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We study a holographic gauge theory living in the AdS4 space-time at finite temperature. The gravity
dual is obtained as a solution of the type IIB superstring theory with two free parameters, which correspond
to four-dimensional cosmological constant (λ) and the dark radiation (C) respectively. The theory studied
here is in the confining and chiral symmetry broken phase for λ < 0 and small C. When C is increased, the
transition to the deconfinement phase has been observed at a finite value of C=jλj. It is shown here that
the chiral symmetry is still broken for a finite range ofC=jλj in the deconfinement phase. In other words, the
chiral phase transition occurs at a larger value of C=jλj than that of the deconfinement transition. So there is
a parameter range of a new deconfinement phase with broken chiral symmetry. In order to study the
properties of this phase, we performed a holographic analysis for the meson mass spectrum and other
quantities in terms of the probe D7 brane. The results are compared with a linear sigma model.
Furthermore, the entanglement entropy is examined to search for a sign of the chiral phase transition.
Several comments are given for these analyses.
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I. INTRODUCTION

The holographic approach [1–3] is expected to be
applicable also to the supersymmetric Yang Mills (SYM)
theory in curved space-time as well as in the flat
Minkowski space-time. It would be interesting to make
clear the properties of SYM theory in the curved space-
time and in the cosmologically developing universe. In this
direction, some approaches have been extended to the
field theory in the Friedmann-Robertson-Walker (FRW)-
type space-time [4–6]. In this case, the four-dimensional
(4D) cosmological constant (λ) can be introduced as a free
parameter in obtaining the five-dimensional (5D) sector
of the ten-dimensional (10D) supergravity solution. The
dynamical properties of the 4DSYMtheory on the boundary
are then characterized by the sign of λ. Through the holo-
graphic approach, it has been found that the SYM theory is
in the confinement (deconfinement) phase for negative
(positive) λ [4–6]. This implies that the dynamical properties
of the SYM fields are largely influenced by the geometry of
the background space-time.
Furthermore, in this approach, one more free parameter

(C) can be introduced as an integration constant in the
solution of the supergravity. At first, this term has been
added as the “dark radiation” to the 5D supergravity

solution in the context of the brane world [7,8]. Since it
is defined in the 5D space-time, then its meaning in the 4D
theory was mysterious. In this context, afterward, it could
be interpreted as the projection of the 5DWeyl term [9,10].
On the other hand, from the viewpoint of holography, it has
been found for λ ¼ 0 that C corresponds to the thermal
radiation of the SYM fields at a finite temperature [11];
then the system is in the deconfinement phase. Actually,
the 5D metric in this case can be rewritten in the AdS5-
Schwarzschild form, where Cð> 0Þ corresponds to the
black hole mass in this metric.
It is easy to imagine that the above two parameters, C and

the negative λ, compete with each other to realize the
opposite phase of the theory, namely the confinement and
the deconfinement respectively. In fact, we find a phase
transition at the point where these two opposite effects are
balanced [11–15]. As a result, the SYM theory is in the
deconfinement phase for b0 > r0. Here the density of dark
radiation C and the magnitude of jλj are denoted by using b0
and r0, which are shown in the formula (2.5) of the next
section. By using these parameters, the phase diagram of the
SYM theory in the FRW space-time is obtained as in Fig. 1.
In the deconfinement phase, the temperature T, which

is given by the Hawking temperature of the 5D metric,
appears. The critical temperature (Tc) of the confinement-
deconfinement transition is given as Tc ¼ 0, which corre-
sponds to the critical line r0 ¼ b0 in Fig. 1. In the region
b0 > r0, the temperature monotonically increases with b0
for fixed r0.
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It becomes possible to study the properties of the finite
temperature SYM theory in the deconfinement phase in
the FRW space-time, where the three space is hyperbolic
one. As mentioned above, for the case of λ ¼ 0 and finite
b0, the bulk solution is reduced to the well-known AdS5
Schwarzschild. So the SYM theory in its special limit of
this background has been studied already; see for example
[16]. In this case, the two critical temperatures of confine-
ment-deconfinement (Tc) and the chiral symmetry restora-
tion (Tχ) transitions are the same, namely Tc ¼ Tχ ¼ 0.
On the other hand, we show here that the value of Tχ shifts
from Tc ¼ 0. Namely, we find 0 ¼ Tc < Tχ in the case of
finite λð< 0Þ, and then the critical line is given by
b0 ¼ 0.76r0. It is shown in Fig. 1 in the parameter space
of b0 and r0. Therefore, there exists a new phase in region B
of Fig. 1, where the quark and gluons are not confined but
the chiral symmetry is not yet restored.
This implies a nontrivial thermal property of the SYM

theory in the FRW space-time for negative λ. In order to
show and understand the details of this point, we have
examined the embedding of the D7 brane in the back-
ground. For the embedded D7 brane, we have examined
also the spectrum of the Nambu-Goldstone (NG) boson and
a massive meson mode in the region of the newly found
deconfinement phase where the chiral symmetry is still
broken. Then we compare our results with some theoretical
consequences obtained from some typical phenomenologi-
cal models for the chiral symmetry breaking of QCD in
order to make clear the dynamical properties implied by our
holographic model.
The outline of this paper is as follows. In the next

section, a 5D space-time is given by a solution of super-
gravity as the dual of SYM theory in the AdS4 background.
In Sec. III, the spontaneous chiral symmetry breaking is
studied by embedding the D7 probe brane, and then the
spectra of two scalar mesons are examined. Since one of

them corresponds to the Nambu-Goldstone boson, then the
Gell-Mann-Oakes-Renner (GOR) relation and pion decay
constant are also examined. In Sec. IV, the mass relations of
the two scalars are discussed in terms of the sigma model.
We suggest a modified sigma model that is implied by
our holographic analysis. In Sec. V, we search a sign of the
chiral transition in the entanglement entropy. We could find
a change of the behavior of the entanglement entropy, but it
could not lead to the phase transition. The summary and
discussions are given in the final section.

II. GRAVITY DUAL

The holographic dual to the large N gauge theory
embedded in 4D space-time with dark energy and dark
radiation is solved by the gravity on the following form of
the metric,

ds210 ¼
r2

R2
ð−n̄2dt2 þ Ā2a20ðtÞγijðxÞdxidxjÞ

þ R2

r2
dr2 þ R2dΩ2

5; ð2:1Þ

where

γijðxÞ ¼ δijγ
2ðxÞ; γðxÞ ¼ 1

��
1þ k

r̄2

4r̄02

�
;

r̄2 ¼
X3
i¼1

ðxiÞ2; ð2:2Þ

and k ¼ �1, or 0. The arbitrary scale parameter r̄0 of three
space is set hereafter as r̄0 ¼ 1. The solution is obtained
from 10D supergravity of type IIB theory [11–14].
The factors Ā and n̄ are obtained by introducing two free

parameters as mentioned below. Here, we use the following
form of solution,

Ā ¼
��

1þ
�
r0
r

�
2
�

2

þ
�
b0
r

�
4
�

1=2
; ð2:3Þ

n̄ ¼ ð1þ ðr0r Þ2Þ2 − ðb0r Þ4
Ā

; ð2:4Þ

r0 ¼
ffiffiffiffiffi
jλj

p
R2=2; b0 ¼ R~c0; ~c0 ¼ CR3=ð4a40Þ;

ð2:5Þ

where the dark radiation C is introduced as an integral
constant in solving the equation of motion. This solution
expresses the case of negative λ. Here, the dark energy (or
cosmological term) λðtÞ is introduced by the following
equation:

�
_a0
a0

�
2

þ k
a20

¼ λ: ð2:6Þ

A

B

C

a
b

1 2 3 4
b0

1

2

3

4

r0

FIG. 1 (color online). The line (a) shows the critical line
r0 ¼ b0 separating the quark-confinement phase (A) and the
deconfinement phase (B) and (C). The lower critical line
(b) r0 ¼ 0.76b0 (χ-br) is separating the chiral symmetry broken
phase, (A) and (B), and the symmetry restored phase (C).
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Although it is possible to consider a time dependent λ as in
[11], we set it here as a constant λ for simplicity. In the
following, our discussion concentrates on the case of
negative constant λ and we assume small time derivative
of a0ðtÞ. We should notice the following fact that the
solution a0 ¼ 1=

ffiffiffiffiffijλjp ¼ constant is actually allowed for
negative constant λ and k ¼ −1.

III. CHIRAL PHASE TRANSITION AT FINITE
TEMPERATURE

A. D7-brane embedding

We study the chiral condensate and the q − q̄ meson
spectrum of the boundary theory by embedding the probe
D7 brane for the flavor quarks. The D7-brane action is
given by the Dirac-Born-Infeld (DBI) and the Chern-
Simons terms as follows:

SD7 ¼ −τ7
Z

d8ξe−Φ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðgab þ 2πα0FabÞ

p

þ T7

Z X
i

ðe2πα0Fð2Þ∧cða1…aiÞÞ0…7
;

gab ≡ ∂aXμ∂bXνGμν;

cða1…aiÞ ≡ ∂a1X
μ1…∂aiX

μiCμ1…μi ; ð3:1Þ

where τ7 is the brane tension. The DBI action involves the
induced metric gab and the Uð1Þ world volume field
strength Fð2Þ ¼ dAð1Þ.
The solution given in the previous section is obtained for

the case of constant dilaton. So it does not play any role in
the present case. For simplicity, we consider the dual theory
on the boundary at r ¼ ∞. Then the induced metric for the
above D7 brane is obtained as follows. Consider the above
background (2.1) and rewrite it as follows:

ds210 ¼
r2

R2
ds2ð4Þ þ

R2

r2
dr2 þ R2dΩ2

5; ð3:2Þ

¼ r2

R2
ds2ð4Þ þ

R2

r2

�
dρ2 þ ρ2dΩ2

3 þ
X9
i¼8

dXi2

�
; ð3:3Þ

where

ds2ð4Þ ¼ ð−n̄2dt2 þ Ā2a20ðtÞγijðxÞdxidxjÞ; ð3:4Þ

r2 ¼ ρ2 þ ðX8Þ2 þ ðX9Þ2: ð3:5Þ

Then the induced metric of the D7 brane is obtained as

ds28 ¼
r2

R2
ds2ð4Þ þ

R2

r2
ðð1þ w02Þdρ2 þ ρ2dΩ2

3Þ; ð3:6Þ

where the profile of the D7 brane is taken as ðX8; X9Þ ¼
ðwðρÞ; 0Þ and w0 ¼ ∂ρw; then

r2 ¼ ρ2 þ w2: ð3:7Þ

In the present case, there is no R-R filed, so the action is
given as

SD7 ¼ −τ7Ω3

Z
d4xa30ðtÞγ3ðxÞ

Z
dρρ3n̄Ā3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w02ðρÞ

q
;

ð3:8Þ

where Ω3 denotes the volume of S3 of the D7 brane world
volume.
From this action, the equation of motion for w is

obtained as

w00 þ
�
3

ρ
þ ρþ ww0

r
∂rðlogðn̄Ā3ÞÞ

�
w0ð1þ w02Þ

−
w
r
ð1þ w02Þ2∂rðlogðn̄Ā3ÞÞ ¼ 0: ð3:9Þ

The constant w ≠ 0 is not the solution of this equation, so
the supersymmetry is broken except for the case of trivial
solution w ¼ 0.

B. Embedded solutions and chiral
symmetry breaking

In the confinement region, the chiral symmetry is
spontaneously broken as shown in [11]. The phase tran-
sition of the present model to the deconfinement occurs
when the density of the dark radiation increases and
exceeds a critical point, which is given by b0 ¼ r0 (see
Fig. 1). From this point, the Hawking temperature,

THð¼
ffiffi
2

p
b0

πR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðr0=b0Þ2

p
Þ, appears for b0 > r0. At this

stage, when the temperature appears, the chiral symmetry is
usually restored. In the present case, however, we could
observe the chiral symmetry restoration after transferring
into the deconfinement phase at a finite TH, which depends
on r0, as shown in Fig. 1 above. These facts are explained
below through the numerical analysis.
All solutions of the above Eq. (3.9) have the following

asymptotic form:

wðρÞ ¼ mq þ
cþ 4mqr20 logðρÞ

ρ2
þ � � � ð3:10Þ

at large ρ. In the second term of the right-hand side of
(3.10), the term proportional to logðρÞ arises from the loop
corrections of the SYM theory since the conformal sym-
metry would be broken due to the existence of the
cosmological constant in the present case [4–6]. We could
show however that this term is proportional to the quark
mass mq, which is given by the asymptotic value of wð∞Þ.
In order to see the spontaneous chiral symmetry breaking, it
is enough to see chiral condensate hΨ̄Ψi ¼ c ¼ ρ2wjρ→∞.
Then the analysis is simply performed for mq ¼ 0.
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We have therefore examined the numerical solutions for
mq ¼ 0 at various points in the parameter space b0 − r0 in
order to find the transition points. Three typical solutions
are shown in the left figure of Fig. 2. They are classified as
Minkowski type (M type) (wð0Þ > rH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b20 − r20

p
), black

hole type (B type), which ends on rH at ρ ¼ ρmin, and the
trivial solution w ¼ 0, which is always the solution
of Eq. (3.9).
We notice that the above M and B types of embedded

configuration of D7 brane correspond to the one of
connected and disconnected D8 and D̄8 branes in the
Sakai-Sugimoto model at finite temperature [17].
We performed the numerical analyses for fixed r0 ¼ 1 by

varying b0. In this case, the region of b0 is separated to the
following three one.

(i) For b0 > 1.31, we find only the trivial solution for
mq ¼ 0. Then the chiral symmetry is restored.

(ii) For 1.28 < b0 < 1.31, there are three types of
solution mentioned above.

(iii) For b0 < 1.28, there are M-type and trivial solutions.
The distributions of the general solutions including these
three types are shown in the right of Fig. 2 for b0 ¼ 1.2, 1.3,
and 1.4. Then one might consider that the chiral symmetry
may be broken in the region b0 < 1.31; however, we must
compare the free energies in order to see which solution is
favored for the given b0 when plural solutions for the same
mq exist.
The free energy for each solution is obtained by sub-

stituting the solution wðρÞ into the Wick rotated Eucledian
D7 action (3.8). Here, the normalized free energy,

rH
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FIG. 2 (color online). Left: The solutions of wðρÞwithmq ¼ 0 for b0 ¼ 1.3r0, and r0 ¼ 1.0. The solution (c) represents the trivial one,
w ¼ 0. The dashed curve denotes the horizon rH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b20 − r20

p
ð¼ 0.83Þ. Right: The c −mq relations of embedded solutions for

b0 ¼ 1.2; 1.3, and 1.4 are shown with the same other parameters of the left figure. For the case of b0 ¼ 1.3, the embedded solutions at
the three points, (a), (b), and (c), are shown in the left figure.
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FIG. 3 (color online). Left: The blue (red) curve denotes the free energy difference, E − Etrivial, between the one for the Minkowski
(black hole) embedding solutions of wðρÞ with mq ¼ 0 and for the trivial solution w ¼ 0. Right: The part, where the blue curve crosses
zero, of the left-hand figure is enlarged.
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E ¼
Z

dρρ3n̄Ā3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w02ðρÞ

q
; ð3:11Þ

is evaluated, and then the values subtracting the one for the
trivial solution are shown in Fig. 3.
This figure shows the following:
(i) The free energy of the B-type solution is always

larger than the other two. Thus, this type of solution
cannot be realized.

(ii) The value of EM-type − Etrivial crosses zero at
b0 ¼ 1.31. This implies that a transition from the
M-type solution (hΨ̄Ψi ¼ c > 0) to the trivial sol-
ution (hΨ̄Ψi ¼ 0) occurs at this point. This point is
therefore the chiral phase transition point. The order
parameter hΨ̄Ψi has a gap at this transition point.

The transition line b0 ¼ 1.31r0 is shown in Fig. 1. As a
result, we find two critical lines (a) and (b) in the parameter
plane ðb0; r0Þ. Line (a) represents the transition point from
confinement to deconfinement and (b) represents the
critical line from the chiral symmetry breaking phase to
the restoring phase. This result implies the fact that the
density of the dark radiation necessary for the restoration of
the chiral symmetry is larger than the one needed for
realizing the deconfinement phase.
We recall that the role of the dark radiation is to screen

the force needed for the confinement. The same kind of
force would be necessary for the spontaneous mass gen-
eration of massless quarks. The above result, that the chiral
transition needs a larger value of C than the case of the
confinement-deconfinement transition, implies that the
range of the force necessary to break the chiral symmetry
is shorter than the one for the confinement.

IV. CHIRAL PHASE TRANSITION
AND THE NG BOSONS

We study the meson spectra by solving the equations of
motion for the fluctuation of fields on the D7 brane. In the
A phase in Fig. 1, we find the NG bosons and the GOR
relation [18] for massless and small mass quarks, respec-
tively. While in the B phase, in spite of the fact that quarks
are deconfined, we expect the existence of the NG boson
and a massive scalar mode due to spontaneous chiral
symmetry breaking.
To compute the meson spectra, let us consider the

fluctuations of the scalar fields defined as

X8 ¼ wðρÞ þ ~ϕ8; X9 ¼ ~ϕ9:

~ϕ8 and ~ϕ9 correspond to the NG boson and a massive scalar
boson, respectively. Note here that this phenomenon also
represents the breaking of a global Uð1Þ symmetry.
The wave functions are given in the following factorized

form:

~ϕk ¼ φkðt; xiÞϕk
l ðρÞYlðS3Þ; ðk ¼ 8; 9Þ;

where YlðS3Þ denotes the spherical harmonic function on a
three-dimensional sphere with the angular momentum l.
Then the linearized field equations of ϕ9

l ðρÞ and ϕ8
l ðρÞ

for w ≠ 0 are given as follows:

∂2
ρϕ

9
l þ

1

L0

∂ρðL0Þ∂ρϕ
9
l þ ð1þ w02Þ

×

��
R
r

�
4m2

9

n̄2
−
lðlþ 2Þ

ρ2
− 2Kð1Þ

�
ϕ9
l ¼ 0; ð4:1Þ

L0 ¼ ρ3n̄Ā3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ w02p ; Kð1Þ ¼
1

n̄Ā3
∂r2ðn̄Ā3Þ ð4:2Þ

and

∂2
ρϕ

8
l þ

1

L1

∂ρðL1Þ∂ρϕ
8
l þð1þw02Þ

×

��
R
r

�
4m2

8

n̄2
−
lðlþ 2Þ

ρ2
− 2ð1þw02ÞðKð1Þ þ 2w2Kð2ÞÞ

�
ϕ8
l

¼−2
1

L1

∂ρðL0ww0Kð1ÞÞϕ8
l ð4:3Þ

L1 ¼
L0

1þ w02 ; Kð2Þ ¼
1

n̄Ā3
∂2
r2ðn̄Ā3Þ: ð4:4Þ

Here are some remarks.
(i) For the 4D part of the wave function, φkðxμÞ, we have

assumed the following eigenvalue equation:

□4φ
kðxμÞ¼ 1ffiffiffiffiffi

~g4
p ∂μ

ffiffiffiffiffi
~g4

p
~gμν∂νφ

kðxμÞ¼m2
kφ

kðxμÞ; ð4:5Þ

where ~g4 ¼ − det ~gμν and

~gμνdxμdxν ¼ ð−dt2 þ a20ðtÞγijðxÞdxidxjÞ: ð4:6Þ

(ii) The operator □4 is derived from the eight-
dimensional Laplacian □8 for the metric (3.6) induced
on the D7 brane. In fact, □8 is expanded as

□8 ¼
1ffiffiffiffiffiffiffigð8Þ

p ∂agab
ffiffiffiffiffiffiffi
gð8Þ

p ∂b;

¼ 1ffiffiffiffiffiffiffigð8Þ
p ∂μgμν

ffiffiffiffiffiffiffi
gð8Þ

p ∂ν þ � � � ; ð4:7Þ

ffiffiffiffiffiffiffi
gð8Þ

p ¼ ffiffiffiffiffiffiffi
gð4Þ

p
ρ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w02

p
;

ffiffiffiffiffiffiffi
gð4Þ

p ¼ ða0γĀÞ3n̄;
ð4:8Þ

where a; b ¼ 0–7, μ; ν ¼ 0–3 and the elliptics denotes the
derivative terms with respect to the other coordinates, ρ and
the one of S3.
By using the above expansion and the approximation to

neglect the time derivative of a0ðtÞ, we arrive at the above
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Eqs. (4.1) and (4.3), which are used to find the meson
spectra [6].

A. Numerical results

Figure 4 is the numerical result for the quark mass
dependence of the mass eigenvaluesm8ðmsÞ andm9ðmNGÞ,
which correspond to ϕ8 (massive scalar) and ϕ9 (Nambu-
Goldstone boson), respectively. From the left panel of
Fig. 4, we find the NG boson mass behaves as m2

NG ∝ mq,
which is consistent with the GOR relation.
The GOR relation is expressed as

m2
NG ¼ 2mqhΨ̄Ψi

f2π
; ð4:9Þ

where fπ denotes the pion decay constant. Since hΨ̄Ψi is
obtained for various b0s through the solution of the
D7-brane profile, then we can determine the b0 dependence
of fπ through the GOR relation (4.9). Figure 5 shows the
numerical results.
Here are our findings. fπ is almost constant within the

confinement regime (b0 < r0), and then it increases with b0
in the deconfinement regime (b0 > r0). This result seems to

be reasonable since the decay channels may increase in the
deconfinement regime.

B. Comparison with the linear σ model

In principle, it would be possible to derive an effective
theory of mesons from the D7-brane action as a functional
of ϕ8 and ϕ9. Then the correspondence of the parameters in
the D7-brane action to the one of the sigma model will be
obtained. However, there are various possibilities for higher
order terms of the meson fields. Then the resultant effective
action would get very complicated, which is not useful to
analyze.
Instead let us compare the results we obtained in the

above with those from the linear sigma model. At the mean
field level, the Lagrangian density of the linear sigma
model is given by

L ¼ μ2

2
ðσ2 þ π2Þ − λ

4
ðσ2 þ π2Þ2 þ hσ; ð4:10Þ

where μ, λ, and h are the parameters while σ and π are the
mean fields. The last term proportional to h, which plays a
role of the quark mass term, breaks Uð1Þ chiral symmetry
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FIG. 4 (color online). Left: The quark mass(mq) dependence of m2
NG [Nambu-Goldstone boson (ϕ9)]. Right: The m2

s (red line)
for massive scalar (ϕ8) is shown by the solid lines. The dotted lines are the prediction from the sigma model given below. The
line (1) denotes the one for (4.12) and (2) for (4.16).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
b00

2

4

6

8

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
b00.0

0.5

1.0

1.5

2.0
f

FIG. 5 (color online). b0 dependence of the chiral condensate hΨ̄Ψi and the pion decay constant fπ .
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explicitly. For the small value of h, the vacuum is
determined from the stationary conditions ∂L

∂σ ¼ ∂L
∂π ¼ 0,

which lead us to

ðσ; πÞ ¼
�
fπ þ

h
2μ2

; 0

�
ð4:11Þ

with fπ ≡
ffiffiffiffi
μ2

λ

q
. Then one obtains the mass spectra such

that

M2
πðhÞ ¼

h
fπ

; M2
σðhÞ ¼ 2μ2 þ 3h

fπ
¼ 2μ2 þ 3M2

πðhÞ:
ð4:12Þ

In the right panel of Fig. 4, we compared the results
(4.12) with those obtained from the holographic method.
Note here that the parameter region for b0 is restricted to
the confinement phase (b0 < r0). Hereafter, we set r0 ¼ 1.
The reason why we consider the linear sigma model only
for the confinement phase is obvious because the
Lagrangian density is solely written in terms of mesons.
The results (4.12) definitely deviates from our holo-

graphic ones. It looks to have a rather good fit to the result
with b0 ¼ 1.3. So we might modify the sigma model in
order to obtain a better fit to our results in the region
of b0 < 1.
This is performed by adding the next order term of

ðσ2 þ π2Þ as follows:

L ¼ μ2

2
ðσ2 þ π2Þ − λ1

4
ðσ2 þ π2Þ2 − λ2

6
ðσ2 þ π2Þ3 þ hσ:

ð4:13Þ
This type of modification is justified as far as it is based on
the derivation of the effective sigma model by expanding
the D7-brane action in terms of the π and σ fields.
The vacuum is determined as the configuration ðσ; πÞ ¼

ðσ0; 0Þ, which is the real solution of the following equation:

h ¼ ð−μ2 þ λ1σ
2
0 þ λ2σ

4
0Þσ0: ð4:14Þ

Then the meson masses are given as

M2
π ¼ −μ2 þ λ1σ

2
0 þ λ2σ

4
0 ¼

h
σ0

;

M2
σ ¼ −μ2 þ 3λ1σ

2
0 þ 5λ2σ

4
0: ð4:15Þ

From (4.15), we find

M2
σ ¼ 2M2

π þ μ2 ð4:16Þ
by setting the following relation among the parameters,

λ2 ¼ −
λ1
3σ20

: ð4:17Þ

This relation is a sort of tuning to obtain (4.16), which
provides a better fit to our holographic results (see the right
panel of Fig. 4).

V. ENTANGLEMENT ENTROPY NEAR THE
TRANSITION REGION

We study the entanglement entropy (SEE) near the
transition region to find a signature of the phase transition.
SEE is given by calculating the minimum area of the surface
A whose boundary ∂A is set at the boundary of the bulk.
As given in [19,20] the holographic entanglement entropy
is given by

SEE ¼ Sarea

4Gð5Þ
N

; ð5:1Þ

where Sarea denotes the minimal surface whose boundary
is defined by ∂A and the surface is extended into the
bulk.
We see the regularized finite part S̄finite. The detailed

calculations are given in [14,15]. This quantity contains
two contributions from the curvature r0 and the dark
radiation b0. In order to see how the dark radiation affects
the entropy, we consider the following quantity,

Sfinite ≡ S̄finite − S̄finitejb0¼0; ð5:2Þ

by subtracting the S̄finitejb0¼0 from S̄finite.
Figure 6 shows the relation between Sfinite=V and b0. V is

the volume of the sphere with radius p ¼ p0 in FRW4 space,

V ¼ 4πa30

Z
p0

0

γ3p2dp

¼ 2πa30

�
4p0ð4þ p2

0Þ
ðp2

0 − 4Þ2 þ log
2 − p0

2þ p0

�
: ð5:3Þ

From the results shown in Fig. 6, we can observe the
following.

(i) As shown in Fig. 6, for small b0 region, Sfinite=V is
small and Sfinite=V ∝ b40. The energy density of the
dark radiation is also proportional to b40. Thus, the
small deviation of Sfinite and the energy density will
lead to the first law of the thermodynamics. On this
point, we will discuss more in the near future.

(ii) For large b0 > 1 region, on the other hand, it
increases with b0 rapidly and Sfinite=V ∝ T3

H where
the Hawking temperature THðb0Þ is given as [15]

THðb0Þ ¼
ffiffiffi
2

p
b0

πR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðr0=b0Þ2

q
: ð5:4Þ

Thus, at large b0 region, the entanglement entropy
becomes the thermal entropy [21]. This behavior is
expected as a high temperature behavior of the
entanglement entropy Sfinite=V.
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(iii) However, as far as we observe Fig. 6, there is no
specific signature at the chiral transition point
(b0 ∼ 1.31) in the behavior of the entanglement
entropy.

VI. SUMMARY AND DISCUSSION

We have studied SYM theory in the AdS4 space-time.
The holographic dual is expressed by a 10D supergravity
solution that is described by two free parameters corre-
sponding to the negative 4D cosmological constant and the
dark radiation. These two quantities work in opposite
directions to realize a typical phase of the theory. The
negative λ leads the theory to the confinement phase.
However, the dark radiation prevents it. Then we find
the confinement-deconfinement transition at their balanced
point, r0 ¼ b0, as shown previously.
Here, we have pointed out that the chiral symmetry

restoration does not occur yet at r0 ¼ b0 as expected in the
case of usual QCD. The chiral transition is found at b0 ¼
1.31r0 after the deconfinement transition. So there exists a
new phase, where chiral symmetry is broken but the quarks
and gluons are deconfined. It is shown as region B in the
phase diagram in Fig. 1. In this region, the Nambu-
Goldstone boson is certainly observed, and then we could
examine for the mass spectra of mesons made of massive
quark and antiquarks to assure the GOR relation. We could
study the mass relation of the NG boson and the massive
scalar modes as expected from the sigma model, which
describes well the spontaneous chiral symmetry breaking
of QCD. While the modified sigma model might be
consistent with our holographic results in the confinement
region A, we could not find a simple sigma model that is
consistent in both regions A and B.
Finally, we have examined the entanglement entropy to

see the role of the dark radiation in the phase transition. In
order to make clear the contribution of b0, the deviation of
the entanglement entropy given at b0 > 0 from the one at
b0 ¼ 0 is numerically studied. For small b0ð< r0Þ, the
deviation is small and increases as b40, which is proportional

to the energy density of the dark radiation. In the large
b0ð≫ r0Þ region, it increases rapidly and is proportional to
b30 ∝ T3

H. This behavior is the usual thermal behavior
expected in the infrared limit of the theory. However, a
sharp signature of the phase transition has not been observed.
We would like to mention the relations between our

results and those fromsome four-dimensional effective theory.
The Polyakov-Nambu-Jona-Lasinio (PNJL) model has been
often used to obtain the QCD phase diagram at finite
temperature/chemical potential. In this model, in addition to
chiral symmetry breaking/restoration due to the quark-
antiquark condensate that was originally developed in the
Nambu-Jona-Lasiniomodel, the confinement-deconfinement
phase transition can be taken into account by the Polyakov
loop potential. According to the model calculation, Tχ gets
higher than Tc. This is a similar result to ours.
In the lattice QCD calculation, however, the result is the

opposite. Tχ gets lower than Tc [22]. In [23], the authors
tried to reproduce the same result from the PNJL model by
including some extra terms, but they did not succeed. As a
consequence, even among the four-dimensional approaches,
there is no common picture for the properties of QCD phase
transition at finite temperature. Physically speaking, in the
case with Tχ ≤ Tc, massless baryons appear in the temper-
ature regime Tχ ≤ T ≤ Tc and they would affect the
thermodynamic quantities such as the equation of state.
On the other hand, the chiral phase transition in curved

space has been recently discussed [24]. It is suggested
that the negative curvature R < 0 (the negative cosmologi-
cal constant) shifts the critical temperature Tχ to the
increased one.
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