) or@ —au) 0

where, as already explained above, we only use the LCSR-
accessible part of the BY — 7 "D, phase space,

_ - 12Gev? _dI'(B® - ntu~1,)
(T(B* > ntup,)) = /qz dq? i £

(41)

The ratios INQOYH’ | are independent of NP effects in this
scenario. We find numerically

Ry = 2.007037,
Ry = 1361011,
R, =0.791018, (42)

where the uncertainties are purely due to the imprecise
theoretical knowledge of the B; — K* form factors, the
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B — 7 form factors and the B-meson decay constant. Here,
correlation information among the various hadronic matrix
elements would help in reducing these uncertainties.

V. CONCLUSIONS

The angular analysis of exclusive B, — K**(— Kn)¢i,
decays provides a powerful tool to measure the CKM
element |V ;| in the SM and to constrain NP contributions
to the underlying semileptonic b — uf, transition. In this
article, we have identified relations among the angular
observables that serve as null tests of the SM. Furthermore,
we have constructed optimized observables where, also in
the presence of NP, the dependence on either the hadronic
form factor or the short-distance coefficients drops out. The
fact that the same secondary decay, K* — K, is used for
the angular analysis of the rare B — K*# ¢~ decay can be
phenomenologically exploited by measuring certain ratios
R, of angular observables from both decays. In the limit
where nonfactorizable effects in B — K*£7£~ as well as
SU(3), symmetry corrections to form-factor ratios can be
neglected, the ratios R,, are only sensitive to short-distance
coefficients. In particular, we have shown that in this way
one can directly access the g> dependence of the effective
Wilson coefficient function C§t(¢?) in B — K*¢¢-
transitions.

We have combined presently available experimental data
on inclusive and exclusive leptonic and semileptonic b — u
transitions with theoretical information on hadronic form
factors and decay constants, thereby obtaining detailed
numerical estimates for angular observables and partially
integrated decay widths in B, — K**(— Kr)£D,. Here, we
also allowed for the presence of right-handed currents that
could arise from physics beyond the SM. Using a Bayesian
approach for the statistical treatment of theoretical uncer-
tainties, we have found that—despite the present tensions
between different |V ;| determinations—the SM is still
more efficient in describing the experimental data than
its right-handed extension. In a simultaneous SM fit to
B’ —» 7n*u~D, (using light-cone sum rule results for low
dilepton mass), B~ — 7”7, and B — X ,fv, data, we find
|Vup| = (4.07 +0.20) x 10~ with a p-value of 91%.

On the other hand, right-handed contributions cannot be
excluded either. In a SM-like scenario with dominating left-
handed currents, we found that the ratio of right-handed
over left-handed currets is constrained to <10%. Since the
decay rates alone are invariant under parity transformations,
a second solution, with the role of left-and right-handed
quark currents interchanged, is always present.3 Again,
some of the angular observables in B, — K**(— Kx)¢i,,
e.g. the leptonic forward-backward asymmetry, are “par-
ity”’-odd and can thus unambiguously test the (dominating)

*Notice that the lepton current with a light SM-like neutrino is
always considered to be left-handed only.

PHYSICAL REVIEW D 92, 034013 (2015)

left-handed nature of semileptonic b — u currents. In this
case, one would obtain strong constraints on the flavor
sector of NP models with generic right-handed currents.
(For a recent attempt to construct a left-right symmetric
NP model based on the Pati-Salam gauge group, which can
accommodate naturally small right-handed b — u currents,
see [34].)

A crucial ingredient of our analysis has been the
implementation of hadronic uncertainties. Improvements
of our theoretical understanding of nonperturbative QCD
effects (see also note added below) would lead to more
stringent constraints on the value of |V ;| and the possible
size of right-handed b — u currents. In particular, predic-
tions from lattice or light-cone sum rules for form-factor
ratios with B and B, initial states (including correlations
between input parameters), and similarly between B — =«
form factors and the B-meson decay constant, would be
helpful in this respect.
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Note added.—Recently, the LHCb Collaboration measured
the ratio of the exclusive semileptonic branching fractions
of A, —» pu~v, and A, - A u"1, [35,36]. Assuming SM-
like b — cu~ 0, transitions, with knowledge of the magni-
tude of |V,| and using information on the relevant form
factors [37], this ratio can be used to extract the branching
fraction B(A, — pu~0,). As such, the branching fraction is
a very powerful new constraint. However, in light of the
present tension in the determination of V., from both
inclusive and exclusive b — ¢£v, decays, and in order to
follow the logical line of this article, the new LHCb
measurement should only be used in a setup that accounts
for NP in both » — u and b — c transitions.

Another article [38] that was recently published provides
updated LCSR results for the hadronic form factors for
B, — K* transitions, which include correlation information
among the form factors. This development will help to
further reduce theory uncertainties for this decay.

In recent lattice studies of the B — z form factors
[39,40], the correlation matrix between the relevant had-
ronic fit parameters has also been provided. This will also
allow to include the high-g? data for the B — 77, decay in
our statistical procedure, which could and should be used
in future updates of our results.
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APPENDIX A: FORM FACTORS

There are in general seven independent hadronic form
factors for B, — K* transitions. Commonly, these are
denoted as V, Ay;,, T1,3, see e.g. the definition in
[41]. For our purpose, it is more convenient to start with
a definition of form factors in a helicity basis,

i

F,= m(l’f*(k, )| (1 —ys)b|By(p)).
i) _
Fo= ;T{‘Tw*(k, ) lie (1 = 75)b|By(p)).
Bx
i q2 * = & D
Fi=—0 (K*(k,n)|ug; (1 —ys)b|Bs(p)), (A1)
B.Y
and
1 . _
Fi = e (K (kn)|ao,,elsq (1 +75)b|B(p)).
B,
1 _
Fl'=————(K*(k,n)|uc,e " q"(1 +ys)b|Bs(p)),
0 MBS\/?< (k,n)|ao,eq q* (1 +7vs5)b|By(p))
(A2)

which is related to the one proposed in [42]. However,
compared to [42], we have chosen a normalization con-
vention such that all form factors are finite in the limit
q* > t_= (Mg — Mg-)?, and nonzero in the limit ¢> — 0.
In the above definition, 7 denotes the physical polarization
of the K* meson, and ¢ stands for an auxiliary polarization
vector of the dilepton system with polarization states
t,+1,0. Notice that the form factor for the pseudoscalar
current is not independent, but from the equations of
motion can be related to F,,

2
BS‘

K*(k,n)|iysb|B,) = —i ————
(K- (ko sblB) = =i

F.  (A3)

Instead of the helicity form factors F ., we will use the
linear combinations

]
Fy=—(F-£F,). Fj,=

V2

1
7 (FT £ FT),
(A4)
which simplify the analytical expressions for the angular

observables. The explicit relations between our form-factor
basis and the traditional one read

F, = \/ﬂ \%
+ Mg (Mp + Mg-)

(AS)

for the vector form factor,

PHYSICAL REVIEW D 92, 034013 (2015)

Mp + Mg
F” = \/57& K A
By
(Mp, + My )* (M — M. — q*)A; = 24,

1»

F g
0 2M M3 (Mp + M)
_ 8MyApp
= My, ,
VA
F,=—-Ap (A06)
t M% S
for the axialvector currents, and
22
P =2,
My
FT o \/E(M%?‘ M%{*)
I e 2
BS
o (M} — M%.)(Mp 4 3My. — q*)T, — AT
0 2M My (M3 — M%)
AM T
_ K*123 (A7)
Mp + Mg

for the tensor current. In the above equations, the form
factors Ay, and T3 are defined as in [43].

The form factors fulfill endpoint relations [42,44]4 which
in our convention read

lim F| = lim F, =0,

i q*—t_

fim F1__V2Ms,

= , (A8)
g-i.Fo  Mp — M-

with 1, = (Mg £ M x*)*. We will use these relations for
our form-factor parametrization in the numerical fit. To this
end, we consider a modified “z expansion” and write

V2
T M3 — M.
X [14 b, (z(g t9) — 2(0. 1)),
Fio(q*) = P(¢*, M3, )Fy0(0)
X [1+ by o(z(q% 19) — 2(0,10))]
Rz
- M} - M.
x [1+ b,(2(4%, 1) — (0, 19))].

Fi(q%) P(q*, M3.)F 1 (0)

F(q%) P(q*, M3)F,(0)
(A9)

Here, the prefactors contain global kinematic factors, the
form-factor normalization at ¢> = 0, together with the

*Note that the endpoint relation for the 1 form factor in
Appendix B of [42] should read lim2_,, By /By, = 0.
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leading pole behavior from the lowest resonances above the
semileptonic decay region, P(q>, M?)~! =1 — ¢*/M?>. The
remaining ¢> dependence for each form factor is para-
metrized by a shape parameter b;. The variable z(g>, t) is
obtained from the conformal mapping (see e.g. [45-47]),

dap)y=Yr—a= Vi = (A10)

PHYSICAL REVIEW D 92, 034013 (2015)

Here we choose t, = 1, — \/t,(t, — t_) which minimizes
|z| in the decay region. For the resonance masses
we use Mp = 5279 MeV, M- = 5325 MeV and Mp =
5724 MeV [48]. The above parametrization equation (A9)
automatically fulfills the end-point relation equation (A8)
for F,. The end point relation for F/F is fulfilled by
imposing

1\ t+ —da + t+ - b
|
1 Fy(0) |t )
by = 1 1+ by(z(t_, ty) — z(0, ¢ . All
o= s (= e e 1+ P10 = 0. 6) (A1)
|

We fit the B; — K™ helicity form factors F; o to the  0<F ;,(0) <1, -10<bh, <0, -5 < b <+5.
nine constraints listed in Tables V and VI. Our fit uses five (A13)

parameters,

O = (F1(0), Fy(0), Fo(0), b1, by), (A12)

which represent the three normalizations F J_’”,O(q2 =0), as
well as two independent shape parameters b | . As a priori

probability PO(éFF) we choose uncorrelated uniform dis-
tributions with a generous support [to be compared with
(A15) below],

TABLE V. Theory inputs for the B, - K* form-factor fits.
Form-factor values at ¢g> = 0 are taken from LCSR calculations
in [41]; values at g*> = 15 GeV? and ¢> = 19.21 GeV? are taken
from lattice QCD simulations [43]. Correlation information for
the lattice QCD inputs. The lattice QCD values and correlations
are produced from the joint PDF given in Table XXIX of [43]
using 5 x 103 samples.

q* [GeV?] 0 15.00 19.21
V(g?) 0.311+£0.026  0.872 £0.066  1.722 £ 0.062
A(q?) 0.233+£0.023  0.427 +£0.015  0.548 £ 0.015
Ay (q?) 0.181 +0.025
An(g?) 0.342 +0.016  0.408 +0.016
TABLE VI. Theory inputs for the B, — K* form factor fits.

Correlation information for the lattice QCD inputs. The lattice
QCD values and correlations are produced from the joint PDF
given in Table XXIX of [43] using 5 x 10° samples.

\% A A
¢* [GeV?] 1500 1921 1500 19.21 15.00 19.21
15.00 1.000 0.271 1.000 0.305 1.000 0.334
19.21 1.000 1.000 1.000

The likelihood P(theory|éFF) is constructed as the product
of uncorrelated Gaussian likelihoods for each of the LCSR
results for the form factors V, A| and A,, as well as the joint
multivariate Gaussian likelihood for the lattice QCD
results. All of these are listed in Tables V and VI.

The a posteriori PDF is obtained as usual via Bayes’
theorem,

P(theory|9pp)P0(9Fp)
J dOggP(theory|Ogg) Py (Opr)

P(Ogg|theory) = (Al14)

For all applications here and in Sec. IV, we draw 10°
samples from the a posteriori distribution.

The best-fit point, and the 1D-marginalized minimal
intervals at 68% probability are found to be

F (0)=0349+£0037, b, =-49Y,
Fy(0) =0379£0.031, by = +0.07 £ 0.40,
Fy(0) = 0.314 £ 0.041. (A15)

Although the 1D-marginalized distributions are symmetric
and resemble Gaussian distributions, we find that the
distribution in Eq. (A14) is distinctly non-Gaussian. We
therefore use the posterior samples to carry out the
uncertainty propagation.

APPENDIX B: B, - K*(— Kn)¢/~, DECAY
AMPLITUDE

In this appendix we give details on the parametrization
of the matrix element for the decay B, — K**¢~,, with
the subsequent decay K** — (Kz)*. We decompose the
matrix element as in [9],
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M = F{Xs[tv] + Xp[Cyst]

+ Xy [ra) + X4[r,rs) + X7 (€00}, (BI)
with the prefactor
F = i\/iGFVubgK*KnDK*lkRFL (B2)

and |kgp| = /A(MZ., M%, M%) /2M .. In the small-width
approximation we replace the K* resonance by

1
Dy k2 2 =~
| K( )| (kZ_M%(*)2+M2*F%<*
oo = M) (B3)

where g+ denotes the total decay width of the K* meson.
Since 'y =T [K* - Kz| to very good approximation,
we use

Co. — |9K*—>Kﬂ|2|kRF‘3

B4
48z M %* (B4)

Our parametrization of the hadronic matrix element of
B — V(— PP,)¢ D, decays differs from the one in [9]
due to different conventions for the Levi-Civita tensor,
the phase convention for the polarization vectors, and the
fact that in this decay only left-handed lepton currents
contribute. We use

NXg = %cos 0,AL — _NXp, (B5)
and
NX! = —NX*
=+ i cos Oye’(0)Af
i : i
+gsin Oye'(+)etP[AL + Af]
i .
+gsin Oye'(—)e (A} — Af], (B6)
and

sin 0\/

NX7 = cosOyet (+)e’ (—)A)L + 5 (1) (+)et9A,,

e (1)t (=)e™ A,

e"(0)e" (+)e Ay

4 (0)¢(=)e™ Ag). (B7)
Using the normalization constant N as given in Eq. (10) and
the general operator basis (2), we obtain for the individual
amplitude contributions

PHYSICAL REVIEW D 92, 034013 (2015)
2

2 (Cy L

vV
Ai = +4NMp (Cyr +Cyr)F (%),
AL = —4NMy (Cy.. — Cv2)Fy (@),

- CV,R)FO(‘JZ),

Al = —4N[ M 5 5 (Cvr —Cvr)
2
By 2
Y5 (0. - cm] X (B8)
my,
and
Ay = +8NMy Cng(qz),
,L74fN ‘CTFT( 2),
Vv
M2
Ay = 4V2N—=CrFl(q?). (B9)

Ve

APPENDIX C: ANGULAR OBSERVABLES
FOR B — V£v,

In the limit m, — 0, the angular observables J, read

Tio = o AL+ AR + 16JAgy P + 1614, P
Tie = SIAB + 2144 + 814y, 7,
I, %[\A P AL = 1610~ 1614,
T =—= HASI2 — 8|4y ],
%[\A P = JALP + 16/Ag [ - 164,

Jy = ‘hs/iRe{A(L)Aﬁ* - 8V24), A5} (C1)
and

Js = Z%Re{AgAﬁ +2V240,AF},

s 3Re{ALAL*}

Joc = —6Re{A | A}*},

J, = z\g/ilm{A(L)Aﬁ* —2V2A, ALY,

Jg = 4?ﬁlm{AgAﬁ*},

= 2 im{ataf ). (2)
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