
Lepton mixing in gauge models

D. Falcone* and L. Oliver†

Laboratoire de Physique Théorique‡, Université de Paris XI, Bât. 210, 91405 Orsay Cedex, France
(Received 27 March 2015; published 10 August 2015)

We reexamine lepton mixing in gauge models by considering two theories within the type I seesaw
mechanism, the extended Standard Model, i.e. SUð2ÞL × Uð1ÞY with singlet right-handed heavy neutrinos,
and the left-right model, SUð2ÞL × SUð2ÞR ×Uð1ÞB−L. The former is often used as a simple heuristic
approach to masses and mixing of light neutrinos and to leptogenesis, while we consider the latter as an
introduction to other left-right symmetric gauge theories like SOð10Þ. We compare lepton mixing in both
theories for general parameter space and discuss also some particular cases. In the electroweak broken
phase, we study in parallel both models in the current basis (diagonal gauge interactions) and in the mass
basis (diagonal mass matrices and mixing in the interaction), and perform the counting of CP-conserving
and CP-violating parameters in both bases. We extend the analysis to the Pati-Salam model SUð4ÞC ×
SUð2ÞL × SUð2ÞR and to SOð10Þ. Although specifying the Higgs sector increases the predictive power, in
the most general case one has the same parameter structure in the lepton sector for all the left-right
symmetric gauge models. We make explicit the differences between the extended Standard Model and the
left-right models, in particular CP-violating and lepton-number-violating new terms involving the WR

gauge bosons. As expected, at low energy, the differences in the light neutrino spectrum and mixing appear
only beyond leading order in the ratio of the Dirac mass to the right-handed Majorana mass.

DOI: 10.1103/PhysRevD.92.033004 PACS numbers: 14.60.Pq, 12.60.-i

I. INTRODUCTION

In the last years, an impressive experimental progress
has been achieved on the neutrino spectrum and mixing.
Using this information on the light neutrinos mass matrix
mL, one is tempted to use the inverse of the seesaw formula
MR ¼ −mt

Dm
−1
L mD, where mD is the Dirac neutrino mass

matrix, as a window on high-energy neutrino physics, i.e.
on the heavy right-handed neutrino mass matrix MR [1–5].
To use the inverse seesaw formula one needs information

on the crucial Dirac mass matrix mD. It has been often
suggested that theoretical information on this matrix can be
guessed within the SOð10Þ grand unification gauge theory
[6]. In order to study the whole structure of SOð10Þ as far
as lepton mixing is concerned, we have realized that it is
convenient to begin by considering simpler theories that
also exhibit left-right (LR) symmetry (for a review,
see Ref. [7]).
The simplest gauge theory that has been builded to study

lepton mixing is the one that we call the extended Standard
Model (ESM), i.e. the Standard Model (SM) SUð3Þ ×
SUð2ÞL ×Uð1ÞY plus right-handed neutrinos NR, one per
generation, singlet under the SM gauge group. Although
this scheme allows us to introduce heavy right-handed
neutrinos, it does not exhibit LR symmetry like SOð10Þ.
One main aim of the present paper is to compare lepton

mixing in the ESM, on the one hand, with lepton mixing in

left-right models like SOð10Þ. Lepton mixing in the ESM
has been thoroughly studied in the literature [8–11],
especially in Ref. [10] on which the present paper heavily
relies, together with the comprehensive review paper [12].
To compare the ESM with left-right gauge theories we

have found convenient to consider next the left-right model
(LRM) SUð2ÞL × SUð2ÞR × UB−Lð1Þ [13,14], that exhibits
a number of interesting new features concerning lepton
mixing [15,16]. This gauge group has already an appreci-
able complexity that will be useful as an introduction for
the study of larger LR gauge groups, like the Pati-Salam
model SUð4ÞC × SUð2ÞL × SUð2ÞR [17], and the grand
unified SOð10Þ gauge group [6].
We will first consider completely general Dirac or

Majorana mass matrices consistent with Lorentz invari-
ance, that coincide with mass matrices arising from the
most general Higgs structure. We then look for the
parameters that can be rotated away, although in a different
way in the ESM and the LRM. We will consider the
“current basis,” in which the interaction Lagrangian Lw is
diagonal, and the “mass basis,” in which the mass
Lagrangian Lm is diagonal, and we check that, for a given
model, the final number of independent parameters, angles
and phases, is the same in both bases.
Some main results exposed below are already known.

The purpose of this paper is in part didactic, and in part the
understanding a number of particular points. We think it is
worth to explain in detail the differences between the
extended Standard model and the left-right gauge models as
far as lepton mixing is concerned, specially the comparison
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of the interaction Lagrangians of both schemes in the
mass basis.
Here below we expose briefly the fermion and gauge

boson content of the ESM and LRM. In Secs. II and III we
perform the counting of the lepton sector parameters of the
ESM and LRM in the current and in the mass bases. For the
mass basis, special care is given to the approximation
mD ≪ MR, as compared with exact results, and in Sec. IV
we recall two different representations proposed in the
literature for the Dirac mass matrix mD. In Sec. V we
briefly examine leptogenesis in the ESM and in the LRM.
In Sec. VI we summarize the differences between both
models for lepton mixing. Section VII is devoted to the
extension of our results to other left-right theories, Pati-
Salam and SOð10Þ, and in Sec. VIII we conclude. In the
Appendix we present some details of the calculations.

A. Gauge boson and fermion content of the
gauge models

We now expose the fermion and gauge boson content
of the two gauge theories that we consider in detail, the
extended Standard Model and the left-right model
SUð2ÞL × SUð2ÞR ×Uð1ÞB−L.

1. Extended Standard Model

The extended StandardModel (ESM) is just the Standard
Model (SM) SUð3Þ × SUð2ÞL × Uð1ÞY with the addition
of one Majorana fermion NR per generation, singlet under
the gauge group.
The fermion content of the model is for quarks

�
uL
dL

�
∼
�
3; 2;

1

3

�
; uR ∼

�
3; 1;

4

3

�
;

dR ∼
�
3; 1;−

2

3

�
ð1Þ

and for leptons

�
νL

eL

�
∼ ð1;2;−1Þ; eR∼ ð1;1;−2Þ; NR∼ ð1;1;0Þ ð2Þ

with

Q ¼ T3L þ Y
2
: ð3Þ

The gauge bosons are the gluons (8; 1; 0), theWL bosons
(1; 3; 0) and the B boson (1; 1; 0).
The Higgs sector needed to achieve the Spontaneous

Symmetry Breaking (SSB) and give masses to the fermions
is the usual doublet ϕ ∼ ð1; 2;−1Þ. The novelty in the ESM
with respect to the SM is just the presence of the Majorana
NR singlet. The right-handed fermion NR can have a large
mass, of a different scale than the SM, that can be

originated from a Higgs boson singlet relative to the
Standard Model Φ ∼ ð1; 1; 0Þ, or simply be a bare mass
term,

ð1; 1; 0Þf × ð1; 1; 0Þf ¼ ð1; 1; 0Þ; ð4Þ

that, together with the Dirac mass terms,

ð1; 2;−1Þf × ð1; 2; 1Þf̄ × ð1; 2;−1ÞH ¼ ð1; 1; 0Þ þ � � �
ð5Þ

gives the general neutrino mass matrix,

M ¼
�

0 mD

mt
D MR

�
; ð6Þ

where mD and MR are, respectively, general complex and
complex symmetric matrices.

2. Left-right model

In the LRM model SUð3Þ × SUð2ÞL × SUð2ÞR×
Uð1ÞB−L, the classification of L and R fermions is for
quarks

�
uL
dL

�
∼
�
3; 2; 1;

1

3

�
;

�
uR
dR

�
∼
�
3; 1; 2;

1

3

�
ð7Þ

and for leptons

�
νL

eL

�
∼ ð1; 2; 1;−1Þ;

�
NR

eR

�
∼ ð1; 1; 2;−1Þ ð8Þ

with

Q ¼ T3L þ T3R þ B − L
2

: ð9Þ

The gauge bosons are the gluons (8; 1; 1; 0), the WL
bosons (1; 3; 1; 0), theWR bosons (1; 1; 3; 0) and the B − L
singlet (1; 1; 1; 0).
The Higgs fields needed to achieve SSB and the seesaw

mechanism are the bidoublet ϕ ∼ ð1; 2; 2; 0Þ and the
triplet ΔR ∼ ð1; 1; 3; 2Þ.
The bidoublet, written as

ϕ ¼
�
ϕ0
1 ϕþ

1

ϕ−
2 ϕ0

2

�
; ð10Þ

breaks the SM group and gives masses to quarks and
leptons through the Yukawa terms
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�
3; 2; 1;

1

3

�
f
×

�
3̄; 1; 2;−

1

3

�
f̄
× ð1; 2; 2; 0ÞH;H̄

¼ ð1; 1; 1; 0Þ þ � � �
ð1; 2; 1;−1Þf × ð1; 1; 2; 1Þf̄ × ð1; 2; 2; 0ÞH;H̄

¼ ð1; 1; 1; 0Þ þ � � � ; ð11Þ

with H ¼ ϕ and H̄ ¼ σ2H�σ2.
From the vacuum expectation values,

hϕ0
1i ¼ k1; hϕ0

2i ¼ k2; ð12Þ
which can be complex, the Yukawa couplings give the
Dirac masses, as in the SM, but with a different pattern.
Quark mass matrices mu, md and the Dirac neutrino mass
matrix mD read

mu ¼ pk1 þ qk�2; md ¼ pk2 þ qk�1
mD ¼ rk1 þ sk�2; me ¼ rk2 þ sk�1; ð13Þ

where p, q, r and s are complex Yukawa coupling matrices.
The triplet H ¼ ΔR breaks the LR model to the SM and,

at the same time, gives a Majorana mass to the right-handed
neutrino NR through the Yukawa term

ð1; 1; 2;−1Þf × ð1; 1; 2;−1Þf × ð1; 1; 3; 2ÞH
¼ ð1; 1; 1; 0Þ þ � � � ð14Þ

hΔ0
Ri ¼ vR; MR ¼ tvR; Mt

R ¼ MR; ð15Þ
where t is a complex symmetric Yukawa coupling matrix.
The full neutrino mass matrix has the form

M ¼
�

0 rk1 þ sk�2
rtk1 þ stk�2 tvR

�
; ð16Þ

i.e., it has the general form (6).

We consider this minimal Higgs content that is necessary
in the LRM, and we do not introduce a possible left-handed
triplet ΔL ¼ ð1; 3; 1; 2ÞH that could, in principle, contribute
to the light neutrino masses.

II. CURRENT BASIS

In what follows, we consider the gauge models in the
electroweak broken phase. We only make explicit the
charged current terms in the interaction Lagragians of both
gauge models.

A. Extended Standard Model

The mass and interaction Lagrangians write, in an
obvious compact notation,

Lm ¼ ν̄LmDNR þ 1

2
ðNRÞcMRNR þ ēLmeeR þ H:c:

Lw ¼ ν̄LγμeLW
μ
L þ H:c: ð17Þ

The matrices mD and me are general complex, each has
nine complex parameters, while MR is general complex
symmetric with six complex parameters.
The lepton number assignment LðNRÞ ¼ −LððNRÞcÞ ¼

1 implies that the Majorana mass term is jΔLj ¼ 2 while,
like for the other fermions, while the Dirac mass term
is jΔLj ¼ 0.
From now on we adopt the following simplifying

notation for the real parameters of an arbitrary square
complex matrix M, that has nðmÞ parameters, where n is
the total number of real parameters, among which there are
mðm ≤ nÞ are phases:

M has nðmÞ real parameters ↔ n real parameters; m ≤ n phases ð18Þ

In this example, mD and me have 18(9) real parameters
and MR has 12(6) real parameters. Therefore, a priori one
has in this model 30(15) real parameters.
Let us see now that we can reduce the number of

independent parameters without modifying the interaction
Lagrangian Lw. Diagonalizing me and MR by

me ¼ V†
eLm

diag
e VeR; MR ¼ Ut

RM
diag
R UR ð19Þ

and redefining the fields

URNR→NR; VeReR→eR;

�
VeLνL

VeLeL

�
→

�
νL

eL

�
ð20Þ

one gets

Lm ¼ ν̄LVeLmDU
†
RNR þ 1

2
ðNRÞcMdiag

R NR

þ ēLm
diag
e eR þ H:c:

Lw ¼ ν̄LγμeLW
μ
L þ H:c: ð21Þ

The simultaneous transformation of νL and eL in (20),(21)
ensures the invariance of Lw, but then VeL appears in the
Dirac mass term. SincemD is a general complex symmetric
matrix, so is VeLmDU

†
R. Changing the notation

VeLmDU
†
R → mD ð22Þ

one obtains

Lm ¼ ν̄LmDNR þ 1

2
ðNRÞcMdiag

R NR þ ēLm
diag
e eR þ H:c:

Lw ¼ ν̄LγμeLW
μ
L þ H:c: ð23Þ
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We can redefine the doublet
� νL
eL

�
and the singlet eR by

the same diagonal phase matrix Pe:

�
νL

eL

�
→

�
PeνL

PeeL

�
; eR → PeeR ð24Þ

and one gets

Lm ¼ ν̄LP�
emDNR þ 1

2
ðNRÞcMdiag

R NR þ ēLm
diag
e eR þ H:c:

Lw ¼ ν̄LγμeLW
μ
L þ H:c: ð25Þ

Finally we can choose the phase matrix Pe to cancel three
phases of mD in P�

emD,

Lm ¼ ν̄LmDNR þ 1

2
ðNRÞcMdiag

R NR þ ēLm
diag
e eR þ H:c:

Lw ¼ ν̄LγμeLW
μ
L þ H:c:; ð26Þ

where now the Dirac mass matrix mD is not a general
complex matrix, but has nine real parametersþ six phases,
i.e. 15(6) real parameters.
To summarize parameter counting, one is left in the

current basis with 15ð6ÞðfrommDÞ þ 3ð0Þ ðfrommdiag
e Þ þ

3ð0Þ ðfromMdiag
R Þ ¼ 21ð6Þ real parameters, i.e. among

them 6 phases. This counting agrees with the one per-
formed in Ref. [18].

B. Left-right model

In the LRM, the Lagrangian in the lepton sector reads

Lm ¼ ν̄LmDNR þ 1

2
ðNRÞcMRNR þ ēLmeeR þ H:c:

Lw ¼ ν̄LγμeLW
μ
L þ N̄RγμeRW

μ
R þ H:c: ð27Þ

Notice that, to simplify the notation, possible WL −WR
mixing is for the moment neglected in the interaction term
but will be considered later. The matrices mD and me are
a priori general complex with 18(9) parameters each, and
MR is a general complex symmetric matrix with 12(6)
parameters.
An important remark is in order here. Parameter counting

of the left-right model in the current basis means that we are
assuming the whole interaction Lagrangian Lw in (27) to be
diagonal, both in the left and the right sectors. For low-
energy neutrino physics, it can seem academic to assume
that the right-handed piece N̄RγμeRW

μ
R þ H:c: is kept

diagonal, because it is an interaction term involving
high-scale degrees of freedom. However, this natural
assumption in any LR gauge theory is not only a formal
point since, to keep this piece diagonal amounts to
assuming that one assigns a lepton number to the NR
neutrinos, in just the same way as is done for the νL

neutrinos in (27), and in consistency with the assignment
LðNRÞ ¼ −LððNRÞcÞ ¼ 1 in the ESM. As we will see
below, the diagonalization of the light neutrino mass matrix
and of the right neutrino mass matrix will result in mixing
matrices of the PMNS type for both the light and the heavy
neutrinos.
Diagonalizing me by (19) and redefining the fields

�
VeLνL

VeLeL

�
→

�
νL

eL

�
;

�
VeRNR

VeReR

�
→

�
NR

eR

�
; ð28Þ

one gets

Lm ¼ ν̄LVeLmDV
†
eRNR þ 1

2
ðNRÞcV�

eRMRV
†
eRNR

þ ēLm
diag
e eR þ H:c:

Lw ¼ ν̄LγμeLW
μ
L þ N̄RγμeRW

μ
R þ H:c: ð29Þ

Since mD is general complex, so is VeLmDV
†
eR, and MR

being complex symmetric, so is V�
eRMRV

†
eR.

Changing the notation

VeLmDV
†
eR → mD; V�

eRMRV
†
eR → MR; ð30Þ

one obtains

Lm ¼ ν̄LmDNR þ 1

2
ðNRÞcMRNR þ ēLm

diag
e eR þ H:c:

Lw ¼ ν̄LγμeLW
μ
L þ N̄RγμeRW

μ
R þ H:c: ð31Þ

We can redefine the doublets by the same diagonal phase
matrix Pe,

�
νL

eL

�
→

�
PeνL

PeeL

�
;

�
NR

eR

�
→

�
PeNR

PeeR

�
; ð32Þ

and one gets

Lm ¼ ν̄LP�
emDPeNR þ 1

2
ðNRÞcPeMRPeNR

þ ēLm
diag
e eR þ H:c:

Lw ¼ ν̄LγμeLW
μ
L þ N̄RγμeRW

μ
R þ H:c: ð33Þ

We can choose the phase matrix Pe to cancel three phases
ofmD or three phases ofMR, but not both at the same time.
We choose to absorb three phases in MR. Changing the
notation P�

emDPe → mD, one gets finally

Lm ¼ ν̄LmDNR þ 1

2
ðNRÞcMRNR þ ēLm

diag
e eR þ H:c:

Lw ¼ ν̄LγμeLW
μ
L þ N̄RγμeRW

μ
R þ H:c:; ð34Þ

where mD is an arbitrary complex matrix with 18(9)
parameters and MR is complex symmetric with 9(3)
parameters.
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To summarize, one gets finally in the LRM: 18(9)
parameters from mD þ 9ð3Þ parameters from MR þ 3
eigenvalues in mdiag

e ¼ 30ð12Þ parameters.
Much more constrained models have been considered in

the literature. For example, the Minimal LRM within
supersymmetry with a Higgs content that implies me ¼
mD;mu ¼ md (up-down unification) [19], that has a
reduced number of parameters.

III. MASS BASIS

A. Extended Standard Model

For the diagonalization of the whole 6 × 6 neutrino mass
matrix, we proceed step by step, and we begin with (26),
where mdiag

e and Mdiag
R are diagonal and the Dirac mass

matrix mD has 15(6) parameters. So we can rewrite

Lm ¼ 1

2
ðνL; ðNRÞcÞM

�
νcL
NR

�
þ ēLm

diag
e eR þ H:c:

Lw ¼ ν̄LγμeLW
μ
L þ H:c:; ð35Þ

where M has the form

M ¼
�

0 mD

mt
D Mdiag

R

�
: ð36Þ

This matrix has 18(6) parameters: 15(6) from mD and 3(0)
from Mdiag

R .
Let us now diagonalize M with the unitary matrix V

[9–11]

M ¼ VMdiagVt; ð37Þ

where

Mdiag ¼
�
mdiag

L 0

0 Mdiag
R

�
ð38Þ

V ¼
�
K R

S T

�
: ð39Þ

Notice that since Mdiag has 6 eigenvalues, and M has 18
(6) parameters, the 6 × 6 unitary matrix V will have
18ð6Þ − 6ð0Þ ¼ 12ð6Þ parameters. Rewriting (35) under
the form

Lm ¼ 1

2
ðνL; ðNRÞcÞVMdiagVt

�
νcL
NR

�
þ ēLm

diag
e eR þ H:c:

Lw ¼ ðνL; ðNRÞcÞγμ
�
1 0

0 0

��
eL
eL

�
Wμ

L þ H:c: ð40Þ

and redefining

Vt

�
νcL
NR

�
→

�
νcL
NR

�
;

ðν̄; ðNRÞcÞV → ðν̄; ðNRÞcÞ; ð41Þ

one gets

Lm ¼ 1

2
ðνL; ðNRÞcÞMdiag

�
νcL
NR

�
þ ēLm

diag
e eR þ H:c:

Lw ¼ ðνL; ðNRÞcÞγμV†
�
1 0

0 0

��
eL
eL

�
Wμ

L þ H:c: ð42Þ

or

Lm¼ 1

2
νLm

diag
L ðνLÞcþ

1

2
ðNRÞcMdiag

R NRþ ēLm
diag
e eRþH:c:

Lw¼ðνLK†eLþðNRÞcR†eLÞγμWμ
LþH:c: ð43Þ

The first term in Lw describes the Standard Model ΔL ¼ 0
decay,

WL → eLν̄L; ð44Þ

while the second term corresponds to the well-known
ΔL ¼ 2 process,

ðNRÞc → eLWL; ð45Þ

(LðNRÞ ¼ −LððNRÞcÞ ¼ LðeLÞ). The notation ðNRÞc for
the heavy neutrino makes explicit also the chirality con-
servation of the V − A interaction.
Notice that only the 3 × 3 complex matrices K and R

from the 6 × 6 unitary matrix (39) are involved in
the formula (43). Let us now count the parameters of these
matrices. From the zero in the matrix M (36) and the
definitions (37)–(39) one finds (see Eq. (A8) of the
Appendix for mL ¼ 0),

Kmdiag
L Kt þ RMdiag

R Rt ¼ 0: ð46Þ

Using the unitarity of the matrix V (39) one has

KK† þ RR† ¼ 1: ð47Þ

Equations (46) and (47) are identities between 3 × 3
matrices involving only the mixing matrices K and R and
not the whole matrix (39). Due to these relations, the
matrices K and R are correlated.
The conditions (46) and (47) reduce the number of

independent parameters. Equation (46) is self-transposed,
and gives 12(6) constraints, while (47) is Hermitian, giving
9(3) constraints. This reduces the number of parameters of
the two complex matrices K and R from 36(18) down to
15(9).
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Finally, redefining the charged lepton fields by a diago-
nal 3 × 3 phase matrix Qe

eL → Q†
eeL; eR → Q†

eeR ð48Þ
one gets, from (43),

Lm¼ 1

2
νLm

diag
L ðνLÞcþ

1

2
ðNRÞcMdiag

R NRþ ēLm
diag
e eRþH:c:

Lw ¼ðνLðQeKÞ†þðNRÞcðQeRÞ†ÞγμeLWμ
LþH:c: ð49Þ

On the other hand, multiplying (46) on the left by Qe and
on the right by Qt

e, and (47) on the left by Qe and on the
right by Q†

e, these equations become

ðQeKÞmdiag
L ðQeKÞt þ ðQeRÞMdiag

R ðQeRÞt ¼ 0 ð50Þ

ðQeKÞðQeKÞ† þ ðQeRÞðQeRÞ† ¼ 1; ð51Þ

and we can absorb three phases of one of the matrices K or
R, but not of both matrices at the same time.
In summary, the matrices K and R have together 12(6)

parameters, and adding the 9(0) parameters from mdiag
e ,

mdiag
L and Mdiag

R one obtains a total of 21(6) parameters, the
same number as in the current basis. In the ESM the
matrices K and R are decoupled from S and T of (39), and
obey relations (46) and (47).
We can now go somewhat further by considering first the

whole matrix (39), and assuming mD ≪ MR.

1. The matrices K, R, S, T in the
extended Standard Model

Starting from the Lagrangian in the current basis (26),
mD has now 15(6) parameters. Particularizing formulas
(A8)–(A10) of the Appendix to the present case, we have

Kmdiag
L Kt þ RMdiag

R Rt ¼ 0 ð52Þ

Smdiag
L St þ TMdiag

R Tt ¼ Mdiag
R ð53Þ

Kmdiag
L St þ RMdiag

R Tt ¼ mD: ð54Þ

Considering for the moment the unitarity of the matrix
(39), the number of independent parameters in the lhs
will be 36(21) from ðK;R; S; TÞ þ 3ð0Þ from mdiag

L þ 3ð0Þ
from Mdiag

R ¼ 42ð21Þ.
The complex symmetric matrix equation (52) gives 12(6)

constraints. On the other hand,Mdiag
R appears already in the

rhs of (53), and this equation implies 12ð6Þ − 3ð0Þ ¼ 9ð6Þ
constraints. Since mD has now 15(6) free parameters,
Eq. (54) gives 3(3) constraints, giving a total of 12ð6Þ þ
9ð6Þ þ 3ð3Þ ¼ 24ð15Þ constraints. Therefore the number
of independent parameters is 42ð21Þ − 24ð15Þ ¼ 18ð6Þ
parameters. Adding the 3(0) eigenvalues of mdiag

e one gets

18ð6Þ þ 3ð0Þ ¼ 21ð6Þ parameters, the same result as in the
current basis.
Moreover, subtracting from this total of 21(6) parameters

the 9(0) mass eigenvalues mdiag
e , mdiag

L and Mdiag
R , the set of

matrices ðK;R; S; TÞ has 12(6) parameters, the same
number that we have found for K and R, so that S and
T are not independent.

Exact relations between the matrices K, R, S, T.—On the
other hand, from (36)–(39) one has

�
0 mD

mt
D Mdiag

R

��
K� R�

S� T�

�
¼
�
K R

S T

��
mdiag

L 0

0 Mdiag
R

�
;

ð55Þ

hence, �
mDS� mDT�

mt
DK

� þMdiag
R S� mt

DR
� þMdiag

R T�

�

¼
�
Kmdiag

L RMdiag
R

Smdiag
L TMdiag

R

�
; ð56Þ

and, therefore, one obtains the following exact expressions
of the matrices R, S in terms of K, T, mD and the mass
eigenvalues:

R ¼ mDT�ðMdiag
R Þ−1 ð57Þ

S ¼ ðm�
DÞ−1K�mdiag

L : ð58Þ

From inspection of the precedent equations, one sees that
(57) and (58) are relations between the mass basis quan-
tities (K;R; S; T;mdiag

L ;Mdiag
R ) and the current basis matri-

ces mD;M
diag
R , since MR is diagonalized and appears in

both bases. Eliminating mD, one finds an exact relation
between quantities in the mass basis

Mdiag
R T−1S ¼ ðR�Þ−1K�mdiag

L ; ð59Þ

The matrices ðK;R; S; TÞ for mD ≪ MR.—If mD ≪ MR,
one has the order of magnitude

R ∼ S ∼O

�
mD

MR

�
: ð60Þ

Neglecting in Eqs. (A2)–(A7) of the Appendix the terms

of Oðm2
D

M2
R
Þ, one gets the approximate unitarity conditions

KK† ≃ K†K ≃ 1 ð61Þ
TT† ≃ T†T ≃ 1: ð62Þ

Moreover, from (61) and (62), both Eqs. (A4) and (A7)
imply the same approximate relation between R and S:
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R≃ −KS†T: ð63Þ

In conclusion, in the present approximation one gets two
unitary matrices K and T (61) and (62) and the matrix R
given in terms of ðK; T; SÞ by (63).
On the other hand, neglecting terms of Oðm2

D
M2

R
Þ in

(52)–(54), one gets

Kmdiag
L Kt þ RMdiag

R Rt ¼ 0 ð64Þ

TMdiag
R Tt ≃Mdiag

R ð65Þ

RMdiag
R Tt ≃mD: ð66Þ

Equation (65) implies

T ≃ 1: ð67Þ

Notice that (66) is identical to the relation (57) obtained
above. On the other hand, combining (63) with the exact
relation (59) one consistently obtains (64).
One can see that (63) gives just the seesaw formula.

From (57), (58), and (67), Eq. (63) implies, after some
algebra,

Kmdiag
L Kt ≃ −mDðMdiag

R Þ−1mt
D; ð68Þ

and from the general complex symmetric matrix mL,

mL ¼ Kmdiag
L Kt; ð69Þ

one gets the seesaw formula in the ESM:

mL ≃ −mDðMdiag
R Þ−1mt

D: ð70Þ

We see that K is the mixing matrix for light neutrinos that
appears in (43) in the basis in which me is diagonal.
On the other hand, relation (57) or (66), together with

(67), implies

R≃mDðMdiag
R Þ−1; ð71Þ

and using the seesaw formula (70), relation (58) becomes

S ¼ −ðMdiag
R Þ−1m†

DK ð72Þ

consistent with (63).
The whole set K, R, S, T has 12(6) parameters, implying

from (67) that K, R and S have 12(6) independent
parameters. Since according to (72) the matrix S is not
independent, the matrices K;R that appear in the inter-
action Lagrangian (43), have together 12(6) parameters.
From (71) and the 15(6) number of parameters of mD, we
see that R will have 12(6) parameters. Since K is unitary in
the present approximation, we can choose 6(3) independent

parameters within R to provide the unitary matrix K with
6(3) parameters, the physically relevant PMNS structure.
Then R will have other extra 6(3) parameters. However,
other solutions are allowed, since K is unitary, not
necessarily of the PMNS type.

2. Summary of the parameter counting in the mass basis

In the mass basis, parameter counting in the physically
relevant case is 12(6) parameters from both the complex
matrices K;R (among these, 6(3) parameters from the
PMNS-like matrix K)þ3ð0Þ parameters fromMdiag

R þ 3ð0Þ
parameters from mdiag

L þ3ð0Þ parameters from mdiag
e ¼

21ð6Þ, the same counting as in the current basis.
The more constrained condition mD ≪ MR provides a

particular case: R has 12(6) parameters, among which one
has to choose the 6(3) parameters of the PMNS matrix K.

B. Left-right model

Let us start from the Lagrangian (34) of the LRM. At this
stage MR is complex symmetric with 9(3) parameters. We
rewrite (34) under the form

Lm ¼ 1

2
ðνL; ðNRÞcÞM

� ðνLÞc
NR

�
þ ēLm

diag
e eR þ H:c:

Lw ¼ ðνL; ðNRÞcÞγμ
�
1 0

0 0

��
eL
eL

�
Wμ

L

þ ðNR; ðνLÞcÞγμ
�
1 0

0 0

��
eR
eR

�
Wμ

R þ H:c:; ð73Þ

where

M ¼
�

0 mD

mt
D MR

�
: ð74Þ

Unlike the case of the ESM, the complex symmetric block
MR is not diagonalized, it has 9(3) parameters since three
phases have been rotated away.
Using the unitary matrix V (36)–(39),

ðνL; ðNRÞcÞ → ðνL; ðNRÞcÞV†

ðNR; ðνLÞcÞ → ðNR; ðνLÞcÞ
�
0 1

1 0

�
Vt

�
0 1

1 0

�
; ð75Þ

we obtain the following Lagrangian in the mass basis:

Lm ¼ 1

2
νLm

diag
L ðνLÞcþ

1

2
ðNRÞcMdiag

R NRþ ēLm
diag
e eRþH:c:

Lw ¼ðνLK†þðNRÞcR†ÞγμeLWμ
L

þðNRTtþðνLÞcStÞγμeRWμ
RþH:c:: ð76Þ

The 3 × 3matrices K and R enter in the left sector, while
T and S enter in the right sector, in a symmetric way.
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A formula of similar structure to Eq. (76) follows from the
results of Ref. [16], but uses a quite different notation.
It is important to point out that the terms dependent

on K and T are lepton number conserving, ΔL ¼ 0, while
those that depend on R and S are lepton number
violating, ΔL ¼ 2.

1. The matrices K, R, S, T in the left-right model

Particularizing (A8)–(A10) of the Appendix to the case
(74), we have

Kmdiag
L Kt þ RMdiag

R Rt ¼ 0 ð77Þ
Smdiag

L St þ TMdiag
R Tt ¼ MR ð78Þ

Kmdiag
L St þ RMdiag

R Tt ¼ mD: ð79Þ

Considering for the moment only the unitarity of the
full matrix V (39), that has 36(21) parameters, the number
of independent parameters in the lhs of the precedent
equations will be 36ð21Þ from ðK;R; S; TÞ þ 3ð0Þ from
mdiag

L þ 3ð0Þ from Mdiag
R ¼ 42ð21Þ parameters.

The complex symmetric matrix equation (77) gives
12(6) constraints. On the other hand, MR in the rhs of
(78) has 9(3) free parameters, and this equation implies
12ð6Þ − 9ð3Þ ¼ 3ð3Þ constraints. Finally, since mD is a
general complex matrix, with 18(9) free parameters,
Eq. (79) does not give any constraint. This gives a total
of 12ð6Þ þ 3ð3Þ ¼ 15ð9Þ constraints. Therefore one has
42ð21Þ − 15ð9Þ ¼ 27ð12Þ independent parameters. Adding
the 3(0) eigenvalues of mdiag

e , not counted up to now, one
gets 27ð12Þ þ 3ð0Þ ¼ 30ð12Þ parameters, the same result
as in the current basis.
Moreover, subtracting from this total number of 30(12)

parameters the 9(0) mass eigenvalues mdiag
e , mdiag

L and
Mdiag

R , we see that the set of matrices ðK;R; S; TÞ, that
appear in the interaction term (76), have a total of 21(12)
parameters.
In the SUð2ÞL × SUð2ÞR ×Uð1ÞModel one obtains also

the exact relations between the matrices K, R, S, T given
above by Eqs. (55)–(59).

The matrices ðK;R; S; TÞ for mD ≪ MR.—
The relations given above within the approximation

mD ≪ MR (61)–(63) for the ESM also hold in the
LR model.
Let us rewrite Eqs. (77)–(79) neglecting terms of Oðm2

D
M2

R
Þ:

Kmdiag
L Kt þ RMdiag

R Rt ¼ 0 ð80Þ
TMdiag

R Tt ≃MR ð81Þ

RMdiag
R Tt ≃mD ð82Þ

Equation (82) is the above obtained exact relation (57) if
one neglects in the latter higher-order terms. This means

that in (79) the first term of the lhs, that is of Oðm3
D=M

2
RÞ,

is compensated by higher-order terms in the second term
RMdiag

R Tt. On the other hand, combining (63) with the
exact relation (59), one consistently obtains the exact
relation (77).
According to (62) and (81), the matrix T is the unitary

mixing matrix of right-handed neutrinos, for which we can
take 6(3) parameters, i.e. a matrix of the PMNS type.
Equation (61) holds also in the LRM, and K is the unitary
mixing matrix of light left-handed neutrinos.
Since the whole set K, R, S and T has 21(12) parameters

and the matrices K, T have 6(3) parameters each, this
implies that R and S can have together 9(6) extra inde-
pendent parameters.
In the LRmodel, from relations (63) and (81) one obtains

Kmdiag
L Kt ≃ −mDT�ðMdiag

R Þ−1T†mt
D; ð83Þ

i.e. the seesaw formula

mL ≃ −mDM−1
R mt

D; ð84Þ

where MR is not diagonalized, to be compared with the
seesaw formula (70) in the case of the ESM.
Notice the important point that in Sec. I we have

disregarded the possibility in the LRM of a Higgs triplet
ΔL that, in principle, could also contribute to the mass of
the light neutrinos (see for example [3,20]), so that
formula (84) is only correct in the LRM if one neglects
this type II seesaw contribution.
Equation (82) implies, using the approximate unitarity

of T,

R≃mDT�ðMdiag
R Þ−1; ð85Þ

to be distinguished from (71), that holds in the ESM case.
We see that in the LR case the PMNS matrix T of the heavy
neutrinos T enters in the matrix R and, on the other hand,
the matrix S satisfies relation (72) that we found in
the ESM.

2. Summary of the parameter counting in the mass basis

We have seen that the set of matrices K, R, S and T have
together 21(12) parameters. Unlike the case of the ESM, in
the LR model we have enough parameter space to accom-
odate two different PMNS matrices for K and T, with 6(3)
parameters each. Then, R and S can have together extra 9
(6) parameters. However, this situation is not compulsory:
there can be overlap between the parameters of all the four
matrices K, R, S and T.
In conclusion, the parameter counting in the physically

interesting solution is as follows: 6(3) parameters from the
PMNS-like unitary matrix K þ 6ð3Þ parameters from the
PMNS-like matrix T þ 9ð6Þ extra parameters from
the complex matrices R, Sþ 3ð0Þ from Mdiag

R þ 3ð0Þ from
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mdiag
L þ 3ð0Þ from mdiag

e ¼ 30ð12Þ parameters, the same
number as in the current basis.

3. Possible observables in the left-right model

The gauge bosonsWL andWR are mixed in the left-right
model,

WL ¼ cos ζW1 − sin ζW2;

WR ¼ eiωðsin ζW1 þ cos ζW2Þ; ð86Þ

where W1 and W2 are mass eigenstates, and the mixing
angle ζ, in terms of the vacuum expectation values (12) and
(15), is of the order [15]

ζ ≃� gL
gR

2jk1k2j
jvRj2

: ð87Þ

From (76), it is interesting to write down the lightest
mass vector boson W1 couplings to leptons,

LW1
w ¼ ½cos ζðνLK† þ ðNRÞcR†ÞγμeL

þ eiω sin ζðNRTt þ ðνLÞcStÞγμeR�Wμ
1 þ H:c: ð88Þ

Besides the ∼ cos ζ term that describes the processes
ΔL ¼ 0 (44) and ΔL ¼ 2 (45) as in the ESM case, the
subleading term ∼ sin ζ describes the ΔL ¼ 0 process,

NR → eRW1; ð89Þ

and the lepton-number-violating decay ΔL ¼ 2 of the
gauge boson

W1 → ēRðνLÞc; ð90Þ

[LðēRÞ ¼ LððνLÞcÞ ¼ −LðeRÞ ¼ −LðνLÞ]. However, the
amplitude for this latter decay is very small, as we will
see below.
On the other hand, the heavier vector boson W2

couplings to leptons read

LW2
w ¼ ½− sin ζðνLK† þ ðNRÞcR†ÞγμeL

þ eiω cos ζðNRTt þ ðνLÞcStÞγμeR�Wμ
2 þ H:c: ð91Þ

Here, the subleading ∼ sin ζ term describes the ΔL ¼ 0
process,

W2 → ēLνL; ð92Þ

and the ΔL ¼ 2 transition, assuming the mass of W2 is
heavier that the one of NR,

W2 → ēLðNRÞc ð93Þ

On the other hand, the leading ∼ cos ζ term describes the
process ΔL ¼ 0,

W2 → ēRNR; ð94Þ

and the ΔL ¼ 2 involving light leptons,

W2 → ēRðνLÞc: ð95Þ

Of course, the phenomenological relevance of theΔL¼2
decay involving the WR gauge boson depends on its
mass scale.
Concerning the possibility of physics of the LRM at

relatively low energies, with observables at LHC scales,
one should remember that there are severe constraints on
such a low-energy LRM. This point has been carefully
studied in a detailed paper by Deshpande, Gunion, Kayser
and Olness [21], who have examined the relevant con-
straints: structure of the vacuum, limits on flavor-changing
neutral currents, etc. The conclusion is that, although such a
low-energy LRM is not excluded, it is not natural in a
straightforward way and can only be formulated through
some degree of fine-tuning.
If one assumes that the mass scale of the LRM is low, it

makes sense to look at the LHC for lepton-number-
violation processes through the search of pp → lljj
topologies, where the two leptons are of the same charge
(see for example the recent Refs. [22–24]).
Indeed, using (91) there is the possibility of the ΔL ¼ 2

process,

Wþ
2 ∼Wþ

R → eþRNR → eþRe
þ
LW

−
L → eþRe

þ
L jj; ð96Þ

where W−
L decays into two hadronic jets, the subscripts in

eR and eL mean the couplings to WR and WL, and we use
the notation ðeRÞc ¼ eþR ; ðeLÞc ¼ eþL . The decay chain (96)
is the very interesting Keung-Senjanović process proposed
long time ago [25] that tests, at the same time, the decay of
the gauge boson WR and the Majorana character of the
right-handed neutrino NR.
The PMNS mixing matrix T of the heavy right-handed

neutrinos NR controls the decay Wþ
R → eþRNR. On the

other hand, we see from formula (76) that the secondary
decay NR → eþLW

−
L is controlled by the matrix R≃

mDT�ðMdiag
R Þ−1 [cf. (85)]. Therefore, this latter decay is

controlled by the Dirac mass [25] in the basis in whichMR
is diagonalized, m0

D ¼ mDT� (see below the leptogene-
sis part).
The decay chain (96) through Wþ

R → eþRNR → eþRe
þ
LW

−
L

depends on both matrices T and R. Let us suppose that,
through the kinematics of the two jets in the decay
W−

L → jj, one can reconstruct the W−
L boson. Then, the

angular distribution of the three body decay Wþ
R →

eþRe
þ
LW

−
L will give information on the matrices T and R.
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The discussion of the observables in these decay chains
depends on the assumed NR spectrum. One usually
assumes that the gauge boson WR has a mass bigger or
of the order of the heaviest NR, that would correspond to a
Yukawa coupling of Oð1Þ, in analogy with the top quark.
However, to simplify what follows, let us assume that all
NRi

ði ¼ 1; 2; 3Þ are lighter than the WR.
From relation (85) one can see that, in the limit of

degenerate heavy neutrinos, summing over the three NRi
,

the amplitude for the process Wþ
R → eþRe

þ
LW

−
L depends on

the product m�
DTM

−1
R , where MR is the nondiagonalized

right-handed neutrino mass.
One relevant question is to ask whether one can measure

the PMNS mixing matrix T. Although quite difficult, as
said above, the WL could, in principle, be reconstructed
through its decays into two jets WL → jj, and the different
NRi

could be reconstructed as well through the decays
NRi

→ eþLW
−
L. Our starting point was the mass Lagrangian

where the charged lepton part is diagonalized (73), and the
final output was the interaction Lagrangian (76), where the
decays Wþ

R → eþRNRi
ði ¼ 1; 2; 3Þ depend on the PMNS

matrix T. Considering the possibility of the three leptons
eiði ¼ 1; 2; 3Þ of the Standard Model e; μ, τ, we see that
through the rates of these decays, the moduli of all the
matrix elements Tij are, in principle, accessible to
experiment.

IV. REPRESENTATIONS OF THE DIRAC
MASS MATRIX

The Dirac mass matrix mD is a crucial input in neutrino
physics, making the link between high and low energy. We
review now some useful representations of mD.

A. Triangular parametrization

An interesting representation of the Dirac mass matrix
mD has been proposed by Branco et al. [10],

mD ¼ UmΔ; ð97Þ

where U is a unitary matrix with 6(3) parameters of the
PMNS form, although not identical to it, and mΔ is a
triangular matrix, with three vanishing off-diagonal
elements, three real diagonal elements and three complex
off-diagonal elements.
The factorization formula (97) is usually called in

mathematics “QR decomposition” of a complex matrix
M. In MATHEMATICA notation [26] QRDecomposi-
tion[M] gives the decomposition of a numerical complex
matrix M in terms of a unitary matrix U and an upper
triangular matrixmΔ, while [9,10] refer to a lower triangular
matrix, although this is not an essential point. This decom-
position can be numerically very useful for texturemodels of
the matrix mD, since it isolates mΔ and, hence, the
parameters that are relevant for leptogenesis.

The counting of parameters for mD holds in (97): 15(6)
parameters of mD ¼ 6ð3Þ parameters of U þ 9ð3Þ param-
eters from the triangular matrix mΔ. Relation (97) also
holds if mD is general complex and U a general unitary
matrix: 18(9) parameters of mD ¼ 9ð6Þ parameters of U þ
9ð3Þ parameters from the triangular matrix mΔ. In the same
way that three phases of mD can be rotated away by the
transformation (24)–(26), and one can consistently rotate
away three phases of the general unitary matrix U [10].
Relation (97) is nontrivial. Indeed, because of the

unitarity of U, we see that m†
DmD is given by

m†
DmD ¼ m†

ΔmΔ; ð98Þ

and, therefore, the three CP phases of mΔ control the
amount of leptogenesis at high energies in the one-flavor
approximation.

1. Extended Standard Model

With (97), Eq. (71), obtained within the seesaw, reads

R≃ UmΔðMdiag
R Þ−1: ð99Þ

We have seen above that if we decide that K is of the
PMNS type with 6(3) parameters, then the parameters
of K have to be chosen among the ones of R. A solution
satisfying this criterium is a Dirac mass matrix given
by [9]

mD ¼ KmΔ; R≃ KmΔðMdiag
R Þ−1: ð100Þ

Besides its historical interest, this solution has the very nice
feature of factorization of the Dirac mass matrix into two
pieces, a low-energy PMNS mixing matrix K with 6(3)
parameters, and a high-energy mass matrix mΔ, that has
9(3) parameters and controls leptogenesis.
Another extreme case would be to assume that U ¼ 1

[27,28] that implies

mD ¼ mΔ; R≃mΔðMdiag
R Þ−1: ð101Þ

This ansatz relates directly the CP-violating phase in
leptogenesis and CP violation at low energy in neutrino
oscillations.
However, there are many other solutions, since in all

generality one can choose the parameters of K among the
ones of the product mD ¼ UmΔ.

2. Left-right model

Equation (85) reads

R ¼ UmΔT�ðMdiag
R Þ−1; ð102Þ
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where we see that the matrix T, unlike the case of the ESM
(99), enters in the definition of the matrix R, that controls
leptogenesis.

B. The orthogonal parametrization

Another useful parametrization ofmD has been proposed
by Casas and Ibarra [29].

1. Extended Standard Model

Starting from the seesaw formula (70) and diagonalizing
mL by the PMNS matrix K (69),

mdiag
L ¼ −K†mDðMdiag

R Þ−1mt
DK

� ð103Þ

As pointed out in [29], this relation implies,

−ðmdiag
L Þ−1=2K†mDðMdiag

R Þ−1=2ðMdiag
R Þ−1=2mt

DK
�ðmdiag

L Þ−1=2
¼1 ð104Þ

and, therefore, the matrix iðmdiag
L Þ−1=2K†mDðMdiag

R Þ−1=2 is
an orthogonal complex matrix O

O ¼ iðmdiag
L Þ−1=2K†mDðMdiag

R Þ−1=2; ð105Þ

i.e. OOt ¼ 1. One finds the general expression for mD in
terms of the matrix O

mD ¼ −iKðmdiag
L Þ1=2OðMdiag

R Þ1=2: ð106Þ

One can check from this expression that mD ¼ KmΔ (100)
is not the most general form for mD because O, being a
general complex orthogonal matrix, the combination
−iðmdiag

L Þ1=2OðMdiag
R Þ1=2 is not triangular in general.

The parametrization (106) is very useful to analyze
leptogenesis CP asymmetries when taking flavor into
account.

2. Left-right model

From Eq. (83) one gets, instead of (104),

− ðmdiag
L Þ−1=2K†mDT�ðMdiag

R Þ−1=2
ðMdiag

R Þ−1=2T†mt
DK

�ðmdiag
L Þ−1=2 ¼ 1; ð107Þ

which defines the orthogonal matrix

O0 ¼ iðmdiag
L Þ−1=2K†mDT�ðMdiag

R Þ−1=2; ð108Þ

and mD is now in the LRM,

mD ¼ −iKðmdiag
L Þ1=2O0ðMdiag

R Þ1=2Tt; ð109Þ

which includes the PMNS mixing matrix T of right-handed
neutrinos.

C. Relation between the triangular and
orthogonal forms

The orthogonal parametrization of the Dirac mass matrix
mD appears to be powerful because it explicitly includes
low-energy quantities, the light neutrino eigenvalues mdiag

L
and the PMNS mixing matrix K and, on the other hand,
high-energy quantities, the heavy right-handed neutrino
eigenvalues Mdiag

R and an unknown orthogonal complex
matrix O. One can write down the relation between both
representations.
In the ESM, from relation (106) one can write the QR

decomposition of the matrix

−iðmdiag
L Þ1=2OðMdiag

R Þ1=2 ¼ VmΔ; ð110Þ

where V is another unitary matrix, and mΔ a triangular
matrix. We see therefore that the matrixmD has the form of
the triangular parametrization (97) mD ¼ UmΔ, with the
PMNS matrix K being a factorizable part of the unitary
matrixU, namelyU ¼ KV. Therefore, although one can set
U ¼ 1, i.e. V ¼ K−1, and then the low-energy phases are
part of mΔ and hence of leptogenesis, the natural solution
seems to be that the PMNS matrix K is a unitary factor of
the matrix U, i.e. U ¼ KV, V being a unitary matrix.

V. LEPTOGENESIS

The gauge models that we consider conserve B − L. As
nicely pointed out by Strumia [30], the mere existence of
sphalerons, that violate Bþ L in the Standard Model at
high temperature, suggests that baryogenesis can proceed
via leptogenesis [31,32]. From (43) or (76), we see that
lepton number is violated by the decays of heavy right-
handed neutrinos, giving rise to a lepton asymmetry that is
partially converted into a baryon asymmetry by the
sphalerons. The out-of-equilibrium CP-violating decays
of heavy Majorana neutrinos, supplemented by sphaleron
interactions, satisfy the three Sakharov criteria [33] to
obtain baryogenesis.
In this section we consider leptogenesis in the electro-

weak broken phase, coming from the CP-violating ΔL ¼ 2
decay ðNRÞc → eLWL in the Lagrangians (43) of the ESM
and (76) of the LRM.
The actual leptogenesis occurs at very high temperature,

in the electroweak unbroken phase. The connection
between cosmological CP violation in the unbroken phase
[34] with a single massless Higgs doublet and in the broken
phase has been underlined by Branco et al. [10]. In the case
of the left-right model, this connection is not clear a priori
because the massless Higgs fields in the unbroken case
belong to the bidoublet (10). As we emphasize below, this
relation is worth to be investigated. For the moment, we are
interested here in the possible differences between the ESM
and the LRM in the broken phase, where the interaction
Lagrangians (43) and (76) apply.
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A. One-flavor approximation

1. Extended Standard Model

In this part on the ESM we reproduce the results of
Ref. [10], with the aim of comparing below with the LRM.
The lepton number asymmetry from the decay of the 1st,
lightest heavy Majorana neutrino, in the broken electro-
weak phase and in the one-flavor approximation is given by

ϵ1 ¼
g2

M2
W

1

16π

1

ðR†RÞ11
X
k≠1

FðxkÞM2
kIm½ðR†RÞ1k�2 ð111Þ

since, from (43), the matrix R is responsible for the
transition ðNRÞc → eLWL or, equivalently, the decay
ðNRÞc → eLH above the phase transition. In Eq. (111)
the function FðxkÞ reads

FðxkÞ ¼
ffiffiffiffiffi
xk

p �
1þ ð1þ xkÞ ln

�
xk

1þ xk

�
þ 1

1 − xk

�
�
xk ¼

M2
k

M2
1

�
: ð112Þ

As pointed out in Ref. [10], from (71) R≃mDðMdiag
R Þ−1,

which holds in the ESM for mD ≪ MR, one gets the lepton
number asymmetry in terms of the Dirac mass or, equiv-
alently, in terms of the Yukawa couplings mD

v in the
unbroken phase:

ϵ1¼
g2

M2
W

1

16π

1

ðm†
DmDÞ11

X
k≠1

FðxkÞIm½ðm†
DmDÞ1k�2: ð113Þ

While the expression of the lepton number asymmetry
(111) depends only on quantities of the mass basis, namely
on the matrices R,Mdiag

R , expression (113) depends only on
quantities of the current basis, since the matrix MR is
diagonalized from the beginning in both bases. Notice that,
as exposed in [10], expression (113) has a well-defined
limit for the SM vacuum expectation value limit v → 0,
given in terms of Yukawa couplings corresponding to
the decay in the unbroken electroweak phase ðNRÞc →
eLH [34].
In terms of the matrix mΔ one gets

ϵ1 ¼
g2

M2
W

1

16π

1

ðm†
ΔmΔÞ11

X
k≠1

FðxkÞIm½ðm†
ΔmΔÞ1k�2; ð114Þ

which depends only on the three phases of mΔ.
On the other hand, in terms of the orthogonal matrix O

defined in (105) the CP asymmetry is given by

ϵ1 ¼
g2

M2
W

1

16π

1

M1

P
imijOi1j2

×
X
k≠1

FðxkÞM1MkIm

�X
j

ðmjOj1Þ2
�
: ð115Þ

2. Left-right model

In the LR model one has, in principle, two types of
contributions to the light neutrino masses, through type I
seesaw and type II seesaw, the latter arising from triplet
Higgs exchange (see, for example, Refs. [3,20,21]). As
pointed out above, in this paper we consider only the
contribution of the type I seesaw.
In the LR case we have seen that the matrix responsible

for the transitions ðNRÞc → eLWL is the matrix called also
R in the mass basis Lagrangian (76). Then, the lepton
number asymmetry from the decay of the first heavy
Majorana neutrino, in the single-flavor approximation, is
given by the same formulas (111),(112).
In the LR model we have now R given by (85), that

yields the lepton number asymmetry in terms of the Dirac
mass and the mixing matrix T of the heavy neutrinos:

ϵ1¼
g2

M2
W

1

16π

1

ðTtm†
DmDT�Þ11

X
k≠1

FðxkÞIm½ðTtm†
DmDT�Þ1k�2:

ð116Þ

In the LR model the lepton number asymmetry depends on
the current basis matrix mD in (34) and also on the PMNS
matrix T of the heavy neutrinos. Consistently, the presence
of the matrix T appears in (116) because, to compute the
decay rates ðN1Þc → eLWL, one needs first to diagonalize
the mass matrix MR ¼ tvR (15).
In other terms, the matrix mDT� ¼ m0

D is the Dirac mass
matrix in the basis in which MR in (27) is diagonalized. In
this basis the left-handed term of the interaction Lagrangian
ν̄LeLWL remains diagonal, but the right-handed term
N̄ReRWR is not anymore.
Expression (116) for the CP asymmetry in the electro-

weak broken phase follows from the R term in the
interaction Lagrangian (76), responsible for the decay
ðNRÞc → eLWL. This is the expression that has been used
precisely to compute the leptogenesis CP asymmetry
within LRM (see, for example, Refs. [20,35]).
However, in the LRM the broken electroweak phase is

more involved than in the ESM because there are two
vacuum expectation values k1 and k2 (12) that contribute to
mD and to MW , besides the possibility of a vacuum
expectation value vL (not considered in subsection I A 2)
that could also contribute to the WL mass.
In the unbroken electroweak phase, the Higgs bidoublet

(10) would be massless, and one should consider both
contributions N1 → eφ1;2 to the leptogenesis asymmetry,
with both Higgses φ1;2 contributing to the loops needed to
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interfere with the tree diagram to obtain CP violation. This
situation reminds the one of the Standard Model with
several Higgs doublets [36]. The relation between the CP
asymmetries in the broken and unbroken phases of the
LRM deserves further investigation.
Since the matrix mD is general complex, so is mDT� and

we can write a decomposition in terms of another general
unitary matrix U0 and another triangular matrix m0

Δ:

m0
D ¼ mDT� ¼ U0m0

Δ: ð117Þ

The lepton asymmetry reads

ϵ1¼
g2

M2
W

1

16π

1

ðm0†
Δm

0
ΔÞ11

X
k≠1

FðxkÞIm½ðm0†
Δm

0
ΔÞ1k�2; ð118Þ

which now depends on the three CP phases of m0
Δ.

On the other hand, notice that the interaction Lagrangian
(76) contains also the ΔL ¼ 2 term ðνLÞcSteRWR that
could give a contribution to the lepton asymmetry through
the decay

WR → ēRðνLÞc: ð119Þ

The masses MWR
and Mi are both generated by the same

Higgs triplet, and since one usually assumes that the
Yukawa coupling of the heaviest neutrino N3 is of Oð1Þ,
then MWR

≫ M1, assuming a hierarchical spectrum for the
heavy neutrinos. Hence, the lepton asymmetry generated
by the decay of WR could be washed out and only the one
due to the N1 decays would survive. However, one should
keep in mind in model building the possibility of lepto-
genesis through the decay (119).

B. Flavored leptogenesis

1. Extended Standard Model

A crucial progress in leptogenesis has been achieved by
taking into account flavor [37–40]. At high temperatures
T ≥ 1012 GeV, all three τ; μ and e are out of equilibrium
because their Yukawa couplings are weak compared to the
temperature. In this regime, the one-flavor approximation
can be applied since the different lepton flavors are
undistinguishable.
However, for “realistic” temperatures T ≃M1 such that

109 ≤ T ≤ 1012 GeV, the τ lepton doublet Yukawa cou-
pling is large enough to be in thermal equilibrium, while the
μ and e doublets are out of equilibrium. The net result is
that the leptogenesis CP violation splits into two pieces, ϵτ
and ϵ2 ¼ ϵμ þ ϵe, since the flavors μ and e remain undis-
tinguishable. Then, in the range 109 ≤ T ≤ 1012 GeV, the
final baryon asymmetry YB is the sum of two contributions,
given by the lepton CP asymmetries ϵτ and ϵ2 affected by
different wash-out factors ητ and η2: YB ∝ ϵτητ þ ϵ2η2.

A recent updated flavor covariant description of flavor
effects in leptogenesis can be found in Ref. [41].
The CP-violating asymmetry for each flavor is given by

the expression (see for example [5]):

ϵ1l ¼ g2

M2
W

1

16π

1

ðm†
DmDÞ11

×
X
k≠1

FðxkÞIm½ðm†
DÞ1lðmDÞlkðm†

DmDÞ1k�2

þ g2

M2
W

1

16π

1

ðm†
DmDÞ11

×
X
k≠1

GðxkÞIm½ðm†
DÞ1lðmDÞlkðm†

DmDÞk1�2; ð120Þ

where the second term corresponds to the lepton-flavor-
violating but lepton-number-conserving self-energy dia-
gram [39]. The function FðxkÞ is given by (112), and

GðxkÞ ¼
1

1 − xk
: ð121Þ

The second term in (120) vanishes when summing over l,
while the first term gives the one-flavor approximation
expression (113), because

P
lϵ1l ¼ ϵ1. On the other hand,

the second term in (120) is subleading if one assumes
M1 ≪ M2;M3.
The flavored wash-out factors read [40]

ηl ¼ η
ðm†

DÞ1lmDl1

ðm†
DmDÞ11

; ð122Þ

where η is the wash-out factor in the single-flavor
approximation.
Concerning the link between low-energy CP violation in

the PMNS mixing matrix and leptogenesis CP violation,
the situation is quite different if flavor is taken into account
[40]. As an illustration, let us write the CP asymmetry ϵ1l,
where the subindex 1 means decay of the lightest heavy
Majorana neutrino N1, by using the orthogonal paramet-
rization (106). The flavor CP asymmetries ϵ1l depend then
on the low-energy parameters, i.e. the light neutrino masses
and the PMNS mixing matrix K. Assuming M1 ≪ M2 <
M3, one finds from (106) and (120) the leptonic CP
violation parameter ϵ1l [40]:

ϵ1l ≃ −
3

32π

g2

M2
W

ImðPk;jmjm
3=2
k K�

ljKlkO�
j1O

�
k1ÞP

imijOi1j2
: ð123Þ

2. Left-right model

As we have seen in the LRM in the one-flavor approxi-
mation [formula (116)], mD is replaced by mDT�, and the
formula for the lepton asymmetry in this approximation is
the same as in the extended Standard model with the

LEPTON MIXING IN GAUGE MODELS PHYSICAL REVIEW D 92, 033004 (2015)

033004-13



replacement mD → m0
D ¼ mDT� where m0

D is the Dirac
mass matrix in the basis in which the mass matrix MR is
diagonalized.
Because of (108), formulas for the CP asymmetry (120)

and the wash-out factor (122) remain correct for the left-
right model, with the replacement mD → m0

D ¼ mDT�,
where mD is given by (109), that has a complete left-right
symmetry in the dependence on the mass eigenvalues
mdiag

L ;Mdiag
R as well as on the mixing matrices K; T.

Then, the flavor asymmetry has the same form (123), with
the replacement O → O0.

VI. COMPARISON BETWEEN THE
EXTENDED STANDARD MODEL
AND THE LEFT-RIGHT MODEL

We now summarize the comparison between the ESM
and the LRM, as far as lepton mixing is concerned.
(1) In the current basis both models differ in the

following way.
In the ESM the Dirac matrix mD has 15(6)

parameters because one can rotated away 3
phases and one can diagonalize the right-handed
mass matrix MR. One has finally a total of 21(6)
parameters.
In the LRM one cannot diagonalize MR without

changing the interaction Lagrangian. On the other
hand, one cannot rotate away phases in both mD and
in MR, but only three phases in one of these
matrices, that we have chosen to be MR. Then,
one is left with a general complex mD with 18(9)
parameters and a complex symmetric MR with 9(3)
parameters. With theme mass eigenvalues, this gives
a total of 30(12) parameters.
However, if in the LRM one diagonalizes MR

from the start, the left-handed interaction term
ν̄LγμeLW

μ
L remains diagonal, while the right-handed

term N̄RγμeRW
μ
R is modified. AlsomD is modified to

another Dirac mass term, that would eventually
control leptogenesis. Therefore, as far as one con-
siders the mass terms and theWL interation, one has
the same number of parameters as in the ESM. For
physics at low energy and also for leptogenesis, if
the latter is attributed to the decays of the lightest
right-handed heavy neutrino N1, one can disregard
the WR interaction term, that involves heavier
degrees of freedom.

(2) In the mass basis in the ESM without approxima-
tions one has two mixing matricesK and R in the left
sector, that have together 12(6) parameters. For
mD ≪ MR one has a priori 12(6) parameters for
the set of matrices K;R (mixing in the left sector),
and S; T (mixing in the right sector). The mixing
matrix of the left-handed neutrinos is approximately
unitary and can be chosen to be of the PMNS type,
with 6(3) parameters. The model constrains the

mixing matrix of the right-handed neutrinos to be
T ≃ 1, the matrix R (71) has a total of 12(6)
parameters and S is not independent because of
relation (72). The parameters of the PMNS mixing
matrix for light neutrinos K have to chosen among
the ones of R. Adding the mass eigenvalues
mdiag

L ;Mdiag
R ;mdiag

e one has a total of 21(6) parameters.
In the LRM in the mass basis one has more

symmetry: two mixing matrices K, R in the left
sector and two S, T in the right sector. These four
matrices have together 21(12) parameters, that added
to the mass eigenvalues mdiag

L ;Mdiag
R ;mdiag

e gives
again a total of 30(12) parameters. In the approxi-
mation mD ≪ MR, the mixing matrices K (left
sector) and T (right sector) are unitary, and both
can be chosen to be of the PMNS type, with 6(3)
parameters each. This is different from the ESM for
the right sector, where T is trivial. This feature of the
ESM seems unnatural, since physically one should
expect a full PMNSmatrix for the heavy right-handed
neutrinos as well.

(3) Adopting the decomposition mD ¼ UmΔ (U unitary
and mΔ triangular complex), in the ESM the matrix
U has 6(3) parameters and mΔ 9(3) parameters,
corresponding to the 15(6) parameters of mD. The
natural solution is that the PMNS matrix K is a
unitary factor of the matrix U, namely U ¼ KV, V
being also unitary. In the LRM the situation is
somewhat different: mD is a general complex matrix
with 18(9) parameters, U is a general unitary matrix
with 9(6) parameters and mΔ has also 9(3) param-
eters. The Dirac mass matrix in the basis in which
MR is diagonal (117) m0

D ¼ mDT� can be decom-
posed in the same way: m0

D ¼ U0m0
Δ.

(4) Concerning the lepton asymmetry relevant for lepto-
genesis, we find the following situation in both
models.
In the ESM, in the one-flavor approximation, the

asymmetry is dependent on matrix elements of the
matrices R†R or m†

DmD or m†
ΔmΔ, i.e. dependent on

the three CP phases of mΔ. In the flavored case, the
asymmetry (120) depends on the PMNS matrix K
and the three high-energy phases of the orthogonal
matrix O (105).
In the LRM, in the one-flavor approximation, the

lepton asymmetry is dependent on R†R or
Ttm†

DmDT�. Writing the product mDT� as in (117),
the asymmetry depends on the three CP phases of
the triangular matrix m0

Δ through m0†
Δm

0
Δ. In the

flavored case, the asymmetry depends on the three
phases of the PMNSmixingmatrixK and on the three
phases of O0 (108).
As far asmodel building is concerned, the situation

is different in both schemes. As an example, imagine
that one has a model for the Yukawas with some
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ansatz for mD and MR. In the ESM, MR is diagon-
alized and mD is enough to compute the lepton
asymmetry. In the LRM one needs to compute the
matrix T that diagonalizes MR, in order to get m0

D.
(5) A possible identification between low-energy phases

and leptogenesis phases is not possible in general. In
the ESM one could imagine models in which the
three CP phases of the light neutrinos mixing matrix
K are the same as the three phases of the triangular
matrixmΔ, since one has to choose the parameters of
K among the ones of the matrix R in the lepton
asymmetry formula (111). In the LRM one could
choose the three phases of K to be the same as the
ones of m0

Δ (117).
As to whether, in general, the leptogenesis CP

asymmetry could depend on the low-energy phases,
in the flavored regime the usual argument that ϵ1l in
the ESM depends on the PMNS matrix K and on the
matrix O (105) extends to the LRM with another
orthogonal matrix O0 (108).

(6) Relative to the ESM, we have found that the LRM
has some interesting new features:
(a) The nontrivial PMNS mixing matrix T of the

heavy neutrinos enters in the quantitative esti-
mation of decay branching ratios of heavy
neutrinos NRi

to various final states.
(b) On the other hand, in the calculation of the

leptogenesis CP asymmetries, the matrix T is
unobservable because the Dirac matrix that plays
a role is now (117) m0

D ¼ mDT�, the Dirac
matrix in the basis in which MR is diagonal.

(c) The term ðνLÞcSteRWR in (76) could give a
contribution to the cosmological lepton asym-
metry through the ΔL ¼ 2 lepton-number-
violating decay to light leptons WR→ ēRðνLÞc.
As we have indicated above, this latter possibil-
ity seems unlikely in reasonable left-right mod-
els because WR is heavier than the lightest
neutrino N1. However, one should keep in mind
this possibility in model building.

(d) Considering the W1;W2 basis, i.e. without ne-
glecting WL −WR mixing, we have seen in
Sec. III B that there is a term involving
the lighter W1 boson ∼ sin ζðνLÞcStγμeRWμ

1

that allows for the subleading ΔL ¼ 2 lepton-
number-violating decay to light leptons W1 →
ēRðνLÞc.

VII. EXTENSION TO PATI-SALAM AND SOð10Þ
One can extend the precedent considerations to other

left-right gauge models like the Pati-Salam gauge theory
SUð4ÞC × SUð2ÞL × SUð2ÞR [17] or SOð10Þ [6].
We can consider first each of these models in the current

basis, with general mass terms determined only by the
Dirac or Majorana character of the fermions, and perform

the counting of the CP-conserving and CP-violating free
parameters. In a second step, one can diagonalize the mass
matrices and obtain mixing in the interaction terms and, in a
third step, switch on the Higgs sector of each theory and see
how, according to the different hypothesis on this sector,
the predictive power of each scheme is improved. Of
course, with the most general Higgs structure for each
model, one populates the general parameter space of the
mass terms obtained by imposing only Lorentz invariance.
Moreover, since in these theories leptons are related to

quarks, lepton mixing in the Dirac mass term will be related
to quark mixing, at least for some Higgs structures. This
feature is interesting in view of increasing the predictive
power of SOð10Þ for leptogenesis, and has been used more
or less quantitatively in the literature.
Let us give some details for the Pati-Salam model and for

SOð10Þ. Consider first the general mass Lagrangian con-
sistent with Lorentz invariance of Dirac and Majorana mass
terms

Lm ¼ ν̄LmDNR þ 1

2
ðNRÞcMRNR þ ēLmeeR

þ ūLmuuR þ d̄LmddR þ H:c: ð124Þ

For the moment the matrices mD, me, mu and md are
general complex with 18(9) parameters each and MR is a
general complex symmetric matrix with 12(6) parameters.
This gives a priori a total of 84(42) parameters, while in the
lepton sector one has 18ð9ÞðfrommDÞ þ 18ð9ÞðfrommeÞ þ
12ð6ÞðfromMRÞ ¼ 48ð24Þ parameters.
In the Pati-Salam model and in SOð10Þ, the interaction

Lagrangian has the general form

Lint ¼ Lw þ Lx; ð125Þ

where one has in both models, keeping only the interesting
flavor-changing terms:

Lw ¼ ēLγμνLW
μ
L þ ēRγμNRW

μ
R þ d̄LγμuLW

μ
L

þ d̄RγμuRW
μ
R þ H:c: ð126Þ

The extra interaction term in the Pati-Salam model reads

LPS
x ¼ ēLγμdLX

μ
L þ ēRγμdRX

μ
R þ ν̄LγμuLX

μ
L

þ N̄RγμuRX
μ
R þ H:c:; ð127Þ

where the colored gauge bosons have charges jQðXLÞj ¼
jQðXRÞj ¼ 2

3
.
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In SOð10Þ one has [42,43]

LSOð10Þ
x ¼ ½ϵijkðuiRÞcγμujL þ dkLγμðeRÞc − eLγμðdkRÞc�Xkμ

þ ½ϵijkðuiRÞcγμdjL þ νLγμðdkRÞc − ukLγμðeRÞc�Ykμ

þ ½ϵijkðdiRÞcγμujL þ eLγμðukRÞc − dkLγμðNRÞc�Y 0kμ

þ ½ϵijkðdiRÞcγμdjL þ νLγμðukRÞc − ukLγμðNRÞc�Xkμ
D

þ ½νL γμukL þ eLγμdkL − ðdkRÞcγμðeRÞc

− ðukRÞcγμðNRÞc�Skμ þ H:c:; ð128Þ
where i; j; k are color indices and the colored gauge bosons
X; Y; Y 0; XD; S have the charges: jQðXÞj ¼ 4

3
; jQðYÞj ¼

jQðY 0Þj ¼ 1
3
; jQðXDÞj ¼ jQðSÞj ¼ 2

3
.

Let us see how many parameters can be rotated away in
both models. Analogously to the LRM, one can diagonalize
me and absorb three phases in MR in (124) while keeping
Lw (126) invariant. However, as is obvious from (127) and
(128), Lx is changed under these transformations. In the
pure lepton sector, leaving aside the quark-lepton terms in
Lx, the starting point for the diagonalization of the mass
terms is the same as in the LRM (34), with 30(12)
parameters in mD, MR and mdiag

e . Diagonalizing (124)
one gets the flavor-changing mixing in the interaction
Lagrangian Lw þ Lx.
In the pure lepton sector our conclusions are the

following. The diagonalization has the same form for
SUð2ÞL × SUð2ÞR ×Uð1Þ, Pati-Salam and SOð10Þ mod-
els. Separately, the 3 × 3 matrices K and R enter in the left
sector, while the 3 × 3 matrices T and S enter in the right
sector, like in the LRM, Eq. (76). In SUð2ÞL × SUð2ÞR×
Uð1Þ, Pati-Salam and SOð10Þmodels we have in the lepton
sector the same counting of free parameters, i.e. 30 real
parameters, among them 12 CP-violating phases.
Let us now make some remarks on masses and mixing in

some particular cases in the interesting SOð10Þ case. Let us
look at the product

16 × 16 ¼ 10S þ 126S þ 120A; ð129Þ

where 10þ 126 is the symmetric part and 120 the anti-
symmetric part. The representations 10 and 120 are real,
126 is complex, and the Yukawa terms that can give mass to
the fermions are

16f × 16f × 10H ¼ 1þ � � � ð130Þ

16f × 16f × 126H ¼ 1þ � � � ð131Þ

16f × 16f × 120H ¼ 1þ � � � : ð132Þ

The Yukawa part of the Lagrangian reads

LY ¼ 16fðY1010H þ Y126126H þ Y120120HÞ16f; ð133Þ

where a possible sum over Higgs representations and
Yukawa coupling matrices in family space is implicit.
After spontaneous symmetry breaking, one gets the mass
Lagrangian (see for example [44]),

md ¼ vd10Y10 þ vd126Y126 þ vd120Y120

mu ¼ vu10Y10 þ vu126Y126 þ vu120Y120

me ¼ vd10Y10 − 3vd126Y126 þ ve120Y120

mD ¼ vu10Y10 − 3vu126Y126 þ vD120Y120

MR ¼ vR126Y126; ð134Þ

where the Yukawa matrices Y10 and Y126 are complex
symmetric, Y120 is complex antisymmetric, and the v’s are
Higgs vacuum expectation values. From the term (130)
alone we obtain the well-known relations me ¼ md and
mD ¼ mu, while the term (131) alone would give the
relations me ¼ −3md and mD ¼ −3mu, and no relation
from the term (132).
The VEVs in (134) are, in all generality, complex

numbers if we assume that CP can be spontaneously
broken (soft CP violation). If CP is not spontaneously
broken, the VEVs are real and all CP violation comes from
the Yukawa couplings (hard CP violation).
One could wonder how within SO(10) one can get the

most general counting of parameters done above, i.e. 84
(42) parameters for the whole mass sector (124), with 48
(24) parameters in the lepton sector. As said above, this is
simply achieved if all the representations 10H; 126H; 120H
in (134) are present and are different for each mass matrix,
that becomes then completely general.
An interesting particular case is to consider only the 10

and 126 representations in (134), with 120 absent:

md ¼ md
10 þmd

126

mu ¼ mu
10 þmu

126

me ¼ md
10 − 3md

126

mD ¼ mu
10 − 3mu

126

MR ¼ mR
126: ð135Þ

In this situation, all mass matrices mu;md;mD;me and MR
are complex symmetric.
Let us count again the number of parameters under this

hypothesis. The complex symmetric matrices md
10; m

d
126;

mu
10; m

u
126; m

R
126, have 12(6) parameters each, that gives a

total number of 60(30) parameters, a reduction relative to
the 84(42) total number of parameters of the general case.
One can diagonalize the complex symmetric matrices
md;…MR with unitary matrices Vd;…VR. Because of
relations (135), the unitary matrices Ve, VD, VR are, in
principle, given in terms of Vu and Vd and mass eigen-
values. Notice that, as discussed in the mass basis for the
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pure lepton sector, we can adopt without loss of generality
the basis in which me ¼ mdiag

e . However, these relations
give complicated equations between the elements of mixing
matrices. Within this case of considering both 10 and 126, it
seems hard to find relations between the mixing matrices in
the quark and the lepton sector, at least in a model-
independent way.
Let us consider two limiting cases: while the 126

contributes to MR, only the 10 or only the 126 contribute
to md, mu, me and mD.
From (135) we see that in both cases one has quark-

lepton symmetry in the mixing matrices, i.e. a relation
between the left-handed neutrino Dirac mixing matrix VL,
where mD ¼ V†

Lm
diag
D VR, and the CKM quark matrix

VL ¼ VuV
†
d ¼ VCKM: ð136Þ

This relation has been often used in a number of phenom-
enological schemes [2,4,5]. However, as is well known, one
needs both representations 10 and 126 to describe fermion
masses in SOð10Þ [45,46] and, therefore, we must conclude
that there is a clash between a good description of fermion
masses and the one of obtaining quark-lepton symmetry
in mixing.
Although the point of view of obtaining useful theoreti-

cal hints from SOð10Þ on the eigenvalues and mixing of the
Dirac neutrino mass matrix has been advanced in a number
of works [1–5], it is worth to point out that there could be an
alternative philosophy concerning the Dirac mass matrix.
Within the left-right model, if the WR gauge boson and
the lightest heavy neutrino NR are light enough, there is the
interesting possibility of a complete determination of the
Dirac mass matrix from the experimental study of WR and
NR decays [47].

VIII. CONCLUSIONS

We have examined the parameter counting and structure
of CP-conserving and CP-violating lepton mixing in two
gauge models in the electroweak broken phase, the
extended Standard Model, i.e. the Standard Model plus
one right-handed heavy neutrino per generation, and the
left-right Model SUð2ÞL × SUð2ÞR × UB−Lð1Þ. We have
used both the current basis, in which the gauge interactions
are diagonal, and themass basis,where themassmatrices are
diagonal and mixing appears in the charged current gauge-
fermion part of the Lagrangian. On the other hand, we have
distinguished between results that are exact and results that
holdwithin the approximation ofDiracmasses that are small
relative to right-handed neutrino masses, mD ≪ MR.
We think that it is worth to compare these two models.

One reason is that, for simplicity, in the literature people
usually discuss lepton mixing within the simple ESM,
while actually have in mind left-right grand unified theories
like SOð10Þ, that naturally include heavy right-handed
neutrinos. The simplest LR model that we study in this

paper is a kind of prototype for these more involved LR
theories.
Although the outline of the parameter counting and

structure of lepton mixing is rather close in both schemes,
there are differences between the two models. In particular,
the extended Standard Model can accommodate a PMNS
mixing matrix K for light neutrinos, but there is no room in
parameter space for a mixing matrix T for the heavy
neutrinos, the mixing matrix being close to the identity. On
the other hand, as one could naturally expect, the left-right
model is consistent with PMNS mixing matrices for both
light and heavy neutrinos. The lepton asymmetry relevant
for leptogenesis depends not only on the Dirac massmD but
also on the matrix T, which is nontrivial. But the lepton
asymmetry is given in terms of the Dirac mass in the basis
in which the right-handed heavy neutrino mass matrix is
diagonal, while the interaction term in the right-handed
sector is not diagonal anymore.
In the case of the LR model, the connection between the

lepton CP asymmetry in the electroweak broken phase,
coming from the decay ðNRÞc → WLeL and its CP con-
jugate, and the one in the unbroken phase coming from
the decay above the phase transition NR → eφ, where φ is
the Higgs bidoublet, is an open problem worth to be
investigated.
Mixing in the LRM contains new terms that involve

ΔL ¼ 2 CP-violating interactions involving the WR gauge
bosons. Considering the WL −WR mixing, there are
interesting new possible ΔL ¼ 2 processes with light
leptons in the final state: the subleading decay W1 →
ēRðνLÞc and the leading one W2 → ēRðνLÞc. As empha-
sized above, it is worth to keep in mind, in model building,
the possibility of the latter as a contribution to leptogenesis.
We have extended these results to other LR theories,

namely the Pati-Salam model SUð4ÞC × SUð2ÞL × SUð2ÞR
and the grand unified model SO(10), for which we find
that the structure ofmixing in the lepton sector is, in themost
general case, the same as in the left-right model SUð2ÞL×
SUð2ÞR ×UB−Lð1Þ. The specification of the Higgs sector
provides schemes that have more predictive power.
If one assumes both symmetric 10 and 126 Higgs

representations, necessary to describe the quark mass
spectrum, we emphasize that there is a clash between the
description of this spectrum and the assumption that the left-
handed Dirac mixing matrix is approximately given by the
quark CKMmatrix, as sometimes it is assumed in phenom-
enological models arguing naive quark-lepton symmetry.
Phenomenological analyses are usually done within

these gauge models as SOð10Þ supplemented by simplify-
ing hypotheses that give tractable schemes. But one should
keep in mind that the general parameter space can yield
other possibilities concerning the description of the inter-
esting observables.
Concerning low-energy observables, there are no

differences between the extended Standard Model and
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the minimal left-right model at leading order in mD=MR.
The cosmological baryon asymmetry via leptogenesis
above the electroweak phase transition deserves however
further investigation within the left-right model.
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APPENDIX: A GENERAL DIGRESSION ON
THE MATRICES K, R, S, T

To count the number of independent parameters in each
scheme, it is useful to consider the general case of
diagonalization of a 6 × 6 complex symmetric matrix,

M ¼
�
mL mD

mt
D MR

�
ðA1Þ

where mL and MR are 3 × 3 complex symmetric. In
general, a 6 × 6 complex symmetric matrix has 42(21)
real parameters.
Let us now diagonalize M with the unitary matrix V

(37)–(39). The unitarity condition VV† ¼ 1 is an Hermitian
relation that implies 36(15) constraints. A general complex
6 × 6 matrix has 72(36) parameters. Therefore, because of
these constraints, V must have 72ð36Þ − 36ð15Þ ¼ 36ð21Þ
parameters, consistent with the number of nðn−1Þ

2
angles

and nðnþ1Þ
2

phases of a n × n unitary matrix. Since
Mdiag has 6(0) parameters, the rhs of (37) has
36ð21ÞðfromVÞ þ 6ð0Þ ¼ 42ð21Þ, in consistency with
the counting of parameters of the matrix M (A1).
The unitarity of the matrix V (39) implies [9,10]

KK† þ RR† ¼ 1 ðA2Þ

SS† þ TT† ¼ 1 ðA3Þ

KS† þ RT† ¼ 0 ðA4Þ

K†K þ S†S ¼ 1 ðA5Þ

R†Rþ T†T ¼ 1 ðA6Þ

K†Rþ S†T ¼ 0: ðA7Þ

Let us do the exercise of counting the number of
parameters of the matrices ðK;R; S; TÞ. If each of them
were general complex, we would have 18(9) parameters for
each, which gives for ðK;R; S; TÞ a total of 72(36)
parameters. Relations (A2) and (A3) are Hermitian, giving
each 9(3) constraints, while (A4) is general complex,
giving 18(9) constraints. In total, we have again 9ð3Þ þ
9ð3Þ þ 18ð9Þ ¼ 36ð15Þ constraints, and therefore, the set
ðK;R; S; TÞ has 72ð36Þð−Þ36ð15Þ ¼ 36ð21Þ independent
parameters, in agreement with the counting of independent
parameters of the unitary matrix V.
On the other hand, the diagonalization of (A1) reads

Kmdiag
L Kt þ RMdiag

R Rt ¼ mL ðA8Þ

Smdiag
L St þ TMdiag

R Tt ¼ MR ðA9Þ

Kmdiag
L St þ RMdiag

R Tt ¼ mD: ðA10Þ

Verifying again the counting of parameters, we have for
the rhs of (A8)–(A10), 12ð6Þ þ 12ð6Þ þ 18ð9Þ parameters
from, respectively, mL, MR and mD. This gives a total of
42(21) independent parameters for the rhs, which is equal
to the number of parameters of the lhs, 36ð21Þ þ 3ð0Þ þ
3ð0Þ from, respectively, ðK;R; S; TÞ, mdiag

L and Mdiag
R .
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