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In this paper it is proposed that the charged charmonium-like state Zcð3900Þ is a resonance above the
threshold from the DD̄� interaction. The DD̄� interaction is described by the one-boson exchange model
with light meson exchanges plus a short-range J=ψ exchange. The scattering amplitude is calculated within
a Bethe-Salpeter equation approach, and the poles near the DD̄� threshold are searched. In the isoscalar
sector, two poles found under the DD̄� threshold—i.e., bound states—have the quantum numbers
IGðJPCÞ ¼ 0−ð1þ−Þ and 0þð1þþÞ. The latter can be related to the Xð3872Þ. In the isovector sector, a bound
state with IGðJPÞ ¼ 1þð1þÞ is found with a large cutoff at about 3 GeV. If a cutoff at about 2 GeV is
adopted with which a pole carrying the quantum number of the Xð3872Þ is produced at an energy of about
3871 MeV, the pole for the bound state with 1þð1þÞ runs across the threshold to a second Riemann sheet
and becomes a resonance above theDD̄� threshold, which can be identified with the Zcð3900Þ. With such a
cutoff, the DD̄� invariant mass spectrum is also investigated and the experimental results found by BESIII
can be reproduced.
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I. INTRODUCTION

In the past decade, an amount of the so-called XYZ
particles were found in the facilities around the world, such
as Belle, BABAR, and BESIII. It is difficult to put these
particles into the conventional quark model frame, which
attracts physicists’ special attention. An interesting obser-
vation is that many of the XYZ particles are near the
threshold of two charmed mesons. For example, the mass
gap between the Xð3872Þ observed by the Belle
Collaboration [1] and the D0D̄�0 threshold is smaller than
1 MeV. The structure Zcð3900Þ observed by BESIII [2] is
also very close to the DD̄� threshold. This inspired the idea
that these particles originate from the interaction of two
mesons, such as the hadronic molecular state and threshold
effect.
In the literature, many efforts have been made to study

the possibility of interpreting the Xð3872Þ and the
Zcð3900Þ as a hadronic molecular state (that is, a bound
state below the threshold), such as calculations with the
QCD sum rule [3–5]. In Refs. [6,7], the BB̄�=DD̄� system
was studied with a nonrelativistic one-boson exchange
(OBE) model by solving the Schrödinger equation. There
does not exist a bound state from the DD̄� interaction,
which can be identified with the Zcð3900Þ observed by
BESIII. In Ref. [8], the DD̄� interaction is studied in a
Bethe-Salpeter equation approach. A state with quantum
number IGðJPÞ ¼ 0þð1þþÞ is produced from the DD̄�

interaction, which corresponds to the isoscalar particle
Xð3872Þ. No bound state related to the Zcð3900Þ was
found. In lattice calculations, a candidate X(3872) state was
observed, while the possibility of a shallow bound state
related to the Zcð3900Þ was not supported [9–11].
Generally, the theoretical studies suggest that there exists

a bound state relevant to the Xð3872Þ from the DD̄�

interaction, while the existence of a bound state relevant
to the Zcð3900Þ is disfavored. Besides the tetraquark
interpretation [12–14], many authors proposed an alter-
native explanation that the structure Zcð3900Þ is simply a
kinematical effect [15,16]. In their opinion, such structure
is not related to an S-matrix pole and therefore should not
be interpreted as a state. In Ref. [17], it was suggested that
in the elastic channel the kinematic threshold cusp cannot
produce a narrow peak in the invariant mass distribution in
contrast with a genuine S-matrix pole, which can be used to
distinguish kinematic cusp effects from genuine poles.
In scattering theory, a peak structure in the experiment

can be related to not only a bound state below threshold but
also a resonance above threshold. Both the bound state and
resonance are from an attractive interaction, but the former
needs stronger attraction [18]. For example, a popular
interpretation of the Λð1405Þ is a dynamically generated
state with a two-pole structure [19–21]. It is interesting to
note that the higher-energy K̄N channel has a stronger
attraction to support a bound state, while the lower energy
πΣ channel shows a relatively weaker attraction, which is
nevertheless strong enough to generate a resonance [22]. In
all measured channels, the experimental mass of the*junhe@impcas.ac.cn
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Zcð3900Þ is higher than the threshold [23], which also
indicates that it may be a resonance instead of a bound
state. Hence, it is interesting to study the possibility of
interpreting the Zcð3900Þ as a resonance above the DD̄�
threshold instead of a bound state.
In the literature, study about the possibilities of the XYZ

particles as a resonance has been scarce. There exist many
works to study the bound state from meson-meson inter-
actions by the potential model, the QCD sum rule, and the
lattice calculation. However, it is difficult to deal with a
resonance with available QCD sum rule or lattice technol-
ogy. In Ref. [24], the poles of a T-matrix were searched in
the local hidden gauge approach with heavy quark spin
symmetry, but only the bound state from the DD̄� inter-
action was studied. In this work, the method in Ref. [8] will
be extended to search the poles for both bound states and
resonance, and the heavy quark effective theory will be
used to describe the DD̄� interaction with light meson
exchanges plus short-range J=ψ exchange.
This work is organized as follows: In the next section a

theoretical frame is developed based on a quasipotential
approximation of the Bethe-Salpeter equation. In Sec. III,
the potential kernel with light meson exchange and J=ψ
exchange is derived with the help of the effective
Lagrangian from the heavy quark effective theory. The
numerical results are given in Sec. IV. In the last section, a
summary is given.

II. SCATTERING AMPLITUDE

The scattering amplitude can be obtained through
solving the Bethe-Salpeter equation. The general form of
the Bethe-Salpeter equation for the scattering amplitude as
shown in Fig. 1 reads

Mðk01k02; k1k2;PÞ

¼ Vðk01k02; k1k2;PÞ þ
Z

d4k00

ð2πÞ4
· Vðk01k02; k001k002;PÞGðk001k002ÞMðk001k002; k1k2;PÞ; ð1Þ

where V is the potential kernel and G is the product of the
propagators for two constituent particles. Here the momen-
tum of the system P ¼ k1 þ k2 ¼ k01 þ k02, and the relative
momentum k00 ¼ ðk002 − k001Þ=2.
In this work, a quasipotential approximation will be

applied to reduce the four-dimensional Bethe-Salpeter

equation to a three-dimensional one. Here the covariant
spectator theory will be applied, as shown in Appendix A,
in which the heavier meson, particle 2, is put on shell. After
multiplying the polarized vector on both sides of the
equation, we have

Mλ0;λðp0; pÞ ¼ Vλ0λðp0; pÞ þ
X
λ00

Z
d3p00

ð2πÞ3

· Vλ0λ00 ðp0; p00ÞG0ðp00ÞMλ00λðp00; pÞ; ð2Þ

where p, p0, and p00 are the momenta of constituent 2. And
the potential Vλ0λðp0; pÞ ¼ ϵμ�λ0 ðp0ÞVμνðp0; pÞϵνλðpÞ.
To reduce the Bethe-Salpeter equation to a one-

dimensional equation, we apply the partial wave expansion
as shown in Appendix B. The partial wave Bethe-Salpeter
equation with fixed parity reads as

MJP
λ0λðp0; pÞ ¼ VJP

λ0;λðp0; pÞ þ
X
λ00

Z
p002dp00

ð2πÞ3

· VJP
λ0λ00 ðp0; p00ÞG0ðp00ÞMJP

λ00λðp00; pÞ: ð3Þ

Note that the sum extends only over non-negative λ00, and a
factor 1=

ffiffiffi
2

p
has been included in the scattering amplitude

and potential for zero helicity. The potential is defined as

VJP
λ0λðp0; pÞ ¼ 2π

Z
d cos θ½dJλλ0 ðθÞVλ0λðp0; pÞ

þ ηdJ−λλ0 ðθÞVλ0−λðp0; pÞ�; ð4Þ

where the momenta are chosen as k1 ¼ ðW − E; 0; 0;−pÞ,
k2 ¼ ðE; 0; 0; pÞ and k01 ¼ ðW − E0;−p0 sin θ; 0;−p0 cos θÞ,
k02 ¼ ðE0; p0 sin θ; 0; p0 cos θÞ with p ¼ jpj in order to avoid
confusion with the four-momentum p.
The above equation can be related to the Lippmann-

Schwinger equations used by Oset et al., if the potential
kernel V is only dependent on the square of the momentum
of the system s ¼ P2 and the G0 is chosen as the one used
in Ref. [20]. A cutoff regularization has been introduced in
the integration of the propagator in Ref. [20], and it is
related to a dimensional regularization. Since in our
formalism, the integration is on the potential also only
the cutoff regularization is practical here. In this work, we
will adopt an exponential regularization instead of cutoff
regularization by introducing a form factor in the propa-
gator as

G0ðpÞ → G0ðpÞ½e−ðk21−m2
1
Þ2=Λ4 �2: ð5Þ

Here particle 2 is not involved in the form factor due to its
on-shell-ness. The exponential regularization used here can
be seen as a softer version of the cutoff regularization in
Ref. [20], where the momentum p is cut off at a certain
value pmax. The cutoff Λ plays an analogous role to the

FIG. 1. The diagram for the Bethe-Salpeter equaiton. The thick
and thin lines are for particles 1 and 2, respectively.
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cutoff pmax of cutoff regularization. It can also be under-
stood as a form factor in exponential form for the charmed
mesons to reflect the internal structure of the hadron and to
make the integration convergent. It is consistent with the
OBE model where a form factor is usually added for the
off-shell particle.

III. THE POTENTIAL

In Ref. [8], it was explained explicitly how to construct a
potential for states with definite isospin under SU(3)
symmetry with the corresponding flavor wave functions [6]

jZþ
DD̄� iI¼1 ¼

1ffiffiffi
2

p ðjD�þD̄0i þ cjDþD̄�0iÞ;

jZ−
DD̄� iI¼1 ¼

1ffiffiffi
2

p ðjD�−D̄0i þ cjD−D̄�0iÞ;

jZ0
DD̄� iI¼1 ¼

1

2
½ðjD�þD−i − jD�0D̄0iÞ

þ cðjDþD�−i − jD0D̄�0iÞ�;

jZ0
DD̄� iI¼0 ¼

1

2
½ðjD�þD−i þ jD�0D̄0iÞ

þ cðjDþD�−i þ jD0D̄�0iÞ�; ð6Þ

where c ¼ � corresponds to C-parity C ¼ ∓ respectively.
For the isovector state, the c is related to the G-parity.
Basically, the strong interaction should be described by

gluon and quark freedoms. If the distance between two
hadrons is large, the interaction will appear as meson
exchange—that is, the OBE model. Many efforts have been
made to study the connection between QCD and the OBE
model. For example, in Refs. [25,26], after integrating out
quark degrees of freedom in the effective Lagrangian, one
obtains the chiral effective Lagrangian for mesons. Though
there is still not anything particularly convincing about the
connection, as a phenomenological model the people’s
confidence about the OBE model arises from the successes
of its applications to the deuteron, such as the CD-Bonn
model [27] and the Gross model [28], and the constituent
quark model by Riska and Glozman [29]. If the X(3872) is
interpreted as a molecular state, it should have a radius of
about 7 fm, as estimated by Close and Page [30]. For a
resonance above the threshold, it is reasonable to assume
the interaction is at a large distance. Hence, the OBE model
will be adopted to describe the DD̄� interaction in
this work.
It seems strange to include the vector-meson exchanges,

which mainly take effect at short distances. However, we
should remind the reader that a short-distance interaction
does not mean an interaction only at short distances. The
vector-meson exchange will have some remnant at long
distances. It is also can be understood as indicating that
there is some possibility that the two hadrons are close to
each other. If the interaction from the vector-meson

exchange is large enough, it will have a considerable
remnant at long distance. Based on this consideration,
the vector-meson exchanges are also included in the OBE
model. At short distances, the studies in the constituent
quark model suggest the gluon exchange contribution can
be replaced by the contribution from vector-meson
exchanges [31,32]. Therefore, vector-meson exchanges
will be included in the calculation in this work instead
of gluon exchange.
There exist two types of diagram—namely, the direct

diagram and the cross diagram (see Fig. 2), as in a
conventional OBE potential model [6,7]. In the cross
diagram, the final particles are alternated. With such
alternation, the propagator is the same for different com-
ponents in a SU(3) state, such as jD�þD̄0i and jDþD̄�0i for
the positive-charge state, so that the equations for different
components are reduced to one equation under S(3)
symmetry [8].
To write the potential, we adopt the effective

Lagrangians of the pseudoscalar and vector mesons with
heavy flavor mesons from the heavy quark effective theory
[33,34]. The potential kernels V from vector-meson (V )
exchange, pseudoscalar-meson (P) exchange, and scalar-
meson (σ) exchange have been given in Ref. [8] as

VDirect
V ¼ i

β2g2V
2

ðk2 þ k02Þ · ðk1 þ k01Þϵ2 · ϵ02
q2 −m2

V
;

VDirect
σ ¼ i4g2σmPmP�

ϵ2 · ϵ02
q2 −m2

σ
;

VCross
V ¼ i2λ2g2Vελαβμðk2 þ k01Þλqαϵμ2

· ελ0α0βνðk1 þ k02Þλ
0
qα

0
ϵ0ν2

1

q2 −m2
V
;

VCross
P ¼ i

4g2mPmP�

f2π

k01 · ϵ2k1 · ϵ
0
2

q2 −m2
P

; ð7Þ

where the momenta kð
0Þ

1;2 and q are defined as in Fig. 2. Here

ϵð
0Þ

2 is the polarization vector for the initial or final particle
2. mP, mV and mσ are the masses for the exchange
pseudoscalar, vector, and sigma mesons. In the OBE
model, the masses of all mesons used are from the PDG
[23]. The σ meson is seen as a particle with a mass
475 MeV, which is the center value suggested by the PDG.
In the OBE model, we will adopt the physical values of

the coupling constants. How to determine the coupling

FIG. 2. The potential including both direct and cross diagrams.
Idi and Ici are the isospin factors for direct and cross diagrams,
respectively.
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constants has been discussed in the heavy quark effective
theory [34]. The coupling constant g for the pseudoscalar
exchange is extracted from the experimental width of D�þ
as g ¼ 0.59 [35]. The parameter β for the vector meson was
fixed as β ¼ 0.9 by the vector-meson dominance mecha-
nism, and λ ¼ 0.56 GeV−1 was obtained by comparing the
form factor obtained by lattice QCDwith the one calculated
by the light-cone sum rule [33]. The coupling constant gσ ¼
gπ=ð2

ffiffiffi
6

p Þ with gπ ¼ 3.73 was given in Ref. [36].
A form factor is introduced to compensate the off-shell

effect of the exchange meson as fðq2Þ ¼ ð Λ2

Λ2−q2Þ4. It is
different from the one used in the propagator [see Eq. (5)],
which is usually used in a case where the off-shell particle
has possibility q2 ¼ Λ2, to avoid an unnecessary pole
arising from the form factor. The cutoff can be related to
the radius of the hadron as

r2 ¼ − 6

Fð0Þ
d
dq2

Fðq2Þjq2¼0: ð8Þ

With Eq. (8), the cutoffs in two types of form factors have
relation Λ ≈ 5=r. If we assume the mesons have radii of
about 0.5 fm, the cutoff is about 2 GeV. Here the momenta
for the exchange mesons are defined as q ¼ k02 − k2 and
q ¼ k01 − k2 for direct and cross diagrams, respectively. In
the propagator of the meson exchange, we make a
replacement q2 → −jq2j to remove the unphysical singu-
larities, as in Ref. [37].
In Ref. [24], it was suggested that the J=ψ exchange is

important in the DD̄� interaction. And the potential was
written in the local hidden gauge approach with heavy
quark spin symmetry. In this work, the couplings of heavy-
light charmed mesons to J=ψ are written with help of the
heavy quark effective theory as [34,38]

LD�
ðsÞD̄

�
ðsÞJ=ψ

¼ −igD�
ðsÞD

�
ðsÞψ

½ψ · D̄�∂↔ ·D�

− ψμD̄� · ∂μ
↔
D� þ ψμD̄� · ∂↔D�μÞ�;

LD�
ðsÞD̄ðsÞJ=ψ ¼ gD�

ðsÞDðsÞψϵβματ∂βψμðD̄ ∂τ
↔
D�α þ D̄�α∂τ

↔
DÞ;

LDðsÞD̄ðsÞJ=ψ ¼ igDðsÞDðsÞψψ · D̄ ∂↔D; ð9Þ

where the couplings are related to a single parameter g2 as

gD�D�ψ

mD�
¼ gDðsÞDðsÞψ

mD
¼ gD�

ðsÞDðsÞψ ¼ 2g2
ffiffiffiffiffiffiffi
mψ

p
; ð10Þ

with g2 ¼ ffiffiffiffiffiffiffimψ
p =ð2mDfψ Þ with fψ ¼ 405 MeV.

With the above Lagrangians, the potential kernel for J=ψ
exchange is written as

VDirect
J=ψ ¼ −igD�D�J=ψgDDJ=ψ ½ϵ02 · ðk1 þ k01Þϵ2 · ðk2 þ k02Þ

þ ϵ02 · ðk2 þ k02Þϵ2 · ðk1 þ k01Þ

− ðk2 þ k02Þ · ðk1 þ k01Þϵ02 · ϵ2�
1

q2 −m2
J=ψ

;

VCross
J=ψ ¼ ig2DD�J=ψελαβμðk2 þ k01Þλqαϵμ2

· ελ0α0βνðk1 þ k02Þλ
0
qα

0
ϵ0ν2

1

q2 −m2
J=ψ

: ð11Þ

Wewould like to point out that the potentials obtained by
the heavy quark effective theory are comparable to the ones
obtained from the chiral Lagrangian in Ref. [24] after a
nonrelativization. For example, the potential kernel for the
J=ψ exchange can be rewritten as

VDirect
J=ψ ¼ − gD�D�J=ψgDDJ=ψ

m2
J=ψ

ðk2 þ k02Þ · ðk1 þ k01Þϵ02 · ϵ2;

ð12Þ

with gD�D�J=ψgDDJ=ψ=m2
J=ψ ¼ 7.04 in this work and

VDirect
J=ψ ¼ − Cij

4f2
ðk2 þ k02Þ · ðk1 þ k01Þϵ02 · ϵ2; ð13Þ

with Cij=4f2 ¼ 6.89 in Ref. [24]. The main difference
between our work and Ref. [24] is that a form factor is
added not only to the light pseudoscalar-meson exchanges
but also to the J=ψ exchange, which will suppress the
contribution from J=ψ exchange.
The flavor factors Idi and I

c
i for direct and cross diagrams

are presented in Table I. The cancellation of the ρ and ω
meson exchanges happens in the isovector sector as
suggested by the isospin factor listed in Table I, which
leads to a shortage of the short-range interaction in that
sector if the J=ψ exchange is absent.

IV. NUMERICAL RESULTS

In this work, we will search the poles of the scattering
amplitude M from the DD̄� interaction which is described
by the potential kernel obtained in the above section. The
scattering amplitude is obtained by solving the Bethe-
Salpeter equation.

TABLE I. The isospin factors Idi and Ici for direct and cross
diagrams and different exchange mesons.

Direct diagram Crossed diagram

ρ ω J=ψ σ π η ρ ω J=ψ

½PP��T − 1
2

1
2

1 1 − 1
2
c 1

6
c − 1

2
c 1

2
c c

½PP��S 3
2

1
2

1 1 3
2
c 1

6
c 3

2
c 1

2
c c
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A. Numerical solution of the Bethe-Salpeter equation

Before solving the one-dimensional partial wave Bethe-
Salpeter equation numerically, we need to deal with the
pole in G0ðpÞ as (here the notation JP is omitted)

iMðp;p0Þ ¼ iVðp;p0Þ

þ
Z

p002dp00

ð2πÞ3 iVðp;p00ÞG0ðp00ÞiMðp00;p0Þ

− iVðp;p00oÞ
�Z

dp00

ð2πÞ3
Aðp00oÞ

p002−p002o
þ i

p002oδḠ0ðp00oÞ
8π2

�

· iMðp00o;p0Þθðs−m1−m2Þ; ð14Þ

with

Aðp00oÞ¼ ½p002ðp002−p002o ÞG0ðp00Þ�p00→p00o ¼− p002o
2W

;

δḠ0ðp00Þδðp00−p00oÞ¼ δðG0ðpÞ00Þ ¼
1

4Wp00o
δðp00−p00oÞ; ð15Þ

with p00o ¼ 1
2W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½W2 − ðM þmÞ2�½W2 − ðM −mÞ2�

p
.

To solve the integral equation, we discrete the momenta
p, p0, and p00 by the Gauss quadrature with weight wðpiÞ and
have

Mik ¼ Vik þ
XN
j¼0

VijGjMjk; ð16Þ

where i is absorbed in M or V. The discreted propagator is
of a form

Gj>0 ¼
wðp00j Þp002j
ð2πÞ3 G0ðp00j Þ;

Gj¼0 ¼ −
ip00o

32π2W
þ
X
j

�
wðpjÞ
ð2πÞ3

p002o
2Wðp002j − p002o Þ

�
: ð17Þ

In this work, we will search the poles from the amplitude
of elastic scattering where the initial and final particles are
on shell. The scattering amplitude is

M ¼ M00 ¼
X
j

½ð1 − VGÞ−1�0jVj0: ð18Þ

The pole can be searched by variation of z to satisfy

j1 − VðzÞGðzÞj ¼ 0; ð19Þ

where z ¼ ER þ iΓ=2 equals the meson-baryon energy W
at the real axis. Since z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ p2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ p2
p

, the
p-plane corresponds to two Reimann sheets for z. A bound
state is located in the first Reimann sheet, while a resonance
is located in the second Reimann sheet with ImðpÞ < 0.
Since only one channel is considered in this work, the
bound state is located at the real axis of the z complex
plane, while the resonance will deflect the real axis to the
complex plane.

B. Bound state from DD̄� interaction with a Λ scan

There exist two types of pole, namely bound state and
resonance. First, we will make a Λ scan from 0.8 GeV to
4 GeV to find the bound state from the DD̄� interaction.

TABLE II. The position of the bound state from the DD̄� interaction at the real axis ReðzÞ ¼ W with a Λ scan. The second and third
columns are for the full model. The results without the J=ψ exchange are listed in the fourth and fifth columns and compared with the
results in Ref. [8]. The J=Ψ (I) in the eighth and ninth columns and J=Ψ (II) in the tenth and eleventh columns are for the results from
only J=ψ exchange with and without form factor. The cutoff Λ and energy W are in units of GeV.

IGðJPCÞ
Full model No J=ψ Ref. [8] J=ψ (I) J=ψ (II)

Λ W Λ W Λ W Λ W Λ W

0−ð0−−Þ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
0þð0−þÞ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
0−ð1−−Þ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
0þð1−þÞ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
0−ð1þ−Þ 1.0 3.864 1.0 3.868 1.3 3.876 � � � � � � 2.5 3.867

1.2 3.848 1.2 3.854 1.4 3.870 � � � � � � 2.6 3.850
0þð1þþÞ 1.9 3.873 1.9 3.875 2.0 3.876 � � � � � � 3.9 3.875

2.4 3.871 2.4 3.874 2.4 3.872 � � � � � � 4.0 3.836

1þð0−Þ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
1−ð0−Þ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
1þð1−Þ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
1−ð1−Þ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
1þð1þÞ 3.0 3.874 � � � � � � � � � � � � � � � � � � 2.4 3.875

3.3 3.858 � � � � � � � � � � � � � � � � � � 2.5 3.867
1−ð1þÞ � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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The pole of a bound state fromDD̄� interaction is located at
the real axis.
One can find that the J=ψ exchange plays a more

important role in the isoscalar sector than in the isovector
sector, where the short-range interaction is absent due to the
cancellation between ρ and ω exchanges in the isoscalar
sector, as shown in Table I. As expected, the results without
the J=ψ exchange are also close to those obtained from the
solution of a Bethe-Salpeter equation for the vertex in
Ref. [8]. The results with only the J=ψ exchange are also
listed in Table II. There is no bound state found for the J=ψ
exchange with form factor [labeled as J=ψ (I)], while if the
form factor is removed [labeled as J=ψ (II)], the bound
state is found as in the full model, which indicates the form
factor weakens the contribution from the J=ψ exchange.
In the isoscalar vector, there exist hidden charmed bound

states with IGðJPCÞ ¼ 0−ð1þ−Þ and 0−ð1þþÞ with cutoffs
at about 1 GeV and 2 GeV, respectively. The DD̄� bound
state with 0þð1þþÞ can be related to the Xð3872Þ. In the
isovector sector, a bound state with 1þð1þÞ can be found
with a larger cutoff at about 3 GeV.

C. The Zcð3900Þ as a resonance

In physics, the cutoff in the DD̄� interaction should be
same for different quantum numbers. Usually, a decrease of
the cutoff will lead to a weaker interaction, and vice versa.
As stated in the scattering theory, when interaction weakens,
the bound state runs to the threshold and becomes a
resonance if the interaction is still strong enough. If the
cutoff is increased to 3 GeV, the pole with 0þð1þþÞ will
move to about 3650 MeV, which is very far from the
experimental mass of Xð3872Þ. Hence, we decrease the
cutoff Λ for 1þð1þÞ from about 3 GeV to 2.4 GeV,
with which a bound state which has quantum number
0þð1þþÞ is found at 3.871 GeV. A pole with 1þð1þÞ is
produced slightly higher than the DD̄� threshold with a
cutoffΛ ¼ 2.4 GeV as shown in the upper panel of Fig. 3. It
is located at z ¼ 3876þ i5 MeV and can be identified
with the charged charmonium-like state Zcð3900Þ observed
in BESIII.
Obviously, the position of the pole is below the experi-

ment masses of Zcð3900Þ, 3883.9� 1.5� 4.2 MeV in the
DD̄� channel and 3899� 3.6� 4.9 MeV in the π−J=ψ
channel [23]. The experimental mass is obtained by
fitting the invariant mass spectrum. As shown in the
middle and lower panels of Fig. 3, the invariant mass
spectrum of the DD̄� channel is presented and compared
with the experimental results released by the BESIII
Collaboration [39].
The invariant mass distribution is given approximately

as [24,40]

dσ
dW

¼ CjM1þj2λ1
2ðW2;M2; m2Þλ1

2ð ~W2;W2; m2
3Þ=W; ð20Þ

where M1þ is the scattering amplitude obtained from the
Bethe-Salpeter equation as defined in Eq. (18), ~W is the
total energy of the process, and m3 is the third final particle
π [24,41]. A background spectrum is also included as in
Refs. [24,39],

fbkgðWÞ ¼ aðW −MminÞcðMmax −WÞd; ð21Þ

where Mmin and Mmax are the minimum and maximum
kinematically allowed masses. The general constant C in
Eq. (20), and the general constant a and exponents c and d
in Eq. (21) are free parameters adjusted to reproduce the
experimental data.
The experimental data are well reproduced with the

resonance contribution plus a background. A peak is found
at 3881 MeV, which is higher than the position of the pole
of the resonance but closer to the experimental results
3883.9� 1.5� 4.2 MeV in the DD̄� channel [39]. We
would like to note that due to the pole’s nearness to the
threshold, the contribution from the Zcð3900Þ in our model
does not have a standard Breit-Wigner form, which was
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FIG. 3 (color online). The j1 − GðzÞVðzÞj for IGðJPCÞ ¼
1þð1þÞ in the complex energy plane (upper panel) and the
D0D�− (middle panel) and DþD̄�0 (lower panel) invariant mass
spectra. The abscissa axis ReðzÞ represents the corresponding
DD̄� invariant mass W in units of GeV. The solid, dotted, and
dashed lines are for the results with the full model, the resonance
contribution, and the background, respectively. The experimental
results are from BESIII [39]. The theoretical results are normal-
ized to the experiment.
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adopted in the experimental fitting [39]. The nearness also
results in a relatively large tail of the resonance at higher
energies. These differences lead to a background contri-
bution which is quite different from the one in Ref. [39] to
be used to reproduce the invariant mass spectrum.

V. SUMMARY

In this work, the DD̄� interaction is studied within the
OBE model, including the contribution from light meson
exchanges plus the short-range J=ψ exchange. The scatter-
ing amplitude is calculated within a Bethe-Salpeter equa-
tion approach, and the poles near the DD̄� threshold are
searched. It is found that the charged charmonium-like state
Zcð3900Þ can be interpreted a resonance above the thresh-
old from the DD̄� interaction.
In the isoscalar sector, the poles are found under theDD̄�

threshold and have the quantum numbers IGðJPCÞ ¼
0−ð1þ−Þ and 0þð1þþÞ. If the J=ψ exchange is excluded,
the position of the pole is almost unaffected. In the
isovector sector, where the short-range contributions from
ω and ρ exchanges are canceled, a bound state is found with
IGðJPÞ ¼ 1þð1þÞ. It disappears if the J=ψ exchange is
removed. The results show that the short-range J=ψ
exchange, which is not included in the conventional
one-boson exchange model, is important to provide an
attractive interaction to produce the pole in the isovector
sector.
If a cutoff Λ ¼ 2.4 GeV is adopted with which a pole

carrying the quantum number of theXð3872Þ is produced at
an energy of about 3871 MeV, the pole for the bound state
with 1þð1þÞ runs across the threshold to a second Riemann
sheet and becomes a resonance at 3876þ i5 MeV, which
can be identified with the Zcð3900Þ. The line shape of the
invariant mass spectrum in the DD̄� channel is also
investigated, and the experimental results by the BESIII
Collaboration can be reproduced. A peak is found in the
DD̄� invariant mass spectrum at about 3881 MeV, which is
higher than the resonance pole but closer to the exper-
imental values.
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Note added.—In a related work released recently in arXiv,
the author also found a second-sheet pole in studying
elastic DD̄� scattering [42].

APPENDIX A: THE QUASIPOTENTIAL
APPROXIMATION OF THE

BETHE-SALPETER EQUATION

It is popular to reduce the Bethe-Salpeter equation from a
four-dimensional integral equation to a three-dimensional
equation by quasipotential approximation. In principle,
infinite choices can be applied to make the quasipotential
approximation. The popular methods used in literature
include the BSLT approximation, the K-matrix method, the
instantaneous approximation, and the covariant spectator
theory (CST) [8,37,43–48].
The reduced propagator G under quasipotential approx-

imations should satisfy the unitary condition, i.e., the
relation

G−G† ¼ 2πiδððη1ðsÞPþ kÞ2−m2Þδððη2ðsÞP− kÞ2−m2Þ;
ðA1Þ

where k1 ¼ η1ðsÞPþ k, k2 ¼ η2ðsÞ − k, and m1;2 are
the momenta and mass of constituents 1 and 2 with
η1ðsÞ þ η2ðsÞ ¼ 1 and s ¼ P2. One can define η1;2 ¼
ϵ1;2=ðϵ1 þ ϵ2Þ with ϵ1;2ðsÞ ¼ ðsþm2

1;2 −m2
2;1Þ=2

ffiffiffi
s

p
.

Now we have many choices to write the propagator. The
most popular form of propagator is [49–51]

G¼ 2π

Z
ds0

s0− sþ iϵ
hðs0;sÞ

·δð½η01ðs0ÞP0 þk�2−m2
1Þδð½η02ðs0ÞP0−k�2−m2

2Þ; ðA2Þ

where P0 ¼
ffiffiffiffiffiffiffiffi
s0=s

p
P. It is random to some extent to choose

hðs0; sÞ. The h function is chosen as hðs0 − sÞ ¼ 1 with
η0ðs0Þ ¼ ηðs0Þ for the BSLT formalisms. In the CST,
hðs0; sÞ ¼ ð ffiffiffiffi

s0
p þ ffiffiffi

s
p Þ= ffiffiffiffi

s0
p

, with η01ðs0Þ ¼ η1ðsÞ
ffiffiffiffiffiffiffiffi
s=s0

p
and η02ðs0Þ ¼ 1 − η1ðsÞ

ffiffiffiffiffiffiffiffi
s=s0

p
.

Equation (A2) is quite far from exhausting all possible
three-dimensional reductions. For example, the widely used
instantaneous approximation has

G ¼
Z

dk0
−1

ðk21 −m2
1 þ iϵÞðk22 −m2

2 þ iϵÞ

¼ iπ
ðE1ðpÞ þ E2ðpÞÞ=E1ðpÞE2ðpÞ

W2 − ðE1ðpÞ þ E2ðpÞÞ2
; ðA3Þ

which satisfies the unitary condition also.
As in Ref. [8], the covariant spectator theory [37,46] is

adopted to make the quasipotential approximation to
reduce the four-dimensional Bethe-Salpeter equation to a
three-dimensional equation in the current work. Written
down in the center-of-mass frame where P ¼ ðW; 0Þ, the
propagator in the CST is
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G ¼ 2πi
δþðk22 −m2

2Þ
k21 −m2

1

¼ 2πi
δþðk02 − E2ðpÞÞ

2E2ðpÞ½ðW − E2ðpÞÞ2 − E2
1ðpÞ�

; ðA4Þ

where k1¼ðk01;−pÞ¼ ðW−E2ðpÞ;−pÞ and k2 ¼ ðk02; pÞ ¼
ðE2ðpÞ; pÞ, with E1;2ðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1;2 þ jpj2
q

. In our formalism,

a definition G0 ¼ G=2π is used for convenience.

APPENDIX B: THE PARTIAL WAVE
EXPANSION AND THE AMPLITUDES

WITH FIXED PARITY

The partial wave expansion of the scattering amplitude
M in Eq. (2) is [52]

Mλ0λðp0; pÞ ¼
X
JλR

2J þ 1

4π
DJ�

λR;λ0
ðϕ0; θ0; 0ÞVJ

λ0λ;λR
ðp0; pÞ

·DJ
λR;λ

ðϕ; θ; 0Þ; ðB1Þ

where J is the angular momentum for the partial wave
considered and DJ�

λR;λ
ðϕ; θ; 0Þ is the rotation matrix, with λR

being the helicity of the bound state. The potential in the
partial wave expansion equation (3) is

Vλ0λðp0; pÞ ¼
X
JλR

2J þ 1

4π
DJ�

λR;λ0
ðϕ0; θ0; 0ÞVJ

λ0λ;λR
ðp0; pÞ

·DJ
λR;λ

ðϕ; θ; 0Þ: ðB2Þ

Without loss of generality, we choose the scattering to be in
the xz plane; the potential is written as

VJ
λ0λðp; p0Þ ¼ 2π

Z
d cos θdJλλ0 ðθp0;pÞVλ0λðp0; pÞ; ðB3Þ

where the momenta are chosen as k1 ¼ ðW − E; 0; 0;−pÞ,
k2 ¼ ðE; 0; 0; pÞ and k01 ¼ ðW − E0;−p0 sin θ; 0;−p0 cos θÞ,
k02 ¼ ðE0; p0 sin θ; 0; p0 cos θÞ, with p ¼ jpj in order to avoid
confusion with the four-momentum p. The particle hel-
icities λ are the projections of the spin s on the direction of
motion of the particle. Here and hereafter, the individual
helicities are omitted where redundant and the states are
only labeled by the total helicities λ, λ0, and λ00. Thus, once
in the center-of-mass system, the z-axis is chosen along the
three-momentum of the incoming particle 1, and one has
λ1 ¼ s1 for final state particle 1 and λ2 ¼ −s2 for final state
particle 2.

The amplitudes with definite parity can be constructed
as [53]

MJP
λ0λ ¼ MJ

λ0λ þ ηMJ
λ0−λ; ðB4Þ

where η ¼ PP1P2ð−1ÞJ−J1−J2 , with P and P1;2 being the
parities and J and J1;2 being the angular momenta for
the system and particle 1 or 2. It is easy to find that the
amplitudes with definite parity have properties such as

MJP
λ0−λ ¼ ηMJ�

λ0λ ; MJP−λ0λ ¼ η0MJ�
λ0λ : ðB5Þ

The potential VJP
λ0λ has analogous relations.

The Bethe-Salpeter equation for definite parity can be
written as

MJP
λ0λ ¼ VJP

λ0λ þ
1

2

X
λ00

VJP
λ0λ00GM

JP
λ00λ: ðB6Þ

Please note that there exists a factor 1
2
in the second term on

the right side of the equation.
By using the relation in Eq. (B5), Eq. (B6) can be

rewritten as

M̂JP
λ0λ ¼ V̂JP

λ0λ0 þ
X
λ00≥0

V̂JP
λ0λ00GM̂

JP
λ00λ; ðB7Þ

where λ, λ0, and λ00 ≥ 0 and M̂JP
λ0λ ¼ fλ0fλMJP

λ0λ, with f0 ¼ 1ffiffi
2

p
and fλ≠0 ¼ 1.
The sum of the square of the amplitude can be written as

a from with definite parity:

X
J;λ0λ

jMJ
λ0λj2 ¼

X
JP;λ0≥0λ≥0

jM̂JP
λ0λj2: ðB8Þ

By using the normalization of the Wigner D matrix, the
integration of the amplitude is

Z
dΩjMλ0λðp0; pÞj2 ¼

X
JP;λ0λ

jM̂JP
λ0λðp0; pÞj2: ðB9Þ

Since there is no interference between the contributions
from different partial waves, the total cross section can also
be divided into partial-wave cross sections. Since only the
square of the amplitude is related to the physical observ-
ables, we omit all hat notation ð^Þ if not necessary and keep
in mind that there is a factor 1=

ffiffiffi
2

p
in the potential also.
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