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Angular analyses of exclusive B — X7/, with complex helicity amplitudes
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We present the differential rates for exclusive B — X¢,7,, where ¢ is a charged massless lepton and £,
is a charged or neutral massless lepton and X is a mesonic system up to spin 2. The cases of interest are
semileptonic B — Xieuy € Vp decays, and B — X,/~¢* where the dilepton can be c¢ resonances or
nonresonant electroweak penguins. We consider helicity amplitudes having nonzero relative phases that
can be potential new sources for CP violation. Our motivations for these additional phases include a
complex right-handed admixture in the hadronic weak charged current for the semileptonic decays
and complex Wilson coefficients in the effective Hamiltonians for the electroweak penguin decays. We
demonstrate the efficacy of a novel technique of projecting out the individual angular moments in the full
rate expression in a model-independent fashion. Our work is geared toward ongoing data analyses by

BABAR and LHCb.
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I. INTRODUCTION

The theory of semileptonic (SL) B decays is a rich and
well-studied subject [1-6]. Within the framework of the
Standard Model (SM), this has been widely used to probe
the nature of the electroweak interaction and the structure
of the Cabibbo—Kobayashi-Maskawa (CKM) matrix. In
particular, the CKM matrix elements |V, | and |V ;| can be
extracted from the rates of the processes B — X (e} Vg,
where X/, is an exclusive charm or charmless meson
state, respectively.

The full differential rates in the SM for these processes
have been previously presented by several authors in
Refs. [1-6]. The current article extends these results in
the following fashion. Instead of assuming the relevant
helicity amplitudes to be relatively real, as is the current
status, we provide expressions corresponding to complex
amplitudes. A specific motivation for admitting complex
amplitudes in SL decays is to consider, instead of a purely
left-handed (LH) weak charged current as in the SM, an
additional complex right-handed (RH) admixture, eg, that
could arise in new physics scenarios, as shown in Fig. 1
[7.8]. A complex nonzero e leads to additional angular
terms in the full differential rate. In particular, a nonzero
phase in ep can lead to CP violation in SL B decays
[4,8-10].

Consider on the other hand the process B — X¢£~ ¢+,
where X subsequently decays into two pseudoscalars and
the charged dilepton system can be either be a c¢ resonance
(J/w, w(2S)) or nonresonant electroweak penguins
(EWPs). It is well known that the helicity amplitudes here
have nonzero relative phases [11]. Compared to the SL
case, where the leptonic current is purely LH, both LH and
RH components exist for the charged dilepton case. The
LH and RH terms add incoherently to give the total rate.
Therefore, while the number of angular observables
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remains the same, the number of independent real ampli-
tude components to extract increases almost twofold.
The angular observables are not independent, which leads
to ambiguities in the solutions for the amplitudes [12,13].

A simplification occurs for the case where the dilepton is
aresonant c¢ meson that decays electromagnetically. Since
electromagnetic interactions conserve parity, the LH and
RH amplitudes are equal for this case. The reduced number
of real amplitude components results in a single twofold
ambiguity, as explained in Sec. VIIL

To sum up, in this article, we examine the generic B -
X?¢,¢, decay, where £ is a charged massless lepton and
¢, is a charged or neutral massless lepton, and both the
LH and RH helicity amplitudes can be nonzero, complex,
and independent of each other. The SL and the resonant c¢
instances represent special cases leading to certain sim-
plifications. We expand the full angular expression in an
orthonormal basis of spherical harmonics and provide
moments to project out each angular component. Since
the basis is orthonormal, this reduces to a simple counting
measurement. We explain how to extract the covariance
matrix of the moments and the treatment of background
subtraction, again, as counting measurements. As long as
the set of basis functions is “large enough,” our method is
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FIG. 1 (color online). Effective RH coupling arising in
(a) gluino loop in supersymmetric models and (b) a heavy RH
W boson in left-right symmetric models.
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the most model-independent way of describing the data, as
inputs to theory modeling.

II. KINEMATIC VARIABLES

Consider the SL decay process B(bg') — X(qq')¢ v,
shown in Fig. 2. At the quark level, in the SM, this is a
flavor changing process where a heavy b quark emits a
charged W* (off shell) and decays into a lighter ¢ € {u, ¢}
quark, with the decay vertex containing the CKM matrix
element V ;. An important feature of SL. B decays is that
the leptonic side interaction is well understood, thereby
facilitating the study of the complicated nonperturbative
QCD interactions that reside on the hadronic side. The
momentum transfer squared between the leptonic and
hadronic systems is g. The hadronic side is thus probed
by the ¢-dependent form factors, just like in deep inelastic
scattering (DIS), save that g*> > 0 is now timelike, instead
of spacelike in the DIS case. For the EWP case, the W* can
effectively be thought of as being replaced by {y*, Z*}.

A. Kinematics

Without loss of generality, we take ; = ¢~ and ¢, = 1.
We denote the 4-momenta of the parent B, the daughter
meson X, the charged lepton £~, and U, as pg, px, pys, and
p., respectively. The W* 4-momentum is g = (pg — px)s
so that

q* = (ps — px)* = my + my —2mzEx  (la)

_PB_PX_EX
mp my My
2 2 2
_ mg+my—q

2mBmX

W=1vVpg - Uy
(1b)

where Ey is the energy and w is the y-factor of the X as seen
in the B rest frame. If we consider the breakup of B - XW*
as a two-body decay, where the virtual W* boson has mass
\/?, the two-body breakup momentum is given by

2 _ 2 2\2

2
4my

os]

lfIG. 2 (color online). The quark level diagram for the SL decay
B(bg') — X(qq )¢ 0, in the SM.
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Two kinematic limits are of special interest. At “zero
recoil,” k = 0, and the W* attains the maximum allowed
virtual mass, \/q2 = \/qAa = (mp —my). Since the
meson X is at rest in the B rest frame now, the y-factor
w = wpi, = 1. This kinematic region is convenient for
lattice and heavy quark effective theory calculations. On the
other hand, at ¢> = ¢2. ~ 0 (for the massless leptons), the
breakup momentum is largest,

m% — m3
B

Since the breakup momentum and the y-factor w are related
as

k =myvVw?—1, (4)

we also have

2 2
my + my

Whax = =, 5

T dmpmy )

or the f-factor as

2 2
my — my

= —— 6

This “large-recoil” region is convenient for light-cone sum
rules and soft collinear effective theory calculations.

When the outgoing meson is a vector meson, its
polarization is important as well. The vector meson decay
products act as the analyzer. For example, in the case of
p — zw shown in Fig. 3, the analyzer (A) is the z
momentum direction in the p helicity frame with respect
to the B rest frame. This defines the helicity angle 6y,. For
w — ntn~7°, the normal to the @ decay plane plays the
role of the analyzer. The last additional kinematic variable
is y, the dihedral angle between the W* and the vector
meson decay planes in the mother B rest frame, and care
must be taken to note the quadrant of the angle y (see
Fig. 4). We refer to the set of four kinematic variables
as ¢ ={q*,cosO,,cos 0y, y}.

FIG. 3 (color online). The set of four kinematic variables ¢ €
{q%,y,cos 0y, cos 0y} for the SL decay chain B — p(— zx)
W+ (—> fil_/f).
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FIG. 4 (color online). The reference frames for calculating 6,,
0y, and y for B — VW*(— £~1,) conforming to (a) Fig. 2 in
Gilman—Singleton [1] and (b) Fig. 3 in Hagiwara [5]. The
relations between the two sets of angles are given in the text.

B. Sign conventions of {0,.0y .y} for B — X¢1¢,

We stress here that the angles in this section are for the B
decay (that is, a b quark transition). The CP conjugate
case is described in Sec. VI, and the construction of the
kinematic variables in terms of the 4-momenta of the
particles is provided in the Appendix.

1. SL case: {¢1,6,}={¢" 0.}

We follow the definition of the angles in Fig. 2 of
Gilman-Singleton [1]. We first boost everything to the B
rest frame. There are two sets of coordinate axes,
{&s,9¢,2,} and {&y, Py, 2v}, as shown in Fig. 4(a) for
the vector meson (V) case. These are the helicity frames of
the W* and the V. The connection is that X, = —Xy,
YV, =3y, and Z, = —Zy. The dihedral angle y = ¢, + ¢y,
where we note that the azimuthal angles ¢, and ¢y are
calculated in two different frames. We set ¢, =0 by
ensuring that the charged lepton ¢ lies in the X,-Z,
plane and has the x-component of its momentum > 0.
This completely fixes the quadrant of y, and therefore the
signs of its sine and cosine.

To measure 6, and 60y, we boost to the W* and V rest
frames and measure the polar angles of the ¢ and A,
respectively. Here, A is the analyzing direction of the vector
meson decay as tabulated in Table 1.

Korner and Schuler [3] and Hagiwara [5,6] follow a
different convention where both the orientations of the axes
for the leptonic and hadronic systems are the same. The
relations are

O8S =7 — 658 (7a)
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TABLE I. The analyzing direction Ain Fig. 4 for the different
mesons in a B decay. See also Sec. VI for the B case.

Decay topology A direction

D* - Dr [3[)
D* — Dy Pp
p*/fo = mta’ P
p°/fo— mta” Pt
w— ata Dit X Pu-
K* — Kn Px
O%S = 65S (7b)
xS =45, (7¢)

where the “KS” superscript refers to Korner—Schuler/
Hagiwara and the “GS” superscript to Gilman—Singleton.

The conventions followed by Richman and Burchat [2]
(“RB”) on the other hand are related to the GS definitions
as

ORB = (58 (8)
ORE = S (8b)
7B =7+ 405, (8¢)

We adhere to the GS conventions in this work.

2. EWP case: {¢1,6,y={¢".¢"}

We again follow the GS conventions with the single
replacement o, — £ everywhere. Compared to other EWP
conventions in the literature [13—18], the only change is

0% =1 — GEVP, 9)

where the superscript “EWP” refers to the aforementioned
theory references (see also the Appendix).
III. EFFECTIVE HAMILTONIANS

A. SL decays

Consider the process b — q¢~ U, (where g € {c,u} and
¢ € {e,u}) in terms of an effective 4-Fermi interaction
Hamiltonian,

2G:VE, i )
Hee = ﬂ“ (9" ar,b — g qr.rsb)Crvr

+q(g° + g°rs)btuy). (10)

where we have assumed only LH neutrinos (v; = 1_7”51/)
and neglected any tensor terms associated with baryon
and lepton number violations (leptoquark models [19]).
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Here, V{;b =V,, denotes the usual LH CKM matrix
element in the SM. The vector and the axial interactions
are written as gy = (1 4+ €g) and g4 = (1 —¢g), and in
general ey is allowed to be complex to incorporate addi-
tional CP-violating effects [4,8—10]. There are also two
terms, ¢° and g, corresponding to scalar and pseudoscalar
interactions, respectively. To retrieve the SM part, one
puts eg = ¢° = g* = 0.

1. B - St i, case

The transition matrix element pertaining to the process
B — S¢~1,, where S is a a 0" scalar state, is then Mg =
(S|He|B). We note here that a negatively charged lepton
and a RH antineutrino are being produced (since we have
allowed for extra phases, we have to be careful about CP
conjugates now). The hadronic matrix elements corre-
sponding to the terms gtVAS} are written in terms of
two form factors u. (¢?) and uy(q?) [20,21]:

(Slgy,b|B)y =0 (11a)

_ _ + ps) -
(S|@y,rsb|B) s = ui(q?) <(p3 + Ps)y — W%)
+ .
() PR
(S|gb|B)s =0 (11c)
_ 5 2 m%} B mé
(S|grsb|B)p = ug(q?) ——> (11d)

my, +my

Since parity factors multiply, the right-hand side in
Eq. (11a) has to be an axial vector, which one cannot
construct out of the two vectors pg and pp. Therefore, only
the ¢* term survives in Eq. (11b), while the ¢" term in
Eq. (11a) is zero. Equation (11b) has been written in a form
that is nonsingular as ¢> — 0. However, for the light
leptons, the ¢* terms go to zero when dotted with the
leptonic charged current £y*y, . This can be seen by using
q = (ps+ p,) and the Dirac equation for the (massless)
leptons. Hence, all terms proportional to g, can be dropped.
Equations (11c) and (11d) follow from Egs. (11a) and
(11b), respectively, by dotting with g, and invoking the
Dirac equation at the quark level. In all, the transition
matrix element reads

2GFqu{ ) _
/2 9ty (q”)(ps PS)” YuL

M

m2 —_ m2 -
+9P”0(q2)ﬁf%}- (12)
q

As we will see later, the gp term can be ignored for the
massless lepton case, and only the g, term will remain.
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2. B - Pt i, case

When the outgoing meson is a 0~ pseudoscalar state P,
following the argument given above, the g, term vanishes,
and there is only a gy contribution, with the two form

factors £ (¢*) and fo(q?),

_ = P+ Ppr) q
(P|qy,b|B)y _f+(612><(PB + Pp), _ (2 qu) qﬂ)
P+ Pp)-q
T folg?)\PBEPr) 4 qu) ay (13a)
(P|Gy,rsb|B), =0 (13b)
(P|grsb|B)p =0 (13¢)
(PlablB)s ~ fola) “EZE (13a)
q s~Jolq mb+mq’
and the amplitude reads
2G;V b{ _
Mp = 1 2 + £yt
P \/f gvf+(q )(PB PP),l VUL
b gofolg?) MM (14
gsJold my, + m, vy ¢

As in the scalar case, the gg can be ignored for the massless
lepton case, and only the gy term will remain. We note that
the structure of Egs. (12) and (14) are quite similar, except
for the coupling terms and the form factors. Since g4 and gy,
are proportional to (1 — eg) and (1 + €p), respectively, the
effect of a nonzero ey is different between the outgoing
scalar and pseudoscalar meson states.

3. B> V¢ i, case

When the outgoing meson is 1~ vector meson V, both the
gy and g4 terms contribute, and the hadronic current can be
written in terms of four form factors Ay, A, A,, and V,

= D 21V(q2) ww o a B
(V|gr,b|B)y = m%mﬂé‘v pyry  (15a)
_ - £y q
<V|‘1}’p}’5l’|B>A = 2mVA0(612)‘;7261,4
. &g
+ (mB + mV)Al(qz) (8/1V - \;I—Qqﬂ>
&y q
—A 2 |4
2(q )7’”3 oy ((PB + Py,
q
— 7 »n &V 4q
(Vlgrsb|B)p ~ 2myAo(q") ———  (15¢)

my +my
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(VIgb|B)s = 0. (15d)

and the matrix element is

C2GpVy 2iV(q?)
My = V2 {[gv<mv+m3

- ((mB +my)A, (612)571,4

]
€ﬂyaﬁ8»\</yp?/p/3>

&y q
— Ay (q*) —

_tv'qd Zyh
e T M (s +pv)ﬂ>} v

2m _
P B s 2
— — % - gA 4 . 16
g ) qgv qAo(q )) VL} (16)

B. EWP decays

The effective Hamiltonian for b — s transitions can be
expanded in the form [14,15,22]

4G
Hor = =722 VarVip (€O +CO). - (17)
q i

where g € {u, c,t} represents the quarks running in the
loop (dominated by the heavy top quark) and i€
{1,...,10, S, P}. The unprimed and primed components
represent the LH and RH (absent in the SM) hadronic
currents, respectively. The C;’s are the scale-dependent
Wilson coefficients that encode the short-distance physics,
while the O;’s are local operators representing the non-
perturbative long-distance physics. The explicit forms of
the operators can be found in Ref. [22]. O; are the
4-quark operators, suppressed at leading order in the SM,
but can contribute via charm-loop effects, especially near
the charm threshold in ¢2. Out of these, O,, are tree-level
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operators, while O;<;<¢ are gluonic penguins. Og is a
gluonic dipole operator and is also suppressed by a power
of \/a;. The scalar and pseudoscalar operators, Og p, do not
contribute in the SM.

The three main contributing terms for the b — s£~ ¢+
EWP decays are O;, Oy, and O;y. O; is the y*
penguin, while Oy and O,y get contributions from the
Z* penguin and W* box diagram.

The Wilson coefficients are calculated by matching the
effective and full theories at the u ~ my, scale and evolved
down to u ~ my, by the renormalization group equations. In
the SM, the rough hierarchy is C; ~ —0.331, Cy ~4.27,
and Cyy~ —4.173, so that the Cy and C;, contributions
dominate, except at g> — 0, where the photonic penguin
dominates.

Following Ref. [18], we next define the following
coefficients:

CHR = [(G5F - ¢ F (G - CT))/2 (18)
CER=((CT + CM) F (Coo + CM))/2 (18)
Cr= (G5 - )2 (18¢)
¢ = (G5 + )2, (184)

where {L,R} signifies the handedness on the leptonic
side and the expressions of Cf() can be found in
Ref. [15]. It should be noted that the effects of charm
loops (from C;.) enter Cgff, thereby incorporating strong
phases into CgT.

For X being in a spin-J state, the helicity amplitudes in
terms of the ¢>-dependent form factors F 1.7> A12, V, and
T, are [16]

Kk \J-1(_ B
4, (m—) {cL-R<mB T m)Ar(@) + 22 (md — )T (q?)

2w V)
mp + my

a kK \J/-1(_
HS'R|121 = m <mx> {CL’R {(m% —my — 612)(’"3 + mx)Al(qz) -

+ 2mpCy [(m% +3m3 — ¢*)T>(q%)

- 2m3
Fr(g? 19a
) (19)
ZmB
q
_2m
+G qu Tl(q2>]} (19b)
4m3k?
A 2
iy + iy 2(9°%)
4m3k
- @) | (190
mp — my

The {a,.$,} factors come from Clebsch-Gordon coefficients and are {1, 1} and {4/2/3,1/+/2} for the vector and tensor
states, respectively [16]. The k’~! terms are additional kinematic factors incorporating the angular momentum barrier
factors for higher spins (see also the discussion in Sec. V).
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Note that in the above equations for the helicity
amplitudes, relative to the convention in the EWP literature,
we have taken out an overall normalization factor. The
benefit is that the SL limit is easily arrived at by the
substitutions C" = C"=C; =C, =0, and C' =C" = 1
[see also Eq. (23)]. The terms corresponding to F and T,’s
do not exist in the SL case, and F is identified as u, (f, )
for B - S(P)¢ iy

IV. DIFFERENTIAL RATE FOR B — X?/,¢,

Following Hagiwara [5,6], the differential rate is

1
AU =—— % [MPdgs. (20)

B final spins

where the incoherent sum is over the spins of all final-state
particles and the three-body X¢;¢, phase-space factor is

k dg’dcosf,

dps; = 2m3w, (21)

where k is the usual X 3-momentum magnitude in the B
rest frame. Including only spin-zero and spin-1 states for
the dilepton system, the invariant amplitude can be written
in the form

GpV
2 n==+12e{0,+1}

(22)

where A is the helicity of the hadronic system X and the
handedness # = (4, — A,,) = —=1(+1) for LH (RH) lep-
tonic currents. For SL decays with ¢ always being the
charged lepton, for a (¢~ 7, ) final state, since A = +1/2 for
the purely RH 7,, we have n = —1. For the (£*v) final
state, we have n = +1 for the purely LH v. Here, V is a
scale factor that equals GV, in SL b — g type transi-
tions. For the EWP decays B — K®¢=¢+, the effective

replacement is [18]
a *
- Y VsV
SL 7

The hadronic helicity amplitudes for B (that is, contain-
ing a b quark) are defined as [4]

Vab (23)

EWP

H; = (€3 (4)),(X(4)|J*|B),. (24)
with the spin-quantization axis along the X flight direction

in the B rest frame, while the leptonic helicity amplitudes
are (for massless leptons)

L} = 2w (=D)),itg,r'ttp, = 2\/24°d} ,(60,).  (25)
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where the spin-quantization axis is along the dilepton flight
direction in the B rest frame, opposite to the X direction.
Since the parent meson is spin zero, the helicities of the
daughter hadronic and the leptonic systems have to be
the same.

For the scalar term Lyg, the helicities of the two leptons
must be the same, since the total spin of the dilepton system

is 0. This means that, although [5,6] z:”uL = \/q?, so that

Ly =2fv; =24/q*, (26)

the lepton spin configurations for the L; and Lg cases are
different, and the two components must add incoherently in
the total rate expression. The spin-zero leptonic current
terms for the massless lepton case are therefore second-
order corrections relative to the SM and will be neglected
henceforth.

A. B - P(S)¢/ v, case
Following the calculations in Ref. [5], one can show that

the amplitude in Eq. (14) for the SL outgoing pseudoscalar
meson case is

_ GrVa
V2
where we have neglected the g5 term because, as explained

above, it is a small second-order correction to the SM.
Plugging this into Egs. (20) and (21), we get

Mp

gv(—4mpksin0f . (q%)), (27)

£ _ G%"|qu|2 k3
dp 321

where d¢p = dg?d cos6,.
The outgoing scalar meson case is obtained by replacing
gy with g, and f, with u,.

sin*0lgv.f 4 (4°) . (28)

B. X — P,P, case

For the case where the X system decays into a
pair of spin-zero pseudoscalars, the amplitude can be
expanded as

w-% s

> LngYﬂ}, (29)

n==+12e{0,+1}

where, for the hadronic system,

HiY, =) H'Yi(0v.2). (30)

J

The spherical harmonics are given in terms of the
Wigner d-matrices as
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TABLE II. The helicity-basis expansion of |M|? in Eq. (34).

i hi (¢) P
1 6(|H% 2 + [HE?) + 8|S™[* + 10D |* — 8v/5Re(S" Df”) +(L - R)
2 cos 0y [12v/5Re(H% DY + HEDE*) 4 16+/3Re(SLHE*) — 8+/15Re (D HE*)] ”
3 c0s20y[30(1D% 2+ D) — 6(|HE[? + [HE ) + 24[HE P + 24v/5Re(S-DE*) — 60|D[) -
4 cos’ @y [—12v/5Re(H: DE* + HLDL*) + 24+/15Re(H(D§*)] ”
5 cos*@y [-30(|D% > + | DE?) + 90| D§ )] ”
6 cos?0,[6(|H: > + [HE?) — 8|SE|> = 10| D) + 8v/5Re(SEDE*)] ”
7 cos?6, cos Oy [12v/5Re(H: D% + HEDL*) — 161/3Re(SH};) + 8v/15Re(DyH})] ”
8 0s20,c0820y [30(|D% |* + |DE ) — 6(|HY > + |HE?) — 24|HE | — 24+/5Re(SED§*) + 60| D§|?] ”
9 cos?0,cos0y [-12v/5Re(H: D+ + HEDL*) — 24+/15Re(H} D§*)] ”
10 cos’0,cos*0y[-30(|D% |* + |DE|?) — 90| D§|?))] ”
11 sin 8, cos 6, cos y sin Oy [—8+v/3Re((H: + HL)S*) + 4v/15Re((H% + HL)DE")] ”
12 sin6, cos @, cos y sin @y cos Oy [—-24Re((H: + HL)HE*) — 8v/15Re((D% + DE)SH*) +20v/3Re((D% + DL)DE")] ”
13 sin 6, cos 6, cos y sin 6y, cos*0y [-24+/5Re((D: + DL)HE* — 12+/15Re((H% + H:)DE")] ”
14 sin @, cos @, cos y sin Oy cos>@y, [-60v/3Re((D% + DL)DE*)] 7
15 sin 6, cos O, sin y sin Oy [8+/3Im((H% — HL)S™) — 44/15Im((HY — HL)DE")] ”
16 sin6, cos O, siny sin 6y cos Oy [24Im((H: — HL)HE*) + 8v/15Im((D% — DL)SL*) — 201/3Im((D% — D%)D5*)] ”
17 sin @, cos @, sin y sin @ cos0y [24+/5Im((D% — DL)HE*) + 124/15Im((HY — HY)DE*)] ”
18 sin @, cos 0, sin y sin @y cos0y [60v/3Im((D% — DL)DE*)] 7
19 sin?6, cos 2y[—12Re(H: HE)] ”
20 sin®@, cos 2y cos Oy [—12v/5Re(H.L DL* + DL H*)) ”
21 sin” @, cos 2y cos? 0y [-60Re(DL DL*) + 12Re(H: HEY)) 7
22 sin®@, cos 2ycos*@y [12v/5Re( H: DL* + DE HL*)] ”
23 sin?0, cos 2ycos*dy [60Re(D: DE)] 7
24 sin?@, sin 2y [12Im(H% HL*)) 7
25 sin?@, sin 2y cos @y [12+/5Im(H: DL* + DL HL*)] ”
26 sin?6, sin 2ycos?0y [60Im(D% DE*) — 12Im(HY HEY)) 7
27 sin® 8, sin 2y cos® @ [—12+/SIm(H: D% + DL H-*))] "
28 sin? 0, sin 2y cos* @, [-60Im(D% DL*))] 7
29 cos O, [12(|HE|? — |HE |?)) —(L - R)
30 cos 0, cos Oy [24+/5SRe(H-DL* — HY DY) ”
31 cos 0,c0820y [60(|DE? — |DL [2) — 12(|HE|? — |HE )] ”
32 cos 8, cos’ Oy [—24+/5Re(H: DL* — H: DY) 7
33 cos 8, cos* 0y [-60(| DL | — | DL |?)] ”
34 sin 6, cos y sin Oy [8+v/3Re((H% — H-)S*) — 4v/15Re((H%: — H-)D§*))] ”
35 sin @, cos y sin @y cos Oy [24Re((H: — HX)HE*) + 8+v/15Re((D% — DL)S™*) — 201/3Re((D% — D%)D5¥)] ”
36 sin @, cos y sin @y cos? Oy [24v/5Re((DL — DL)HE*) + 12v/15Re((H: — HL)D§*)) ”
37 sin 6, cos y sin @y cos® 0y, [60v/3Re((D% — DX)DE*)] ”
38 sin @, sin y sin 6 [-8+/3Im((H: + HL)SY*) + 4y/15Im((HY + HL)D§*)] ”
39 sin 8, sin y sin @y cos Oy [—24Im((H: + HY)HE*) — 8/15Im((D% + D:)SY*) 4 20v/3Im((D% + D:)DE*)] ”
40 sin @, sin y sin @y cos>0y [—24+/5Im((D% + DL)HE*) — 124/15Im((HY + HL)D§*)] ”
41 sin 0, sin y sin 6y cos*@y [-60v/3Im((D% + DL)D§*)] ”
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Y’Jl(ev%)

2J +1 .
\/Tdﬁ,o(ev)ewv (31)

and the differential phase-space element is now d¢ =
degpsd cos Oy dy.

Putting everything together, the full expression for the
four-dimensional differential rate for X decaying to two
pseudoscalars is then

dar |V|2quBX—>P1PZ _

= man MY
where
MPE=>"1 D > Var+THY a0y
n==1e{0.+1} J

2

xd;, (0;)e™ (33)

and BX~"1P2 is the relevant branching fraction. The LH and
RH contributions add incoherently since the final-state spin
configurations are different on the leptonic side.

|

dU  3G3|V ., kq?BY =P

d¢ m%(4x)* E
 3GE|V s Pkg? BV
B 32m3 (4x)*

==17 efox1y

pys

+ HE (1 =2, cos Oy)(1 + cos 0,)e 2,
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For J € {0, 1,2}, we denote the spin-zero, spin-1, and
spin-2 helicity amplitudes as S{&-R} HEL’R}, and DEL’R},
respectively, where the superscripts denote the handedness

of the leptonic current. The full expansion of |M|? yields
41 angular terms,

P = 162 (WE+nf=RRE).(34)

as tabulated in Table II. Here, n¥~% = +1 is a sign factor
dictated by the behavior of the angular part under
0y = n+0,, since d;, (0,) =d;_, (x+0;). hf is of the
same form as hf, except w1th all the LH amplitudes
replaced by their RH counterparts.

C.B - V¢ i, case

The V — P, P, case is the same as Eq. (32), with only
the Hf amplitudes contributing. For V — Py, we need to
incoherently sum over the outgoing photon helicity 4, =
+1 cases separately,

2
Z H/%d/luy (0v)d; 1 (07)e™

Z 24, sin Oy HE (—sin0,) + H% (14 4, cosOy) (1 — cos ) e

(35)

where the extra factor of 1 ensures normalization to the appropriate branching fraction.
We write HY = H,e" and set §y = 0. For B — V£~ i, the expressions in Egs. (32) and (35) can then be summarized as

ar_|__ ¢
dp |1+ (1-a
+ 2aH, sin 0, sin 260y [H (1 — cos ) cos(y + 6.)

—2aH . H_sin?@,sin’@y, cos(2y + (6, — 5_))},

where a is —1 for V — Py (such as D* — Dy or @ — ny)
and +1 for V. — P, P, (such as p — zw or D* — D) type
decays. The prefactor term is

3 quz
8(4x)* Varl™ Sz B

I

(37)

where the term B accommodates any branching fractions
from the vector meson decay chain onward.

For the V — P, P, type cases, Eq. (36) above agrees with
Eq. (2.20) in Ref. [1]. It also agrees with Eq. (113) in

1—
)/2} {[Hi(l —cos0,)? + H:(1 + cos 0,)%](1 — acos*Oy) + 4H%sin29f(

Ty acoszév>

— H_(1+cos@,)cos(y —6_)]

(36)

Ref. [2] after taking into account the change in the y
definition as given by Eq. (8c).

V. INCORPORATING MASS DEPENDENCES

When the variation of the invariant mass of the X
system, m = my, is no longer negligible, Eq. (32) can be
extended as

dar - <£> |V|2quBX—>P]P2(m)
Po

dpdm wan m)

2 (38)
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where p is the mass-dependent breakup momentum of
X — PP, in the X rest frame and p, is the value of p
computed at the (dominant) pole mass m,. The overall
factor of p/p, comes from phase space.

The ‘H’ amplitudes incorporate a mass-dependent rela-
tivistic Breit—-Wigner (rBW) part,

p\’ B/ (p.R) 1
Hlgw(m) ~ <—) - , (39
() Po BJ(PO, R) m(z) —-m? - lmoré)tal (39)

where B/(p, R) is the phenomenological Blatt~Weisskopf
barrier factor with R ~ O(5 GeV™!), corresponding to a
meson radius of O(1 fm). For a P-wave decay, this is given
by [23]

1

V1+ p’R?

For the spin-J resonance having a single decay mode to the
final state PP,

B7'(p.R) = (40)

v :r0< p/m )‘(g)’ B'(p.R) |?

ol Po/myo po) B'(po.R)
However, if the spin-J resonance has k decay modes,
all the individual mass-dependent widths contribute as

(41)

k
1—‘tjotal = ZFIJBIJ’ (42)

i=1

where B/ is the branching fraction into the ith mode.
Examples of such instances are the decay modes of the
¢(1020) or the K3(1430).

The second form of mass dependence comes from the
barrier factor associated with the B decay itself. Let the
B decay into the dilepton and X system occur with an
angular momentum Lp, and the breakup momentum is
k, as given by Eq. (2). If the X system is in spin J, the
selection rule is Lz e {J—1,J,J+ 1}. The helicity
amplitudes Hf can be rewritten in terms of specific
Lp components with the relevant Clebsch—Gordon factor
(J,A;1,—4|Lg,0) as

s=s! (43a)
H —1H2i1H1+1H° (43b)
Ve V2 3
2 1
Hy=1/=H?> - —H" 43¢
D —LD3iLD2+\/iD1 (43d)
i_\/§ V2 10

PHYSICAL REVIEW D 92, 033013 (2015)

3 2
Dy =1/=D3— \/:Dl.
0 \/5 5

The superscripts on the rhs denote the Ly values, and
the amplitudes represent the spin-Lz component of the
corresponding helicity amplitude. Each spin-Lz compo-
nent of the helicity amplitudes acquires a nominal
barrier factor that scales as b = k‘sBLs(k,R). We
define the normalized quantity x,, = b/b,, where we
choose to calculate the denominator at the pole mass.
The mass-dependent helicity amplitudes are

(43e)

S(m)=x;8 (44a)
X H, +H_ H, +H_ —H
Hi(m)Ef(HO—F +2 > + 3 0
L (M) (44b)
2
2x H, +H_ H, +H_—H,
Ho(m)E?)z(HoJr *2 >— + : 0
(44c¢)
X
D (m) E? (V3Dg + (D4 +D_))
/3 3 2
+x1 E( E(D+ + D_) - \/;D())
+ x, <D+ ;D‘> (44d)

Sﬁ (V3Dy + (D, +D_))

-x §<\/%(D+ +D.)- \@D()). (44e)

The mass-independent forms are obtained by the sub-
stitutions X, = 1. For the SL and EWP cases, the
k-dependent barrier factors were already incorporated
in Egs. (19). For the c¢c — £~ ¢ decays, the mass-
dependent forms in Eq. (44) are more appropriate than
the bare amplitudes.

Dy(m) =

VI. CP CONJUGATION

Consider the CP conjugation of the process B — X
(= P\Y)¢,¢,, where P, is a charged pseudoscalar
meson and 7; is a charged lepton. The CP conjugate
process is B — X(— P, Y)¢,/,. We perform the CP
conjugation explicitly. That is, for the construction of
the angular variables, going from B to B, we replace the
4-momenta as px — px, pp, = Pp,» Ps, = Pz, and
Ps, = Pz,- This construction leads to y — —y.
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On the other hand, the effect of CP conjugation on the

helicity amplitudes flips the helicities and weak phases

H(Bw, 8,) = H_}(=6w, 5y), (45)
where 6y (05) is any weak (strong) phase and flipping the
sign of # changes the LH amplitudes to the RH amplitudes.
In the absence of direct CP violation, the simultaneous
effect of these two transformations is to leave |M|?
unchanged in Eq. (33). Therefore, with explicit CP con-
jugation of the particles during construction of the angular
variables (see the Appendix for details), no additional
changes to the rate equation are required.

We also stress here that our unbarred amplitudes are
defined for the B (or b quark) decay, in contrast to
conventions in cc analyses [11,24], where the unbarred
(barred) amplitudes are defined for the B (B) decay.

VII. EXPANSION IN AN
ORTHONORMAL BASIS

Equation (32) can be expanded in an orthonormal basis
of angular functions f;(Q) as

dr 41
P {;fi(ﬂ)l“i(qz)} (46a)
Ti(q*) =T7(g%) +ni = 7 (4%), (46b)

where dQ = d cos 6,d cos Oy dy and the FI{L’R} superscripts
in Eq. (46b) specify the LH or RH nature of the leptonic
current. The sign 75~% = +1 depends on the signature of
fi under 8, — & + 6,. Orthonormality of the f;’s implies

/ £ (Qda = 5, (47)

The orthonomal angular basis is constructed out of
the spherical harmonics Y}" = Y7"(6,, ) and the reduced

spherical harmonics P} =+/2zY}'(6y,0). The prefactor
is
/8n.|V|2kq28X—>P1P2

€= 3my(4m)*

(48)
Defining the transversity basis amplitudes Hf“_ 1y as

ML = (R £ H])/V2, (49)

Tables III and IV list the 41 moments in the helicity
and transversity bases, respectively.

We note that, since the RH and LH amplitudes are equal
for the c¢ — £~¢* type decays, the terms with n/ =% = —1
vanish, and only 28 nonzero moments survive in Tables III
and IV for these cases.

PHYSICAL REVIEW D 92, 033013 (2015)
VIII. TWOFOLD AMBIGUITY

As mentioned in the Introduction, the full differential
rate does not uniquely determine the helicity amplitudes.
The ambiguities in the solutions arise from the information
loss in summing over the final lepton spins. A detailed
study of these ambiguities is beyond the scope of this work.
However, we point out one particular case.

Using the identities dj,=(-1)'d’,, and d;, =

—(=1)*d", _ , forn=E1and 1 € {0, =1}, the expressmn
in Eq. (33)i 1s seen to be invariant under the following global
transformation:

MY = () (50)

We note here again that » = 41 (—1) denotes the RH (LH)
component on the leptonic side. For the electromagnetic
cc = £T¢~ decays, the LH and RH amplitudes are
equal, and Eq. (50) represents the twofold ambiguity
[11] in the determination of f# and f, from B — J/wK*
and B; — J/w, respectively.

IX. ANALYSIS FORMALISM
A. No background case

1. Method of moments

Assume a generic rate function constructed out of a set of
orthonormal basis functions f;(€),

=@ = Yohsi@) (s1)

where the aim is to determine the moments ;. We define a
detector efficiency function ¢(Q2), and the normalization
integrals

Eyomy = / QU (Q)f(Q) - fo(Q)]dO

[ifl Q) f () fu() ], (52)

NMS |
that are calculated numerically with NS Monte Carlo
(MC) events generated flat in dQ, and NMS accepted
events that survive after the detector efficiency is taken
into account. Also, ¢ = f dQ is the total phase-space
element.

The measured moments from the data are

Ndala

=3 ri) = | i@

from which, the efficiency-corrected true moments can be
calculated as

—dQ E;b;, (53
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TABLE III.  The helicity-basis moments of the 41 orthonormal angular functions f;(Q) in Eq. (46).

i fi(Q) () ni ™"
1 POYy (HG > + |HY P+ [HEP + S5 + DG + |DE[? + | DEP] +(L - R)
2 PYYY 2 ZRe(HEDY) + Re(SHHE) + | [Re(HEDE + HEDL )| ”
3 P3Y; é(lDﬁl2+lDflz)—%(lHﬁlz+ [HE[?) + Z|HE P + 5% DG | + 2Re(S* D) )
4 PIYY = [-Re(H D" + H-D™*) + v/3Re(H{Df")] ”
5 P3Yy [=2(ID%* + |DE]?) + 3|D§ 7] )
6 PYYS S [(IDAP + [DEP) + ([HE [+ [HE[2) = 2|8H P = 2|D§ > — 2| Hf ) "
7 POYY [i Re(H% DY + HEDL) - ZRe(SEHE") — —Re(HLDL*)} ”
8 P3Y3 i3 (IDY]? + [DEP) = 2 IDG P = 5 (|HE > + [HE]?) = | HE|? = ZRe(S"Df)] ”
9 Py} ~ 57 [Re(H, D" + HEDY*) + 2V/3Re(H{ D )] ”
10 P3Y3 —55 D% + DL + 3|D ] ”
11 P1V/2Re(Y}) —FglrRe((HY + HY)S™) — =Re((HY + HL)Df") +=Re((D% + DL)HE")] ”
12 PiV2Re(Y}) — 235 [Re((#% + HL)HE?) +  [Re((DX + DE)SE) + =55 Re((DX + DL)DE)| ”
13 P}\/2Re(Y)) — 527 [2Re((D + DY)HE) + V3Re((HY + HE)Df")] ”
14 P}V2Re(Y}) —3Re((D% + D:)D§) ”
15 Pl\/2Im(Y}) 5 [z Im((HY — HE)S™) + 5Im((DY — DL)HE) - Slflm((HL HL)DE)] ”
16 P}/2Im(Y}) 5[5 Im((D = D)D) + §Im((HY — HY)HE") + =Im((D} — DL)Ss™)] ”
17 P}\/2Im(Y}) 577 [2Im((D} = DY)HE") + V/3Im((H} — HY)D§")] ”
18 P}\/2Im(Y}) 3Im((D% — DL)D§*) ”
19 PYV/3Re(Y2) —\/Re(H HE) + Re(DEDE)] ”
20 PY\/2Re(Y3) —3[Re(H} DX*) + Re(DY HE)] ”
21 PY\/2Re(Y3) V3[-1Re(DL D) + LRe(HE HEY)] ”
2 PYV/3Re(12) 3\/3Re(HE D) + Re(D% HE)) »
23 PYVIRe(Y2) \/3Re(DLD£*) ”
24 PJ\/2Im(Y3) \/é[lm(HgHé*) + Im(D% D)) ”
25 PYv/2Im(Y3) $Im(H: DL + DL HEY) ”
26 PY\/2Im(Y3) V3RLIm(DL DY) — Lim(HY HE)] ”
27 PYV/2Im(¥2) ~ 3\ Am(H; DL 4 DL HLY) "
28 PO2Im(12) ~4,/im(D} DL ”
29 PoYe FI(HEP = |HE) + (D = D) (L= R)
30 PYY? “zRe(HLDY - H: DY) ”
31 P3YY 5o B (IDEP = IDLPP) = (IHEP — |HE )] )
32 PYY? —\/%RG(HEDE* — H: DY) ”
33 PV} ~23(|DLP ~ |DE) ”
34 PV2Re(Y}) \/7 [V/5Re((H% — HE)S™*) + v/3Re((D% — DL)HE*) — Re((H: — HE)D§*)] ”
35 PIv/2Re(Y)) S [JeRe((H: - HE)HE) + J=Re((Df = DE)SE) + 5 \/Re D% — DL)DE))] ”
36 PivV/2Re(Y}) = [2Re((DY = DY)HE") + V3Re((HY — HY)Df"))] ”
37 Pi\/2Re(Y}) 2/5Re((D% — D)D) ”
38 P}v2Im(Y}) \f[\/— m((H% + HL)S™) + V3Im((D} + DL)HE") — Im((H% + HL)Dg")] ”
39 P}\/2Im(Y}) \[[\/’Im((Hi + HL)HE) + V/5Im((D% + DE)SY) 4+ 3Im((D% + DL)D§))] ”
40 PiV2Im(Y}) — A= [2Im((D + D)HE*) + V3Im((HY + H")D§*)] ”
41 Pi\/2Im(Y1) -3/5Im((D% + D:)D§) ”
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TABLE IV. The transversity-basis moments of the 41 orthonormal angular functions f;(Q) in Eq. (46).

i fi(Q) () i~k
1 PY; (HG? + |Hf? + |HL? + [SY]* + [D§|* + D |? + DL +(L - R)
2 POYY 2[2Re(HEDE") + Re(S-HE) + \/gRe(HﬁDﬁ* + HL D] »
3 PY( 3 (DL + DL ) = (H[PP + [HL ) + Z|HE? + 52 ID§|* + 2Re(S* Df”) ”
4 Py +=l= Re(HLDL* + HY DY) + v/3Re(H5DEY)] ”
5 P3Y( [=2(Df1* + IDE[?) + 3|D§ ] ’
6 POY3 sz (D[P + [DLP) + (IH P + |HE[?) = 2I" > = 2| D§|* - 2|HE ] ”
7 PYYY [5 Re(H| D} + H DL*) —%Re(S"HL*) —$Re(H5DE)] ”
8 Py} iz (1D ? + D) =2 IDGI* = 6 (IH| > + |HE[?) - 3 |HE|* — ZRe(S"Df")] ”
9 PIY9 ﬁ[Re(HLDL* + HY DY) +2V/3 Re(HLDL*)} ”
10 Py} = [IDfI? + DL + 3|D 7] ”
1 P!\/3Re(Y}) -3 [\ﬁRe(HLSL*) \/7Re HLDE") \/Re DLHE) } »
12 P1v/2Re(Y))  [Re(HfHE) + \/ Re(DESE) + fRe(DLDL*)} »
13 P}\/2Re(Y)) ~ 59 [2Re(DffH") + V3Re(H| Df")] ”
14 P}v/2Re(Y}) — 755 Re(DDf") ”
15 Pl\/2Im(Y}) 3[A=Im(HYS™) + 3 Im(DY HE") — <= Im(H' D)) ”
16 P}\/2Im(Y}) 3[7‘—ﬁlm(DL D) +1Im(H: HE") + \/LIm(DL St ”
17 Pi\/2Im(Y}) 5= 2Im(D HE") + V/3Im(H D)) ”
18 P}\/2Im(Y}) 55 Im(DLDf”) ”
19 PV2Re(13) —so= (Hf? = |HEP) + (IDf? = IDE?)] ”
20 PYv/2Re(Y3) —3[Re(H[DL*) — Re(D} HE")] ”
21 P}V2Re(13) B3 (IDEP = DL P) + L(HE - |HE )] ’
2 PJv/2Re(Y2) g\[[Re(HLDL*) Re(DL HE) g
23 P3V2Re(13) 2\ JADEP - D4 P) ”
2 POV2Im(Y2) \/é[lm(HﬁHﬁ*) + Im(DL DE)] »
25 PY9/2Im(Y3) 3m(HY Df* + DL HEY) ”
26 P\/2Im(Y3) V3 Im(DE DE) — Him(HE HE)) ”
27 PYV2Im(Y3) -3 \/%Im(DiHﬁ* + H:Df) ”
28 POv2Im(12) ~4 [am(D} DY) »
29 PYYY —V3[Re(H H*) + Re(D% D) (L - R)
30 PYY — = Re(H{ D" + H{DY") ”
31 PYY —%[S Re(DLDL*) Re(H H{")] ”
32 PIYY JiRe(HDf" + H{ DY) ”
33 PIY? #Re(pﬁpﬁ*) »
34 PV2Re(Y}) \/21V/5Re(HESM) + v/3Re(DY HE") — Re(HY D) -
35 P1V2Re(Y)) 3[fRe(HLHL*) +LRe(DE M) + 5 \/Re D% DE) } »
36 P1V2Re(Y}) 5 [2Re(DTHf") + V3Re(HY D)) ”
37 PLV2Re(Y)) 3WI0Re(D% DY) ”
38 Pl\/2Im(Y}) —\/g[\/glm(HﬁSL*) + V3Im(D{H*) - Im(H | D§*)] ”
39 PiV2Im(Y1) —\/é[\/ﬁm(HLHL*) + V5Im(D} S¥) + 31m(Df D)) ”
40 PV2Im(Y!) ~6,/H2Im(D} HE) + V/3Im(HDf)] »
41 Pi\/2Im(Y1) _7\/— 10Im(DfD§) ”
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= (E7);;b. (54)

Likewise, the measured covariance matrix of the moments
is estimated as

Ndala

lj Zflgkfjgk /fl fj

:Eijkbkv (55)

)—dQ

and the covariance matrix of the acceptance corrected
moments is

Cij = (

j E_l)ikékl(E_l)jz- (56)

In the next step of the method of moments (MOM),
if the moments functions are parametrized by a set
of parameters a in some physics-motivated model
as b;(a), the values of the a can be obtained by
minimizing the y? function,

2= [bi=b(@)[C][b; = by(@).  (57)

i

2. Unbinned maximum-likelihood fits

In the equivalent unbinned maximum-likelihood (UML)
method, the efficiency incorporated probability density
function is

> bi(a)f(Q)e(Q)

g(Qa)=- Sh@E (58)

The likelihood function to maximize is
Ndala
3) = [ /(% ). (59)
k=1

which leads to the negative log likelihood to minimize as

—2In(L(@)) = 2N%2n [Zbi(&)E,}

Ndal a

—ZZIn[Zb a)f; Qk] (60)

B. Studies with toy Monte Carlo
To validate the above expressions, we consider a simple
rate expression for toy studies,

dN N
——=g(0,a,p) Y

T; (1 +acosf+ fsind), (61)

PHYSICAL REVIEW D 92, 033013 (2015)

TABLE V. The different efficiency functions used in the toy
studies of Sec. IX B.

Set Efficiency €(6)
I (1 +sin26)/2
Il (14 cos’0)/2
I (14 cos®6)/2; 0 for [0 —5] < 0.1

with @ € [0,7] and {a,p} being the target parameters
to be determined. The total number of events, N, is a
nuisance parameter for the moment. The orthonormal
basis functions are

1
fi= ﬁ (62a)
cos @
_ sind-2/x
f3_—”—_—'ﬂ/2_4/ﬂ’ (62c)
and the corresponding moments
N
bl = \/—% (638.)
_ Nay/z/2
b= (630)
b Vr/2—4/x. (63c)

3T a12p

-4 -2 0 2 4 -4 -2 0 2 4
pull in or, UML pullin B, UML

FIG. 5 (color online). Pull distributions from a thousand toy
samples of fits to Eq. (61) with the efficiency function as set III in
Table V. The upper and lower plots use the MOM and UML
techniques, respectively. No background is included.
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Without any loss of generality, we model the detector
efficiency as the three sets of functions given in Table V.
Specifically, we note that set III incorporates a “hole” in
the detector around 6 = z/2, where the efficiency drops
to zero.

Figure 5 shows the pull distributions from fits to a
thousand toy samples generated according to Eq. (61)
and the efficiency function as set III in Table V.

C. Incorporating background

Next, to incorporate background, we assume that
there is a discriminating variable m, uncorrelated with
the angular variables Q. Let there be NY@ events
(signal and background combined) in the “signal
region” in the variable m and N® events in a suitably
defined “sideband region,” containing pure background
events. Also, let i, be the estimated background under
the signal peak in the signal region, obtained from a
signal-background separation fit in the variable m.

Independent toy sample sets with different purity
levels were generated. Figure 6 shows the case for a
toy sample with the discriminating variable m =m,,
representative of the B mass. The signal line shape is a
Gaussian, while the background is constant. The signal
region is chosen as £2¢ around the mean, as obtained
from the signal-background fit. The low and high
sideband regions are taken as mp <5200 and
mp > 5360 MeV, respectively. The background is gen-
erated flat in mp and € but folded with the relevant
efficiency functions in Table V.

The “pseudolikelihood” £’ is then defined by assigning
negative weights to the events in the sideband region,

Arbitrary Units

5150 5200 5250 5300 5350 5400
mg (MeV)

FIG. 6 (color online). A toy sample incorporating both effi-
ciency and background effects used in the validation study. A fit
to the profile is shown as well.
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—21In(£/(@)) = 2(N%= — 72,) In {Zbi(&)Ei]

Ndata

-2 k; In [Zbi(a) fi (Qk)]
+ 2x g In [Zb,@ f,»(Qk)} . (64)

where x = i,/ Ny, is a scale factor relating the background
level under the signal to that in the sideband.

Following the derivation in Refs. [11,24], the covariance
matrix from minimizing the pseudolikelihood function in
Eq. (64) has to be modified to yield the true covariance
matrix, C®, incorporating the additional uncertainties due to
the background subtraction part as

C® = C[1 + {np(1 +x)G + Nio?H}C],  (65)

where
1 & [91ng (Q. @) Olng (. @)
= 66
g/w Nb =l |: aall aaﬂ :| ( )
"o Li’;@lnd(gkﬁ) Li@lnd(ﬂ,,&)
e Nb —1 8@1 Nb =1 8(1,/, ’
(67)

and C is the covariance matrix returned by the HESSE
routine of MINUIT [25]. Summing over repeated indices,
the partial derivatives are explicitly

O N S S R N
pull in oc, MOM pullin , MOM

-4 -2 0 2 4 -4 -2 0 2 4
pullin or, UML pullin B, UML

FIG. 7 (color online). Pull distributions from a thousand toy
samples of fits to Eq. (61) with the efficiency function as set Il in
Table V. The upper and lower plots use the MOM and UML
techniques, respectively. The samples incorporate a signal to
background ratio corresponding to that in Fig. 6.
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and o, is the uncertainty on the background scale factor x.

In the moments expansion method, the background-
subtracted measured moments and the covariance matrix
are estimated as

Ndala Nb
B° = i) —x > fi() (69)
k=1 k=1
Ndam Nh

Ch =Y [ Qi) + 22> fi(Q)f (). (70)
k=1 P

The pull distributions from the MOM and ULM fits and
the corresponding covariance matrices C® and CY, respec-
tively, are shown in Fig. 7.

D. Discussion

We point here to some of the salient features of the
MOM. The set of moments in Eq. (46) constitutes a concise
representation of all the angular information content in the
entire data set. The relations between the different moments
and the amplitudes are ab initio not built in. These relations
can be used as checks for understanding the detector
acceptance. They can also be incorporated during the
model-dependent y?> minimization fit as described by
Eq. (57). If the model dependence is reliably known, the
MOM and a direct UML fit give the same results, as we
explicitly demonstrated in Sec. IX B.

However, if the underlying physics model is unknown,
the MOM can provide simple and model-independent
confirmations of certain interesting physics features. For
example, as pointed out in the Introduction, a complex RH
admixture €p in the weak hadronic current leads to angular
terms proportional to sin y in SL decays, that are absent in
the SM. The presence of these terms in the data can be
examined using any of the moments in Table IV corre-
sponding to Im(Y}"), where m # 0. If the statistical
significance of these moments is found to be high enough,
this could constitute tension with the SM.

Similarly, the observables (|Ho|* + [S|?), |Hy 1,
|D{04”, L}|2 can be individually expressed in terms of the
moments in Table IV. Therefore, if one is interested in the
presence of a D-wave component under the K*(892) for
B — K*u~u*, this can be directly probed via the
moments. In the absence of a D-wave component, the
observables |H,|*> and |S|?> can also be extracted directly
from the moments, allowing an estimate of the S-wave
fraction. For the observable Pg [26] that is predicted to be
theoretically clean at low ¢ the LHCb Collaboration has
recently observed [27] a 3.7¢ deviation from the SM. In the
absence of non-P-wave components, this can be written in
terms of the moments as

2
’

PHYSICAL REVIEW D 92, 033013 (2015)

5
\/(Fl +V/503)(I) - V/5T5/2)

The important point to note here is that no complicated
multidimensional angular fit is required for any of these
checks.

We would also like to comment on the use of the
normalization integrals in Eq. (52) as opposed to analytic
modeling of the efficiency function and reweighting of
events by the inverse of the efficiency. The latter involves a
complicated fit which can be unstable without due to
localized regions of very low efficiency in the acceptance
function. The normalization integrals, on the other hand,
are found to be more robust under these situations.

X. SUMMARY

In summary, we provide expressions for the full angular
decay rate in B — X¢,¢, decays where the £, lepton can
be either a charged {e, u} or a neutrino. We considered the
final-state X to include complex S-, P-, and D-wave
amplitudes. The rate expression is expanded in a basis
of orthonormal moments functions, and a procedure to
extract the corresponding moments employing a counting
measurement is described and validated. We expect the
present work to be directly applicable to ongoing analyses
by BABAR and LHCb.
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APPENDIX: ANGLE DEFINITIONS

In this Appendix we provide the explicit definition of the
angles in terms of the 3-vectors. The definitions are
equivalent to the GS definitions as explained in Sec. II B.

We follow the convention adopted in the Appendix of
Ref. [13] that the superscript on any 3-vector denotes
the reference frame. For any ordered four-body final state
B — {Py,P,,¢,,¢,} where P, are pseudoscalars and
Z112) are leptons, we define

I_sflfz = D¢, + Do, (Ala)
Or\e, = Do, — Do, (Alb)
i)Ple = D¢, + Pp, (Alc)
Orp, = oy — o (Ald)

The helicity angles are defined as
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where ¢ and PP in the superscripts refer to the leptonic
and hadronic rest frames.
The normals to the two planes are defined as

- - p -
Ny, = —=Ppe, X Qg e, (A3a)
- - -

Np,p, = Pp p, X Op p, (A3b)

and the dihedral angle between the planes is defined by
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L (Ada)

Neye, X N P’
sin)(—< 212 P1P2> BREAL2) (A4b)

= S S
N2 e INp p |/ | P ey

For the B decay, our ordering is B — {K~nt¢=¢"},
leading to a single sign flip in cos@, compared to the
EWP theory convention, as was explained in Eq. (9).

For the CP conjugate decay B — {P\P,/\¢,}, we
perform the CP conjugation explicitly while maintaining
the order. The same procedure using Eqs. (Al1)—(A4) is
applied to the CP conjugated system to yield the angles.
This leads to a single sign flip in the angle y, as mentioned
earlier in Sec. VL
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