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It is known that the sphere-level S-matrix element of four type II superstrings has one kinematic factor.
At the low energy limit, this factor produces the kinematic factor of the corresponding Feynman amplitudes
in the supergravity. It also produces higher-derivative couplings of four strings. In this paper, we explicitly
calculate the kinematic factor of four Ramond-Ramond (RR) states in the supergravity. Using this factor,
we then find the eight-derivative P-even and P-odd couplings of four RR fields, including the self-dual RR
five-form field strength. We show that the P-even couplings are mapped to the standard R̄4 couplings by
linear T-duality and S-duality transformations. We also confirm the P-even couplings with direct
calculations in type II superstring theories.
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I. INTRODUCTION

Superstring theories at the low energy limit are described
appropriately by supergravities which include only the
massless modes and their interactions at the two-derivative
level. These theories inherit many symmetries of the
superstring theories such as string dualities [1–4]. For
many purposes, it is enough to use only these effective
theories, but there are situations for which one must go
beyond the lowest order terms in the effective actions. The
higher order terms must be corrections in α0 and in the
string coupling constant gs. The main challenge thus is to
implement the symmetries of the superstring theories
to find an effective action that incorporates all such
corrections, including nonperturbative effects [5].
Subleading terms in type II effective actions start at the

eight-derivative level and were first calculated at the tree
level from four-graviton scattering [6,7] as well as from the
σ-model beta function [8–13]. They take the following
form at tree level in the string frame:

S ⊃
γ

3.27κ2

Z
d10xe−2ϕ

ffiffiffiffiffiffiffi
−G

p �
t8t8R4 þ 1

4
ϵ8ϵ8R4

�
; ð1Þ

where γ ¼ α03ζð3Þ
25

and t8 is a tensor which is antisymmetric
within a pair of indices and is symmetric under the
exchange of the pair of indices. The above expression,
however, cannot be complete, as supersymmetry will
necessarily bring in additional higher order terms built
from the other fields in the supergravity multiplet. This
includes the B-field and dilaton in the Neveu-Schwarz
Neveu-Schwarz (NSNS) sector, the n-form field strengths in
the Ramond-Ramond (RR) sector, and their corresponding

fermionic superpartners. It would be desirable to obtain a
supersymmetric invariant action at the eight-derivative level
which is the completion of the above terms [14–20].
The bosonic couplings in the effective action (1) may also

be found by constraining it to be consistent with the string
dualities [20–25]. The couplings at weak field level, i.e.,
four-field couplings, may also be found more directly from
the corresponding scattering amplitude of four vertex
operators. They must be also consistent with linear
string dualities. The sphere-level scattering amplitude of
four strings has the following structure in the Einstein
frame [6,7]:

A

¼
�

Γð−e−ϕ0=2s=8ÞΓð−e−ϕ0=2t=8ÞΓð−e−ϕ0=2u=8Þ
Γð1þe−ϕ0=2s=8ÞΓð1þe−ϕ0=2t=8ÞΓð1þe−ϕ0=2u=8Þ

�
K;

ð2Þ

where K is the kinematic factor that depends on external
states; ϕ0 is the constant dilaton background; and s; t; u are
theMandelstam variables.1 The low energy expansion of the
Gamma functions is

Γð−e−ϕ0=2s=8ÞΓð−e−ϕ0=2t=8ÞΓð−e−ϕ0=2u=8Þ
Γð1þ e−ϕ0=2s=8ÞΓð1þ e−ϕ0=2t=8ÞΓð1þ e−ϕ0=2u=8Þ

¼ −
29e3ϕ0=2

stu
− 2ζð3Þ þ � � � ; ð3Þ

where dots refer to higher order contact terms. Thus, the
kinematic factor plays two roles. It produces the Feynman
amplitude of four massless strings in the supergravity [26].
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1The relation between the Einstein frame metric and the string
frame metric is GE

μν ¼ e−ϕ=2GS
μν.
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On the other hand, it produces the couplings of four strings at
order α03 [6,7].
The kinematic factor of RR states involves various traces

over the ten-dimensional gamma matrices. Performing
the traces, one expects that the amplitudes at the two-
momentum level are reproduced by the corresponding
Feynman amplitudes in the supergravity, and at the
eight-momentum level, they reproduce the eight-derivative
couplings in the action (1). Such a calculation for the
scattering amplitude of two RR and two NSNS states has
been done explicitly in Ref. [27]. It has been shown that the
couplings at the eight-derivative level are related to four
NSNS couplings found in Refs. [6,7,28] through the linear
T-duality and S-duality [27].
In this paper, we are interested in the couplings of four

RR fields in the effective action (1), including the RR five-
form field strength which must be self-dual. We use the
above double roles of the kinematic factor. That is, we
first calculate the kinematic factor of four RR states in the
type II supergravities, and then we use it to find the
couplings of four RR states at order α03. The standard
type IIB supergravity, however, is off by the fact that it does
not include the self-duality of the RR five-form field
strength. The self-duality must be imposed by hand on
the equations of motion [29]. In this paper, we impose the
self-duality of the RR five-form field strength by hand in
the scattering amplitudes. The couplings we have found
then have P-even and P-odd parts. We will confirm the
P-even couplings by demonstrating that they are related to
four NSNS couplings [6,7,28] through the linear T-duality
and S-duality transformations. We will also confirm them
by direct comparison with the kinematic factor in the type II
superstring theories.
The paper is arranged as follows. In Sec. II, we use the

type II supergravities to calculate various scattering ampli-
tudes of four RR states and find their corresponding
kinematic factors. We then transform these factors to
spacetime and find various couplings of four RR field
strengths at order α03. After imposing the self-duality on the
RR five-form field strength, we find all P-even and P-odd
couplings. In Sec. III, the S-duality and T-duality have been
used as guiding principles to find the P-even couplings of
four RR field strengths from the sphere-level couplings of
four NSNS states. We find exact agreement with the P-even
part of the above couplings. In Sec. IV, we confirm the
P-even couplings directly in type II superstring theories by
performing the traces in the corresponding kinematic factor
of the S-matrix element of four RR vertex operators in the
RNS and in the Pure spinor formalisms.

II. FIELD THEORY AMPLITUDE

In this section, we are going to calculate the S-matrix
elements of four RR fields in supergravity. These ampli-
tudes have the following structure in the Einstein frame:

A ¼ Ks

s
þKt

t
þKu

u

¼ 1

stu
ðtuKs þ suKt þ stKuÞ; ð4Þ

where Ks;Kt, and Ku are the field-theory kinematic factors
in the s-, t-, and u-channels, respectively. The Mandelstam
variables are defined as s ¼ −4α0k1 · k2, u ¼ −4α0k1 · k3,
t ¼ −4α0k2 · k3, and they satisfy the on-shell condition
sþ tþ u ¼ 0. Comparing this amplitude with the leading
term of the string-theory amplitude (2), one finds the
following relation between the field-theory and the
string-theory kinematic factors:

K ¼ −2−9e−3ϕ0=2ðtuKs þ suKt þ stKuÞ: ð5Þ
Multiplying this factor by −2ζð3Þ and transforming it to the
spacetime, one then finds the couplings of four RR fields at
order α03.
The type II supergravities describe interactions of

massless fields of type II superstring theories at the two-
derivative level. The type IIA supergravity in the Einstein
frame is given as (see, e.g., Ref. [30])

SIIA ¼ 1

2κ2

Z
d10x

ffiffiffiffiffiffiffi
−G

p �
R −

1

2
∂μΦ∂μΦ −

1

2
e−ΦjHj2

−
1

2

X
n¼2;4

e
5−n
2
Φj ~FðnÞj2

�
−

1

4κ2

Z
B∧dCð3Þ∧dCð3Þ;

ð6Þ
where R is the scalar curvature, Φ is the dilaton field, and
H is the B-field strength H ¼ dB. The RR field strengths
are ~Fð2Þ ¼ dCð1Þ and ~Fð4Þ ¼ dCð3Þ −H∧Cð1Þ. The above
action is the reduction of 11-dimensional supergravity on
manifold R1;9 × S1.
Unlike the type IIA supergravity, there is a challenging

feature in type IIB supergravity which is the self-duality of
the five-form field strength. It is hard to formulate the
action in a manifestly covariant form. One way to find the
action is to first construct the supersymmetric equations of
motion and then to write down an action that reproduces
those equations when the self-duality condition is imposed
by hand. The type IIB supergravity in the Einstein frame is
given as (see, e.g., Ref. [30])

SIIB ¼ 1

2κ2

Z
d10x

ffiffiffiffiffiffiffi
−G

p �
R −

1

2
∂μΦ∂μΦ −

1

2
e−ΦjHj2

−
1

2α

X
n¼1;3;5

e
5−n
2
Φj ~FðnÞj2

�
−

1

4κ2

Z
H∧dCð2Þ∧Cð4Þ;

ð7Þ

where α ¼ 1 for n ¼ 1; 3 and α ¼ 2 for n ¼ 5. The RR
field strengths in this case are ~Fð1Þ ¼ dCð0Þ,
~Fð3Þ ¼ dCð2Þ −HCð0Þ, and
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~Fð5Þ ¼ dCð4Þ −
1

2
Cð2Þ∧H þ 1

2
B∧dCð2Þ: ð8Þ

The self-duality condition that must be imposed in the
equations of motion by hand is

~Fð5Þ ¼ ⋆ ~Fð5Þ: ð9Þ

We will show that without the above self-duality condition
the action (7) does not reproduce correctly the S-matrix
element of string theory at low energy. However, imposing
this constraint by hand on the S-matrix elements, we will
find the consistency between field-theory and string-theory
S-matrix elements.
Using the above supergravity actions, one can read

various vertices and propagators and accordingly calculate
the Feynman amplitude of four RR states. For this purpose,
we assume the massless fields are small perturbations
around the flat background, i.e.,

gμν ¼ ημν þ 2κhμν; Bð2Þ ¼ 2κbð2Þ;

Φ ¼ ϕ0 þ
ffiffiffi
2

p
κϕ: ð10Þ

The explicit form of the propagators and the vertices that
we need in this paper appears in the Appendix. The external
states satisfy the on-shell relations k2 ¼ 0 and k · ε ¼ 0
where εμ1μ2��� is the polarization of external RR states.
Therefore, the couplings that we will find does not
contain ∂μFμμ1μ2���.

A. ∂FðnÞ∂FðnÞ∂FðnÞ∂FðnÞ couplings

There are five types of couplings in this section, i.e.,
n ¼ 1; 2; 3; 4; 5. When the four RR forms have the same
rank, the actions (6) and (7) dictate that for the cases
n ¼ 1; 2; 3 the Feynman amplitude in the s-channel is given
by the following expression:

As ¼ ½ ~V
FðnÞ
1

FðnÞ
2

h
�μν½ ~Gh�μν;λρ½ ~VhFðnÞ

3
FðnÞ
4

�λρ

þ ~V
FðnÞ
1

FðnÞ
2

ϕ
~Gϕ

~V
ϕFðnÞ

3
FðnÞ
4

; ð11Þ

where the vertices and propagators are given in the
Appendix. The amplitude in the u-channel is the same
as As in which the particle labels of the RR fields are
interchanged, i.e., Au ¼ Asð2 ↔ 3Þ. Similarly, the ampli-
tude in the t-channel is the same as Au in which the particle
labels of the external RR fields are interchanged,
i.e., At ¼ Auð3 ↔ 4Þ.
Replacing the vertices and propagators in (11), one can

calculate the string-theory kinematic factor (5). To convert
this factor to the couplings in the form of ð∂FÞ4, we use the
conservation of momentum,

P
4
i¼1 ki ¼ 0, and the on-shell

relations on the external states to write the multiples of two
Mandelstam variables which appear in (5) as

st ¼ 8α02ðk1 · k3k2 · k4 − k1 · k2k3 · k4 − k1 · k4k2 · k3Þ;
su ¼ 8α02ðk1 · k4k2 · k3 − k1 · k2k3 · k4 − k1 · k3k2 · k4Þ;
tu ¼ 8α02ðk1 · k2k3 · k4 − k1 · k3k2 · k4 − k1 · k4k2 · k3Þ;

ð12Þ

where on the right-hand side each label appears once in
each term. With the assistance of a field-theory inspired
package for Mathematica, “xTras” [31], as well as a
symbolic computer algebra system for field-theory prob-
lems known as “Cadabra” [32,33], we find the following
couplings for n ¼ 1; 2; 3 in the Einstein frame2:

K ¼ −
α03e5ϕ0=2

29κ2
½6Fa;cFb;dFa;bFc;d − Fa;cFb;dFa;cFb;d�

K ¼ α03e3ϕ0=2

211κ2
½8Fab;eFbc;fFad;fFcd;e

− 2Fab;eFab;fFcd;fFcd;e þ Fab;eFab;eFcd;fFcd;f�

K ¼ −
α03eϕ0=2

21132κ2
½18Fabc;gFbcd;hFaef;hFdef;g

− 2Fabc;gFabc;hFdef;hFdef;g

þ 18Fabc;gFbcd;hFaef;gFdef;h

− 18Fabc;gFbcd;gFaef;hFdef;h

þ Fabc;gFabc;gFdef;hFdef;h�: ð13Þ

The antisymmetric properties of the RR field strengths
have been taken into account to simplify the kinematic
factors in above form. However, multiterm symmetry, i.e.,
the Bianchi identity for the RR field strength, dF ¼ 0,
which relates a sum of terms with different index distri-
bution, has not yet been taken into account. This identity
reduces the number of couplings to the minimal number.
To do this last step, we use the following algorithm. The

general structure of each coupling in the momentum space
contains four RR field strengths that each carry one
momentum index. We first write it in terms of independent
variables. This can be done by writing the RR field
strengths in terms of RR potentials and using the con-
servation of momentum and the on-shell relations to rewrite
the coupling in terms of independent variables, i.e., writing
k4 ¼ −k3 − k2 − k1 and k3 · ε4 ¼ −k1 · ε4 − k2 · ε4. This
imposes all symmetries, including the Bianchi identity.
Then, we consider all possible contractions of four RR field
strengths with unknown coefficients and rewrite them in
terms of independent variables. By comparing these two
results, one finds some algebraic equations between the
unknown coefficients which can be solved to find the
coefficients.

2All contracted indices have been written as subscripts for
easier readability.
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To find the minimum number of couplings, we set all
unknown coefficients to zero except one of them and solve
the equations. If there is a solution, then the coefficient of
the minimum terms, which is 1 in this case, would be
found. Otherwise, we have to repeat this procedure by
setting all coefficients to zero except two of them. If there is
a solution, then the coefficient of the minimum terms,
which is 2 in this case, would be found. We continue this
approach to find the minimal number of couplings.
Performing this calculation for the couplings (13), we

simplify them to the following couplings in the string
frame:

S ⊃
γ

8κ2

Z
d10xe2ϕ0

ffiffiffiffiffiffiffi
−G

p �
2Fa;bFa;bFc;dFc;d

þ 2Fad;eFab;cFcf;dFef;b þ 2Fad;eFab;cFcf;bFef;d

−
1

2
Fab;dFab;cFef;dFef;c þFaef;dFabc;dFbeg;hFcfh;g

þFabe;fFabc;dFcfg;hFdeg;h þFabe;fFabc;dFcgh;eFfgh;d

�
:

ð14Þ

While the above algorithm reduces the number of terms for
n ¼ 1; 3, it does not reduce the three couplings in the case
of n ¼ 2. However, the index distribution is changed. It
means there are at least two different index distributions for
the three terms that are identical up to the Bianchi identity.
Note that to find the standard sphere-level dilaton factor
e−2ϕ0 in the string frame one has to normalize the RR
potential C with eϕ0C. The normalization of the RR fields
in the above action is consistent with the supergravities (6)
and (7).
For the n ¼ 4 case, there is another contribution to the

scattering amplitude in the s-channel which is coming from
the Chern–Simons term in (6). The Feynman amplitude in
this case is given as

As ¼ ½ ~V
Fð4Þ
1
Fð4Þ
2
h
�μν½ ~Gh�μν;λρ½ ~VhFð4Þ

3
Fð4Þ
4

�λρ

þ ~V
Fð4Þ
1
Fð4Þ
2
ϕ
~Gϕ

~V
ϕFð4Þ

3
Fð4Þ
4

þ ½ ~V
ϵ10F

ð4Þ
1
Fð4Þ
2
b
�μν½ ~Gb�μν;λρ½ ~VbFð4Þ

3
Fð4Þ
4
ϵ10
�λρ:

The amplitude in the first line is the same as the amplitude
(11). The term in the second line has two Levi-Civitá

tensors which can be replaced by the generalized
Kronecker delta according to the following expression:

ϵm1…mdϵn1…nd ¼ −δ½n1
m1…δnd�

md: ð15Þ

The massless pole in the u-channel is the same as As in
which the particle labels of the external RR fields are
interchanged, i.e., Au ¼ Asð2 ↔ 3Þ. Similarly, the massless
pole in the t-channel is the same as Au in which the particle
labels of the external RR fields are interchanged,
i.e., At ¼ Auð3 ↔ 4Þ.
Replacing the vertices and propagators in above ampli-

tude, one can evaluate the kinematic factor K. Using the
antisymmetry property of the RR field strength, we
simplify the result to the following couplings in the string
frame:

S ⊃ −
γ

29.32κ2

Z
d10xe2ϕ0

ffiffiffiffiffiffiffi
−G

p

× ½72Fabfg;eFabcd;eFcdrt;hFfgrt;h

− 36Fabfg;rFabcd;eFcdth;rFfgth;e

− 64Fabcf;gFabcd;eFdrth;eFfrth;g

− Fabcd;eFabcd;eFfgrt;hFfgrt;h

þ 6Fabcd;fFabcd;eFgrth;fFgrth;e�: ð16Þ

In this case, we have tried to use the Bianchi identity to
reduce the number of terms. However, we could not reduce
the number to less than five terms. So the above terms are
the minimum number of terms for the couplings with the
structure ð∂Fð4ÞÞ4.
For n ¼ 5 case, the supergravity action (7) dictates

that there is only one contribution to the scattering
amplitude in the s-channel. The Feynman amplitude in
this case is given as

As ¼ ½ ~V
Fð5Þ
1
Fð5Þ
2
h
�μν½ ~Gh�μν;λρ½ ~VhFð5Þ

3
Fð5Þ
4

�λρ

The massless pole in the u-channel is the same as As in
which the particle labels of the external RR fields are
interchanged, i.e., Au ¼ Asð2 ↔ 3Þ. Similarly, the massless
pole in the t-channel is the same as Au in which the particle
labels of the external RR fields are interchanged, i.e.,
At ¼ Auð3 ↔ 4Þ. These amplitudes produce the following
coupling in the string frame:

−
γ

211.32:5κ2

Z
d10xe2ϕ0

ffiffiffiffiffiffiffi
−G

p
½Fabcde;kFabcde;lFfghij;kFfghij;l þ Fabcde;kFabcde;lFfghij;kFfghij;l

− Fabcde;kFabcde;kFfghij;lFfghij;l þ 10Fabcde;fFabcdg;fFehijk;lFghijk;l

− 10Fabcde;fFabcdg;hFeijkl;hFgijkl;f − 10Fabcde;fFabcdg;hFeijkl;fFgijkl;h�; ð17Þ
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which are only P-even couplings. We have compared
them with the corresponding scattering amplitude of four
RR vertex operators in string theory and found disagree-
ment. This indicates that the type IIB supergravity does
not correctly describe the couplings of the RR five-form
field strength. However, the supergravity (7) is expected
to describe only the self-dual part of the RR five-form
field strength after imposing the self-duality by hand.
Therefore, we expect the above couplings to be physical
only after imposing the following transformation by
hand:

F5 →
1

2
ðF5 þ ⋆F5Þ: ð18Þ

Then the couplings (17) are expected to be consistent
with the α03 terms of the corresponding string-theory
scattering amplitude.
We impose the above self-duality in the couplings (17)

and use the identity (15) to rewrite the even number of Levi-
Civitáa tensors in terms of the metric and the odd number of
Levi-Civitáa tensors in terms of one Levi-Civitáa tensor.
Using Cadabra [32,33], we have found the following result:

S ⊃ −
γ

217.33.52κ2

Z
d10xe2ϕ0

ffiffiffiffiffiffiffi
−G

p
½240ðFbcdef;aFbcdef;aFhijkl;gFhijkl;g

þ 180Fbcdef;aFbghij;aFcdghl;kFefijl;k − 360Fbcdef;aFbcghi;aFdegkl;jFfhikl;j

þ 160Fbcdef;aFbcdgh;aFegjkl;iFfhjkl;i − 40Fbcdef;aFghijk;aFbcdgh;lFefijk;l

þ 10Fbcdef;aFghijk;aFbcdeg;lFfhijk;l þ 2Fbcdef;aFghijk;aFbcdef;lFghijk;l

− 30Fbcdef;aFbghij;aFcdefl;kFghijl;k þ 40Fbcdef;aFbcghi;aFdefkl;jFghikl;j

þ 40Fbcdef;aFbcdgh;aFefjkl;iFghjkl;i − 30Fbcdef;aFbcdeg;aFfijkl;hFgijkl;hÞ
− ϵabcdefghijð360Fabcde;rFfgknp;rFhlmnp;qFijklm;q

− 180Fabcde;rFfgknp;qFhlmnp;rFijklm;q − 160Fabcde;rFfghkp;rFilmnp;qFjklmn;q

þ 20Fabcde;rFfghip;rFjklmn;qFklmnp;q − 50Fabcde;rFfghnp;rFijklm;qFklmnp;q

þ 55Fabcde;qFfghip;rFjklmn;qFklmnp;r þ 50Fabcde;rFfghnp;qFijklm;qFklmnp;r

− 50Fabcde;qFfghnp;rFijklm;qFklmnp;r þ Fabcde;qFfghij;rFklmnp;qFklmnp;rÞ�: ð19Þ

The P-odd couplings above are then produced only by the
self-duality transformation (18). The above couplings must
be invariant under the transformation Fð5Þ → ⋆Fð5Þ. So they
describe the couplings of four self-dual five-forms at order
α03. Note that there are no P-odd couplings in (16), so the
above action must produce no couplings with the structure
ϵ10ð∂Fð4ÞÞ4 under the T-duality. It is easy to verify it by
noticing that it is impossible to have four RR five-form field
strengths in the P-odd part that each carry one Killing
index.
Since the couplings with the structure ð∂Fð5ÞÞ4 have

too many indices, it is hard to find all such couplings
with unknown coefficients with the xTras package [31].
So we could not apply the algorithm given above
equation (14) to reduce the couplings to the minimum
number.

B. ∂FðnÞ∂FðnÞ∂Fðn−2Þ∂Fðn−2Þ couplings

Since the maximum rank of the RR field strength is 5,
there are three types of couplings in this section, i.e.,

n ¼ 3; 4; 5. The scattering amplitude in the s-channel for
the cases n ¼ 3; 4 is given by

As ¼ ½ ~V
FðnÞ
1

FðnÞ
2

h
�μν½ ~Gh�μν;λρ½ ~VhFðn−2Þ

3
Fðn−2Þ
4

�λρ

þ ~V
FðnÞ
1

FðnÞ
2

ϕ
~Gϕ

~V
ϕFðn−2Þ

3
Fðn−2Þ
4

:

The scattering amplitude in the u-channel is given as

Au ¼ ½ ~V
FðnÞ
1

Fðn−2Þ
3

b
�μν½ ~Gb�μν;λρ½ ~VbFðnÞ

2
Fðn−2Þ
4

�λρ:

And the Feynman amplitude in the t-channel is the same as
Au in which the particle labels of the external RR fields are
interchanged, i.e., At ¼ Auð3 ↔ 4Þ.
Replacing the vertices and propagators in the above

amplitudes, one finds the following couplings for n ¼ 3; 4
in the string frame:
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S ⊃
γ

4κ2

Z
d10xe2ϕ0

ffiffiffiffiffiffiffi
−G

p �
2Faef;cFdef;bFa;bFc;d þ

1

3
Fdef;cFdef;bFa;cFa;b −

1

6
Fcde;fFcde;fFa;bFa;b

þ Facgh;fFbdgh;eFab;cFde;f − Fadfg;hFbfgh;eFab;cFde;c þ Fabgh;dFcefg;hFab;cFde;f

þ Fafgh;dFcegh;bFab;cFde;f þ
2

3
Fbfgh;dFcfgh;eFad;eFab;c

�
; ð20Þ

where we have also used the algorithm given above Eq. (14) to reduce the couplings to the minimum number.
For the case n ¼ 5, the type IIB supergravity (7) gives the following Feynman amplitudes in the s-channel and u-channel:

As ¼ ½ ~V
Fð5Þ
1
Fð5Þ
2
h
�μν½ ~Gh�μν;λρ½ ~VhFð3Þ

3
Fð3Þ
4

�λρ

Au ¼ ½ ~V
Fð5Þ
1
Fð3Þ
3
b
þ ~V

ϵ10F
ð5Þ
1
Fð3Þ
3
b
�μν½ ~Gb�μν;λρ½ ~VbFð5Þ

2
Fð3Þ
4

þ ~V
bFð5Þ

2
Fð3Þ
4
ϵ10
�λρ:

The amplitude in the t-channel is the same as Au in which the particle labels of the external RR fields are interchanged.
Replacing the vertices and propagators in the above amplitudes, one finds the following couplings in the string
frame:

γ

28.5.33κ2

Z
d10xe2ϕ0

ffiffiffiffiffiffiffi
−G

p
½120Fabc;dFefg;dFabchi;jFefghi;j − 180Fabc;dFaef;dFbcghi;jFefghi;j

− 90Fabc;dFabe;dFcfghi;jFefghi;j þ 12Fabc;dFabc;dFefghi;jFefghi;j

þ 180Fabc;dFaef;gFbchij;gFefhij;d − 180Fabc;dFaef;gFbchij;dFefhij;g

þ 90Fabc;dFabe;fFcghij;fFeghij;d þ 270Fabc;dFabe;fFcghij;dFeghij;f

− 36Fabc;dFabc;eFfghij;dFfghij;e þ ϵabcdefgklmðFhij;pFklm;nFabcde;nFfghij;p

− Fhij;nFklm;pFabcde;nFfghij;p − Fhij;pFklm;pFabcde;nFfghij;nÞ�;

which has P-even and P-odd parts.
Since the above couplings involve the RR five-form field strength, we have to impose the transformation (18) by hand to

produce correct couplings. We have found the following couplings for the self-dual RR five-form:

S ⊃
γ

29.5.33κ2

Z
d10xe2ϕ0

ffiffiffiffiffiffiffi
−G

p
½240Fabc;dFefg;dFabchi;jFefghi;j − 360Fabc;dFaef;dFbcghi;jFefghi;j

þ 6Fabc;dFabc;dFefghi;jFefghi;j þ 360Fabc;dFaef;gFbchij;gFefhij;d

− 360Fabc;dFaef;gFbchij;dFefhij;g þ 360Fabc;dFabe;fFcghij;dFeghij;f

− 36Fabc;dFabc;eFfghij;dFfghij;e þ ϵabcdefghijð3Fabm;pFklm;nFcdekl;pFfghij;n

− 3Fabm;nFklm;pFcdekl;pFfghij;n − 3Fabm;pFklm;pFcdekl;nFfghij;n

þ 3Falm;nFklm;pFbcdek;pFfghij;n þ 2Fabc;pFklm;pFdeklm;nFfghij;nÞ�: ð21Þ

The above couplings satisfy the self-duality condition
Fð5Þ ¼ ⋆Fð5Þ. Since the number of indices is too many,
we could not find all contractions of the structure
ð∂Fð5ÞÞ2ð∂Fð3ÞÞ2. So we could not perform the algorithm
given above Eq. (14) to reduce the number of couplings to
the minimum number.
Note that, under dimensional reduction on a circle, the

P-odd couplings in (21) produce no term in which each RR
field strength carries one Killing index. As a result, the
P-odd couplings in the above equation produce no cou-
plings with the structure ϵ10ðFð4ÞÞ2ðFð2ÞÞ2 under T-duality.

This is consistent with the fact that there is no such
coupling in (20).

C. ∂FðnÞ∂FðnÞ∂Fðn−4Þ∂Fðn−4Þ couplings

Since the minimum rank of the RR field strength is 1,
there is only one type of coupling in this section, i.e., n ¼ 5.
The effective action (7) produces the following s-channel
amplitude:

As ¼ ½ ~V
Fð5Þ
1
Fð5Þ
2
h
�μν½ ~Gb�μν;λρ½ ~VhFð1Þ

3
Fð1Þ
4

�λρ:
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In this case, one can easily observe that there is no
amplitude in u- and t-channels. Therefore, the total
amplitude comes from the s-channel which produces the
following couplings in the string frame:

γ

28.5.32κ2

Z
d10xe2ϕ0

ffiffiffiffiffiffiffi
−G

p
½240Fa;bFc;dFaefgh;cFbefgh;d�;

where we have also used the algorithm given above
Eq. (14) to reduce the number of couplings to the minimum
number. By imposing the self-duality transformation (18)
on the above coupling, we obtain the following couplings
for the self-dual RR form:

S ⊃
γ

29.5.32κ2

Z
d10xe2ϕ0

ffiffiffiffiffiffiffi
−G

p

× ½240Fa;bFc;dFaefgh;cFbefgh;d

− ϵabcdefghimðFj;lFk;mFabcde;lFfghij;k

þ Fj;lFk;mFabcde;kFfghij;l − Fk;jFk;mFabcde;lFfghij;lÞ�;
ð22Þ

where we have also reduced the P-even couplings to the
minimum number.

D. ∂FðnÞ∂Fðn−2Þ∂Fðn−2Þ∂Fðn−4Þ couplings

In this case also, there is only one type of coupling, i.e.,
n ¼ 5. There is no Feynman amplitude in the s-channel.
The amplitude in the u-channel is given as

Au ¼ ½ ~V
Fð5Þ
1
Fð3Þ
3
b
�μν½ ~Gb�μν;λρ½ ~VbFð3Þ

2
Fð1Þ
4

�λρ

þ ½ ~V
ϵ10F

ð5Þ
1
Fð3Þ
3
b
�μν½ ~Gb�μν;λρ½ ~VbFð3Þ

2
Fð1Þ
4

�λρ:

The t-channel amplitude is the same as Au in which
the particle labels of the external RR fields are inter-
changed. Summing these two contributions, one finds the
amplitude produces the following P-even and P-odd
couplings:

S ⊃ −
γ

26.5.32κ2

Z
d10xe2ϕ0

ffiffiffiffiffiffiffi
−G

p
½120Fcdefg;hFa;bFacd;bFefg;h − 120Fcdfgh;bFa;bFacd;eFfgh;e

− 120Fcdfgh;eFa;bFacd;eFfgh;b þ ϵabcdeghijkðFabcde;lFf;mFfgh;lFijk;m

þ Fabcde;lFf;lFfgh;mFijk;m − Fabcde;lFf;mFfgh;mFijk;lÞ�: ð23Þ

Applying the self-duality condition (18) on the above
couplings and using the identity (15), we have found they
are invariant. We have also reduced the P-even couplings
above to the minimum number.
One may consider couplings with the structure

∂FðnÞ∂Fðn−4Þ∂Fðn−4Þ∂Fðn−2Þ. In this case, there is one
possibility, i.e., n ¼ 5. However, the type IIB supergravity
indicates that the vertices in the Feynman amplitudes are
zero. So there is no such coupling at order α03.

E. ∂FðnÞ∂FðnÞ∂FðnÞ∂Fðn−2Þ couplings

There are three possibilities in this case, i.e., n ¼ 3; 4; 5.
However, the type IIB supergravity (7) indicates that the
Feynman amplitudes in the s-, t-, and u-channels are zero
for n ¼ 3; 5. For the case n ¼ 4, the type IIA supergravity
(6) indicates that the amplitude in the s-channel is given as

As ¼ ½ ~V
ϵ10F

ð4Þ
1
Fð4Þ
2
b
�μν½ ~Gb�μν;λρ½ ~VbFð4Þ

3
Fð2Þ
4

�λρ:

The amplitude in the u-channel is the same as As in which
the particle labels of the external RR fields are inter-
changed, i.e., Au ¼ Asð2 ↔ 3Þ. Similarly, the amplitude
in the t-channel is the same as Au in which the particle
labels of the external RR fields are interchanged, i.e.,

At ¼ Auð1 ↔ 2Þ. Replacing the appropriate vertices and
propagators in the amplitudes, one finds the kinematic
factors which produce the following couplings in the string
frame:

S ⊃
γ

29.32κ2

Z
d10xe2ϕ0

ffiffiffiffiffiffiffi
−G

p
ϵabcdefghij

× ½2Fijmn;kFefgh;lFabcd;kFmn;l

− Fijmn;kFefgh;lFabcd;lFmn;k�; ð24Þ

which has only P-odd couplings. Note that under dimen-
sional reduction on a circle the above couplings produce no
term in which the RR four-forms each carry one Killing
index and the RR two-form carries no Killing index. As a
result, they produce no couplings with the structure
ϵ10ðFð3ÞÞ4 under T-duality. This is consistent with the fact
that there are no such couplings in (14).
One may consider couplings with the structure

∂FðnÞ∂FðnÞ∂FðnÞ∂Fðn−4Þ. In this case, there is one possibil-
ity, i.e., n ¼ 5. However, the type IIB supergravity indicates
that the vertices in the Feynman amplitudes are zero. So
there is no such coupling at order α03. It is also consistent
with the T-duality of the couplings in (24). In fact, the RR
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two-form in (24) does not contract with the Levi-
Civitá tensor, so under the dimensional reduction, there
is no coupling in which the RR four-forms carry no Killing
index and the RR two-form carries one Killing index. As a
result, the couplings (24) produce no terms with the
structure ∂Fð5Þ∂Fð5Þ∂Fð5Þ∂Fð1Þ.

III. CONSISTENCY WITH DUALITIES

We have found all different couplings of four RR states at
order α03 in the previous section. In this section, we would
like to show that these couplings are related to the standard
four NSNS couplings under S-duality and T-duality trans-
formations. We begin with the couplings in Sec. II A. Our
starting point in this case is the coupling Fð3ÞFð3ÞFð3ÞFð3Þ

which can be found by making the H4 couplings to be

S-duality invariant. TheH4 couplings on the other hand can
be derived from the coupling t8t8R4 in (1) by extending the
Riemann curvature to the generalized Riemann curvature
[28], i.e.,

Rab
cd → R̄ab

cd ¼ Rab
cd −

κffiffiffi
2

p η½a½cϕ;b�d� þ 2e−ϕ0=2Hab
½c;d�;

ð25Þ

where the bracket notation is defined as Hab
½c;d� ¼

1
2
ðHab

c;d −Hab
d;cÞ and ϕ0 is the constant dilaton back-

ground and the semicolon symbol denotes the covariant
derivative. The resulting action has the following form in
the Einstein frame [28]:

S ⊃
γ

κ2

Z
d10x

ffiffiffiffiffiffiffi
−G

p
e−3ϕ0=2

�
R̄hkmnR̄krnpR̄rsqmR̄shpq þ

1

2
R̄hkmnR̄krnpR̄rspqR̄shqm −

1

2
R̄hkmnR̄krmnR̄rspqR̄shpq

−
1

4
R̄hkmnR̄krpqR̄rsmnR̄shpq þ

1

16
R̄hkmnR̄khpqR̄rsmnR̄srpq þ

1

32
R̄hkmnR̄khmnR̄rspqR̄srpq

�
: ð26Þ

The couplings of four H can be read from the above action. Invariance of this action under S-duality transformations in
type IIB theory requires the couplings of four Fð3Þ to be the same as the couplings of fourH; i.e., the couplings in the string
frame are

S ⊃
16γ

κ2

Z
d10x

ffiffiffiffiffiffiffi
−G

p
e2ϕ0

�
Fhk½m;n�Fkr½n;p�Frs½q;m�Fsh½p;q� þ

1

2
Fhk½m;n�Fkr½n;p�Frs½p;q�Fsh½q;m�

−
1

2
Fhk½m;n�Fkr½m;n�Frs½p;q�Fsh½p;q� −

1

4
Fhk½m;n�Fkr½p;q�Frs½m;n�Fsh½p;q�

þ 1

16
Fhk½m;n�Fkh½p;q�Frs½m;n�Fsr½p;q� þ

1

32
Fhk½m;n�Fkh½m;n�Frs½p;q�Fsr½p;q�

�
: ð27Þ

Writing the above couplings and the couplings ðFð3ÞÞ4 in
(14) in terms of independent variables, we have found that
they are exactly identical.3

We use the following steps on the couplings (27) to find
the couplings with the structure ðFðnÞÞ4 for n ¼ 2; 1: We
first use the dimensional reduction on the couplings (27)

and keep the terms with the structure ðFð2Þ
y Þ4 where the

index y is the Killing index. Under the linear T-duality

transformations, the RR field strength FðnÞ
y transforms to

Fðn−1Þ with no Killing index. Therefore, under the T-duality
transformation, the above couplings transform to the
couplings with the structure ðFð2ÞÞ4 in type IIA theory.
Performing the same steps once more, we have found the

couplings with the structure ðFð1ÞÞ4 in type IIB theory. We
have checked that these couplings are exactly equal to the
corresponding couplings in (14) when we write them in
terms of independent variables.
Now, consider the couplings in the dimensional reduc-

tion of (27) in which the RR three-forms carry no Killing
index. Under the T-dality, they transform to the couplings

with the structure ðFð4Þ
y Þ4 in type IIA theory. We compare

these couplings with the couplings with the structure

ðFð4Þ
y Þ4 in the dimensional reduction of the couplings

(16). Writing both sets of couplings in terms of independent
variables, we have found exact agreement.
To show that the coupling with the structure ðFð5ÞÞ4 in

(19) is consistent with dualities, we note that RR five-form
field strength is invariant under the S-duality. We already
pointed out that the P-odd couplings in (19) are consistent
with T-duality. To verify that the P-even couplings in (19)
are consistent with T-duality, we consider the couplings in

3Note that the normalization of H in Ref. [28] is twice the
normalization of H in the supergravities (6) and (7). As a result,
the normalization of RR field strengths in the actions in this
section is twice the normalization of FðnÞ in the previous section.
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the dimensional reduction of (19) in which the RR five-

forms each carry one Killing index, i.e., ðFð5Þ
y Þ4. Under the

T-duality, they transform to the couplings with the structure
ðFð4ÞÞ4. We compare them with the couplings in (16).
Writing both sets of couplings in terms of independent
variables, we have found exact agreement.
We now compare the couplings in Sec. II B with dual-

ities. Our starting point in this case is the couplings with the

structure Fð5ÞFð5ÞFð3ÞFð3Þ. Using the consistency of the
couplings (26) with S-duality and T-duality, the couplings
with the structure Fð5ÞFð5ÞHH have been found in
Ref. [23]. Under the S-duality, the RR five-form is
invariant, and the B-field strength H transforms to the
RR three-form field strength. So the consistency of
the couplings found in Ref. [23] with S-duality requires
the following couplings in the string frame:

S⊃
γ

κ2

Z
d10xe2ϕ0

ffiffiffiffiffiffiffi
−G

p �
−
2

3
Fhrstu;nFqrstu;mFknp;hFmpq;kþ

2

3
Fnqstu;hFpqstu;mFknr;hFmpr;k−

1

90
Fnqstu;hFnqstu;kFmpr;hFmpr;k

þ 1

6
Fhqstu;nFkqstu;mFmpr;kFnpr;hþ

1

6
Fhqstu;mFkqstu;nFmpr;kFnpr;hþ

4

9
Fhkmnu;tFpqrtu;nFhkm;sFpqr;s

þ 1

3
Fnqrtu;hFnpstu;kFhqr;mFkps;m −

1

3
Fnqrtu;hFmrstu;kFnpq;kFmps;h−

4

3
Fmnptu;kFnrstu;hFkpq;mFhqs;r

þ 4Fnqrtu;hFmpstu;kFhkr;nFpqs;mþ 1

3
Fmnptu;hFmqstu;hFnpr;kFqrs;k

�
: ð28Þ

To compare them with the couplings in (21), we have to
impose the self-duality transformation (18) on the above
couplings. Using the identity (15) to write the multiple of
two Levi-Civitáa tensors in terms of the metric, we find two
types of terms. One type has terms with no Levi-Civitá
tensor which is the same as (28) up to the overall factor of 1

2
.

The other type has terms with one Levi-Civitáa tensor. This
part, in the momentum space, produces terms with zero or
one Mandelstam variable which are not consistent with the
superstring-theory amplitudes [21,34]. This indicates that
the couplings (28) must have some P-odd couplings which
are not related to the couplings (26) by the string dualities.
In fact, the corresponding Feynman amplitude in Sec. II B
has P-odd couplings even before imposing the self-duality
transformation.
The P-even couplings (28) and their P-odd partners must

be consistent with T-duality before or after imposing the
self-duality transformation because they are not produced
by type IIB supergravity which is off for the RR five-form
field strength. In particular, under the dimensional reduc-

tion of (28), the couplings with the structure ðFð5Þ
y Þ2ðFð3Þ

y Þ2
transform under T-duality to the couplings with the
structure ðFð4ÞÞ2ðFð2ÞÞ2 in (20). This indicates that the
self-duality transformation of the action (28) and its P-odd
partner should produce the same couplings as (28). The
transformation of (28) under the self-duality (18) produces
the same couplings with the overall factor 1

2
and some P-odd

couplings. The other factor of 1
2
must then be reproduced by

a self-duality transformation of the P-odd terms.
One may try to find the P-odd partner of (28)

by considering all contractions with the structure
ϵð10ÞðFð5ÞÞ2ðFð3ÞÞ2 with unknown coefficients and fix them
by requiring them to produce the above factor of 1

2
under the

self-duality transformation and requiring them to produce
no term with zero or one Mandelstam variable in the
momentum space [21,34]. However, there are too many
such contractions, so we do not try to find the P-odd partner
of the couplings (28) in this paper. We have written the
couplings (28) and the P-even part of the couplings (21) in
terms of independent variables and found exact agreement.
Using the dimensional reduction on the couplings (28)

in type IIB theory, one can find the couplings with the

structure ðFð5Þ
y Þ2ðFð3Þ

y Þ2. Under T-duality, they transform
to the couplings with the structure ðFð4ÞÞ2ðFð2ÞÞ2 in
type IIA theory. Repeating these steps on the couplings
ðFð4ÞÞ2ðFð2ÞÞ2, one can find the couplings with the structure
ðFð3ÞÞ2ðFð1ÞÞ2 in type IIB theory. Writing these couplings
and the corresponding couplings in (20) in terms of
independent variables, we have again found exact agree-
ment between the two sets of couplings.
We now compare the couplings in Sec. II C with dual-

ities. There is only one coupling in this section, i.e., the
couplings with the structure ðFð5ÞÞ2ðFð1ÞÞ2. Such couplings
have been found in Ref. [27] by imposing the S-duality on
the couplings of two RR five-form and two dilatons (see
Eq. (69) in Ref. [27]). Alternatively, the couplings with
the structure ðFð5ÞÞ2ðFð1ÞÞ2 can be found by imposing the
dualities on the couplings (28). To this end, we use the
dimensional reduction on the couplings with the structure
ðFð4ÞÞ2ðFð2ÞÞ2 that we have found in the above paragraph

and consider terms with the structure ðFð4ÞÞ2ðFð2Þ
y Þ2. Then,

under T-duality, they transform to the couplings with the

structure ðFð5Þ
y Þ2ðFð1ÞÞ2. Converting the Killing index to a

complete spacetime index and taking the symmetry factors
into account, one finds the couplings with the structure
ðFð5ÞÞ2ðFð1ÞÞ2 without any ambiguity because it is
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impossible to have couplings in which the RR five-forms
do not contract with each other. These couplings are the
same as the couplings found in Ref. [27]; i.e, in the string
frame they are

S ⊃
2

3

γ

κ2

Z
d10x

ffiffiffiffiffiffiffi
−G

p
e2ϕ0 ½Faefgh;cFbefgh;dFa;bFc;d�: ð29Þ

Transforming the above couplings under the self-duality
(18), we have found couplings which are identical to the
couplings in (22) after writing both sets in terms of
independent variables. This indicates that there is no
P-odd coupling in the above action. As in the field theory,
Sec. II C, the P-odd part in the self-dual action comes only
from the self-duality transformation.
To compare the couplings in Sec. II D with dualities,

we consider the couplings with the structure Fð5ÞFð1ÞHH
which have been found in Ref. [27] by imposing dualities
on the couplings in (27). The S-duality invariant of these
couplings produces among other things the couplings with
the structure Fð5ÞFð1ÞFð3ÞFð3Þ, i.e.,

S ⊃ −
γ

κ2

Z
d10x

ffiffiffiffiffiffiffi
−G

p
e2ϕ0 ½8Fh;kFmnpqr;sFhpq;mFkrs;n

þ 4Fh;kFkmnpq;rFmns;hFpqr;s

− 2Fh;kFkmnpq;hFmns;rFpqr;s�: ð30Þ

Note that these couplings are only P even. Transforming
them under the self-duality (18), one finds P-even and
P-odd couplings. Writing them in terms of independent
variables, we have found they are exactly equal to the
couplings in (23). It is important to note that the field-
theory couplings in Sec. II D have a P-odd part even before
imposing the self-duality transformation, whereas the
above couplings have no P-odd part. This indicates the
field-theory couplings (23) are consistent with the duality
transformations of (26), i.e., (30), only after imposing the
self-duality transformation on (30).
Finally, the P-odd couplings in Sec. II D should be

related to the P-odd couplings in (24) under T-duality.
Under the dimensional reduction, the latter couplings
produce, among other things, the couplings with the

structure ϵð10Þy Fð4ÞðFð4Þ
y Þ2Fð2Þ

y . Under T-duality, they trans-
form to the couplings with the structure

ϵð10Þy Fð5Þ
y ðFð3ÞÞ2Fð1Þ. Completing the Killing index to the

full spacetime index, one finds the couplings with the
structure ϵ10Fð5ÞðFð3ÞÞ2Fð1Þ. Writing the resulting cou-
plings and the P-odd couplings in (23) in terms of
independent variables, we have found exact agreement.

IV. CONSISTENCY WITH STRING AMPLITUDES

In this section, we are going to calculate the kinematic
factor K directly in the type II superstring theory and
compare it with the couplings found in Sec. II.
The tree-level scattering amplitude of four RR states in

the RNS formalism [35] is given by the correlation function
of their corresponding vertex operators on the sphere world
sheet. Since the background superghost charge of the
sphere is Qϕ ¼ 2, one has to choose the vertex operators
in the appropriate pictures to produce the compensating
chargeQϕ ¼ −2. We choose the RR vertex operators in the
ð−1=2;−1=2Þ picture. The amplitude is given by the
following correlation function [35]:

A ∼
Z Y4

i¼1

d2zih
Y4
j¼1

Vð−1=2;−1=2Þ
RR ðzj; z̄jÞi; ð31Þ

where the vertex operators are

Vð−1=2;−1=2Þ
RR ðzj; z̄jÞ ¼ ðP∓ΓjðnÞÞAB∶e−ϕðzjÞ=2SAðzjÞeikj·XðzjÞ∶

× e− ~ϕðz̄jÞ=2 ~SBðz̄jÞeikj· ~Xðz̄jÞ∶; ð32Þ

where j ¼ 1;…4 and the indices A;B;… are the Dirac
spinor indices and P∓ ¼ 1

2
ð1∓γ11Þ is the chiral projection

operators which make the calculation of the gamma
matrices to be with the full 32 × 32 Dirac matrices of
the ten dimensions. The RR field strength appears in the
definition of ΓiðnÞ as

ΓiðnÞ ¼
an
n!

Fiμ1���μnγ
μ1���μn ; ð33Þ

where the factor an ¼ −1 in the type IIA theory and an ¼ i
in the type IIB theory [36]. There is ambiguity in choosing
the chiral projection operator in the vertex operator (32),
e.g., P− or Pþ. As we will see, this makes it difficult to
confirm the P-odd couplings in Sec. II with the string-
theory scattering amplitudes. The normalization of the
amplitude (31) in which we are not interested in this
section may be fixed after fixing the conformal symmetry
of the integrand.
Substituting the vertex operators (32) into (31), and

using the fact that there is no correlation between hol-
omorphic and antiholomorphic for the sphere world sheet,
one can separate the amplitude to the holomorphic and the
antiholomorphic parts as

A ∼ ðP−Γ1ðnÞÞABðP−Γ2ðmÞÞCDðP−Γ3ðpÞÞEFðP−Γ4ðqÞÞGH

×
Z Y4

i¼1

d2ziIACEG ⊗ ~IBDFH; ð34Þ

where the holomorphic part is
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IμαAC ¼ h∶e−ϕðz1Þ=2∶e−ϕðz2Þ=2∶e−ϕðz3Þ=2∶e−ϕðz4Þ=2∶i
× h∶eik1·Xðz1Þ∶eik2·Xðz2Þ∶eik3·Xðz3Þ∶eik4·Xðz4Þ∶i
× h∶SAðz1Þ∶SCðz2Þ∶SEðz3Þ∶SGðz4Þ∶i ð35Þ

and the antiholomorphic part ~IBDFH is given by a similar
expression.
Using the standard propagators and the correlation

function of four spin operators [35], one can perform the
correlators in (34). Using the on-shell relations and the
conservation of momentum, one can check that the inte-
grand of the amplitude is invariant under SLð2; RÞ ×
SLð2; RÞ transformations which is the conformal sym-
metry of the z-plane. Fixing this symmetry by setting
z1 ¼ 0; z2 ≡ z; z3 ¼ 1, and z4 ¼ ∞ and normalizing the
amplitude, one can write it in the string frame form of (2) in
which the kinematic factor is

K ¼ ðP∓Γ1ðnÞÞABðP∓Γ2ðmÞÞCDðP∓Γ3ðpÞÞEF
× ðP∓Γ4ðqÞÞGHKACEG ⊗ ~KBDFH; ð36Þ

where the kinematic factor in the holomorphic part is

KACEG ¼ −
1

8
½tðγμC−1ÞACðγμC−1ÞEG

− sðγμC−1ÞAGðγμC−1ÞCE� ð37Þ

and the kinematic factor in the antiholomorphic part is
similar to the above expression.
One may use the Kawai-Lewellen-Tye (KLT) prescrip-

tion [37] to calculate the sphere-level scattering amplitude
of closed string states from the corresponding disk-level
scattering amplitude of open string states. According to the
KLT prescription, the sphere-level amplitude of four closed
string states is given by

A ∼ sinðα0πk2 · k3=2ÞAopenðs=8; t=8Þ ⊗ ~Aopenðt=8; u=8Þ;
ð38Þ

where Aopenðs=8; t=8Þ is the disk-level scattering amplitude
of four open string states in the s − t-channel which has
been calculated in Ref. [6],

Aopenðs=8; t=8Þ ∼
Γð−s=8ÞΓð−t=8Þ

Γð1þ u=8Þ K; ð39Þ

where the Mandelstam variables are the same as in the
closed string amplitude. The open string kinematic factor K
depends on the momentum and the polarization of the
external states [6].
To find the sphere-level scattering amplitude of four

RR states, one has to consider the disk-level scattering
amplitude of four R states. The kinematic factor for this
case is [6]

Kðu1; u2; u3; u4Þ

¼ −
1

8
½tūA1 ðγμC−1ÞACuC2 ūE3 ðγμC−1ÞEGuG4

− sūA1 ðγμC−1ÞAGuG4 ūC2 ðγμC−1ÞCEuE3 �; ð40Þ

where ui with i ¼ 1;…; 4 are the spinor polarizations. They
satisfy the following on-shell relations:

k2i ¼ 0; ðγ · kiC−1ÞABuBi ¼ 0: ð41Þ

Using these relations, one can write the open string
kinematic factor (40) in terms of the holomorphic kin-
ematic factor (37) as

Kðu1; u2; u3; u4Þ ¼ −4i
ffiffiffi
2

p
uA1u

C
2 u

E
3u

G
4KACEG: ð42Þ

Similarly, for the antiholomorphic part, i.e.,

~Kð ~u1; ~u2; ~u3; ~u4Þ ¼ −4i
ffiffiffi
2

p
~uB1 ~u

D
2 ~u

F
3 ~u

H
4
~KBDFH:

Using the above relations and ΓðxÞΓð1 − xÞ ¼ π= sinðπxÞ,
and substituting the following relations in (38),

uA1 ⊗ ~uB1 → ðP∓Γ1ðnÞÞAB;
uC2 ⊗ ~uD2 → ðP∓Γ2ðmÞÞCD;
uE3 ⊗ ~uF3 → ðP∓Γ1ðnÞÞEF;
uG4 ⊗ ~uH4 → ðP∓Γ2ðmÞÞGH; ð43Þ

one can write it as the string frame form of (2) with
the kinematic factor (36), as expected. While the open
string kinematic factor (40) is the final result for the
S-matrix element of four open string spinors, the closed
string kinematic factor (36) is not yet the final result.
The Dirac matrices in the kinematic factor appear in
trace operators which should then be evaluated explicitly
to find the final kinematic factor of the closed string
amplitude.
The closed string kinematic factor (36) has four different

terms; each one has one of the following factors:

T1 ¼ ðP∓Γ1ðnÞÞABðP∓Γ2ðmÞÞCDðP∓Γ3ðpÞÞEFðP∓Γ4ðqÞÞGH
× ðγμC−1ÞACðγμC−1ÞEGðγνC−1ÞBDðγνC−1ÞFH;

T2 ¼ðP∓Γ1ðnÞÞABðP∓Γ2ðmÞÞCDðP∓Γ3ðpÞÞEFðP∓Γ4ðqÞÞGH
× ðγμC−1ÞAGðγμC−1ÞCEðγνC−1ÞBDðγνC−1ÞFH;

T3 ¼ðP∓Γ1ðnÞÞABðP∓Γ2ðmÞÞCDðP∓Γ3ðpÞÞEFðP∓Γ4ðqÞÞGH
× ðγμC−1ÞACðγμC−1ÞEGðγνC−1ÞBHðγνC−1ÞDF;

T4 ¼ðP∓Γ1ðnÞÞABðP∓Γ2ðmÞÞCDðP∓Γ3ðpÞÞEFðP∓Γ4ðqÞÞGH
× ðγμC−1ÞAGðγμC−1ÞCEðγνC−1ÞBHðγνC−1ÞDF: ð44Þ
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Using the properties of the charge conjugation matrix and the Dirac matrices (see, e.g., Appendix B in Ref. [36]), one can
write the tensors T1;…; T4 in terms of the RR field strengths and the trace of the gamma matrices as

T1 ¼
ð−1Þ12½mðmþ1Þþqðqþ1Þ�anamapaq

n!m!p!q!
F1μ1…μnF2ν1…νmF3α1…αpF4β1…βqTrðP�γμγμ1…μnγνγν1…νmÞTrðP�γμγα1…αpγνγ

β1…βqÞ;

T2 ¼
ð−1Þ12½mðmþ1Þþqðqþ1Þ�anamapaq

n!m!p!q!
F1μ1…μnF2ν1…νmF3α1…αpF4β1…βqTrðP�γνγν1…νmγμγα1…αpγνγ

β1…βqγμγ
μ1…μnÞ;

T3 ¼
ð−1Þ12½nðnþ1Þþpðpþ1Þ�anamapaq

n!m!p!q!
F1μ1…μnF2ν1…νmF3α1…αpF4β1…βqTrðP�γνγν1…νmγμγα1…αpγνγ

β1…βqγμγ
μ1…μnÞ;

T4 ¼
ð−1Þ12½mðmþ1Þþqðqþ1Þ�anamapaq

n!m!p!q!
F1μ1…μnF2ν1…νmF3α1…αpF4β1…βqTrðP�γμγμ1…μnγνγβ1…βqÞTrðP�γμγα1…αpγνγ

ν1…νmÞ:

ð45Þ

Using the above factors, the closed string kinematic factor (36) can be written as

K ¼ 1

64
½t2T1 − stT2 − stT3 þ s2T4�; ð46Þ

Performing the traces, one finds how the four RR field strengths contract among themselves. Writing
t2 ¼ 16α02k2 · k3k1 · k4, s2 ¼ 16α02k1 · k2k3 · k4 and using the first relation in (12), one may write the kinematic factor
(46) in the form of ð∂FÞ4 in the spacetime which can then be compared with the couplings in Sec. II.
The scattering amplitude of four RR states in type II superstring theories have been also calculated in the Pure spinor

formalism in Ref. [38]. The couplings of four RR field strengths at order α03 have been found to be

S ⊃
X

M;N;P;Q

va1…aM ;b1…bN ;c1…cP;d1…dQ∂i∂jFa1…aM∂i∂jFb1…bNFc1…cPFd1…dQ; ð47Þ

where the sum overM;…; Q, runs over even integers from zero to 4 for type IIA supergravity and over odd integers from 1
to 5 for type IIB. The tensor v is defined in terms of the trace of the gamma matrices as follows:

va1…aM ;b1…bN ;c1…cP;d1…dQ ¼ 32

9

cMcNcPcQ
M!N!P!Q!

½TrðP∓γa1…aMγqγ
b1…bNγnγ

c1…cPγqγd1…dQγnÞεNεQ
− TrðP∓γa1…aMγqγ

b1…bNγnÞTrðP∓γc1…cPγqγd1…dQγnÞεNεQ
− 5TrðP∓γa1…aMγqγ

c1…cPγnγ
b1…bNγqγd1…dQγnÞεPεQ

þ 4TrðP∓γa1…aMγqγ
c1…cPγnÞTrðP∓γb1…bNγqγd1…dQγnÞεPεQ

þ TrðP∓γa1…aMγqγ
c1…cPγnγ

d1…dQγqγb1…bNγnÞεNεQ�; ð48Þ

where c2p ¼ ð−1Þpþ1=16
ffiffiffi
2

p
and εN ¼ ð−1Þ12NðN−1Þ. We

have included the chiral projection operators in the traces
because the RR vertex operators that have been considered
in Ref. [38] have no chiral projection operator. Using the
RR vertex operator (32) instead, one has to consider P∓
inside the traces.
The γ11 in the chiral projection operators has one Levi-

Civitá tensor. As a result, the kinematic factor (46)

and tensor v in (48) have terms with zero, one, and two

Levi-Civitá tensors. Since there is ambiguity in the chiral
projection operator in the vertex (32), the signs of P-odd
terms in T1; T2; T3; T4, and in tensor v are ambitious.
Therefore, we consider only the P-even terms in the
kinematic factor (46) and in tensor v. Moreover, we use
the identity (15) to write the two Levi-Civitá tensors in them
in terms of the metric. Using the symbolic program for the
manipulation the gamma matrices [39], we have performed
the traces in the kinematic factor (46) and in the tensor v.
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Using on-shell relations, we have found that the
P-even terms in RNS and in the Pure spinor formalisms
at order α03 are exactly identical. We have also found these
couplings are identical to various P-even couplings
in Sec. II.
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APPENDIX: THREE-POINT VERTICES AND
PROPAGATORS

Using the supergravities (6) and (7), one can read the
propagators of the NSNS fields and the three-point vertices
for two on-shell RR states and one off-shell NSNS state that
we need in evaluating the Feynman amplitudes in Sec. II.
The propagators are:

(i) Graviton propagator:

½ ~Gh�μν;λρ ¼ −
i

2k2

�
ημληνρ þ ημρηνλ −

1

4
ημνηλρ

�
:

ðA1Þ

(ii) B-field propagator:

½ ~Gb�μν;λρ ¼ −
ieϕ0

2k2
ðημληνρ − ημρηνλÞ: ðA2Þ

(iii) Dilaton propagator:

~Gϕ ¼ −
i
k2

: ðA3Þ

The vertices are the following:
(i) Two RR and one graviton4:

½ ~V
FðnÞ
1

FðnÞ
2

h
�λρ ¼ ie

ð5−nÞ
2

ϕ0

4καn!
ð2nFðλ

1 ν1…νn−1
FρÞν1…νn−1
2

− ηλρF1ν1…νnF
ν1…νn
2 Þ: ðA4Þ

(ii) Two RR and one B-field:

½ ~V
FðnÞ
1

Fðn−2Þ
2

b
�λρ ¼ −

ie
ð5−nÞ
2

ϕ0

4καðn − 2Þ!F
λρ
1 ν1…νn−2

Fν1…νn−2
2 :

ðA5Þ

(iv) Two RR and one dilaton:

~V
FðnÞ
1

FðnÞ
2

ϕ
¼ −

ie
ð5−nÞ
2

ϕ0

4
ffiffiffi
2

p
κn!

ð5 − nÞF1ν1…νnF
ν1…νn
2 : ðA6Þ

(v) Two RR four-forms, one B-field, and one Levi-
Civitá tensor:

½ ~V
ϵ10F

ð4Þ
1
Fð4Þ
2
b
�αβ ¼ −

i
1152κ

ϵαβγδϵζηλμνF1γδϵζF2ηλμν:

ðA7Þ

(vi) One RR five-form, one RR three-form, one B-field,
and one Levi-Civitá tensor:

½ ~V
ϵ10F

ð5Þ
1
Fð3Þ
2
b
�αβ ¼ −

i
2880κ

ϵαβγδϵζηλμνF1ζηλμνF2γδϵ:

ðA8Þ
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