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We formulate a framework to determine the mass of glueball states of the Landau gauge Yang-Mills
theory in the continuum. To this end we derive a Bethe-Salpeter equation for two gluon bound states
including the effects of Faddeev-Popov ghosts. We construct a suitable approximation scheme such that the
interactions in the bound state equation match a corresponding successful approximation of the Dyson-
Schwinger equations for the Landau gauge ghost and gluon propagators. Based upon a recently obtained
solution for the propagators in the complex momentum plane we obtain results for the mass of the 0þþ and
0−þ glueballs. In the scalar channel we find a mass value in agreement with lattice gauge theory.
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I. INTRODUCTION

The “physical” spectrum of pure Yang-Mills theory is
made out of glueballs [1]. There is substantial evidence, both
from lattice calculations (see [2,3] and references therein)
and results from Dyson-Schwinger equations (DSEs) for
the Landau gauge gluon propagator [4–6] that transverse
gluons violate positivity and therefore cannot be part of the
asymptotic state space of the theory. Consequently, the first
physical excitation of the Yang-Mills vacuum is the lowest
lying glueball state.
It is an important task to determine the mass of this state.

Indeed, the properties of glueballs have been investigated
since their prediction in the middle of the 1970s [1]. Today,
the glueball masses in pure Yang-Mills theory are known
rather accurately owing to high statistics lattice calculations
[7–9]. Unquenched lattice calculations are also available,
although there are considerable uncertainties in the deter-
mination of unquenched glueball masses [10–14]. This is
mainly due to severe problems with the signal to noise
ratio, thus requiring large statistics. In principle, it is also
not easy to disentangle states with large glueball compo-
nents from states dominated by other constituents such as
quark-antiquark pairs. Naturally, this problem has a
counterpart in the experiments: a glueball cannot be
distinguished from a meson by quantum numbers and
masses only. The determination of the decay channels of a
given state is therefore vital for its identification. Ongoing
and new experiments such as BES III [15] and PANDA [16]
have dedicated parts of their programs to the identification
of heavy glueballs in the charmonium region and beyond.
Alternative theoretical frameworks such as Hamiltonian

many body [17–20] and strong coupling methods [21],
potential approaches [22], Wilson loop based calculations
[23], flux tubemodels [24], chiral Lagrangians [25–27], light
front quantization [28] and theAdS/QCDapproach [29] have
shed some light onpotentialmass patterns and identifications

of experimental states dominated by their glueball content.
However, it seems fair to state that a detailed understanding
of glueball formation from the underlying dynamics ofYang-
Mills theory is still missing. In this paperwe report on further
steps toward such an understanding.
Working in Landau gauge, we construct homogeneous

Bethe-Salpeter equations (BSEs) for glueballs which take
into account the dynamics of gluon and ghost propagation
as well as their interactions with one another. This is
detailed in Secs. II and III, where we also discuss the
general form of Bethe-Salpeter vertices for any quantum
number. The calculation is performed in Euclidean space,
which implies that the bound-state constituents are probed
for complex momenta. In the literature, exploratory BSE
calculations using instantaneous approximations [30] or
extrapolations of the propagators into the complex momen-
tum plane [31] can be found. In this work we present first
results for self-consistent and covariant BSE calculation of
glueballs in Landau gauge using explicit solutions for the
ghost and gluon propagator DSEs in the complex momen-
tum plane [6]. These are summarized in Sec. IV.

II. BOUND STATE EQUATIONS FOR GLUEBALLS

Our goal in this section is to provide a Bethe-Salpeter
equation describing a glueball made from two gluons that
are solutions of the DSE for the gluon propagator. A similar
concept has proven very successful in the context of
mesons, where the BSE of a quark-antiquark pair is used
in connection with the corresponding DSE for the quark
propagator, see e.g. [32–34] for reviews. A key property
of this framework is consistency of the approximations
made in the DSE and BSE. For mesons this implies to
satisfy an axial Ward-Takahashi identity thus implementing
constraints due to chiral symmetry and its breaking. One
way of devising such a truncation is to derive both the
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truncation of the DSE and the truncation of the BSE on
common grounds using a two particle irreducible effective
action (2PIEA). In the following we work along this
strategy. Since we are working in Landau gauge we need
to take into account the Faddeev-Popov ghosts. Thus we
need a generalization of the usual BSE scheme that allows
for mixing of bound states of different fields. In the
following we will give a derivation of a suitable set of
bound state equations that provide the necessary couplings
of bound state amplitudes with different field content [35].
We consider the following 2PIEA,

Γ½D;G� ¼ 1

2
Tr lnD0D−1 þ 1

2
TrD−1

0 D − Tr lnG0G−1

− TrG−1
0 Gþ Γ2½D;G�; ð1Þ

where D and G are the gluon and ghost propagators. The
interaction term is given diagrammatically by

ð2Þ

Each term contains one bare and one dressed vertex, the
latter being represented by the shaded circles. The 2PIEA is
already truncated, i.e. we have left out all diagrams
including the four-gluon interaction. Furthermore, the
dressed ghost-gluon and three-gluon vertices are assumed
to be represented by suitable explicit expressions that
capture the essence of the nonperturbative interactions.
Such Ansatze have been employed successfully in the
past [33]; we come back to this point in Sec. IV.
The corresponding Dyson-Schwinger equations for the

ghost- and gluon propagators can be found by variation of
the effective action with respect to a propagator, i.e.

δΓ½D;G�
δD

¼ −D−1 þD−1
0 þ ΣD½D;G� ¼ 0 ð3Þ

δΓ½D;G�
δG

¼ 2G−1 − 2G−1
0 þ ΣG½D;G� ¼ 0; ð4Þ

wherewe haveΣA ¼ δΓ2

δA withA∈ fD;Gg. Diagrammatically,
the resulting DSEs read

ð5Þ

−1
= −1 − .

ð6Þ

We now proceed along the lines of Ref. [35]. In the following we will use a shorthand notation omitting the space-time
arguments and indicating primed arguments by primed functions. We denote the solutions of DSEs (3) and (4) by D̂ and Ĝ
and perform a variation in two variables. Keeping only the linear terms we arrive at

δΓ½D;G�
δD

����
D̂þδD;ĜþδG

≈
δΓ½D;G�

δD

����
D̂;Ĝ

þ
Z

d4x0d4y0
δ2Γ½D;G�
δDδD0

����
D̂;Ĝ

δ0D þ
Z

d4x0d4y0
δ2Γ½D;G�
δDδG0

����
D̂;Ĝ

δ0G ð7Þ

δΓ½D;G�
δG

����
D̂þδD;ĜþδG

≈
δΓ½D;G�

δG

����
D̂;Ĝ

þ
Z

d4x0d4y0
δ2Γ½D;G�
δGδD0

����
D̂;Ĝ

δ0D þ
Z

d4x0d4y0
δ2Γ½D;G�
δGδG0

����
D̂;Ĝ

δ0G: ð8Þ

Using again the equations of motion we require for the
solutions D̂ and Ĝ to be stable that

Z
d4x0d4y0

δ2Γ½D;G�
δDδD0

����
D̂;Ĝ

δ0D þ δ2Γ½D;G�
δDδG0

����
D̂;Ĝ

δ0G ¼ 0 ð9Þ

and

Z
d4x0d4y0

δ2Γ½D;G�
δGδD0

����
D̂;Ĝ

δ0Dþ
δ2Γ½D;G�
δGδG0

����
D̂;Ĝ

δ0G¼0: ð10Þ

Diagrammatically, the scattering kernels of the BSEs can
be obtained by cutting a further line in the self-energy
diagrams with respect to the desired second constituent in
the bound state. The variations δ0D; δ

0
G are identified with

the Bethe-Salpeter vertices χD and χG.

HELIOS SANCHIS-ALEPUZ PHYSICAL REVIEW D 92, 034001 (2015)

034001-2



We then find the following coupled system of BSEs for
ghost and gluon bound states

ð11Þ

ð12Þ

where the arrow indicates symmetrization of the kernels with
respect to the dressed vertices. The resulting coupled system
of two-body equations serves to describe glueballs as bound
states of either a gluon or a ghost-antighost pair. The latter is
necessary in the Landau gauge and represents contributions
from the Faddeev-Popov determinant to the glueball masses.
We will later discuss the relative importance of both con-
tributions in different channels. For now we just emphasize
that neither the ghosts nor the gluons are physical constituents
in the sense that they do not appear as propagating particles in
the positive definite part of the asymptotic state space ofQCD
[4–6]. Note, that there is no mixed gluon-ghost (or gluon-
antighost) contribution to the glueball vertex. Such gluon-
(anti)ghost bound states, if existent, may be members of a

Becchi-Rouet-Stora-Tyutin quartet together with transverse
gluons and, thus, part of the unphysical Hilbert space [36].
The above system of BSEs within Yang-Mills theory can

be further generalized to full QCD by including quark
contributions. Considering the corresponding effective
action

Γ½D;G; S� ¼ 1

2
Tr lnD0D−1 þ 1

2
TrD−1

0 D − Tr lnG0G−1

− TrG−1
0 G − Tr ln S0S−1 − TrS−10 S

þ Γ2½D;G; S�; ð13Þ
with diagrammatic representation

ð14Þ

we can apply the same derivation as before considering
variations with respect to all types of propagators. We then
find the full system of coupled bound state two-body
equations

ð15Þ

G = D + G + ð16Þ

S = D + S + . ð17Þ

This set ofBSEsdescribesmesons and glueballs in an approximation that can be seen as a generalized ladder truncation.Note,
that the last diagram in (15) and the first of (17) provide for glueball/meson mixing. Although in this work we will restrict our
explicit calculations to pure Yang-Mils theory we would like to add some comments on the influence of these terms onto the
flavor singlet meson spectra.
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In the pseudoscalar channel these terms generate a
contribution to η–η0 splitting. In the framework of BSEs
the conventional approach to this problem is to include
beyond rainbow-ladder terms connected with the axial
anomaly in the quark-gluon interaction [37–39]. Our
framework provides the additional effect of a direct mixing
of the flavor-singlet η0-meson with the JPC ¼ 0−þ pseu-
doscalar glueball. Both effects together affect the η0-meson
mass. Our set of BSEs provides the simplest means of
consistently including such glueball/meson mixing into
BSE calculations. However, since in lattice calculations the
mass of the pure glue pseudoscalar glueball is found to be
around 2.5 GeV [9], it is not clear how large these mixing
effects might be.
Considerable mixing effects may be expected, however,

in the scalar meson sector, where there seem to be more
states than one can accommodate in conventional quark
antiquark multiplets [40]. While some of these states
can well be accounted for by large four-quark components
[41–43], others may very well be characterized by a
dominant glueball contribution. The set of equations (15)
to (17) may well provide a viable starting point for sophis-
ticated investigations of a realistic scalar meson spectrum.
Finally, we need to comment on the number of constitu-

ents needed in our framework. In general, in aBethe-Salpeter
framework it is sufficient to explicitly account for only a
minimal set of constituents that is necessary to carry the
quantum numbers of the object in question. For (nonexotic)
mesons this is guaranteed by a quark-antiquark pair. If there
is a bound state it will appear in this equationwith the correct
mass. In addition, one has to keep in mind that a meson
calculated in such a scheme also contains an infinite amount
of additional gluons and quark-antiquark pairs simply due to
the fully dressed nature of the internal propagators of the
(valence) quark-antiquark pair. In the glueball sector, two
constituent gluons are sufficient to account for the quantum
numbers of glueballs with charge conjugation C ¼ þ1.
However, three gluons are the minimal set necessary to
account for the charge conjugation odd states C ¼ −1. Thus,
these cannot be described in our current framework. On the
other hand, it is not necessary to account for four or even n
valence gluons, since bound states will already appear in the
two- and three-gluon equations.
In the following, we will focus on the coupled system of

bound states for a pure gauge theory neglecting quarks
[Eqs. (11) and (12)]. To solve this system numerically, we
need reliable information on the nonperturbative propa-
gaors of ghosts and gluons as well as a general expression
for the bound state vertices χD and χG. In the next section
we will discuss the latter, providing suitable expressions for
arbitrary quantum numbers of glueballs.

III. BOUND STATE VERTICES FOR GLUEBALLS

We will now show how suitable bound state vertices χD
and χG to be used in Eqs. (11) and (12) can be constructed.

We start our present discussion from some general
observations.
A bound state of two relativistic particles can be

described by three quantum numbers: total spin J, parity
P and charge parity C. Furthermore there are only two
characteristic momenta involved, conveniently chosen to
be the total momentum tμ and the relative momentum rμ.
These two vectors can be used to construct suitable vertices
χD and χG for our bound state problem. The idea is to
construct basic invariant vertices with correct parity and
charge conjugation properties and supplement these with an
appropriate tensor representing a given total spin.
Let us first consider the vertex χD for the two-gluon

bound state. A general scalar bound state vertex has to
transform like a symmetric rank two Lorentz tensor for
gluonic constituents. Thus it has to satisfy

Λκ
μΛλ

νTκλðt; rÞ ¼ TμνðΛt;ΛrÞ: ð18Þ

The two simplest tensor structures with J ¼ 0 that satisfy
(18) are the metric tensor and a combination of the totally
antisymmetric tensor and characteristic momenta:

Γ0þþ
μν ¼ gμν; Γ0−þ

μν ¼ ϵκλμνrκtλ: ð19Þ

The first structure represents a parity-even state. In general,
there are three more symmetric and parity even structures
that can be built from the total and relative momenta of the
two gluons. Transversality in Landau gauge then restricts
the total number of tensor components to two, see e.g. [17].
In our numerical studies we found that restricting to gμν
already provides a very good approximation of the com-
plete result using both structures. In contrast, the parity odd
second structure in Eq. (19) is unique.
For the vertex χG composed of ghost fields the situation

is trivial, since we are looking for a term that couples to
scalars and transforms like a scalar itself. The appropriate
vertex is the identity in Lorentz space and has positive
parity. This restricted choice has interesting implications as
discussed below.
In addition to the basic tensors in Eq. (19), representing

the Lorentz structure of the constituents, we need suitable
tensors representing a given total momentum J of the
bound state. A Lorentz tensor representing a massive field
with total spin J is required to have precisely 2J þ 1
independent components to represent the possible spin
polarizations. The construction of such tensors is known
and a detailed treatment can be found e.g. in [44]. We will
repeat parts of the construction here in a slightly more
explicit form focused directly on the construction of Bethe-
Salpeter vertices. Consider first tensors Ta1;…;aJ in three-
space of rank J. To represent angular momentum J we
require the tensor to be symmetric in all indices Ta1…aJ ¼
TP½a1…aJ � and traceless with respect to any pair of indicesP

mT…m…m… ¼ 0. The first constraint leaves the tensor
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with 1
2
ðJ2 þ 3J þ 2Þ independent components, while the

second one imposes 1
2
ðJ2 − JÞ further restrictions, thus

leading to a tensor with 2J þ 1 independent components, as
required.1 The construction of tensors in three-space is now
easily transferred to four-tensors. If we require the tensor
Tμ1…μJ to be transverse to the total momentum of the
particle in every index tνT…ν… ¼ 0 and adopt the particles
rest-frame, we see that all components with timelike indices
vanish, leaving only components with spacelike indices. So
we are left with nothing else but the three-tensor considered
before, which has 2J þ 1 independent components. Thus
we find the constraints for a Lorentz-tensor TJ

μ1…μJ of rank
J to represent angular momentum J:
(1) T is symmetric in all indices,

TJ
μ1…μJ ¼ TJ

P½μ1…μJ �: ð20Þ

(2) T is transverse to the total momentum of the particle
in every index,

tνTJ
…ν… ¼ 0: ð21Þ

(3) T is traceless in every pair of indices in the rest-
frame,

TJ;…λ…
…λ… ¼ 0: ð22Þ

For the glueball masses we only need one such tensor from
each multiplet. To construct such a tensor for angular
momentum J one can build the J-fold tensor product of a
transverse projector that transforms like a vector and then
subtract the traces with respect to every pair of indices.
Starting with J ¼ 1, a suitable transverse four-vector can be
obtained by contracting the transverse projector τμν (with
respect to the totalmomentum t) and the relativemomentum r,

Qμ ¼ τμνrν ¼
�
gμν −

tμtν
t2

�
rν ¼

�
rμ −

ðr · tÞtμ
t2

�
: ð23Þ

With only one Lorentz index this transverse vector already
gives a possible angular momentum tensor for J ¼ 1.
For higher J one builds symmetric J-fold tensor products
of (23) by

~Qμ1…μJ ¼ Qμ1 × � � � ×QμJ : ð24Þ
The next step is to remove the traces of these tensors with
respect to every pair of indices. This can be achieved with the
general formula

Tμ1…μJ ¼ ~Qμ1…μJ − ð2J − 1Þ−1
X
Pμk

τμ1μ2
~Qκ

κμ3…μJ

þ ð2J − 1Þ−1ð2J − 3Þ−1
X
Pμk

τμ1μ2τμ3μ4
~Qκλ

κλμ5…μJ

− � � � ; ð25Þ

where
P

P denotes the sum over all essentially different
permutations of the indices.2 We furthermore define

f2 ¼ r2 −
ðr · tÞ2
t2

; ð26Þ

and the tensors3

BJ;j
μ1…μJ ¼ fj2δfμ1μ2…δμ2j−1μ2j

~QðJ−2jÞ
μ2jþ1…μJg; 2j < J; ð27Þ

BJ;j
μ1…μJ ¼ fJ=22 δfμ1μ2…δμJ−1μJg; 2j ¼ J: ð28Þ

Using (25) and (24) together with the above definition, we
finally obtain the desired total spin tensors in closed form as

Tμ1…μJ ¼ ~Qμ1…μJ þ
X2j≤J
j¼1

ð−1Þj 1

j!2j

�Yj
k¼1

2ðJ−kÞþ1

�−1
BJ;j
μ1…μJ :

ð29Þ

With these we have access to higher orbital angular momen-
tum states built for glueballswith two gluon constituents (with
C ¼ þ1) in the Lorentz singlet channels. For arbitrary even J
we can use,

ΓJþþ
μν;μ1…μJðt2; r2; θÞ ¼ Tμ1…μJAðt2; r2; θÞgμν; ð30Þ

ΓJ−þ
μν;μ1…μJðt2; r2; θÞ ¼ Tμ1…μJAðt2; r2; θÞðr · tÞrκtλϵκλμν;

ð31Þ

and if J is odd,

ΓJþþ
μν;μ1…μJðt2; r2; θÞ ¼ Tμ1…μJAðt2; r2; θÞðr · tÞrκtλϵκλμν;

ð32Þ

ΓJ−þ
μν;μ1…μJðt2; r2; θÞ ¼ Tμ1…μJAðt2; r2; θÞgμν: ð33Þ

Here we have introduced scalar functions Aðt2; r2; θÞ, which
are even under inversion of the angle θ between r and t. The
additional factors ðr · tÞ ensure the correct behavior of the
bound state vertices under charge parity transformations,

1It is also possible to construct tensors representing half-odd
integer spin. Since we are dealing with Bethe-Salpeter equations
of two particles in the same representation, so that the total
angular momentum is integer, we will not consider this possibility
here but instead refer the interested reader again to [44].

2This means that the sum has to be divided by appropriate
combinatorial factors.

3For the convenience of the reader we have denoted the rank of
the raw tensors as a superscript.
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which result in a simple flip of the sign of the relative
momentum rμ in our framework.
The corresponding vertices for glueballs with a ghost

antighost pair as constituents are constructed along the
same lines. For arbitrary positive parity even J we can use

ΓJþþ
μ1…μJðt2; r2; θÞ ¼ Tμ1…μJAðt2; r2; θÞ; ð34Þ

and if J is odd the negative parity states are obtained from

ΓJ−þ
μ1…μJðt2; r2; θÞ ¼ Tμ1…μJAðt2; r2; θÞ: ð35Þ

Note that the parity P of the angular momentum tensors
Tμ1…μJ is given by P ¼ ð−1ÞJ. Thus the parity of the even
(odd) J tensors is positive (negative). Hence there are
neither contributions from ghost antighost pairs to glueballs
for even J and with quantum numbers J−þ, nor for odd J
with Jþþ. For the gluonic vertices the natural parity of the
total spin tensors can be supplemented by the odd parity
basis element given in (19), thus changing the overall parity
of the tensor representation. This is not possible for the
ghost vertices. Consequently, we only find the restricted set
(34) and (35) of possible quantum numbers for glueball
states with ghost contributions.
Another potential restriction for the contribution of

gluonic vertices to glueballs has been frequently discussed
in the literature in the context of model building [45]: if the
gluonic constituents were massless and on-shell, Yang’s
theorem [46] would restrict the number of allowed quantum
numbers drastically. In our framework this constraint
appears to be almost irrelevant. The nonperturbative
gluonic constituents that appear in the BSE are neither
on-shell nor massless. Instead they acquire a dynamically
generated mass, as discussed in more detail in the next
section.4 Thus, gluonic contributions in Yang-forbidden
channels may be suppressed but certainly not forbidden.
These channels are the 1þþ and all odd J−þ-channels.
Since in the 1þþ-channel ghost contributions are absent as
well, the potentially suppressed gluonic contributions may
lead to an “unnaturally” large glueball mass in this channel.
This is indeed observed in lattice calculations [8,9]. In the
odd J−þ-channels, however, ghost contributions are
allowed. If the suppression of the gluonic contributions
were strong, these states could be termed “ghostballs.” We
will study such states in future work.
In addition, there may be another basic vertices for the

gluons in the spin 2 channel, traceless symmetric tensors.

For example, Landau constructed one for QED with JPC ¼
2þþ [47]. The explicit form of this basic J ¼ 2 tensor with
our notations would read

Γ2þþ
μν;μ1μ2 ¼ t4

�
−
1

3
gμνgμ1μ2 þ

1

2
gμμ1gνμ2 þ

1

2
gμμ2gνμ1

�

þ t2
�
1

3
gμνtμ1tμ2 −

1

2
gμμ1tνtμ2 −

1

2
gμμ2tνtμ1

−
1

2
gνμ1tμtμ2 −

1

2
gνμ2tμtμ1 þ

1

3
gμ1μ2tμtν

�

þ 2

3
tμtνtμ1tμ2 ; ð36Þ

where the pair ðμ; νÞ denotes the Lorentz indices of the
gluon constituents and ðμ1; μ2Þ the one of the bound state.
With such a tensor vertices for a given set of quantum
numbers JPC can be constructed in a similar way as from
the two singlet tensors in Eqs. (19).
Having discussed the derivation of the bound state

equations we will use to describe glueballs and the form
of the necessary bound state vertices, we will now turn to
the numerical part of our investigation. We will find that it
is necessary to solve the system of coupled DSEs of ghost
and gluon fields for complex momenta in order to use the
resulting propagators in our calculation of glueballs.

IV. THE YANG-MILLS SYSTEM IN THE
COMPLEX PLANE

We solve the coupled system of bound state equations,
(15) and (16) in pure Yang-Mills theory in Euclidean
momentum space. In the rest frame of the glueball, its total
momentum is then given by ð0; 0; 0; imBÞ with mB is the
bound-state mass. Without loss of generality, the total
momenta can be shared equally between the two constitu-
ents. Their momenta are then given by r� ¼ ðr� tÞ=2,
with relative momentum r between the constituents. It is
then clear that the internal propagator lines in BSEs are
given by solutions of the DSEs for complex momenta.
These can be obtained from the corresponding coupled

set of Dyson-Schwinger equations. In Landau gauge the
ghost propagator DGðp2Þ and the gluon propagator
Dμνðp2Þ are given by

Dμνðp2Þ ¼
�
δμν −

pμpν

p2

�
Zðp2Þ
p2

; ð37Þ

DGðp2Þ ¼ −
Gðp2Þ
p2

; ð38Þ

where the diagonal color structure has been omitted for
brevity. Note that the gluon is transverse also nonpertur-
batively, thus spurious glueball states due to longitudinal
modes, as present in some potential models [22], are

4Note that in the context of this discussion of Yang’s theorem it
is irrelevant whether the mass generation mechanism leads to an
infrared vanishing gluon propagator (“scaling”) or an infrared
finite propagator (“decoupling”). Furthermore, “mass genera-
tion” in this context does not mean that the gluon propagator
acquires a pole at timelike momenta, but merely that the zero-
momentum pole of the free propagator disappears due to
interactions.
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naturally avoided. The coupled system of DSE (omitting
two-loop diagrams) has been displayed diagrammatically
in Eqs. (5)–(6). This system of equations has been
considered frequently in the past years. It has been solved
analytically in the deep infrared, where exact solutions
without any truncations are possible [48,49]. Two quali-
tatively different solutions have been found named “scal-
ing” and “decoupling” [50,51]. Whereas the scaling
solution consists of infrared power laws for all Green’s
functions with an infrared vanishing gluon propagator and
an infrared divergent ghost, the decoupling solution is
characterized by an infrared finite gluon propagator and a
finite ghost dressing function. Current lattice calculations
on large volumes clearly favor the decoupling type of
solutions [52]; there is, however, an ongoing discussion on
potentially significant effects from different gauge fixing
strategies in the deep infrared [53–58]. In this work we
concentrate on the decoupling type of solutions, which
have been associated with a dynamically generated “gluon
mass.”5 As already mentioned above, these still maintain
transversality. At finite momenta, the equations have to be
solved numerically and approximations for the dressed
vertices need to be introduced. A suitable truncation
scheme has been introduced in Ref. [59] and improved
in Ref. [50]. It involves educated Ansatze for the ghost-
gluon and three-gluon vertex and neglects the effects of the
four-gluon interaction completely. The resulting modified
system of equations has exactly the structure of the system
(3) and (4) obtained from the variation of the 2PIEA (1) in
Sec. II. For real momenta, we show the numerical solution
for the gluon dressing function in Fig. 1. As can be seen
from the comparison with the lattice results [60], there is

very good agreement in the infrared and ultraviolet
momentum region, whereas in the mid-momentum
region one observes quantitative deviations. These
deviations are certainly in part due to the neglected
four-gluon interactions in the DSEs (5)–(6). They can
be compensated, however, by suitably optimizing the
input used for the dressed three-gluon vertex by simulta-
neously solving its own DSE together with those for the
propagators [61].
The system of DSEs (5), (6) for the ghost and gluon

propagator has been solved in the complex p2 plane
recently, see Ref. [6] for details. As explained above, this
complex solution constitutes a vital input into the corre-
sponding Bethe-Salpeter equation for the glueballs and is
used in the following. In this respect it is important to note
that the analytic structure of the gluon and ghost propa-
gators as obtained in Ref. [6] shows branch cuts along
the timelike momentum axis, i.e. for negative invariant
momentum squared, but no singularities away from the real
axis in the complex p2 plane. For the real part of the gluon
propagator this can be seen in Fig. 2, corresponding plots
for the imaginary part and the ghost dressing function can
be found in Ref. [6]. This behavior greatly helps in the
numerical treatment of the BSE. Along the timelike axis of
negative p2 one can extract the gluon spectral function,
which is shown in the right plot of Fig. 1. We have plotted
the result from Ref. [6] together with a corresponding result
obtained from an improved numerical method. The corre-
sponding results are very similar except on a narrow region
around the cut on the negative p2-axis. As a result, one
obtains a considerable smoother spectral function, as can be
seen in Fig. 1. We use this improved result in the present
work. At finite temperature, similar spectral functions were
obtained using maximum entropy method reconstruction
methods based on Euclidean results within the functional
renormalization group framework [62].
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FIG. 1 (color online). Left: Results for the gluon dressing function Zðp2Þ from the DSEs [50] for real and spacelike momenta,
compared with lattice calculations [60]. Right: Results for the gluon spectral function from DSEs for timelike momenta. Shown is the
result from Ref. [6] together with result obtained in the same truncation scheme but with slightly different numerics, see main text for
further explanations.

5Of course, this “mass” is not to be identified with the mass of
a physical particle. The analytic structure of the gluon propagator
is clearly different from a simple mass pole [6].
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Finally, a comment on the scale is in order. This is fixed
by comparison with the lattice results for the gluon
propagator and remains fixed, i.e. it is not adjusted again
in the glueball calculations. Thus, in principle, we obtain
absolute values for the glueball masses.

V. LOWEST LYING GLUEBALL MASSES

We have solved the BSEs for a glueball in the scalar and
pseudoscalar channel using the bound state equations (11)
and (12) together with the vertices (30) to (33). For the
propagators of ghosts and gluons we use the numerical
results discussed in the last section.
Bound state vertices are not primitively divergent ver-

tices and therefore they generically go to zero like power
laws for large momenta [63]. In contrast to the behavior of
meson BSEs, however, (11) and (12) also admit solutions
with a logarithmic behavior in the UV. (Details on the
asymptotic behavior of glueball BSEs together with an
explicit analytic analysis will be given elsewhere.) These
solutions do not correspond to bound states. In order to
guide the iterative numerical procedure to the correct bound
state solution it turns out to be sufficient to introduce an
additional Pauli-Villars term into the purely gluonic dia-
gram of (11) that depends on the momentum of the
exchanged gluon propagator. Namely, we replace
Zðk2Þ → Zðk2Þð1þ k2=Λ2

PVÞ−1, with k2 the momentum
of the exchanged gluon and ΛPV a cutoff scale. By
inspection of the Bethe-Salpeter vertex functions we have
verified, that such a term does not simply modify the
logarithmic solutions of the BSE above the scale Λ2

PV but
indeed drives the equation to a different and well-behaved
solution. We find that the resulting glueball masses are
insensitive to all values Λ2

PV > 100 GeV2 of the scale that
we have probed.

We present our results in Table I together with corre-
sponding ones from lattice gauge theory, the Hamiltonian
approach and Regge theory. Additionally, we compare to a
rather recent calculation in a nonrelativistic constitu-
ent model.
Comparing with the lattice results, we find that the state

with quantum numbers 0þþ is well reproduced on the five
percent level. Compared with the lattice, the good agree-
ment of our result for the lowest lying scalar glueball is
remarkable, though probably not surprising. As explained
above, our truncation scheme for the ghost/gluon DSEs
produces solutions which are pointwise similar to the lattice
results in the low and high momentum region and display a
twenty percent difference for momenta around 1 GeV. Thus
the overall quality of the truncation scheme is well below
the twenty percent range and thus in agreement with our
findings for the scalar glueball mass. The remaining
deficiencies in our truncation scheme are in the details
of the three-gluon and the missing four-gluon interactions.
In contrast, the mass of the pseudoscalar glueball is much

higher than that predicted by lattice calculations as well as
by other approaches. As discussed in Sec. III there are no
ghost contributions in these channels, leaving a greatly

FIG. 2 (color online). Real part of the gluon propagator function Dðp2Þ ¼ Zðp2Þ=p2 in the complex z ¼ p2 plane [6].

TABLE I. Scalar and pseudoscalar glueball masses (in GeV)
from various studies. We quote the Model B data from Ref. [22].

Masses (GeV)

JPC Lattice
Hamiltonian/
Regge theory

Constituent
models

This
work

0þþ 1.71 (5)(8) [9] 1.98 [18] 1.71 [64] 1.64
1.73 (5)(8) [8] 1.58 [23] 1.86 [22]

0−þ 2.56 (4)(1) [9] 2.22 [18] 2.61 [64] 4.53
2.59 (4)(13) [8] 2.56 [23] 2.49 [22]
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reduced BSE with only one gluonic diagram to be solved.
This diagram is, in turn, largely dominated by the three-
gluon vertex, both directly and via the solution of the DSE
for the gluon propagator. Since the ansatz used here was
devised in the context of the study of gluon and ghost DSEs
for real momenta, it is conceivable that the behavior of
this ansatz in the complex plane affects significantly the
glueball spectrum in particular for states with no ghost-
antighost content. The study of the connection between the
details of the nonperturbative gluon self-interactions and
their impact on glueball masses will be the subject of
future work.

VI. SUMMARY

In this paper we have presented a framework that allows
us to calculate glueball properties from the dynamics of
Landau gauge Yang-Mills theory. We have constructed a
set of bound state equations that includes both ghosts and
gluons degrees of freedom thus taking into account also the
effects of the Faddeev-Popov determinant. This set of
equations allows for mixing of bound state contributions
from different species of particles and is readily generalized
to full QCD, including quarks. It thus naturally incorpo-
rates meson/glueball mixing. Furthermore we have pre-
sented suitable representations for the bound state vertices
for arbitrary quantum numbers JPC.
As an illustration of the framework, we have calculated

the scalar and pseudoscalar glueball mass. Our result for the
scalar glueball state is certainly encouraging, although in
the pseudoscalar channel the mass is exceedingly high.
Compared to the recent exploratory approach of Ref. [31]

we have made a number of technical improvements. Most
important are the use of explicit solutions of the ghost
and gluon propagators in the complex momentum plane.
Furthermore, our approach fully maintains multiplicative
renormalizability.
Our framework for calculations of glueball properties

offers various prospects of improvements and applications
in the near future. First, different Ansatze for the three-
gluon vertex should be used and its impact on the spectrum
analyzed. It would be desirable, although technically very
demanding, to use dynamical three-point vertices as in [61]
and to include the four-gluon interaction contributions
[65,66] into our framework. On the other hand, a very
important extension is the inclusion of meson/glueball
mixing along the lines of Eqs. (15) to (17). This will allow
us to leave the sector of pure gauge field calculations of
glueballs and thus provide access to realistic glueball
properties in the future.
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