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The structure of the a0ð980Þ and f0ð980Þ resonances is investigated with the a0ð980Þ-f0ð980Þ mixing
intensity from the viewpoint of compositeness, which corresponds to the amount of two-body states
composing resonances as well as bound states. For this purpose, we first formulate the a0ð980Þ-f0ð980Þ
mixing intensity as the ratio of two partial decay widths of a parent particle, in the same manner as the
recent analysis in BES experiments. Calculating the a0ð980Þ-f0ð980Þ mixing intensity with the existing
Flatte parameters from experiments, we find that many combinations of the a0ð980Þ and f0ð980Þ Flatte
parameters can reproduce the experimental value of the a0ð980Þ-f0ð980Þ mixing intensity by BES. Next,
from the same Flatte parameters, we also calculate the KK̄ compositeness for a0ð980Þ and f0ð980Þ.
Although the compositeness with the correct normalization becomes complex in general for resonance
states, we find that the Flatte parameters for f0ð980Þ imply a large absolute value of the KK̄ compositeness,
and the parameters for a0ð980Þ lead to a small but non-negligible absolute value of the KK̄ compositeness.
Then, connecting the mixing intensity and the KK̄ compositeness via the a0ð980Þ- and f0ð980Þ-KK̄
coupling constants, we establish a relation between them. As a result, a small mixing intensity indicates a
small value of the product of theKK̄ compositeness for the a0ð980Þ and f0ð980Þ resonances. Moreover, the
experimental value of the a0ð980Þ-f0ð980Þ mixing intensity implies that the a0ð980Þ and f0ð980Þ
resonances cannot be simultaneously KK̄ molecular states.
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I. INTRODUCTION

The nature of the lightest scalarmeson nonet [f0ð500Þ or σ,
K�

0ð800Þ or κ, f0ð980Þ, and a0ð980Þ] has been a hot topic in
hadron physics for many years [1]. A naive expectation with
theqq̄ configuration indicates that they should show the same
mass ordering as, e.g., the vector meson nonet, but in reality,
they exhibit an inverted spectrum from the expectation. For
this reason, they have been considered to be exotic hadrons,
which are not able to be classified as qq̄ for mesons and qqq
for baryons. Indeed, in Refs. [2,3], it was suggested that in a
bag model the interaction between quarks inside a compact
qqq̄ q̄ system is attractive especially in the scalar channel, and
hence the light scalar mesons would be compact qqq̄ q̄
systems. However, it was found that in a nonrelativistic quark
model KK̄ molecules can appear as weakly bound s-wave
states, which may be identified with f0ð980Þ and a0ð980Þ
[4,5]. The lightest scalar mesons can also be described by the
combination of the chiral perturbation theory and the scatter-
ing unitarity [6–15] in pseudoscalar meson-pseudoscalar
meson scatterings from the hadronic degrees of freedom.
This fact implies that the lightest scalar mesons may have

non-negligible components of hadronic molecules. In a
model-independent way, on the other hand, the structure
of f0ð980Þ and a0ð980Þ was discussed in Ref. [16], which
suggested that f0ð980Þ should be a KK̄ molecular state to a
large degree and a0ð980Þ also seems to have a non-negligible
KK̄ component. There are further discussions on their
structure as well, e.g., hybrid states for f0ð980Þ and
a0ð980Þ [17].
Among the light scalar mesons, a0ð980Þ and f0ð980Þ are

of special interest because their almost degenerate masses
would lead to a mixing of these mesons in isospin symmetry
violating processes. In particular, it was pointed out in
Ref. [18] that the difference of the unitarity cuts between the
charged and neutral KK̄ pairs, the thresholds of which
are close to the a0ð980Þ and f0ð980Þ masses, can enhance
the a0ð980Þ-f0ð980Þ mixing to be sizable compared to,
e.g., the ρð770Þ-ωð782Þ mixing. Namely, the leading
contribution to the a0ð980Þ-f0ð980Þ mixing comes from
the mixing amplitude Λ1 þ Λ2 in Fig. 1, and it behaves as

Λ1 þ Λ2 ¼ OðpK0 − pKþÞ; ð1Þ

where pK0ðpKþÞ denotes the magnitude of the relative
momentum of the neutral (charged) kaon pair. Then,*sekihara@rcnp.osaka‑u.ac.jp
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because of the difference of the unitary cuts, the mixing
effect should be unusually enhanced in the energy between
mKþ þmK− ¼ 987 MeV and mK0þmK̄0¼995MeV to be

Λ1 þ Λ2 ¼ O

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K0 −m2
Kþ

m2
K0 þm2

Kþ

s !
; ð2Þ

while out of the energy region, the mixing effect returns to a
value of natural size, O½ðm2

K0 −m2
KþÞ=ðm2

K0 þm2
KþÞ�. In

addition, as a subleading contribution, the electromagnetic
interaction would enhance the a0ð980Þ-f0ð980Þ mixing,
since the electromagnetic interaction takes place selectively
in the KþK− loop. Bearing in mind that in general a scalar
meson does not have derivative couplings to two pseudo-
scalar mesons, we have only a soft photon exchange
between Kþ and K− as the leading order with respect to
the electromagnetic interaction, which is diagrammatically
shown as Λ3 in Fig. 1. Indeed, the amplitude Λ3 logarithmi-
cally diverges at the KþK− threshold in an approximation
of the threshold expansion. For observations of the
a0ð980Þ-f0ð980Þ mixing, various reactions which should
be sensitive to the mixing were discussed in, e.g.,
Refs. [19–27], and the mixing effect was recently observed
in an experiment [28] from the decay of J=ψ .
The a0ð980Þ-f0ð980Þ mixing has been expected to shed

light on the structure of the a0ð980Þ and f0ð980Þ reso-
nances. Actually, in Ref. [28], the experimental value of the
mixing intensity was compared to several theoretical
predictions, and the structure of the two resonances was
discussed. We emphasize here that coupling constants of
a0ð980Þ-KK̄ and f0ð980Þ-KK̄ reflect the KK̄ structure of
the a0ð980Þ and f0ð980Þ resonances, respectively; espe-
cially, a larger KK̄ coupling constant means a larger
fraction of the KK̄ component in the scalar mesons [29].
In recent studies, this statement has been formulated in
terms of compositeness [30–36] in the so-called chiral
unitary approach, which is a way to combine the chiral
perturbation theory and the scattering unitarity. In these
studies, the compositeness was defined as the two-body
composite part of the normalization of the total wave
function, and hence the compositeness corresponds to the
amount of the two-body states composing a resonance as
well as a bound state. In the formulation, the two-body
wave function was found to be proportional to the coupling
constant of the resonance state to the two-body state

[36–38]. Thus, bearing in mind that the a0ð980Þ-f0ð980Þ
mixing amplitude contains both the coupling constants of
a0ð980Þ-KK̄ and f0ð980Þ-KK̄, one can expect a relation
between the KK̄ compositeness of the a0ð980Þ and f0ð980Þ
resonances and their mixing intensity through the strength
of the coupling constants of a0ð980Þ-KK̄ and f0ð980Þ-KK̄
in the mixing amplitude, in a similar manner to the relation
between the Λð1405Þ radiative decay width and its K̄N
compositeness established in Ref. [39]. The purpose of this
paper is to establish a relation between the KK̄ compos-
iteness of the a0ð980Þ and f0ð980Þ resonances and their
mixing intensity and to give a constraint on the structure of
the two resonances from the experimental value of the
mixing intensity obtained in Ref. [28].
This paper is organized as follows. In Sec. II, we

formulate the a0ð980Þ-f0ð980Þ mixing intensity. In this
section, we also calculate the a0ð980Þ-f0ð980Þ mixing
intensity with several Flatte parameter sets for a0ð980Þ
and f0ð980Þ from experiments and compare the numerical
results with the recent experimental result. Next, in Sec. III,
we develop our formulation of the compositeness in the
context of the chiral unitary approach, and we calculate
the KK̄ compositeness of a0ð980Þ and f0ð980Þ with the
experimental Flatte parameter sets. Then, in Sec. IV, we
give a relation between the mixing intensity and the KK̄
compositeness for the a0ð980Þ and f0ð980Þ resonances.
Moreover, we discuss further steps for the determination of
the structure of the a0ð980Þ and f0ð980Þ resonances in
Sec. V. Section VI is devoted to the conclusion of this study.

II. a0ð980Þ-f 0ð980Þ MIXING INTENSITY

In this section, we formulate the a0ð980Þ-f0ð980Þ
mixing intensity. For this purpose, we first determine the
expression of the a0ð980Þ ↔ f0ð980Þ mixing amplitude in
Sec. II A. Next, we evaluate the propagators of a0ð980Þ and
f0ð980Þ with their mixing in Sec. II B. Then, we formulate
the a0ð980Þ-f0ð980Þ mixing intensity as the ratio of partial
decay widths of a parent particle in Sec. II C. Finally, in
Sec. II D, we calculate the mixing intensity by using several
parameter sets obtained from experimental data.

A. Mixing amplitude

First of all, we determine the a0ð980Þ ↔ f0ð980Þmixing
amplitudeΛðsÞ as a function of the squaredmomentumof the
scalar mesons, s. In this study, we consider three Feynman

FIG. 1. Feynman diagrams for the leading contribution (Λ1 þ Λ2) and a subleading contribution (Λ3) to the a0ð980Þ-f0ð980Þ mixing.
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diagrams in Fig. 1 for the a0ð980Þ ↔ f0ð980Þ mixing, and
the mixing amplitude ΛðsÞ is sum of the three contributions:

ΛðsÞ ¼ Λ1ðsÞ þ Λ2ðsÞ þ Λ3ðsÞ: ð3Þ
Here, we assume isospin symmetry for coupling constants.
Namely, the a0ð980Þ-KK̄ and f0ð980Þ-KK̄ coupling
constants in the particle basis, ḡa and ḡf, are given as1

ḡa ¼ ḡaKþK− ¼ −ḡaK0K̄0 ; ḡf ¼ ḡfKþK− ¼ ḡfK0K̄0 : ð4Þ
Then, it was pointed out in Ref. [18] that the sum of the first
and second contributions,Λ1 þ Λ2, converges and the result
can be presented as an expansion in the KK̄ phase space,

Λ1ðsÞ þ Λ2ðsÞ ¼ −
i

16π
ḡaḡf½σ1ðsÞ − σ2ðsÞ�

þO½σ21ðsÞ − σ22ðsÞ�; ð5Þ
where i ¼ 1 (2) denotes the channel KþK−ðK0K̄0Þ and the
phase space σiðsÞ is defined as

σiðsÞ≡ λ1=2ðs;m2
i ; m

2
i Þ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
i

s

r
; i ¼ 1; 2; ð6Þ

with the Källen function λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy −
2yz − 2zx and massesm1 ¼ mKþ andm2 ¼ mK0 .2 Since we
have taken into account just the difference of the unitary cut
contributions, this leading-order contribution is model in-
dependent except for the coupling constants.
The third contribution to the mixing amplitude, Λ3, is a

soft photon-exchange diagram between KþK−, and with
the photon-exchange loop function GγðsÞ, the mixing
amplitude can be written as

Λ3ðsÞ ¼ ḡaGγðsÞḡf: ð7Þ

For the evaluation of the photon-exchange loop function
GγðsÞ, we take an approximation by the threshold-
expanded form [40], which reads [24]

GγðsÞ ¼ −
α

32π

�
ln
4m2

Kþ − s

m2
Kþ

þ ln 2þ 21ζð3Þ
2π2

�

þO½ðs − 4m2
KþÞ2�; ð8Þ

with the fine structure constant α ≈ 1=137 and the zeta
function ζðxÞ with ζð3Þ ¼ 1.20205….

In above expressions, only the two coupling constants,
ḡa and ḡf, are the parameters and reflect the structure of the
a0ð980Þ and f0ð980Þ resonances. In this study, the coupling
constants are taken from the Flatte parameter sets with
several experimental fittings in Sec. II D, and then in
Sec. IV, they are used to establish a relation between the
mixing intensity and the KK̄ compositeness of the a0ð980Þ
and f0ð980Þ resonances.

B. Propagators of a0ð980Þ and f 0ð980Þwith their mixing

Next, we formulate propagators of the a0ð980Þ and
f0ð980Þ mesons with their mixing. If the a0ð980Þ-
f0ð980Þmixing is absent, their propagators can be expressed
as 1=DaðsÞ and 1=DfðsÞ in the Flatte parametrization [41]

DaðsÞ≡ s −M2
a þ i

ffiffiffi
s

p ½Γa
πηðsÞ þ Γa

KK̄ðsÞ�;
DfðsÞ≡ s −M2

f þ i
ffiffiffi
s

p ½Γf
ππðsÞ þ Γf

KK̄ðsÞ�; ð9Þ

for a0ð980Þ and f0ð980Þ, respectively. Here, s is the squared
momentum of the scalar mesons;Ma andMf are masses of
a0ð980Þ and f0ð980Þ, respectively; and the decay width of
a → bþ c, Γa

bcðsÞ, is defined as

Γa
bcðsÞ≡ jḡabcj2

8πs
pbcðsÞ; pbcðsÞ≡ λ1=2ðs;m2

b;m
2
cÞ

2
ffiffiffi
s

p ; ð10Þ

with the a-b c coupling constant in the isospin basis ḡabc, the
magnitude of the relative momentum pbc, and the b and c
masses mb and mc, respectively. Here, we note that, due to
the energy dependence of the decay-width terms in DaðfÞ,
the pole position of the propagator slightly shifts from that
of the naive expectation s ¼ ½MaðfÞ − iΓaðfÞðM2

aðfÞÞ=2�2.
Furthermore, the momentum pbcðsÞ in the decay width
(10) requires us to move to the proper Riemann sheet when
we search for the pole of the propagator. Throughout this
study, we search for the a0ð980Þ½f0ð980Þ� pole existing in
the unphysical Riemann sheet of the πηðππÞ channel and in
the physical Riemann sheet of theKK̄ channel.We also note
that the isospin symmetry breaking negligibly affects the
decay width Γa

bcðsÞ in this study, so we use the isospin
symmetric masses and coupling constants of pions and
kaons for the evaluation of the decay width (10).
Now, let us turn on the a0ð980Þ-f0ð980Þ mixing. In this

condition, we can obtain the a0ð980Þ propagator with the
a0ð980Þ-f0ð980Þ mixing, PaðsÞ, by summing up all the
contributions of a0ð980Þ → f0ð980Þ → � � � → a0ð980Þ,
and hence PaðsÞ is expressed as

PaðsÞ ¼
1

Da
þ 1

Da
Λ

1

Df
Λ

1

Da
þ � � � ¼ 1

Da

X∞
n¼0

�
Λ2

DaDf

�
n

¼ 1

Da

�
1 −

Λ2

DaDf

�−1
¼ Df

DaDf − Λ2
; ð11Þ

1We put a bar on the coupling constants, ḡa;f , which are used
on the real energy axis. On the other hand, we will not put a bar
on the coupling constants which are evaluated as the residue of
the scattering amplitude (see Sec. III).

2In our calculations, we use the physical masses
mKþ ¼ mK− ¼ 493.68 MeV, mK0 ¼ mK̄0 ¼ 497.61 MeV, and
mη ¼ 547.85 MeV, while for the isospin symmetric masses,
we use mπ ¼ ðmπþ þmπ− þmπ0Þ=3 ¼ 138.04 MeV and
mK ¼ ðmKþ þmK− þmK0 þmK̄0Þ=4 ¼ 495.65 MeV.
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where ΛðsÞ is the a0ð980Þ ↔ f0ð980Þ mixing amplitude
determined in the previous subsection. In similar
manners, we can obtain the f0ð980Þ propagator PfðsÞ,
the a0ð980Þ → f0ð980Þ propagator Pa→fðsÞ, and the
f0ð980Þ → a0ð980Þ propagator Pf→aðsÞ with the
a0ð980Þ-f0ð980Þ mixing, and they are summarized as
follows:

�
Pa Pa→f

Pf→a Pf

�
¼ 1

DaDf − Λ2

�
Df Λ

Λ Da

�
: ð12Þ

C. Partial decay widths and mixing intensity

Let us now define the a0ð980Þ-f0ð980Þ mixing intensity
ξfa. In the experimental analysis in Ref. [28], the mixing
intensity was defined as the ratio of two branching fractions
of J=ψ , J=ψ → ϕf0ð980Þ → ϕa0ð980Þ → ϕπη to J=ψ →
ϕf0ð980Þ → ϕππ. Hence, in the same manner as this
experimental analysis, we define the a0ð980Þ-f0ð980Þ
mixing intensity ξfa as the ratio of the decay widths,

ξfa ≡ ΓX;a

ΓX;f
; ð13Þ

where ΓX;a and ΓX;f are partial decay widths of a meson X
to Yf0ð980Þ → Ya0ð980Þ → Yπη and to Yf0ð980Þ → Yππ,
respectively. Here, we assume that both X and Y are I ¼ 0
states, and hence isospin symmetry allows only the
X-Y-f0ð980Þ vertex. Therefore, in our formulation,
a0ð980Þ appears only through the a0ð980Þ-f0ð980Þmixing.
We could consider an intrinsic isospin-violating contribu-
tion which allows a direct coupling of X to the Y-a0ð980Þ
system, but such a contribution will scale as a natural size,
for instance, ðmd −muÞ=ms, and will be much smaller than
the mixing amplitude of the KK̄ loops between the charged
and neutral KK̄ thresholds. For this reason, we neglect the
direct X-Y-a0ð980Þ coupling.3 Schematic diagrams of the X
decays to Yππ and Yπη are shown in Fig. 2. In this study,
we do not take into account final-state interactions between
Y and pseudoscalar mesons by assuming that decay points
of f0ð980Þ and a0ð980Þ are well isolated from the particle

Y. As we will see, the final expression of the mixing
intensity ξfa does not contain masses nor widths of the
particles X and Y.
Since the decay process X → Yf0ð980Þ → Yππ has a

three-body final state, the width ΓX;f can be calculated
as [1]

ΓX;f ¼
1

ð2πÞ516M2
X

Z
dMππpcmðMππÞpYðMππÞ

×
Z

dΩ
Z

dΩY jTfj2; ð14Þ

whereMX is the mass of the particle X,Mππ is the invariant
mass of the ππ system in the final state, and Ω and ΩY are
solid angles for the final π in the ππ rest frame and for
the final Y in the X rest frame, respectively. Momenta of
final-state π in the ππ rest frame, pcm, and Y in the X rest
frame, pY , are defined as

pcmðMÞ ¼ λ1=2ðM2; m2
π; m2

πÞ
2M

; ð15Þ

pYðMÞ ¼ λ1=2ðM2
X;M

2
Y;M

2Þ
2MX

; ð16Þ

respectively, with the particle Y mass MY . The decay
amplitude Tf is expressed as

Tf ¼ TprodðMππÞPfðM2
ππÞḡfππ; ð17Þ

where Tprod is the f0ð980Þ production amplitude for the
X → Yf0ð980Þ process, Pf is the f0ð980Þ propagator with
the a0ð980Þ-f0ð980Þ mixing given in Eq. (12), and ḡfππ is
the f0ð980Þ-ππ coupling constant in the isospin basis.
Then, we assume that the f0ð980Þ decay width Γf is small
compared to the energy scales in which the momentum pY
and the f0ð980Þ production amplitude Tprod largely change.

(a)

(b)

FIG. 2. Schematic diagrams of the decays (a) X →
Yf0ð980Þ → Yππ and (b) X→ Yf0ð980Þ→ Ya0ð980Þ→ Yπη.
In the figures, ellipses denote that the propagators of the scalar
mesons include the a0ð980Þ-f0ð980Þ mixing contribution.

3However, in certain cases, we cannot neglect the direct
X-Y-a0ð980Þ coupling. Actually, it is claimed in Refs. [26,42]
that the mixing intensity ξfa is affected by interferences between
several diagrams of a0ð980Þ and f0ð980Þ productions, and hence
ξfa depends on the reaction, as experimentally observed in the
ηð1405Þ → f0ð980Þπ0 decay [43]. Nevertheless, in this study, we
employ the mixing intensity ξfa in Eq. (13) since such interfer-
ences are expected to enhance or decline both the a0ð980Þ and
f0ð980Þ productions similarly and the mixing intensity ξfa will
not change so much as long as only intrinsic isospin-violating
contributions are considered. On the other hand, if the decaying
particle exists close to thresholds such as K̄K�, these thresholds
could be another source of isospin violation and provide a non-
negligible X-Y-a0ð980Þ coupling.
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In this condition, since theMππ integral is dominated by the
f0ð980Þmass region due to the f0ð980Þ propagator, we can
approximate the Y momentum pYðMππÞ and the f0ð980Þ
production amplitude TprodðMππÞ as the values at
Mππ ¼ Mf, respectively. Therefore, only the squared
f0ð980Þ propagator jPfðM2

ππÞj2 and the momentum
pcmðMππÞ appear in the Mππ integral in the expression
of the decay width (14),

ΓX;f ¼
1

ð2πÞ516M2
X
pYðMfÞ

Z
dΩY jTprodðMfÞj2

×
Z

dMππ4πpcmðMππÞjḡfππj2jPfðM2
ππÞj2; ð18Þ

where we have performed the integral of the solid angle Ω.
Then, by using the relation in Eq. (10) and the identity
pcmðMÞ ¼ pππðM2Þ, one can obtain

ΓX;f ¼ C ×
Z

dMππM2
ππΓ

f
ππðM2

ππÞjPfðM2
ππÞj2; ð19Þ

with a constant prefactor C:

C≡ pYðMfÞ
16π3M2

X

Z
dΩY jTprodðMfÞj2: ð20Þ

In a similar manner, the width of the decay process
X → Yf0ð980Þ → Ya0ð980Þ → Yπη, ΓX;a, can be calcu-
lated from

ΓX;a ¼
1

ð2πÞ516M2
X

Z
dMπηp0

cmðMπηÞpYðMπηÞ

×
Z

dΩ0
Z

dΩY jTaj2; ð21Þ

where p0
cm is the final-state π momentum in the πη rest

frame,

p0
cmðMÞ ¼ λ1=2ðM2; m2

π; m2
ηÞ

2M
; ð22Þ

Ω0 is the solid angle for the final π in the πη rest frame, and
Ta is the decay amplitude evaluated as

Ta ¼ TprodðMπηÞPf→aðM2
πηÞḡaπη: ð23Þ

Here, Pf→a is the f0ð980Þ → a0ð980Þ mixing propagator
given in Eq. (12) and ḡaπη is the a0ð980Þ-πη coupling
constant. Then, in order to evaluate the decay width ΓX;a,
we use the fact that the a0ð980Þ-f0ð980Þmixing takes place
particularly at the πη invariant mass Mπη ≈Mf ≈
Ma ≈ 2mK . This is because the f0ð980Þ → a0ð980Þ tran-
sition is dominated by the difference of the unitarity cuts for
the charged and neutral KK̄ thresholds and hence the
mixing amplitude ΛðM2

πηÞ shows a narrow peak at the KK̄

thresholds with a width ∼ðmK0 þmK̄0Þ − ðmKþ þmK−Þ≈
8 MeV. Therefore, one can take the values Mπη ≈Mf ≈
Ma for the amplitude Tprod and the momentum pY in ΓX;a.
Moreover, by using the relation in Eq. (10), we can replace
the momentum p0

cmðMπηÞ and the squared coupling con-
stant jḡaπηj2 with the decay width Γa

πηðM2
πηÞ and a kinetic

term, which results in

ΓX;a ¼ C ×
Z

dMπηM2
πηΓa

πηðM2
πηÞjPf→aðM2

πηÞj2; ð24Þ

where the constant C is same as that in Eq. (20).
As a consequence, we obtain the final expression of the

a0ð980Þ-f0ð980Þ mixing intensity ξfa (13) as

ξfa ¼
R
dMπηM2

πηΓa
πηðM2

πηÞjPf→aðM2
πηÞj2R

dMππM2
ππΓ

f
ππðM2

ππÞjPfðM2
ππÞj2

: ð25Þ

The range of theMπη integral is fixed so as to cover the KK̄
thresholds, say ½0.96 GeV; 1.02 GeV�. On the other hand,
we fix the integral range of Mππ so as to take into account
the bump structure coming from the squared propagator
jPfðM2

ππÞj2. In this formulation, the model parameters for
the mixing intensity are the masses Ma and Mf in the
propagators and the coupling constants ḡa, ḡf, ḡaπη, and
ḡfππ . We note that the final expression of the mixing
intensity ξfa does not contain masses nor widths of the
particles X and Y, as one can expect that the
a0ð980Þ-f0ð980Þ mixing intensity does not depend on
the f0ð980Þ production process.
Finally, we mention that one can reproduce the mixing

intensity given in Ref. [25] by considering only the
integrands in Eqs. (25) and taking M2

ππ ¼ M2
πη ¼ s, which

results in

ξWZ
fa ðsÞ ¼ Γa

πηðsÞjPf→aðsÞj2
Γf
ππðsÞjPfðsÞj2

: ð26Þ

Actually, in Ref. [25], the authors calculated the mixing
intensity ξWZ

fa at the central value of the two KK̄ thresholds,
ξWZ
fa ððmKþ þmK0Þ2Þ. Here, we emphasize that the mixing
intensity ξWZ

fa at the central value of the two KK̄ thresholds
would be larger than the numerical result from Eq. (25)
with the same parameter set. This behavior comes from the
fact that in Eq. (26) we do not perform the integral of Mππ

for the decay f0ð980Þ → ππ. Namely, while the factor
jPf→aðsÞj2 has a sharp peak at the KK̄ thresholds due to the
a0ð980Þ-f0ð980Þ mixing, jPfðsÞj2 has a relatively broad
bump according to the decay width of f0ð980Þ. Therefore,
the numerator of Eq. (26) becomes nearly comparable with
the denominator momentarily at the KK̄ thresholds, but
when they are integrated, the total amount of the numerator
becomes only a few or less than a percent of that of the
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denominator in Eq. (25). In this study, we compare
theoretical values of the mixing intensity with the exper-
imental one, which was obtained as the ratio of two
branching fractions of J=ψ , J=ψ → ϕf0ð980Þ →
ϕa0ð980Þ → ϕπη to J=ψ → ϕf0ð980Þ → ϕππ, so we
employ Eq. (25) to calculate the mixing intensity in the
following.

D. Mixing intensity from experimental
Flatte parameter sets

Since we have formulated the a0ð980Þ-f0ð980Þ mixing
intensity in the previous section, we now would like to
evaluate the a0ð980Þ-f0ð980Þ mixing intensity (25) with
the Flatte parameters (9) determined from experimental
data. Actually, several collaborations reported the Flatte
parameters for both the a0ð980Þ and f0ð980Þ resonances
fitted to the experimental observations. In this study, we
employ parameters by CLEO [44], KLOE [45], CB [46],

SND [47], and E852 [48] for a0ð980Þ and by CDF [49],
KLOE [50], Belle [51], BES [52], FOCUS [53], and SND
[54] for f0ð980Þ. The parameter sets are listed in Table I.
We note that the coupling constants in Table I are given in
the isospin basis as in Eq. (10), and especially the KK̄
coupling constants in the particle basis, ḡa and ḡf [see
Eq. (4)], are evaluated with

ḡa ¼
1ffiffiffi
2

p ḡaKK̄; ḡf ¼ 1ffiffiffi
2

p ḡfKK̄; ð27Þ

where the factor 1=
ffiffiffi
2

p
translates the coupling constants

from the isospin basis (ḡaKK̄ and ḡfKK̄) into the particle
basis. In this study, we take into account the errors only for
the KK̄ coupling constants, which will strongly affect the
a0ð980Þ-f0ð980Þ mixing intensity, while we take the
central values for other parameters.
The numerical results of the a0ð980Þ-f0ð980Þ mixing

intensity with all the combinations of the Flatte parameter
sets are given in Table II. These values should be compared
to the experimental value [28],

ξfa ¼ 0.60� 0.20ðstatÞ � 0.12ðsysÞ � 0.26ðparaÞ%; ð28Þ

ξfajupper limit ¼ 1.1%ð90% C:L:Þ; ð29Þ

which was obtained as the ratio of two branching fractions
of J=ψ , J=ψ → ϕf0ð980Þ → ϕa0ð980Þ → ϕπη to J=ψ →
ϕf0ð980Þ → ϕππ. It is remarkable that two-thirds of the
combinations of the Flatte parameter sets reproduce the
experimental value with the errors (28), while only four
combinations exceed the experimental upper limit of the
mixing intensity (29). We also note that some of the
parameter sets tend to lead to small or large mixing
intensity. For instance, the f0ð980Þ parameter set by
FOCUS gives a smaller mixing intensity, and the
a0ð980Þ parameter set by SND gives a larger mixing
intensity. Nevertheless, every parameter set can reproduce
the experimental value of the mixing intensity with a
suitable combination. In this sense, we cannot rule out
any parameter set in Table I with the experimental value of
the a0ð980Þ-f0ð980Þ mixing intensity.

TABLE I. Masses and coupling constants of the a0ð980Þ and
f0ð980Þ resonances in the Flatte parametrization (9) determined
from experimental data. Here, we only show the central values
except for the KK̄ coupling constant. Coupling constants are
given in the isospin basis.

a0ð980Þ
Collaboration Ma (MeV) ḡaKK̄ (GeV) ḡaπη (GeV)

CLEO [44] 998 3.97� 0.77 4.25
KLOE [45] 982.5 2.84� 0.41 2.46
CB [46] 987.4 2.94� 0.12 2.87
SND [47] 995 5.93þ10.54

−2.39 3.11
E852 [48] 1001 2.36� 0.13 2.47

f0ð980Þ
Collaboration Mf (MeV) ḡfKK̄ (GeV) ḡfππ (GeV)

CDF [49] 989.6 4.02þ1.01
−1.37 2.65

KLOE [50] 977.3 2.45� 0.17 1.21
Belle [51] 950 4.07þ0.76

−0.95 2.28

BES [52] 965 5.80þ0.22
−0.23 2.83

FOCUS [53] 957 3.39þ0.62
−0.76 2.15

SND [54] 969.8 7.88þ1.09
−0.86 3.19

TABLE II. The a0ð980Þ-f0ð980Þ mixing intensity ξfa in percentages from the Flatte parameters in Table I with the errors for the KK̄
coupling constants. The central value of the mixing intensity is shown in bold when it is consistent with the experimental value (28), in
italic when out of the experimental errors, and with an underline when above the upper limit (29).

f0ð980Þ
a0ð980Þ CDF [49] KLOE [50] Belle [51] BES [52] FOCUS [53] SND [54]

CLEO [44] 0.21þ0.30
−0.16 0.53þ0.33

−0.23 0.26þ0.30
−0.16 0.43þ0.22

−0.17 0.20þ0.22
−0.13 0.73þ0.72

−0.38

KLOE [45] 0.32þ0.40
−0.23 0.81þ0.41

−0.30 0.38þ0.39
−0.23 0.65þ0.26

−0.21 0.30þ0.28
−0.18 1.11þ0.93

−0.51

CB [46] 0.26þ0.24
−0.17 0.64þ0.18

−0.15 0.31þ0.22
−0.16 0.52þ0.10

−0.09 0.24þ0.16
−0.12 0.89þ0.50

−0.30

SND [47] 0.60þ0.57
−0.49 1.52þ0.40

−0.91 0.70þ0.47
−0.52 1.22þ0.20

−0.69 0.55þ0.35
−0.40 2.12þ1.00

−1.38

E852 [48] 0.19þ0.19
−0.13 0.47þ0.14

−0.12 0.22þ0.17
−0.12 0.39þ0.08

−0.07 0.18þ0.12
−0.09 0.66þ0.40

−0.23
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III. COMPOSITENESS

In this study, we would like to give a way to extract more
information on the structure of the a0ð980Þ and f0ð980Þ
resonances. For this purpose, we introduce the composite-
ness, which corresponds to the amount of two-body states
composing resonances as well as bound states. After a brief
review of the so-called chiral unitary approach and com-
positeness in Sec. III A, we calculate the KK̄ composite-
ness of the a0ð980Þ and f0ð980Þ resonances in Sec. III B by
using the Flatte parameter sets.

A. Chiral unitary approach and compositeness

In this subsection, we briefly review the so-called chiral
unitary approach, which provides scattering amplitudes of
two pseudoscalar mesons [11–14] as well as a pseudoscalar
meson and a baryon [55–60] from the coupled-channel
unitarization of the interaction kernel taken from chiral
Lagrangians. In this approach, chiral interactions between
two hadrons dynamically generate hadronic resonances in
several channels from the meson-meson and meson-baryon
degrees of freedom with successful reproductions of
experimental observables. Then, in recent studies within
the chiral unitary approach, the structure of the dynamically
generated states is intensively discussed in terms of
compositeness [30–36], which corresponds to the amount
of two-body states composing resonances as well as bound
states. Here, we also give the expression of the compos-
iteness in the chiral unitary approach.
In the chiral unitary approach, we solve the Bethe–

Salpeter equation in an algebraic form so as to obtain a
scattering amplitude of two pseudoscalar mesons

TijðsÞ ¼ VijðsÞ þ
X
k

VikðsÞGkðsÞTkjðsÞ; ð30Þ

with channel indices i, j, and k; the Mandelstam variable s;
the separable interaction kernel V to be fixed later; and the
loop function G defined as

GiðsÞ≡ i
Z

d4q
ð2πÞ4

1

q2 −m2
i þ i0

1

ðP − qÞ2 −m02
i þ i0

¼
Z

d3q
ð2πÞ3

ωiðqÞ þ ω0
iðqÞ

2ωiðqÞω0
iðqÞ

1

s − ½ωiðqÞþ ω0
iðqÞ�2þ i0

;

ð31Þ

where Pμ ¼ ð ffiffiffi
s

p
; 0Þ and mi and m0

i are masses of pseu-
doscalar mesons in channel i. In the second line, we have
performed the q0 integral, and ωiðqÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ q2
p

and
ω0
iðqÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m02

i þ q2
p

are the on-shell energies.
In this construction, a sufficiently strong attractive

interaction with a coupling to an open channel can
dynamically generate a resonance state, which appears as
a pole of the scattering amplitude in the complex lower-half

energy plane above the lowest threshold. The resonance
pole is characterized by the pole position and the residue of
the scattering amplitude as

TijðsÞ ¼
gigj

s − spole
þ TBG

ij ðsÞ; ð32Þ

where gi can be interpreted as the coupling constant of the
resonance to the channel i, Re ffiffiffiffiffiffiffiffiffispole

p ð−2Im ffiffiffiffiffiffiffiffiffispole
p Þ corre-

sponds to the mass (width) of the resonance, and TBG
ij is a

background term which is regular at s → spole. Then, in
Refs. [30–36], the pole position and coupling constant are
further translated into compositeness, which is defined as
the two-body contribution to the normalization of the total
wave function for the resonance. In our notations of the
separable interaction and the loop function, the ith channel
two-body wave function for resonances generated with the
Bethe–Salpeter equation (30) is calculated as [36]

~ΨiðqÞ ¼
gi

spole − ½ωiðqÞ þ ω0
iðqÞ�2

; ð33Þ

and the compositeness is obtained as [30,36]4

Xi≡
Z

d3q
ð2πÞ3

ωiðqÞ þ ω0
iðqÞ

2ωiðqÞω0
iðqÞ

½ ~ΨiðqÞ�2

¼ − g2i
dGi

ds
ðs ¼ spoleÞ; ð34Þ

where the normalization factor ½ωiðqÞ þ ω0
iðqÞ�=

½2ωiðqÞω0
iðqÞ� guarantees the Lorentz invariance of the

integral and in the last line the integral is transformed into
the derivative of the loop function Gi (31). We note that the
compositeness is not an observable and hence is a model-
dependent quantity. We also note that the derivative of the
loop function does not diverge for meson-meson states in
contrast to the loop function itself, but one has to treat
consistently the loop function and its derivative; i.e., one
has to use the same regularization for both the loop function
and its derivative. On the other hand, to measure the
fraction of the bare state contribution rather than the
two-body state involved, we introduce the elementariness
Z, which corresponds to the field renormalization constant
intensively discussed in the 1960s [61–64]. The elemen-
tariness measures all contributions which cannot be respon-
sible for the hadronic two-body component involved. For
instance, compact qq̄ and qqq̄ q̄ states contribute to the
elementariness. The expression of the elementariness in our
notations is obtained in Ref. [36] as

4For the correct normalization of the resonance wave function,
we do not calculate the absolute value squared but the complex
number squared of ~ΨðqÞ. Moreover, the bra and ket vectors of the
resonance state should be hΨ�j and jΨi, respectively, so as to
obtain the correct normalization, hΨ�jΨi ¼ 1 (see Refs. [34,36]
for details).
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Z ¼ −
X
i;j

gjgi

�
Gi

dVij

ds
Gj

�
s¼spole

: ð35Þ

We note that in general both the compositeness Xi and
elementariness Z take complex values for a resonance state,
and hence one cannot interpret the compositeness (elemen-
tariness) as the probability to observe a two-body (bare-
state) component inside the resonance. However, a striking
property of the compositeness and elementariness is that
the sum of them coincides with the normalization of the
total wave function for the resonance jΨi and is exactly
unity [36],

hΨ�jΨi¼
X
i

XiþZ

¼−
X
i;j

gjgi

�
δij

dGi

ds
þGi

dVij

ds
Gj

�
s¼spole

¼1; ð36Þ

where the condition of the correct normalization as unity is
guaranteed by a generalized Ward identity proven in
Ref. [65]. Based on this normalization, we propose to
interpret the compositeness Xi and elementariness Z for a
certain class of resonances on the basis of the similarity to the
bound state case. Namely, if the compositeness X1

approaches unity with a small imaginary part while
Xiði ≠ 1Þ and Z negligibly contribute to the normalization
(36), the system can be interpreted to be dominated by the
two-body component in channel 1, since the resonancewave
function is considered to be similar to that of the bound state
dominated by channel 1. In this sense, jX1j ∼ 1 is a necessary
condition for the molecular picture in channel 1. In another
case, if jXij is much smaller than unity, the system contains
negligible i-channel two-body component.
To examine the chiral unitary approach and composite-

ness, let us consider s-wave scattering of two pseudoscalar
mesons which couple to the a0ð980Þ and f0ð980Þ reso-
nances. We assume here the isospin symmetry and intro-
duce five channels labeled by the indices i ¼ 1;…; 5 in the
order KþK−, K0K̄0, πþπ−, π0π0, and π0η. The interaction
kernel Vij ¼ Vji is taken from the leading-order chiral
Lagrangian as

V11 ¼ 2V12 ¼ 2V13 ¼ 2
ffiffiffi
2

p
V14 ¼ V22

¼ 2V23 ¼ 2
ffiffiffi
2

p
V24 ¼ V33 ¼ −

s
2f2

;

V15 ¼ −V25 ¼ −
3s − 4m2

K

4
ffiffiffi
3

p
f2

;

V34 ¼ −
s −m2

πffiffiffi
2

p
f2

;

V35 ¼ V45 ¼ 0;

V44 ¼
3

2
V55 ¼ −

m2
π

2f2
; ð37Þ

with the pion decay constant f. We note that we have
multiplied the interaction kernel (37) in the case of π0π0

states by 1=
ffiffiffi
2

p
compared to the expression given in, e.g.,

Ref. [24], and thus a naive unitarization in Eq. (30) with the
interaction kernel (37) can give a correct normalization for
intermediate states of identical particles. On the other hand,
for the loop function,we employ a three-dimensional cutoff as

Giðs; qmaxÞ

¼
Z

d3q
ð2πÞ3

ωiðqÞ þ ω0
iðqÞ

2ωiðqÞω0
iðqÞ

θðqmax − jqjÞ
s − ½ωiðqÞ þ ω0

iðqÞ�2 þ i0
;

ð38Þ
where θðxÞ is the Heaviside step function.
Now, we solve the Bethe–Salpeter equation (30) with the

isospin symmetric masses and parameters qmax ¼
1.075 GeV and f ¼ 93.0 MeV, which are chosen so as
to generate two poles which correspond to the a0ð980Þ and
f0ð980Þ resonances, respectively, in the complex s plane of
the scattering amplitude. The pole positions, coupling
constants, compositeness, and elementariness of the two
resonances are listed in Table III. We note that for the
evaluations of the compositeness and elementariness, we
use the same sharp cutoff qmax for the loop function and its
derivative. As a result, the KK̄ compositeness for the
resonance, XKK̄ , can be obtained by summing up the i ¼
1ðKþK−Þ and 2ðK0K̄0Þ contributions as

XKK̄ ≡ −
X2
i¼1

g2i
dGi

ds
ðs ¼ spole; qmaxÞ; ð39Þ

which results in 0.34 − 0.30i for a0ð980Þ and 0.70 − 0.11i
for f0ð980Þ. Since the real part dominates the sum rule (36)
while the imaginary part is negligible, the KK̄ composite-
ness for f0ð980Þ indicates a large KK̄ component inside it,
on the basis of the similarity to the bound state case. This
finding is consistent with a model-independent analysis in

TABLE III. Properties of the a0ð980Þ and f0ð980Þ resonances
in the chiral unitary approach. For later convenience, we show the
values in the particle basis.

a0ð980Þ f0ð980Þffiffiffiffiffiffiffiffiffispole
p

977 − 56i MeV 983 − 21i MeV
gKþK− 3.31þ 0.28i GeV 2.97þ 0.89i GeV
gK0K̄0 −3.31 − 0.28i GeV 2.97þ 0.89i GeV
gπþπ− � � � −0.29þ 1.28i GeV
gπ0π0 � � � −0.20þ 0.90i GeV
gπ0η 2.99 − 0.85i GeV � � �
XKþK− 0.17 − 0.15i 0.35 − 0.05i
XK0K̄0 0.17 − 0.15i 0.35 − 0.05i
Xπþπ− � � � 0.01þ 0.01i
Xπ0π0 � � � 0.01þ 0.00i
Xπ0η −0.07þ 0.12i � � �
Z 0.73þ 0.18i 0.28þ 0.10i
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Ref. [16]. The KK̄ compositeness for a0ð980Þ implies a
non-negligible KK̄ component inside it, but we cannot
clearly conclude the structure due to its large imaginary
part. The difference of the structure of a0ð980Þ and f0ð980Þ
may originate from the fact that the strength of the leading-
order KK̄ðI ¼ 0Þ interaction from chiral perturbation
theory [see Eq. (37)] is three times larger than that with
I ¼ 1:

VKK̄ðI¼0Þ ¼ −
3s
4f2

; VKK̄ðI¼1Þ ¼ −
s

4f2
: ð40Þ

In addition, the absolute values of the πη and ππ compos-
iteness are much smaller than unity, so both the πη
component inside a0ð980Þ and the ππ component inside
f0ð980Þ are negligible.
At the end of this subsection, we emphasize that,

although the compositeness is not an observable, we can
evaluate it from experimental observables via appropriate
models. In the following, we employ the expression in
Eq. (39) for the KK̄ compositeness of the a0ð980Þ and
f0ð980Þ resonances. We will take the cutoff qmax → ∞ for
the derivative of the loop function Gi; the use of the finite
cutoff qmax ∼ 1 GeV will give only a several percent
change of the value of the compositeness.

B. KK̄ compositeness from experimental Flatte
parameter sets

As we have seen in the previous subsection, the KK̄
compositeness of the a0ð980Þ and f0ð980Þmesons (39) can
be determined with their pole positions and residues of the
scattering amplitudes. Here, we adopt the Flatte para-
metrization without the mixing in Eq. (9), and we calculate
the pole positions, residues, and compositeness for the
scalar mesons from experimentally fitted parameters in
Table I. Namely, the propagator of the scalar meson
AðA ¼ a; fÞ, 1=DAðsÞ, brings a pole in the scattering
amplitude of TA

ij,

TA
ij ¼

ḡAiḡAj
DAðsÞ

þ ðregular at s ¼ sAÞ; ð41Þ

where sA is the pole position of 1=DAðsÞ and ḡAiḡAj is
multiplied so as to describe the scattering i to j. Therefore,
compared to Eq. (32), the residue at the resonance pole of
the scattering amplitude TA can be evaluated as

g2A ¼ ḡ2ARA; ð42Þ

RA ≡ Res½1=DAðsÞ; sA� ¼ lim
s→sA

s − sA
DAðsÞ

: ð43Þ

As a consequence, the KK̄ compositeness for the resonance
A, XA, can be obtained by summing up the i ¼ 1ðKþK−Þ
and 2ðK0K̄0Þ contributions as

XA ¼ − g2A
X2
i¼1

dGi

ds
ðs ¼ sA;∞Þ

¼ − ḡ2ARA

X2
i¼1

dGi

ds
ðs ¼ sA;∞Þ: ð44Þ

This is the formula to calculate the KK̄ compositeness of
the scalar mesons from the Flatte parametrization without
the mixing. In a similar manner, we can calculate the ππ
and πη compositeness for the scalar mesons.
Now, we calculate the pole positions and compositeness

of the a0ð980Þ and f0ð980Þ scalar mesons from the
parameter sets in Table I. The numerical results are listed
in Table IVand plotted in Fig. 3. In the table, we show only

FIG. 3. The KK̄ compositeness of the a0ð980Þ and
f0ð980Þ resonances from the Flatte parameters in Table I with
the errors for the KK̄ coupling constants. Open (filled) symbols
with solid (dashed) lines represent the KK̄ compositeness
for a0ð980Þ [f0ð980Þ].

TABLE IV. Pole positions and compositeness from the Flatte
parameters given in Table I. Here, we only show the central
values. Compositeness is given in the isospin basis.

a0ð980Þ
Collaboration

ffiffiffiffiffi
sa

p
(MeV) Xa Xπη

CLEO [44] 1022 − 70i 0.09 − 0.22i −0.16þ 0.05i
KLOE [45] 994 − 26i 0.15 − 0.17i −0.05þ 0.03i
CB [46] 1000 − 36i 0.12 − 0.17i −0.07þ 0.03i
SND [47] 1005 − 5i 0.68 − 0.51i −0.05 − 0.01i
E852 [48] 1007 − 28i 0.07 − 0.15i −0.06þ 0.03i

f0ð980Þ
Collaboration ffiffiffiffiffisfp (MeV) Xf Xππ

CDF [49] 1010 − 30i 0.21 − 0.30i −0.03 − 0.01i
KLOE [50] 985 − 10i 0.21 − 0.12i −0.01 − 0.00i
Belle [51] 983 − 27i 0.29 − 0.17i −0.02 − 0.00i
BES [52] 1000 − 18i 0.50 − 0.34i −0.02 − 0.01i
FOCUS [53] 981 − 28i 0.21 − 0.14i −0.02 − 0.00i
SND [54] 1001 − 7i 0.80 − 0.31i −0.01 − 0.01i
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the central values, while we take into account the errors for
the KK̄ coupling constants in the figure. All of the pole
positions in Table IVexist in the physical Riemann sheet of
the KK̄ channel.
As one can see from Table IV and Fig. 3, we obtain the

complex compositeness in every parameter set since
a0ð980Þ and f0ð980Þ are resonance states. For the KK̄
compositeness of a0ð980Þ, the parameters do not give a
large absolute value of the KK̄ compositeness comparable
to unity except for the SND parameter, which, however, has
a large error bar as seen in Fig. 3. The absolute value jXaj ∼
0.2 in other parameter sets could imply a small but non-
negligible KK̄ component inside a0ð980Þ, but at present,
we do not clearly interpret the KK̄ compositeness for
a0ð980Þ. On the other hand, for f0ð980Þ, two of the
parameter sets (BES and SND) imply a large absolute
value of the KK̄ component with, say, jXfj > 0.6.
Especially, it is worth noting that in the BES analysis
the authors fitted the KK̄ spectrum as well as the ππ
spectrum, which leads to a small error coming from the KK̄
coupling constant. We note that the tendency for f0ð980Þ
supports the result in the chiral unitary approach (see
Table III and also Refs. [36,66]).
The tendency for f0ð980Þ is similar to the findings in

Ref. [16], which suggested that f0ð980Þ should be a KK̄
molecular state to a large degree. However, although both
results in the present study and in Ref. [16] are obtained
with the experimental Flatte parameters and similar for-
mulations, a big difference is that in Ref. [16] the authors
defined “compositeness” in terms of the spectral density as
a real value even for the a0ð980Þ and f0ð980Þ resonances.
This treatment should be valid effectively only when the
resonance has a narrow width and the imaginary part of the
compositeness is enough small (see also Ref. [34]).
Otherwise, the correct normalization (36) will be lost.
However, our result gives a non-negligible imaginary part
of the compositeness from the Flatte parameters, which
means that the treatment in Ref. [16] should be reexamined.
In other words, the value calculated in Ref. [16] should not
be compared with unity, since the correct normalization of
the resonance wave function should be lost.
We also note that all of the absolute values of the πη and

ππ compositeness for the a0ð980Þ and f0ð980Þ resonances,
respectively, are small compared to unity. This strongly
indicates that the a0ð980Þ and f0ð980Þ resonances are not
the πη and ππ molecular states, respectively.

IV. CONSTRAINT ON THE KK̄ COMPOSITENESS
FROM THE a0ð980Þ-f 0ð980Þ MIXING INTENSITY

A. Relation between the a0ð980Þ-f 0ð980Þ mixing
intensity and the KK̄ compositeness from experimental

Flatte parameter sets

Now that we have formulated both the a0ð980Þ-f0ð980Þ
mixing intensity ξfa and the compositeness X, we would

like to investigate a relation between them for the a0ð980Þ
and f0ð980Þ resonances. To this end, we first mention that
the mixing amplitudeΛðsÞ (3) is proportional to the product
of the coupling constants, ḡaḡf. This indicates that when
the product of the coupling constants ḡaḡf and hence the
mixing amplitude ΛðsÞ are sufficiently small the mixing
intensity behaves in the power of

ξfa ∼ jΛj2 ∼ jḡaḡfj2 ∝ jXaXfj: ð45Þ

Therefore, we expect that the mixing intensity ξfa is
proportional to the absolute value of the product of the
KK̄ compositeness of a0ð980Þ and f0ð980Þ, jXaXfj, for
small KK̄ coupling constants.
To examine the behavior in Eq. (45), we plot in Fig. 4 the

absolute value of the product of the KK̄ compositeness for
the a0ð980Þ and f0ð980Þ resonances, jXaXfj, with respect
to the a0ð980Þ-f0ð980Þ mixing intensity ξfa by using the
Flatte parameters in Table I. As one can see from Fig. 4,
although a clear proportional connection ξfa ∝ jXaXfj is
not observed, there is a tendency that the product jXaXfj
increases as the mixing intensity ξfa increases. From the
experimental upper limit of the mixing intensity (29), we
expect that the product of the compositeness has an upper
bound as jXaXfj ≲ 0.4. This upper bound implies that the
a0ð980Þ and f0ð980Þ resonances cannot be simultaneously
KK̄ molecular states, since the condition jXaj ∼ jXfj ∼ 1

cannot satisfy jXaXfj≲ 0.4.
We note that the above discussion is based on the Flatte

parameters in Table I. Therefore, to confirm this relation
between the mixing intensity and the absolute value of the
KK̄ compositeness for a0ð980Þ and f0ð980Þ, we have to
calculate them with more general parameter sets, especially
for the a0ð980Þ- and f0ð980Þ-KK̄ coupling constants,

FIG. 4. Scatter plot of the absolute value of the product of the
KK̄ compositeness for the a0ð980Þ and f0ð980Þ resonances,
jXaXfj, with respect to the a0ð980Þ-f0ð980Þmixing intensity ξfa.
Data points are obtained from the Flatte parameters given in
Table I with the errors for the KK̄ coupling constants.
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which are responsible for both the mixing intensity and
their KK̄ compositeness. This is the task in the next
subsection.

B. Confirmation of the relation

1. Strategy

Now, we construct a relation between the a0ð980Þ-
f0ð980Þ mixing intensity ξfa and the compositeness X
for the a0ð980Þ and f0ð980Þ resonances. Our strategy is
summarized as follows. First, we fix four parameters Ma,
Mf, ḡaπη, and ḡfππ in some appropriate approaches. Then,
we generate the a0ð980Þ- and f0ð980Þ-KK̄ coupling
constants, ḡa and ḡf, respectively, which are responsible
for both the mixing intensity ξfa (25) and their KK̄
compositeness, to evaluate simultaneously the mixing
intensity and their KK̄ compositeness. With this approach,
we can give a more general constraint on the KK̄ structure
of a0ð980Þ and f0ð980Þ regardless of the details of the
a0ð980Þ- and f0ð980Þ-KK̄ coupling constants.
For the KK̄ compositeness, we employ the model in

Sec. III and evaluate it with the following expression:

XA ¼ −g2A
X2
i¼1

dGi

ds
ðs ¼ sA;∞Þ; A ¼ a; f: ð46Þ

So we can calculate the KK̄ compositeness with not only a
small but also a large mixing amplitude, the pole position
sA for the resonance A is extracted as that of the propagator
PAðsÞ rather than the propagator without mixing, 1=DAðsÞ.
We note that the coupling constant gA in the expression of
the compositeness should be evaluated as a residue of the
resonance pole position [see Eq. (32)], and hence it differs
from ḡA by the residue of the propagator PAðsÞ. Namely, in
a similar manner to the discussion in Sec III B, taking into
account the residue of the propagator PAðsÞ as

g2A ¼ ḡ2AR
0
A; R0

A ≡ lim
s→sA

ðs − sAÞPAðsÞ; ð47Þ

we can calculate the compositeness as

XA ¼ −ḡ2AR0
A

X2
i¼1

dGi

ds
ðs ¼ sA;∞Þ: ð48Þ

Although the compositeness XA is in general complex
for resonance states, in this study, we use Eq. (48) so as to
evaluate the absolute value of the compositeness jXAj from
the coupling constant ḡA. Therefore, in our strategy, we will
obtain a relation between the mixing intensity and the
absolute value of the KK̄ compositeness for a0ð980Þ and
f0ð980Þ. We emphasize that the absolute value of the
compositeness cannot be interpreted as a probability to find
a two-body molecular state, but it will be an important

piece of information on the structure of the scalar mesons
when compared with unity. For instance, jXAj ∼ 1 is a
necessary condition for the KK̄ molecular picture of the
meson A, while jXAj ≪ 1 indicates that the meson A has a
negligible KK̄ molecular component.

2. Relation between the a0ð980Þ-f 0ð980Þ mixing
intensity and the KK̄ compositeness

We now fix the four parameters as rough averages of the
Flatte parameters listed in Table I,

Ma ¼ 990 MeV; ḡaπη ¼ 3.0 GeV;

Mf ¼ 970 MeV; ḡfππ ¼ 2.4 GeV; ð49Þ

to construct a relation between the KK̄ compositeness of
the a0ð980Þ and f0ð980Þ resonances and their mixing
intensity ξfa. Since we expect that the mixing intensity
behaves as in Eq. (45) for small KK̄ coupling constants, we
investigate a relation between the mixing intensity ξfa and
the absolute value of the product of the KK̄ compositeness
of a0ð980Þ and f0ð980Þ, jXaXfj. Here, we employ the
Monte Carlo method and generate values of the coupling
constants ḡa and ḡf independently from random numbers.
In the Monte Carlo method, we take the range of the KK̄
coupling constants as ½0 GeV; 6 GeV� both for ḡa and
ḡf, which covers the values of the coupling constants

ḡaKK̄ð¼
ffiffiffi
2

p
ḡaÞ and gfKK̄ð¼

ffiffiffi
2

p
ḡfÞ listed in Table I.

In Fig. 5, we show a scatter plot for the absolute value of
the product of the KK̄ compositeness of a0ð980Þ and
f0ð980Þ, jXaXfj, with respect to the mixing intensity ξfa,
with various values of the coupling constants ḡa and ḡf
from random numbers. As one can see from Fig. 5,

FIG. 5. Scatter plot of the absolute value of the product of the
KK̄ compositeness for the a0ð980Þ and f0ð980Þ resonances,
jXaXfj, with respect to the a0ð980Þ-f0ð980Þmixing intensity ξfa.
In the plot, the number of data in the Monte Carlo method (MC
events) amounts to ∼4 × 103. We also show an upper limit of
jXaXfj for each value of ξfa by the solid line.
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although a proportional connection ξfa ∝ jXaXfj is not
observed, no Monte Carlo data point exists in the upper-left
region of the plot, which implies that there is an upper limit
of allowed jXaXfj for each value of ξfa. In fact, we can
check the existence of this upper limit by sweeping the
values of ḡa and ḡf independently in appropriate ranges,
say ½0 GeV; 6 GeV�, and the result of the upper limit of
jXaXfj for each ξfa is plotted as a solid line in Fig. 5. We
note that the upper limit of the allowed jXaXfj behaves like
jXaXfjupper limit ∼ ξfa. This result means that, if we observe
a smaller value of the mixing intensity ξfa, the product of
the compositeness jXaXfj also becomes smaller.
We then discuss the compositeness of the scalar mesons

with the experimental value of the mixing intensity (28) and
(29), which was obtained as the ratio of two branching
fractions of J=ψ , J=ψ → ϕf0ð980Þ → ϕa0ð980Þ → ϕπη
to J=ψ → ϕf0ð980Þ → ϕππ. This experimental value,
together with the upper limit of jXaXfj for each value of
the mixing intensity ξfa shown in Fig. 5, can constrain the
structure of a0ð980Þ and f0ð980Þ through their compos-
iteness. For instance, with Fig. 5, ξfajupper limit ¼ 1.1%
gives a constraint jXaXfj < 0.47. With this constraint,
we doubt that both the a0ð980Þ and f0ð980Þ resonance
are simultaneously KK̄ molecular states, since the con-
dition jXaj ∼ jXfj ∼ 1 is out of the allowed
region jXaXfj < 0.47.
The experimental value (28) and (29) constrains not only

the value of the product jXaXfj but also the allowed region
for jXaj and jXfj in the jXaj-jXfj plane. Here, we show in
Fig. 6 the allowed region for jXaj and jXfj in the jXaj-jXfj
plane calculated by sweeping the values of ḡa and ḡf
independently. In Fig. 6, the shaded area corresponds to the
allowed region within the experimental value (28) includ-
ing errors, and the solid line corresponds to the upper limit
from the experimental value (29), ξfa ¼ 1.1%. The region
above the solid line in Fig. 6 inevitably leads to the mixing
intensity ξfa > 1.1% and is hence excluded. As one can
see, the experimental value of the mixing intensity ξfa does
not allow the region of jXaj ∼ jXfj ∼ 1, and thus the
statement that both the a0ð980Þ and f0ð980Þ resonances
are simultaneously KK̄ molecular states is questionable. In
fact, this consequence was already implied in Ref. [28], in
which the authors showed that the experimental mixing
intensity disfavored the predicted value for a0ð980Þ and
f0ð980Þ as KK̄ molecules. We note here that conditions
that one of the scalar mesons has a large degree of the KK̄
molecule, such as jXaj ¼ 0.1 and jXfj ¼ 0.7 or jXaj ¼ 0.8
and jXfj ¼ 0.3, are not forbidden by the experimental value
of the mixing intensity. Especially, the band in Fig. 6 shows
jXfj≳ 0.3 regardless of the value of jXaj, which might
indicate a non-negligible degree of theKK̄ molecule for the
f0ð980Þ resonance. Moreover, the experimental mixing
intensity does not disfavor the condition that both a0ð980Þ

and f0ð980Þ have non-negligible KK̄ components with, for
instance, jXaj ¼ jXfj ¼ 0.4.

V. DISCUSSION

So far, we have considered the a0ð980Þ-f0ð980Þ mixing
and have given a constraint on the KK̄ compositeness for
the a0ð980Þ and f0ð980Þ resonances from an established
relation between the KK̄ compositeness and the a0ð980Þ-
f0ð980Þ mixing intensity. As a result, the experimental
value of the mixing intensity implies that the a0ð980Þ and
f0ð980Þ resonances cannot be simultaneously KK̄ molecu-
lar states. The a0ð980Þ-f0ð980Þ mixing, however, cannot
answer the question of whether one of a0ð980Þ and f0ð980Þ
is a KK̄ molecular state or not. To solve this problem
experimentally, we have to call for other experimental data
on these resonances.
One possible way to determine the structure of each

scalar meson is to evaluate the compositeness. Actually,
Eq. (34) indicates that compositeness for each resonance
can be evaluated from the pole position and the coupling
constant as the residue at the pole position. From this point
of view, in Sec. III B, we have calculated the KK̄ com-
positeness of the scalar mesons a0ð980Þ and f0ð980Þ
described with the Flatte parameters in Table I. From the
results shown in Table IV and in Fig. 3, we have found that
two of the parameter sets for f0ð980Þ imply a large absolute
value of the KK̄ component with, say, jXfj > 0.6 and the
parameters for a0ð980Þ lead to a small but non-negligible

FIG. 6. Allowed region for the absolute values of composite-
ness jXaj and jXfj constrained by the experimental value of the
a0ð980Þ-f0ð980Þ mixing intensity (28) and (29). The shaded area
corresponds to the allowed region within the experimental value
(28) including errors, and the solid line corresponds to the upper
limit of the experimental value ξfa ¼ 1.1% (29).
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KK̄ compositeness jXaj ∼ 0.2. Nevertheless, to conclude
the structure of the scalar mesons more strictly, we have to
determine the pole positions and coupling constants more
precisely in experiments. Especially, it will be important to
fit the KK̄ spectrum as well as the πη=ππ spectrum, which
will lead to a small error of the KK̄ compositeness coming
from the KK̄ coupling constant, as done in the BES
analysis in Ref. [52].
Another approach to determine the structure of the scalar

mesons is to measure their spatial size, since a hadronic
molecule can be a spatially extended object due to the
absence of a strong quark confining force. In fact, the
spatial size of exotic hadron candidates was theoretically
measured in a meson-meson and meson-baryon scatterings
in, e.g., Refs. [65–68], and it was found that f0ð980Þ and
Λð1405Þ, of which the KK̄ and K̄N compositeness is close
to unity, respectively, have spatial size largely exceeding
the typical hadronic scale ≲0.8 fm.
The internal structure of the scalar mesons could be also

investigated by the ϕ radiative decays into f0ð980Þ and
a0ð980Þ, since ϕ → f0ð980Þγ and a0ð980Þγ are electric
dipole decays, and hence the widths should reflect spatial
sizes of the scalar mesons [69–76]. The couplings of the
scalar mesons to two photons are also sensitive to the
structure of the scalar mesons and have been investigated
in, e.g., Refs. [77–81]. The measurements of the ϕ radiative
decays and the two-photon couplings support the multi-
quark picture for the scalar mesons f0ð980Þ and
a0ð980Þ [81].
In addition, high-energy reactions will be useful for

determining the internal structure of exotic hadron candi-
dates since quarks and gluons are appropriate degrees of
freedom at high energies. In this context, the generalized
parton distributions and the generalized distribution ampli-
tudes (GDAs) can be used to clarify internal configurations
of exotic hadrons, especially f0ð980Þ and a0ð980Þ [82] by
the GDAs in two-photon reactions [γγ� → AĀ, A ¼
f0ð980Þ; a0ð980Þ]. Next, the asymptotic scaling behavior
of the production cross sections can be a guide to determine
internal quark configurations of the exotic hadrons, such as
Λð1405Þ, due to the constituent-counting rule in perturba-
tive QCD [83]. Fragmentation functions of exotic hadrons
could also provide a clue for finding their internal con-
figurations by using characteristic differences between
favored and disfavored fragmentations [84], which could
be measured at KEKB. Finally, the possibility to extract the
hadron structure from the production yield in heavy ion
collisions [85,86] is also interesting, since one can dis-
tinguish hadronic molecules, compact exotic states, and
ordinary quark configurations from the production yield.

VI. CONCLUSION

In this study, we investigated the structure of the a0ð980Þ
and f0ð980Þ resonances with the a0ð980Þ-f0ð980Þ mixing.
Since the a0ð980Þ-f0ð980Þ mixing takes place through the

difference of the thresholds of the charged and neutral KK̄
pairs, the mixing should be sensitive to theKK̄ components
inside the scalar mesons. Actually, the a0ð980Þ-KK̄ and
f0ð980Þ-KK̄ coupling constants reflect the KK̄ structure of
the a0ð980Þ and f0ð980Þ resonances, respectively, and the
mixing amplitude is proportional to the two coupling
constants. The key quantity to connect the a0ð980Þ- and
f0ð980Þ-KK̄ coupling constants to their structure is com-
positeness, which is defined as the two-body composite
part of the normalization of the total wave function and
corresponds to the amount of two-body states composing
resonances as well as bound states.
The a0ð980Þ-f0ð980Þ mixing intensity was defined in

the same manner as the analysis by the BES experiment in
Ref. [28], where the ratio of the two branching fractions
of J=ψ , J=ψ → ϕf0ð980Þ → ϕa0ð980Þ → ϕπη to J=ψ →
ϕf0ð980Þ → ϕππ, was evaluated. For the a0ð980Þ ↔
f0ð980Þ mixing amplitude, we employed three Feynman
diagrams. Two of the Feynman diagrams are the leading-
order contribution from the KþK− and K0K̄0 loops, the
sum of which converges and becomes model independent
except for the coupling constants. In addition, the third
diagram is a subleading contribution of a soft photon
exchange in the KþK− loop. We took the Flatte para-
metrization for the a0ð980Þ and f0ð980Þ propagators. In
this construction, when we appropriately fix the parameters
of a0ð980Þ and f0ð980Þ including the a0ð980Þ- and
f0ð980Þ-KK̄ coupling constants, we can calculate the
a0ð980Þ-f0ð980Þ mixing intensity ξfa. By using the
existing Flatte parameter sets from experimental analyses,
we found that two-thirds of the combinations of the Flatte
parameter sets reproduce the experimental value with the
errors in Ref. [28], while only four combinations exceed the
experimental upper limit of the mixing intensity.
From the same Flatte parameters, we also calculated

the KK̄ compositeness for a0ð980Þ and f0ð980Þ, Xa and
Xf, respectively. Although the compositeness with the
correct normalization becomes complex in general for
resonance states, we found that two of the Flatte parameter
sets for f0ð980Þ give a large absolute value of the KK̄
component with, say, jXfj > 0.6 and the parameters for
a0ð980Þ lead to small but non-negligible KK̄ composite-
ness jXaj ∼ 0.2.
Next, combining the two results on the a0ð980Þ-f0ð980Þ

mixing intensity and on their KK̄ compositeness from the
existing Flatte parameters, we found a relation between the
mixing intensity and the absolute value of the product of
the compositeness, jXaXfj, from experiments. This relation
was confirmed by generating the values of the a0ð980Þ- and
f0ð980Þ-KK̄ coupling constants randomly, which are
responsible for both the mixing intensity and the KK̄
compositeness. As a result, we found an upper limit of
allowed jXaXfj for each value of ξfa, which behaves like
jXaXfjupper limit ∼ ξfa. Especially, the result suggests that a
small mixing intensity ξfa directly indicates a small value
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of jXaXfj. Then, by using the a0ð980Þ-f0ð980Þ mixing
intensity recently observed in the BES experiment, we
constrained the allowed region of the KK̄ compositeness
jXaj and jXfj in the jXaj-jXfj plane. We found that the
region jXaj ∼ jXfj ∼ 1 is not preferred, which implies that
the a0ð980Þ and f0ð980Þ resonances cannot be simulta-
neously KK̄ molecular states. However, the analysis does
not rule out possibilities that one of the scalar mesons has a
large degree of the KK̄ molecule. Especially, we obtained
jXfj≳ 0.3 regardless of the value of jXaj, which might

indicate a non-negligible degree of theKK̄ molecule for the
f0ð980Þ resonance.
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