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We study the dependence on the quark mass of the compositeness of the lowest-lying odd parity hyperon
states. Thus, we pay attention to Λ-like states in the strange, charm, and beauty sectors which are
dynamically generated using a unitarized meson-baryon model. In the strange sector we use a SU(6)
extension of the Weinberg-Tomozawa meson-baryon interaction, and we further implement the heavy-
quark spin symmetry to construct the meson-baryon interaction when charmed or beauty hadrons are
involved. In the three examined flavor sectors, we obtain two JP ¼ 1=2− and one JP ¼ 3=2− Λ states. We
find that the Λ states which are bound states (the three Λb) or narrow resonances [one Λð1405Þ and one
Λcð2595Þ] are well described as molecular states composed of s-wave meson-baryon pairs. The 1

2
− wide

Λð1405Þ and Λcð2595Þ as well as the 3
2
− Λð1520Þ and Λcð2625Þ states display smaller compositeness so

they would require new mechanisms, such as d-wave interactions.
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I. INTRODUCTION

One of the chief theoretical efforts in hadron physics is to
understand the nature of hadrons, whether they can be
primarily explained within the quark-model picture as
multiquark states or mainly qualify as dynamically gen-
erated states via hadron-hadron scattering processes. In
particular, in the last years there has been a growing interest
in the properties of strange and charmed baryons in
connection with many experiments such as the ongoing
CLEO [1], Belle [2], BES [3], BABAR [4] as well as the
planned PANDA [5] or the J-PARC upgrade [6]. Also,
the LHCb Collaboration at CERN has been exploring in
the recent years an almost terra incognita in the spectros-
copy of baryons with the beauty degree of freedom.
Results on beauty baryonic states, such as the Λb excited
states [7], have been reported, stimulating the theoretical
work to understand the properties of the newly discovered
states.
Recent approaches based on unitarized coupled-channels

methods have proven to be very successful in describing the
existing experimental data in the charmed [8–25] and
beauty baryonic sectors [26,27]. Most of these models
emerge as the theoretical effort extends from the strange to
charmed and beauty sectors, partially motivated by the
parallelism between the Λð1405Þ and the Λcð2595Þ as well
as the Λbð5912Þ states. Of special importance are the
symmetries that are implemented in the hadronic models.
While chiral symmetry should be implemented in the

strangeness sector, heavy-quark spin symmetry (HQSS)
[28–30] appears naturally as we deal with systems that
include charmed and beauty degrees of freedom [31–41].
The use of the effective models combined with unitarity

constraints in coupled channels allows us to explain many
baryons in terms of meson-baryon interactions, interpreting
them as composite or dynamically generated states. The
ultimate goal is to determine the degree of “compositeness”
and the “genuine” contributions of the given state. The
formalism was developed by Weinberg in Ref. [42], and
later applied to the deuteron in [43], showing that the
deuteron can be fully understood as a proton-neutron bound
state. More recent works have extended this analysis from
bound states to resonances and from s-wave to higher
partial waves [44–51]. The theoretical aspects have been
further discussed in [52–54].
The present paper is focused on the analysis of the

compositeness of the lowest-lying JP ¼ 1=2− and JP ¼
3=2− Λ states going from the strange to the beauty sectors.1

The aim is to shed some light on the nature of newly
discovered excited Λc and Λb by exploiting the similarities
with the strange Λ states. We also address any existing
regularity in the quark mass dependence of the compos-
iteness of these excited baryons.
There exist previous studies in the strange sector. The

Λð1520Þ has been recently discussed in Ref. [55], while the

1From here on we shall use Λ to indistinctly denote the Λ, Λc
and Λb states.
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compositeness and elementariness of the two Λð1405Þ
states have been evaluated within the chiral unitarity model
(Goldstone boson-baryon chiral perturbation potential used
as a kernel of a Bethe-Salpeter equation) at leading order
(Weinberg-Tomozawa interaction) in Ref. [56] and incor-
porating next-to-leading chiral corrections [57]. While the
results reported in Refs. [56,57] are in qualitative agree-
ment with those obtained in this work, there are some
appreciable differences between our approach and that
followed in [55] for the Λð1520Þ resonance, namely the
consideration of d-wave interactions, whose effects will be
further investigated.
The structure of this work is as follows. In Sec. II we

summarize the model we are using to describe meson-
baryon interactions and present the dynamically-generated
Λ resonances in the strange, charm and beauty sectors. In
Sec. III we use the generalized Weinberg’s sum rule to
estimate the importance of the different channels in the
generated Λ states. With this analysis, we give an educated
guess of the compositeness of these states. Finally, some
conclusions are addressed in Sec. IV. In Appendix A we
present the analytical expression of compositeness on the
first and second Riemann sheets, whereas in Appendix B
the compositeness rule is derived.

II. DYNAMICALLY GENERATED STRANGE,
CHARM AND BEAUTY Λ STATES

In order to study their compositeness we construct the Λ
(isoscalar) states in the strange, charm or beauty sectors as
resonances or bound states through a unitarized coupled-
channels approach. The channels are composed of meson-
baryon pairs interacting in s-wave. We include all ground
state mesons with spin-parity 0− or 1−, and ground state
baryons with 1=2þ and 3=2þ. For the interaction we take an
extended Weinberg-Tomozawa (WT) interaction developed
in previous works, for the three light flavors in [58–63] and
for heavy flavors in [31–35]. The model enjoys chiral and
spin-flavor symmetries in the light quark sector and HQSS
in the heavy-quark sector.
For completeness we briefly summarize the interaction

model here. Further information can be found in
[35,58,59,61,63]. The old quark model based on SU(6)
spin-flavor symmetry [64–66] enjoyed several successes in
correlating hadronic data [67], although eventually it was
abandoned in favor of the emerging QCD. In the late
nineties it was found that, for baryons, spin-flavor sym-
metry becomes in fact exact in the limit of large numbers of
colors [68]. For the three light flavors the ground state
baryons, in this limit, are the 1=2þ octet of the nucleon and
the 3=2þ decuplet of the Δ resonance, and together form
the representation 56 of SU(6). No similar result holds for
mesons, which fall in the representations 35 and 1 of SU(6),
corresponding to the 0− and 1− ground state mesons. The
significantly different mass of pion and ρ mesons would
indicate that spin-flavor is badly broken in this meson

sector. However, in two insightful papers [69,70] Caldi and
Pagels showed that the vector mesons could be regarded as
(dormant) Goldstone boson of the spin-flavor extended
chiral group (SUð6ÞL × SUð6ÞR). This symmetry would
exist in the nonrelativistic limit and it is explicitly broken
by relativistic corrections which are responsible for the
vector meson masses. Several consequences of the Caldi-
Pagels scenario have been verified and in particular the
collective nature of the ρ meson has been exposed in lattice
calculations by Smit [71]. Therefore, while spin-flavor
symmetry is not manifest at the level of meson masses, it
can be expected that it gives valuable guidance for the
classification of the states as well as on the hadronic
interactions. Furthermore, as we will see, this symmetry
blends nicely with the spin-flavor independence in the
heavy quark sector. In order to fix the interaction, we
observe that the WT term completely fixes the low-energy
interaction of pseudo-Nambu-Goldstone bosons off targets
carrying isospin (or in non singlet representations for more
than two flavors) [72,73]. As it turns out, the WT
interaction is consistent with spin-flavor when the pseu-
doscalar mesons are coupled with baryons in the 56, and
moreover, the extension of the WT interaction to include
vector mesons consistently with spin-flavor exists and it is
unique [58,59]. (In retrospective, one can see that this is a
consequence of the unique extension of the chiral group
SUð3ÞL × SUð3ÞR to SUð6ÞL × SUð6ÞR anticipated in
[69,70].) In this way we end up with an interaction in
the light quark sector consistent with chiral symmetry and
spin-flavor symmetry. This approach has shown a reason-
able semiqualitative outcome for excited odd-parity bar-
yonic states as compared to the experimental data [62], and
also for excited even-parity mesons [61,63].
Turning now to the heavy-quark sector, the key

symmetry here is HQSS: in the limit of heavy quark
mass, the QCD interaction becomes independent of the
spin state of the heavy quark [28–30]. The obvious
approach would be to use a similar interaction as for the
light sector with more flavors. Once again, although
SU(4) flavor symmetry is broken at the level of masses it
is routinely used as guidance for the values of the new
couplings. In channels without hidden charm or beauty
(i.e., without cc̄ or bb̄ pairs) the direct extension of the
previous WT interaction to the heavy sector automatically
fulfills HQSS. However, in sectors with hidden charm (or
beauty) the interaction is not directly consistent with
HQSS. The reason is that spin-flavor only guarantees
invariance under spin rotations which are independent for
each flavor, but common to quarks and antiquarks of the
same flavor. Instead, HQSS requires invariance under
independent spin rotations of the heavy quark and the
heavy antiquark. Inspection of the WT interaction shows
that the offending terms come from OZI suppressed
interaction mechanisms involving heavy quark-antiquark
pair creation or annihilation. Once these terms are
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removed the interaction automatically complies with
HQSS. In the process flavor SU(4) is broken [35].
In summary, the model we use to construct the excited

odd-parity baryons nicely fulfills the required symmetries
in the light and heavy sectors. The symmetries are
explicitly broken at the level of masses and decay constants
of the basic hadrons. Due to the underlying group structure
the model possesses no free parameters, except those
induced through hadron loop ultraviolet divergences.
The extended WT meson-baryon interaction, in the

coupled meson-baryon basis with total heavy content
(charm C / beauty B) H, strangeness S, isospin I and spin
J, is given by

VHSIJ
ij ¼ DHSIJ

ij

2
ffiffiffi
s

p
−Mi −Mj

4fifj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei þMi

2Mi

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ej þMj

2Mj

s
;

ð1Þ

where
ffiffiffi
s

p
is the center of mass (CM) energy of the system;

Ei and Mi are, respectively, the CM on-shell energy and
mass of the baryon in the channel i; and fi is the decay
constant of the meson in the i-channel. Symmetry breaking
effects are introduced by using physical masses and decay
constants. The masses and decay constants used in this
work are shown in Table I. The masses shown correspond
to the arithmetic mean of the different isospin partners.
The DHSIJ

ij are the matrix elements coming from the
group structure of the extended WT interaction [35]. The

matrix elements required for the Λð1520Þ sector, with
quantum numbers C¼0;B¼0;S¼−1;I¼0;JP¼3=2−,
can be found in Eq. (45) of Ref. [60]. Those for the
Λcð2595Þ, with C ¼ 1; B ¼ 0; S ¼ 0; I ¼ 0; JP ¼ 1=2−

and Λcð2625Þ, with JP ¼ 3=2−, can be found in
Tables XV and XVIII of Ref. [31], respectively. The same
coefficients apply to the bottom case. Finally, the matrix
elements for the Λð1405Þ sector, with quantum numbers
C ¼ 0; B ¼ 0; S ¼ −1; I ¼ 0; JP ¼ 1=2−, can be extracted
following the directions of Appendix A of Ref. [62] and the
conventions in [74]. For convenience these matrix elements
are explicitly displayed in Table II.
In order to obtain the unitarized T-matrix, we solve the

on-shell factorized form of the Bethe-Salpeter equation
using the matrix VHSIJ as kernel

THSIJ ¼ ð1 − VHSIJGHSIJÞ−1VHSIJ; ð2Þ
where GHSIJ is a diagonal matrix containing the meson-
baryon propagator in each channel. Explicitly,

GHSIJ
i ð ffiffiffi

s
p

; mi;MiÞ

¼ i2Mi

Z
d4q
ð2πÞ4

1

q2 −m2
i

1

ðP − qÞ2 −M2
i
; ð3Þ

beingMiðmiÞ the baryon (meson) mass of the channel i and
Pμ the total four-momentum, which in the CM frame is
given by Pμ

CM ¼ ð ffiffiffi
s

p
; 0Þ. The loop function is explicitly

given in Ref. [75] and in Appendix A.

TABLE I. Baryon masses,Mi, meson masses, mi, and meson decay constants, fi, (in MeV) used throughout this work. The widths in
MeV units, ΓR, used in the convolutions [Eq. (4)] are also provided. The masses and decay constants are taken from Refs. [31,34]. The
SUð6Þ × SUCð2Þ × UCð1Þ and SUð3Þ × SUð2Þ labels are displayed as well (for simplicity we do not explicitly give the spin of the heavy
quark sector, since it is trivially 0 or 1=2). The last column indicates the HQSS multiplets. Members of a doublet are placed in
consecutive rows.

Meson Mass Width
Decay
constant SUð6ÞUCð1Þ SUð3Þ2Jþ1 HQSS Baryon Mass Width SUð6ÞUCð1Þ SUð3Þ2Jþ1 HQSS

π 138.04 92.4 350 81 singlet N 938.92 560 82 singlet
K 495.65 113.0 350 81 singlet Λ 1115.68 560 82 singlet
η 547.86 111.0 350 81 singlet Σ 1193.15 560 82 singlet
ρ 775.49 150 153.0 350 83 singlet Ξ 1318.29 560 82 singlet
K� 893.88 50 153.0 350 83 singlet Σ� 1382.80 35 560 104 singlet
ω 782.65 138.0 350 ideal singlet Ξ� 1531.80 560 104 singlet
ϕ 1019.46 163.0 350 ideal singlet Λc 2286.46 211 3�2 singlet
η0 957.78 111.0 10 11 singlet Ξc 2469.34 211 3�2 singlet
D 1867.23 157.4 6�1 3�1 doublet Σc 2453.54 211 62 doublet
D� 2008.61 fD 6�1 3�3 doublet Σ�

c 2518.07 211 64 doublet
Ds 1968.30 193.7 6�1 3�1 doublet Ξ0

c 2576.75 211 62 doublet
D�

s 2112.10 fDs
6�1 3�3 doublet Ξ�

c 2645.90 211 64 doublet
B 5279.42 133.6 6�1 3�1 doublet Λb 5619.50 211 32 singlet
B� 5325.20 fB 6�1 3�3 doublet Ξb 5794.00 211 3�2 singlet
Bs 5366.77 159.1 6�1 3�1 doublet Σb 5813.40 211 62 doublet
B�
s 5415.40 fBs

6�1 3�3 doublet Σ�
b 5833.60 211 64 doublet

Ξ0
b 5926.00 211 62 doublet

Ξ�
b 5949.30 211 64 doublet
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When the meson and/or the baryon in the intermediate
state is not a stable particle, we convolute the meson-
baryon propagator (loop) with the corresponding hadronic
spectral function, as done in Refs. [32,76,77]. Thus, in this
case, the loop function G is substituted by Ĝ, which is
defined as the convolution of the loop function G with the
spectral function of this intermediate resonant state (R),

ĜHSIJð ffiffiffi
s

p
; m;MR;ΓRÞ

¼ 1

N

Z ðMRþ2ΓRÞ2

ðMR−2ΓRÞ2
dM̂2

�
−
1

π

�
Im

�
1

M̂2 −M2
R þ iMRΓR

�

× GHSIJð ffiffiffi
s

p
; m; M̂Þ; ð4Þ

being N a normalization factor that reads,

N ¼
Z ðMRþ2ΓRÞ2

ðMR−2ΓRÞ2
dM̂2

�
−
1

π

�
Im

�
1

M̂2 −M2
R þ iMRΓR

�
:

ð5Þ
The meson-baryon propagator is logarithmically ultra-

violet divergent, thus, it needs to be renormalized. This has
been done by a subtraction point regularization such that

GHSIJ
ii ð ffiffiffi

s
p Þ ¼ 0 at

ffiffiffi
s

p ¼ μHSI; ð6Þ

with

μHSI ¼ ffiffiffi
α

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

th þM2
th

q
; ð7Þ

where mth and Mth, are, respectively, the masses of the
meson and baryon producing the lowest threshold (minimal
value ofmth þMth) for eachHSI sector, independent of the

angular momentum J, and α ¼ 1. This renormalization
scheme was first proposed in Refs. [12,13] and it was
successfully used in Refs. [31–35,78]. A recent discussion
on the regularization method can be found in Ref. [79]. The
overall results obtained by the above choice of subtraction
point is similar to the observed spectrum of low-lying
hadronic resonances. A more precise agreement can be
achieved by suitably shifting the subtraction point. To do so
one can choose a value of the parameter α different from
unity [31,34]. Note that, other than this, the model has no
free parameters.
The dynamically-generated baryon states appear as poles

of the scattering amplitudes on the complex energy
ffiffiffi
s

p
plane. The poles of the scattering amplitude on the first
Riemann sheet that appear on the real axis below threshold
are interpreted as bound states. The poles that are found on
the second Riemann sheet below the real axis and above
threshold are identified with resonances.2 The mass and the
width of the state can be found from the position of the pole
on the complex energy plane. Close to the pole, the
scattering amplitude behaves as

THSIJ
ij ðsÞ ≈ gigjffiffiffi

s
p

− ffiffiffiffiffi
sR

p : ð8Þ

The mass MR and width ΓR of the state result fromffiffiffiffiffi
sR

p ¼ MR − iΓR=2, while gj (complex in general) is the
coupling of the state to the j-channel.
The calculated positions and widths of the lowest-lying

Λ states in the strange, charm and beauty sectors together

TABLE II. Matrix elements Dij for the Λð1405Þ sector: C ¼ B ¼ 0; S ¼ −1; I ¼ 0; JP ¼ 1=2−.

Σπ NK̄ Λη ΞK NK̄� Λω Σρ Λϕ Σ�ρ ΞK� Ξ�K�

Σπ −4
ffiffi
3
2

q
0 −

ffiffi
3
2

q ffiffi
1
2

q
0

ffiffiffiffi
64
3

q
0

ffiffiffiffi
32
3

q ffiffiffiffi
25
2

q
2

NK̄
ffiffi
3
2

q
−3 −

ffiffi
9
2

q
0

ffiffiffiffiffi
27

p ffiffi
9
2

q ffiffi
1
2

q
3 2 0 0

Λη 0 −
ffiffi
9
2

q
0

ffiffi
9
2

q ffiffiffiffi
27
2

q
0 0 0 0 −

ffiffi
3
2

q ffiffiffiffiffi
12

p

ΞK −
ffiffi
3
2

q
0

ffiffi
9
2

q
−3 0 −

ffiffi
1
2

q ffiffiffiffi
25
2

q
−1 −2

ffiffiffi
3

p
0

NK̄� ffiffi
1
2

q ffiffiffiffiffi
27

p ffiffiffiffi
27
2

q
0 −9

ffiffi
3
2

q ffiffiffiffi
25
6

q
−

ffiffiffiffiffi
27

p
−

ffiffi
4
3

q
0 0

Λω 0
ffiffi
9
2

q
0 −

ffiffi
1
2

q ffiffi
3
2

q
0 4 0

ffiffiffi
8

p ffiffiffiffi
25
6

q ffiffi
4
3

q
Σρ

ffiffiffiffi
64
3

q ffiffi
1
2

q
0

ffiffiffiffi
25
2

q ffiffiffiffi
25
6

q
4 − 20

3
0

ffiffi
8
9

q
−

ffiffiffiffiffiffi
169
6

q ffiffi
4
3

q
Λϕ 0 3 0 −1 −

ffiffiffiffiffi
27

p
0 0 −4 0

ffiffi
1
3

q
−

ffiffi
8
3

q
Σ�ρ

ffiffiffiffi
32
3

q
2 0 −2 −

ffiffi
4
3

q ffiffiffi
8

p ffiffi
8
9

q
0 − 22

3 −
ffiffi
4
3

q
−

ffiffiffiffiffiffi
128
3

q
ΞK� ffiffiffiffi

25
2

q
0 −

ffiffi
3
2

q ffiffiffi
3

p
0

ffiffiffiffi
25
6

q
−

ffiffiffiffiffiffi
169
6

q ffiffi
1
3

q
−

ffiffi
4
3

q
− 19

3 −
ffiffiffiffi
32
9

q
Ξ�K� 2 0

ffiffiffiffiffi
12

p
0 0

ffiffi
4
3

q ffiffi
4
3

q
−

ffiffi
8
3

q
−

ffiffiffiffiffiffi
128
3

q
−

ffiffiffiffi
32
9

q
− 14

3

2For convenience we will often use the word resonance for all
molecular states discussed in this work, whether they are bound
states or proper resonances.
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with their couplings, gi, to the different meson-baryon
channels are shown in Tables III, IV and V. In the case we
want to refer to a specific flavor we will write Λs, Λc or Λb.
For each flavor f ¼ s; c; b, the resonances Λf are ordered
by closeness to the πΣf threshold, and they are displayed in
this sequence in the Tables.
We use the convoluted meson-baryon propagator for the

nonstable intermediate particles (namely, ρ, K� and K̄�
mesons and Σ� baryon) in the study of the strange sector for
the Λð1405Þ and Λð1520Þ resonances, in a similar manner
as done in Ref. [62]. In Ref. [33], it was reported that the
convolution did not affect the dynamically generated Λc
states in a substantial manner as the dominant convoluted
meson-baryon channels were far from the position of the
heavy Λc states.
In view of their mass position and dominant couplings,

we assign these states to the experimental strange

[Λð1405Þ, Λð1520Þ], charmed [Λcð2595, Λcð2625Þ] and
beauty [Λbð5912Þ, Λbð5920Þ] states, similarly to
Refs. [31,33,34,62]. Note, however, that in Refs. [31,34]
the subtraction point was slightly modified in order to fix
the position of the dynamically generated states to the
experimental predictions of the Λcð2595Þ and Λbð5912Þ,
respectively.
Three Λ states are obtained in each of the flavor sectors,

two of them with JP ¼ 1=2− and one with JP ¼ 3=2−. The
well-known two-pole pattern of the Λð1405Þ [78,81,82] is
reproduced for the Λcð2595Þ and Λbð5912Þ. Indeed, for
JP ¼ 1=2− we find a state that strongly couples to NM and
NM� channels, with ðM;M�Þ ¼ ðK̄; K̄�Þ, ðD;D�Þ or
ðB̄; B̄�Þ for strange, charm or beauty sectors, respectively.
The K̄N dominance in the Λð1405Þ has gotten some
support from lattice QCD calculations [83]. In addition,
a second state 1=2− coupling to Bπ, with B ¼ Σ, Σc or Σb is

TABLE III. Calculated masses, widths and compositeness of the negative-parity Λ states in the strange sector. The coupling constants
and the weights of the various channels are also displayed. The main numbers refer to the default value α ¼ 1, while the numbers in
parenthesis refer to the same quantities computed with a subtraction point chosen so that the masses are close to the experimental ones
[80]. For this purpose similar masses have been adopted for the two Λð1

2
−Þ states. For each Λ state the largest compositeness weights

have been highlighted with boldface.

State JP
ffiffiffi
α

p
MR ΓR 1 − Z Channel jgij gi Xi ðXiÞ

Λð1405Þ 1
2
− 1 1430.0 5.5 0.887 πΣ 0.50 0.19þ 0.46i −0.008 ð−0.006Þ

(0.867) (1405.1) (12.8) (0.772) K̄N 1.78 −1.76 − 0.24i 0.795 (0.597)
ηΛ 0.94 −0.94 − 0.06i 0.023 (0.040)
KΞ 0.10 0.05þ 0.09i 0.000 (0.000)
K̄�N 2.18 2.18þ 0.06i 0.066 (0.126)
ωΛ 0.48 0.48þ 0.06i 0.003 (0.004)
ρΣ 0.34 0.18 − 0.29i −0.001 ð−0.003Þ
ϕΛ 0.88 0.88þ 0.05i 0.007 (0.013)
ρΣ� 0.40 0.39 − 0.09i 0.002 (0.002)
K�Ξ 0.17 0.03 − 0.17i 0.000 ð−0.001Þ
K�Ξ� 0.06 0.05 − 0.03i 0.000 (0.000)

Λð1405Þ 1
2
− 1 1373.0 170.0 0.332 πΣ 2.62 2.07 − 1.60i 0.353 (0.586)

(1.12) (1405.0) (376.1) (0.522) K̄N 1.03 −0.78þ 0.67i −0.024 ð−0.018Þ
ηΛ 0.21 0.07þ 0.20i −0.001 (0.001)
KΞ 0.46 0.29 − 0.36i −0.001 ð−0.005Þ
K̄�N 0.57 −0.51þ 0.26i 0.003 (0.004)
ωΛ 0.24 −0.02 − 0.24i −0.001 (0.002)
ρΣ 1.68 −1.37þ 0.97i 0.006 ð−0.023Þ
ϕΛ 0.17 −0.07 − 0.16i 0.000 (0.000)
ρΣ� 0.66 −0.45þ 0.48i −0.001 ð−0.011Þ
K�Ξ 0.93 −0.63þ 0.69i −0.002 ð−0.011Þ
K�Ξ� 0.29 0.01þ 0.29i −0.001 ð−0.003Þ

Λð1520Þ 3
2
− 1 1540.0 74.0 0.274 πΣ� 2.29 2.03 − 1.05i 0.227 (0.109)

(0.780) (1522.7) (25.9) (0.134) K̄�N 0.87 0.84 − 0.23i 0.011 (0.005)
ωΛ 0.40 −0.31þ 0.26i 0.000 (0.001)
ρΣ 1.18 1.09 − 0.46i 0.015 (0.008)
KΞ� 0.63 0.49 − 0.40i 0.001 (0.001)
ϕΛ 0.04 0.02 − 0.03i 0.000 (0.000)
ρΣ� 1.60 1.42 − 0.74i 0.015 (0.009)
K�Ξ 0.55 −0.50þ 0.24i 0.002 (0.001)
K�Ξ� 0.59 0.46 − 0.37i 0.001 (0.000)
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also seen for strangeness, charm or beauty, respectively.
(In what follows we simply refer to these two Λð1

2
−Þ states

as “first” and “second” state, respectively). On the other
hand, the JP ¼ 3=2− states Λcð2625Þ and Λbð5920Þ are
the counterparts in the charm and beauty sectors of
the Λð1520Þ.
In Refs. [31,33,34,62], the coupling constants were

interpreted as a measure of the importance of a channel
in order to determine the molecular nature of the state. For
instance, the Λð1405Þ state close to the scattering line
would be a mixture of K̄N and K̄�N states, while the

second Λð1405Þ state, with a very large decay width, would
be mainly a πΣ state. In the next section, we argue that the
coupling constants, though useful, are not sufficient to
describe the nature of a resonance. Thus, further analyses of
the nature and, hence, of the compositeness of the Λ states
are required.

III. COMPOSITENESS OF THE Λ STATES

In Ref. [43] Weinberg analyzed the nature of the
deuteron and found that this particle is best described as

TABLE IV. Same as Table III for the charm sector.

State JP
ffiffiffi
α

p
MR ΓR 1 − Z Channel jgij gi Xi ðX0

iÞ
Λcð2595Þ 1

2
− 1 2619.0 1.2 0.878 πΣc 0.31 0.22þ 0.22i −0.012 ð−0.023Þ

(0.979) (2592.3) (0.3) (0.844) DN 3.49 −3.49 − 0.14i 0.275 (0.292)
ηΛc 0.40 0.40þ 0.00i 0.007 (0.009)
D�N 5.64 −5.64þ 0.14i 0.465 (0.451)
KΞc 0.22 0.22þ 0.00i 0.002 (0.001)
ωΛc 0.18 0.18þ 0.04i 0.001 (0.001)
KΞ0

c 0.04 0.02þ 0.04i 0.000 (0.000)
DsΛ 1.38 −1.38þ 0.01i 0.026 (0.026)
D�

sΛ 2.87 −2.87þ 0.03i 0.086 (0.057)
ρΣc 0.41 0.39þ 0.12i 0.003 (0.005)
η0Λc 0.92 0.92þ 0.01i 0.018 (0.018)
ρΣ�

c 0.58 0.58 − 0.07i 0.007 (0.006)
ϕΛc 0.01 0.01þ 0.00i 0.000 (0.000)
K�Ξc 0.05 0.02þ 0.05i 0.000 (0.000)
K�Ξ0

c 0.16 0.16þ 0.04i 0.000 (0.000)
K�Ξ�

c 0.15 0.15þ 0.02i 0.000 (0.000)
Λcð2595Þ 1

2
− 1 2617.0 90.0 0.401 πΣc 2.36 2.09 − 1.09i 0.325 (0.252)

(0.950) (2595.0) (36.8) (0.354) DN 1.64 −1.46þ 0.75i 0.027 (0.015)
ηΛc 0.06 0.02 − 0.06i 0.000 (0.000)
D�N 1.43 1.34þ 0.51i 0.024 (0.057)
KΞc 0.04 0.02 − 0.03i 0.000 (0.000)
ωΛc 0.43 0.30 − 0.31i 0.000 (0.003)
KΞ0

c 0.48 0.38 − 0.29i 0.001 (0.002)
DsΛ 0.21 0.07þ 0.20i 0.000 (0.001)
D�

sΛ 0.40 0.22þ 0.33i −0.001 (0.002)
ρΣc 1.28 1.11 − 0.63i 0.016 (0.013)
η0Λc 0.13 −0.07 − 0.11i 0.000 (0.001)
ρΣ�

c 0.70 −0.64þ 0.28i 0.006 (0.006)
ϕΛc 0.01 0.01þ 0.01i 0.000 (0.000)
K�Ξc 0.51 0.45 − 0.25i 0.002 (0.002)
K�Ξ0

c 0.29 0.10 − 0.27i 0.000 (0.001)
K�Ξ�

c 0.20 −0.15þ 0.13i 0.000 (0.000)
Λcð2625Þ 3

2
− 1 2667.0 55.0 0.365 πΣ�

c 2.19 1.97 − 0.95i 0.268 (0.319)
(0.807) (2628.1) (0.0) (0.405) D�N 2.03 1.96 − 0.51i 0.057 (0.044)

ωΛc 0.53 −0.45þ 0.28i 0.003 (0.018)
KΞ�

c 0.42 0.34 − 0.24i 0.002 (0.001)
D�

sΛ 0.06 0.05 − 0.04i 0.000 (0.000)
ρΣc 0.75 0.68 − 0.31i 0.008 (0.005)
ρΣ�

c 1.30 1.17 − 0.57i 0.022 (0.013)
ϕΛc 0.01 −0.01þ 0.01i 0.000 (0.000)
K�Ξc 0.61 −0.55þ 0.27i 0.005 (0.004)
K�Ξ0

c 0.25 0.22 − 0.12i 0.001 (0.000)
K�Ξ�

c 0.40 0.33 − 0.23i 0.001 (0.001)
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composed of a proton and a neutron, rather than a genuine
dibaryon. More recently, the issue of compositeness was
addressed in Ref. [44–46] for s-waves and small binding
energies. An extension to larger binding energies in
coupled-channels dynamics was undertaken in Ref. [47]
for bound states and in Refs. [48–51] for resonances. In this
section we summarize the formalism and the conclusions
derived in Ref. [51] for the interpretation of the Weinberg’s
sum rule and its generalization to resonances.

In the unitarized setting the sum rule follows from the
identity [52,56,57,84]:

−1 ¼
X
i;j

gigj

�
δij

∂Gið
ffiffiffi
s

p Þ
∂ ffiffiffi

s
p

þ Gið
ffiffiffi
s

p Þ ∂Vijð
ffiffiffi
s

p Þ
∂ ffiffiffi

s
p Gjð

ffiffiffi
s

p Þ
����� ffiffi

s
p ¼ ffiffiffiffi

sR
p : ð9Þ

TABLE V. Same as Table III for the beauty sector.

State JP
ffiffiffi
α

p
MR ΓR 1 − Z Channel gi Xi ðX0

iÞ
Λbð5912Þ 1

2
− 1 5878.0 0.0 0.956 πΣb 0.04 0.000 (0.000)

(1.01) (5912.1) (0.0) (0.958) B̄N −4.55 0.205 (0.217)
ηΛb 0.33 0.006 (0.010)
B̄�N −7.70 0.539 (0.561)
KΞb 0.22 0.002 (0.002)
ωΛb 0.04 0.000 (0.000)
KΞ0

b 0.02 0.000 (0.000)
B̄sΛ −1.96 0.031 (0.031)
B̄�
sΛ −4.01 0.122 (0.084)

ρΣb 0.38 0.005 (0.006)
η0Λb 0.96 0.032 (0.032)
ρΣ�

b 0.57 0.011 (0.013)
ϕΛb 0.02 0.000 (0.000)
K�Ξb −0.01 0.000 (0.000)
K�Ξ0

b 0.17 0.001 (0.000)
K�Ξ�

b 0.19 0.001 (0.001)
Λbð5912Þ 1

2
− 1 5949.0 0.0 0.865 πΣb 1.31 0.698 (0.397)

(0.984) (5912.0) (0.0) (0.788) B̄N −2.90 0.096 (0.215)
ηΛb 0.01 0.000 (0.000)
B̄�N 1.91 0.038 (0.082)
KΞb −0.01 0.000 (0.000)
ωΛb 0.78 0.028 (0.088)
KΞ0

b 0.18 0.001 (0.001)
B̄sΛ −0.01 0.000 (0.000)
B̄�
sΛ 0.18 0.000 (0.000)

ρΣb 0.13 0.001 (0.002)
η0Λb −0.03 0.000 (0.000)
ρΣ�

b −0.08 0.000 (0.001)
ϕΛb 0.00 0.000 (0.000)
K�Ξb 0.23 0.002 (0.002)
K�Ξ0

b 0.13 0.001 (0.000)
K�Ξ�

b −0.10 0.000 (0.000)
Λbð5920Þ 3

2
− 1 5963.0 0.0 0.818 πΣ�

b 1.54 0.581 (0.356)
(0.983) (5919.7) (0.0) (0.785) B̄�N 4.16 0.185 (0.319)

ωΛb −0.99 0.046 (0.102)
KΞ�

b 0.20 0.002 (0.001)
B̄�
sΛ 0.14 0.000 (0.000)

ρΣb 0.08 0.000 (0.001)
ρΣ�

b 0.12 0.001 (0.005)
ϕΛb 0.00 0.000 (0.000)
K�Ξb −0.28 0.003 (0.002)
K�Ξ0

b 0.08 0.000 (0.000)
K�Ξ�

b 0.17 0.001 (0.000)
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This relation is derived in Appendix B. It holds for bounds
states and resonances, as well as energy dependent or
energy independent interactions.
The use of the definitions

Xi ¼ −Re
�
g2i
dGi

d
ffiffiffi
s

p
���� ffiffiffiffi

sR
p

�
;

Z ¼ −Re
X
i;j

gigj

�
Gi

∂Vij

∂ ffiffiffi
s

p Gj

����� ffiffiffiffi
sR

p ð10Þ

provides the sum rule

1 ¼ Z þ
X
i

Xi: ð11Þ

For bound states the extraction of the real part in Eq. (10) is
redundant since the quantities involved are already real.
The expression of Xi involves the derivative of the loop
function. The analytical expression of this function on the
first and second Riemann sheets is made explicit in
Appendix A.
As follows from the analysis in [51], for bound states, the

quantity Xi is related to the probability of finding the state
in the channel i. For resonances, Xi is still related to the
squared wave function of the channel i, in a phase
prescription that automatically renders the wave function
real for bound states, and so it can be used as a measure of
the weight of that meson-baryon channel in the composi-
tion of the resonant state.
The quantity

P
iXi ¼ 1 − Z represents the composite-

ness of the hadronic state in terms of all the considered
channels, and Z is referred to as its elementariness. A
nonvanishing Z takes into account that ultimately the model
is an effective one. The energy dependent interaction
effectively accounts for other possible interaction mecha-
nisms not explicitly included in the s-wave meson-baryon
description. These could be other hadron-hadron inter-
actions, or even genuine negative-parity baryonic compo-
nents not of the molecular type (hence the appellative
elementariness). Thus, a small value of Z indicates that the
state is well described by the contributions explicitly
considered, namely, s-wave meson-baryon channels.
Conversely, a large value of Z indicates that, for that state,
significant pieces of information are missing in the model,
and this information is being included through an effective
interaction, to the extent that the experimental hadronic
properties are reproduced by the model.
The results we obtain for the compositeness weights, Xi,

and aggregated compositeness 1 − Z of the various Λ states
are displayed in Tables III, IV and V, for the default value
α ¼ 1 and also for another phenomenological choice of the
subtraction point, so that the experimental masses are better
reproduced. As mentioned in the introduction, the results
reported in Refs. [56,57] are in qualitative agreement with

those presented in Table III for the Λð1405Þ states. In what
follows we draw some conclusions with regards to the
nature of the Λ states and its variation with the quark mass
that can be extracted from the numbers.
First, the contribution of each meson-baryon channel to

the dynamical generation of a state is determined not only
by the value of the coupling constant but also depends on
the closeness of meson-baryon channel to the state. For
instance, the K̄N and K̄�N channels have similar couplings
to the first pole of Λð1405Þ but their contribution to the
compositeness is quite different due to their different
thresholds, relative to the mass of the state.
Second, the neglected contributions can be measured by

means of the elementariness. Indeed, we observe that those
Λ poles close to the scattering line are well described as
molecular states through the s-wave meson-baryon chan-
nels considered, while wider states need the consideration
of other contributions, such as multihadron scattering. This
is clearly manifest for the JP ¼ 3=2− states Λð1520Þ and
Λcð2625Þ. There is, however, not a strict correlation
between the value of the width and the elementariness.
The 1=2− states have a larger compositeness than their
3=2− counterparts.
Third, taking the natural identification between different

Λ states for different flavors, one observes that as a rule, the
heavier the flavor the larger the compositeness of the
resonance. For instance, the Λð1520Þ, Λcð2625Þ and
Λbð5920Þ states have 1 − Z ¼ 0.27, 0.37, and 0.82, respec-
tively (for α ¼ 1).
In the tables we primarily display results for the default

value α ¼ 1, even though this choice of subtraction point
does not reproduce the empirical masses of the resonances
in detail. We also display results with α suitably fitted in
each case so that empirical masses of the resonances are
reproduced. For the sake of definiteness, an equal mass for
the two 1=2− Λ states of each flavor has been adopted. The
purpose of doing this is not to achieve a precise description
of the resonance, but rather to see to what extent the
subtraction point and the resonance position are relevant for
the compositeness discussion. We can see that no sub-
stantial modifications in the weights Xi take place in the
charm and beauty cases, and the same holds for the first
Λð1405Þ state. The change is somewhat larger for the
second Λð1405Þ state and for the Λð1520Þ resonance. For
these two resonances, the change required in the subtrac-
tion points is also sizable.
In order to understand these features, one can observe

that the three first Λ states, namely, Λð1405Þ, Λcð2595Þ and
Λbð5912Þ, have sizable weights (Xi) in the nucleon-
pseudoscalar channel, K̄N, DN and B̄N, respectively,
while the weights of the Σ-pseudoscalar lightest channels,
πΣ, πΣc and πΣb, are much smaller or even negligible in the
bottom case. The couplings (gi) to these two types of
channels follow a similar trend, and this explains the small
widths of these resonances. In fact, for the Λð1405Þ, the
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K̄N channel is dominant as regards to compositeness
(although the coupling to K̄�N is also large). For the
Λcð2595Þ and Λbð5912Þ, the weight of DN and B̄N is
important but competes with D�N and B̄�N. For the charm
(bottom) sector this was also found in [31,33] ([34]) and in
[25]. Likely, this is a consequence of the similar roles
played by vector and pseudoscalar heavy mesons (D and
D� or B̄ and B̄�) due to heavy quark symmetry. The fact that
these first Λð1405Þ, Λcð2595Þ and Λbð5912Þ poles have
compositeness 1 − Z close to unity indicates that the
present model, with s-wave meson-baryon including pseu-
doscalar and vector mesons, gives a fair description of these
resonances.
Likewise, the compositeness is large in the case of the

second Λbð5912Þ and the Λbð5920Þ, suggesting that the
model is also fairly complete for these two resonances.
Small values of 1 − Z, below 0.5, are found for the

second Λð1405Þ and the second Λcð2595Þ in the 1=2−

sector, as well as the Λð1520Þ and Λcð2625Þ in the 3=2−

sector. A conspicuous difference between the first and
second Λð1=2−Þ resonances is that the latter states strongly
couple to the lightest channel πΣ or πΣc, and this channel
largely saturate their compositeness 1 − Z. The same
applies to the 3=2− Λ states, this time with πΣ� or πΣ�

c
channels. As a consequence, these four resonances have a
sizable width. Related to this, the available phase-space of
the meson-baryon pair allows mechanisms involving higher
partial waves (beyond s-wave) to play a role in the
composition of the resonance. These missing mechanisms
would be accounted for by the larger values of Z displayed
by these four resonances.
Within the molecular approach, the first missing inter-

action mechanism is expected to come from d-wave

interactions. These type of interactions have been consid-
ered in Ref. [55] for the Λð1520Þ. The specific channels
considered there are πΣ� and KΞ� in s-wave, and K̄N and
πΣ in d-wave. Further, the interaction is modeled as to
reproduce K̄N scattering data, and several fits consistent
with the experimental mass of the Λð1520Þ are presented.
That calculation suggests that d-wave components play an
important role in the structure of the Λð1520Þ. In Fig. 1 we
display a comparison between our results and those in [55]
for the weights of each channel. The vertical lines inter-
polate between the different values given in that work for
different fits. While we have not included higher partial
waves in our interaction, we find that the weights of the s-
wave channels included in [55] are qualitatively similar in
both calculations and the agreement improves as the
position of the pole is moved to its experimental value
by a change of subtraction point. It can also be seen that
other s-wave channels are more relevant than KΞ�, namely,
K̄�N, ρΣ and ρΣ�, although πΣ� is the dominant one in
our model.

IV. SUMMARY AND CONCLUSIONS

In this work we have studied the nature of the lowest-
lying negative-parity Λ resonances with strange, charm or
bottom flavors, with JP ¼ 1

2
− and 3

2
−. To this end we have

adopted a description based on pseudoscalar and vector
mesons interacting in s-wave with 1

2
þ and 3

2
þ baryons. The

model, spelled out in [35], is based on spin-flavor and
heavy-quark extensions of the WT interaction, thereby
embodying the correct symmetries in the appropriate limits,
such as chiral symmetry and HQSS. (The symmetries are
explicitly broken at the level of masses and decay constants
of the basic hadrons.) The interaction is then used as an
input of the Bethe-Salpeter equation in coupled-channels.
The model has no free parameters, barring the choice of
subtraction point in the renormalization of the loop func-
tion. This is fixed by a prescription, or occasionally used to
modify the positions of the resonances to fulfill phenom-
enological constraints.
As already uncovered by previous studies, we find a

double pole structure for the states with JP ¼ 1
2
− and a

single pole for the states with 3
2
− for each of the three

flavors. The novelty comes from the systematic study of the
composition of these resonances, as a function of the heavy
quark mass, addressing the question of to what extent the
structure of the resonances is fully saturated by the
available s-wave meson-baryon channels.
Regarding the overall compositeness of the nine Λ

resonances studied, we find that for a given flavor sector,
the closer to threshold (on the complex plane) the better the
resonance is described as an s-wave meson-baryon mol-
ecule. Also, the heavier the flavor the higher the compos-
iteness 1 − Z. More explicitly, we find that 1 − Z is large
for the first Λð1

2
−Þ of each flavor and the compositeness

FIG. 1 (color online). Weights Xi of the main channels
contributing to the composition of the Λð1520Þ. Our results
(in blue) are represented by stars for α ¼ 1, and by squares when
the subtraction point is modified to bring the mass of the
resonance to its experimental value. The vertical lines (in red)
indicate the weights obtained in [55] for the two s-wave and two
d-wave channels considered there using various sets of fitting
parameters.
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decreases as we move to the secondΛð1
2
−Þ states and then to

the Λð3
2
−Þ ones. Also, the compositeness is large for all

bottom Λ states. This would indicate that the three first
Λð1

2
−Þ and all the rest of the bottom resonances considered

are largely saturated, regarding their composition, by s-
wave meson-baryon channels. This would not be so for the
strange and charmed second Λð1

2
−Þ and strange and

charmed Λð3
2
−Þ resonances, which would require further

components to achieve the saturation of the sum rule.
With respect to the detailed composition of the states, we

find that the first Λð1
2
−Þ states of each flavor couple strongly

to pseudoscalar-N and vector-N channels. This is a
manifestation of spin-flavor symmetry between pseudo-
scalar and vector partners, and in particular HQSS in the
charm and bottom cases. For the Λð1405Þ this implies that
the pseudoscalar-N channel, being lighter than the vector-N
one, almost saturates the compositeness of the state. It is
noteworthy that a large weight of K̄N in the Λð1405Þ has
been recently reported from lattice QCD calculations [83].
The situation changes for charm and bottom flavors where
the two channels (DN and D�N or B̄N and B̄�N) are
relatively closer due to HQSS. In this case, the weights of
the channels follows more closely the trend of the cou-
plings. (Although with smaller weights, a similar pattern
appears for the strange partners of the mesons, DsΛ, D�

sΛ,
etc., due to SU(3)-light flavor symmetry.) These two
channels almost saturate the composition of the first
Λcð2595Þ and Λbð5912Þ states.
For the second Λð1

2
−Þ states, the main observation is its

sizable coupling to the lightest channels πΣ, πΣc and πΣb.
As a consequence these states are effectively more excited
than the first Λð1

2
−Þ states and for the strange and charm

flavor this explains their larger widths, as compared to the
first states. The larger phase space also implies that higher
partial waves could play a role, consistently with the fact
that they are much less saturated by the s-wave meson-
baryon channels considered here.
Another observation is the similar structure of the second

Λð1
2
−Þ and Λð3

2
−Þ states, which appear as HQSS or spin-

flavor partners. This is particularly clear in the bottom case,
where HQSS works better. The couplings of πΣb in the
second Λbð5912Þ and πΣ�

b in Λbð5920Þ are similar and, the
same pattern is seen for B̄N and B̄�N. This translates to
the corresponding composition weights, although distorted
by the effect of different excitation energy of the channels.

The spin-flavor symmetry between Σc and Σ�
c, and Σ and Σ�

still acts for charm and strange flavors.
Although beyond the scope of the present work, it would

be interesting to consider also quark models and try to
compare to hadronic results in order to see whether the
composition of a given resonance can be termed as
molecular, made of quarks or hybrid, and if possible to
quantify the hybrid mixture.
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APPENDIX A: DERIVATIVE OF THE
LOOP FUNCTION

In order to compute analytically the derivative of the
(s-wave) loop function required in Eq. (10), we recall its
definition in Eq. (3):

G ¼ i2M
Z

d4q
ð2πÞ4

1

q2 −m2 þ iϵ
1

ðP − qÞ2 −M2 þ iϵ
;

M;m > 0: ðA1Þ

Choosing the CM frame, Pμ ¼ ð ffiffiffi
s

p
; 0Þ, its partial deriva-

tive with respect to the energy can be written as

G0ð ffiffiffi
s

p Þ≡ ∂G
∂ ffiffiffi

s
p ¼ −i4M

Z
d4q
ð2πÞ4

1

q2 −m2 þ iϵ

×
P0 − q0

ððP − qÞ2 −M2 þ iϵÞ2 : ðA2Þ

Unlike the loop function, G0ð ffiffiffi
s

p Þ is ultraviolet convergent.
The use of a standard Feynman’s parametrization (see e.g.
Eq. (10.13) of [85]) gives

G0 ¼ −i8M
Z

d4q
ð2πÞ4

Z
1

0

dx
xðP0 − q0Þ

½ðq − xPÞ2 − x2P2 −m2 þ ðP2 −M2 þm2Þxþ iϵ�3 ; ðA3Þ

and after a translation in the integration variable:

G0 ¼ −i8M
ffiffiffi
s

p Z
1

0

dx
Z

d4q
ð2πÞ4

xð1 − xÞ
ðq2 þ xð1 − xÞs − ð1 − xÞm2 − xM2 þ iϵÞ3 : ðA4Þ
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The integral over the qμ is now straightforward (using e.g. Eq. (A.44) of [86]) to obtain

G0 ¼ M
ffiffiffi
s

p
4π2

Z
1

0

dx
1

s − m2

x − M2

1−x þ iϵ
: ðA5Þ

It follows that G0 is purely real for s < ðM þmÞ2, while ImG0 < 0 for s > ðM þmÞ2.
The integral Eq. (A5) is well defined for

ffiffiffi
s

p
on the complex plane, excluding s ¼ ðM þmÞ2, and it yields

G0 ¼ M
4π2s

ffiffiffi
s

p
�
s − ðM2 −m2Þ logM

m
−
sðM2 þm2Þ − ðM2 −m2Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffi

s − sþ
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

s − s−
p log

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sþ

p − ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − s−

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sþ

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − s−

p
�

ðA6Þ

with

s� ¼ ðM �mÞ2; Arg
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sþ

p
∈ ½0; πÞ; Arg

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − s−

p
∈
�
−
π

2
;
π

2

�
; Im log ∈ ½0; π� ðFRSÞ: ðA7Þ

The function G0ð ffiffiffi
s

p Þ inherits the branching points and
Riemann sheet structure of the loop function G. The
expression in Eqs. (A6) and (A7) corresponds to the so-
called first Riemann sheet (FRS) with respect to the sþ
branching point and the branch cut is along s ≥ sþ. For the
FRS, the point s ¼ s− is a regular point. sþ is a branching
point of order one (by circling twice around sþ the function
returns to its original value) hence there is a second

Riemann sheet (SRS) with respect to sþ that continues
the FRS at the two borders of the selected cut. The SRS is
obtained by analytic continuation. The point s ¼ s− is a
branching point of order one in the SRS. However, for the
physical phase space of interest the new Riemann sheets
introduced by the branching at s− are not relevant. The
expression of G0ð ffiffiffi

s
p Þ on the SRS takes the same form as in

Eq. (A6) but taking

Arg
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sþ

p
∈ ½0; πÞ; Arg

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − s−

p
∈
�
π

2
;
3π

2

�
; Im log ∈ ½π; 2π� ðSRSÞ: ðA8Þ

The function G0ð ffiffiffi
s

p Þ is displayed in Fig. 2. In the plot
ffiffiffi
s

p
is on the FRS when ReðsÞ < ðM þmÞ2 or when

ReðsÞ > ðM þmÞ2 and ImðsÞ > 0, and on the SRS when ReðsÞ > ðM þmÞ2 and ImðsÞ < 0. The bound states fall on
the “negative” (with respect to M þm) real axis and the resonances fall below the “positive” real axis, for the relevant
channel. This cut of the complex plane covers most cases. An exception is the Λð1520Þ with ffiffiffi

α
p ¼ 0.780, which falls

slightly at the left of the branch cut, for πΣ�.
For completeness we give here the analytical form of the loop function, subtracted at s ¼ sþ:

G ¼ −
M
8π2s

�
ðs − sþÞ

M −m
M þm

log
M
m

þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sþ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − s−

p
log

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sþ

p − ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − s−

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − sþ

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
s − s−

p
�
: ðA9Þ

The choices of branches for the FRS and the SRS are as in Eqs. (A7) and (A8), respectively.

FIG. 2 (color online). Function G0ð ffiffiffi
s

p Þ. On the left −ReG0. On the right þImG0. The display corresponds to m ¼ mπ and M ¼ MΣ.
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APPENDIX B: COMPOSITENESS SUM RULE

In this appendix we prove the relation in Eq. (9).
We start from Eq. (2)

Tð ffiffiffi
s

p Þ ¼ ðV−1ð ffiffiffi
s

p Þ −Gð ffiffiffi
s

p ÞÞ−1 ðB1Þ

where T, V and G are matrices and G is diagonal. Taking a
derivative with respect to

ffiffiffi
s

p
[using the operator identity

δðA−1Þ ¼ −A−1δAA−1]

T 0 ¼ TðG0 þ V−1V 0V−1ÞT: ðB2Þ

On the other hand, Eq. (8) implies

Tij ¼
gigj
Δ

þ Rijð
ffiffiffi
s

p Þ; Δ≡ ffiffiffi
s

p
−

ffiffiffiffiffi
sR

p
; ðB3Þ

where the remainder Rij is regular at the pole. Taking a
derivative with respect to Δ, substituting T in Eq. (B2) and
multiplying by Δ2 gives, at Δ ¼ 0,

−gigj ¼
X
k;l

gigk

�
G0

kδkl þ
X
r;s

ðV−1ÞkrV 0
rsðV−1Þsl

�
Δ¼0

glgj:

ðB4Þ

Since at least one of the couplings must be different from
zero (to have a pole) it follows that

−1 ¼
X
k;l

gkgl

�
G0

kδkl þ
X
r;s

ðV−1ÞkrV 0
rsðV−1Þsl

�����
Δ¼0

:

ðB5Þ

To arrive to Eq. (9) it only remains to show that ðV−1Þsl can
be replaced by δslGl in Eq. (B5). This follows from V−1 ¼
T−1 þ G and

P
lðT−1ÞjlgljΔ¼0 ¼ 0. The latter equality can

be deduced from,

X
l

ðT−1Þjl
�
glgj
Δ

þ Rljð
ffiffiffi
s

p Þ
�

¼ 1 ðB6Þ

without summing over the index j, which trivially follows
from Eq. (B3) and T−1T ¼ 1. Thus, in the limit Δ → 0, we
find

lim
Δ→0

X
l

ðT−1Þjlgl ¼ lim
Δ→0

Δ
gj

¼ 0: ðB7Þ

The statement is trivial if there is just one channel. More
generally, the singular part of T in Eq. (B3) is a matrix of
rank one, the corresponding one-dimensional subspace
being spanned by the vector gi, in coupled-channels space.
The combination

P
lðT−1Þslgl selects that subspace, in

which T−1 vanishes at the pole.3
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