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Modulus stabilization, a must for explaining the hierarchy problem in the context of Randall-Sundrum-
like scenarios, is traditionally achieved through the introduction of an extra field with ad hoc couplings.
We point out that the stabilization can, instead, be achieved in a purely geometrodynamical way, with
plausible quantum corrections in the gravity sector playing the key role. The size of the corrections that lead
to acceptable phenomenology is also delineated.
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Notwithstanding the recent discovery of the Higgs boson
[1,2], the lack, so far, of any definitive signature of physics
beyond the Standard Model (SM) is perplexing. Although
the mass of the Higgs boson is such that new physics at a
nearby scale is not demanded by considerations of triviality
or vacuum stability, turning this around to imply that none
exists until the Planck scale (MPl) is, at the least, aestheti-
cally repugnant. Indeed, the hierarchy problem of the SM
continues to be a vexing issue, and, over the years, several
mechanisms have been suggested to ameliorate this. While
most of these scenarios also do promise explanations of some
of the other puzzles that beset the SM, no direct evidence for
any of the new states intrinsic to these theories have been
seen so far. Furthermore, several of these have, associated
with them, some form of a little hierarchy problem.
An interesting approach due to Randall and Sundrum

(RS) to the hierarchy problem essentially does away with a
fundamental weak scale, ascribing the apparent hierarchy
to a geometrical origin [3]. Envisaging space-time to be a
slice of AdS5, the known world is confined to one of a pair
of three-branes that sit atop the two fixed points of a S1=Z2

orbifold. The metric has the nonfactorizable form

ds2 ¼ e−2krcjyjημνdxμdxν þ r2cdy2; ð1Þ

with ημν ¼ diagð−1; 1; 1; 1Þ being the Minkowski metric
and y ∈ ½0; π� with ðxμ;−yÞ≡ ðxμ; yÞ. On the (visible)
brane at y ¼ π, the natural mass scale is suppressed by a
factor of e−krcπ with respect to the fundamental scale,
e.g., that operative at the (hidden) brane located at y ¼ 0.
With k ≈ OðMÞ arising naturally, having krc ≈ 11 would
“solve” the hierarchy problem. However, the modulus rc is
not determined by the dynamics. This can be cured by

promoting rc to a dynamical (radion) field T ðxμÞ and
inventing a mechanism that forces it to settle to hT i ¼ rc.
To this end, Ref. [4] introduced a new scalar field ϕ in the

bulk with a quadratic potential. Interacting, as it does, with
T through the metric, integrating out ϕ would result in an
effective potential VeffðT Þ. A suitable form for VeffðT Þ can
be arranged ifmϕ ≪ MPl as well as if ϕ has brane localized
potentials that ensure appropriate classical value on the
branes, leading to

krc ≃ ðk2=m2
ϕÞ ln ½ϕðy ¼ 0Þ=ϕðy ¼ πÞ�: ð2Þ

The apparent success of this mechanism due to Goldberger
and Wise (GW) [4] hinges on the ad hoc introduction of a
new fundamental scalar, with masses and couplings being
just so. Avariation of this mechanism has been attempted in
Ref. [5]. However it would be nice if the stabilization
process could have emerged more naturally. To this end, we
appeal to a geometric origin in the shape of corrections to
the Einstein-Hilbert (EH) action itself. While this may seem
an ad hoc measure as well, such corrections are liable to
arise in any quantum theory of gravity. In the absence of a
definitive theory, though, we are unable to determine the
exact structure of such corrections and hence consider the
effective action for gravity to constitute all possible
structures consistent with diffeomorphism invariance as
well as other imperatives. This, in general, allows for terms
higher order in R;RabRab and RabcdRabcd. Inclusion of the
last two, generically, leads to instabilities, although par-
ticular linear combinations may escape this fate. On the
other hand, the replacement R → fðRÞ is often free from
such instabilities [6,7].
We start by postulating the five-dimensional pure gravity

action, in the Jordan frame, to be

SEH ¼
Z

d4xdy
ffiffiffi
~g

p
ð2M3fð ~RÞ − 2λM5Þ

−
Z

d4xdy
ffiffiffi
~g

p
½λvδðy − πÞ þ λhδðyÞ�; ð3Þ
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where M is the fundamental mass scale and ~gab the metric
with ~g ¼ −Detð~gabÞ. While it could have been included in
fð ~RÞ itself, we prefer to write the putative cosmological
term explicitly, with λ≲Oð1Þ. Similarly, λv;h are the
tensions associated, respectively, with the visible and the
hidden brane.
The bulk action can be rewritten as

Sblk ¼
Z

d4xdy
ffiffiffi
~g

p
ð2M3 ~RF −U − 2λM5Þ; ð4Þ

where U ¼ 2M3½ ~RF − fð ~RÞ� and F≡ f0ð ~RÞ. The non-
minimal coupling above can be rotated away by a con-
formal transformation [6–8], viz.,

~gab → gab ¼ expð2ωðxμ; yÞÞ~gab; ð5Þ

with the actual form of ωðxμ; yÞ yet to be specified.
The Ricci scalars in the two frames are related through

~R ¼ e2ω½Rþ 8□ω − 12gab∂aω∂bω�;

with □ representing the Laplacian operator appropriate for
the Einstein frame (defined in terms of gab). Choosing a
specific form of ωðxμ; yÞ, viz.,

ω ¼ 1

3
lnF≡ γϕ

5
;

γ ≡ 5

4
ffiffiffi
3

p
M3=2

; ð6Þ

we have,

S ¼
Z

d4xd~y
ffiffiffi
g

p �
2M3R −

1

2
gab∂aϕ∂bϕ − VðϕÞ

− e−γϕfðλv þ LSMÞδð~y − lÞ þ λhδð~yÞg
�
; ð7Þ

where we have introduced LSM for later use and

VðϕÞ ¼ ½UðϕÞ þ 2λM5� exp ð−γϕÞ: ð8Þ

We have, thus, successfully traded the complex form of
fð ~RÞ for the usual EH action, supplemented by a scalar
field that essentially encapsulates the extra degree of
freedom encoded in the higher powers of derivatives in
fð ~RÞ. As long as VðϕÞ is bounded from below, the system
would be free from Ostrogradski instabilities.
The exact form of VðϕÞ would, of course, hinge on the

form of fð ~RÞ. Some features of the scenario, though, are
ubiquitous. Unlike in the original RS scheme, the two brane
tensions would, in general, be unequal in magnitude. This
could have been anticipated in the Jordan frame as well, for
the tensions were necessary to allow for the discontinuity
in the logarithmic derivative of the metric at the orbifold

fixed points; and for fð ~RÞ ≠ ~R, the two junction conditions
cannot be expected to be equivalent.1 What may seem even
more problematic is the existence of the bulk scalar field as
we would now need to consider the coupled system ðgab;ϕÞ
instead of the vacuum equations as examined in Ref. [3].
This can be done though, but usually results in a very
complicated set of equations, which rarely is amenable to
closed form analytic solutions [9,10]. Furthermore, there
are several subtle issues that actually invalidate some of
the approaches adopted in the literature. Rather than follow
this path, and present a set of dense expressions and/or
numerical solutions, we first appeal to a physically well-
motivated approximation.
Consider the case where VðϕÞ has a minimum at

ϕ ¼ ϕmin. Given sufficient time, one would expect that
ϕ would settle at ϕmin with VðϕminÞ acting as the effective
cosmological constant (i.e., it would assume the role ofΛ in
[3]). To the leading order, only small deviations about ϕmin
should need be considered. If the mass of the “fluctuation
field” is small, then so is the energy contained in it and
neglecting the corresponding backreaction is justifiable and
constitutes a very useful first approximation.
Even though much of what follows can be applied to a

wide class2 of fð ~RÞ, we choose to work with a series
expansion in ~R=M2, retaining only a few terms so as to
facilitate an immediate examination of each step in the
analysis, viz.

fð ~RÞ ¼ ~Rþ aM−2 ~R2 þ bM−4 ~R3; ð9Þ

where a; b are dimensionless free parameters with each,
presumably, ⪍ Oð1Þ. As would be expected, we need b > 0
for both obtaining a sufficiently negative VðϕminÞ as also
the desirability of a small second derivative at the mini-
mum. On the other hand, a can assume either sign or even
vanish. It is interesting to note that fð ~RÞ ¼ ~Rβ, typically,
fails the twin test, unless β is a certain very specific fraction.
The corresponding potential has the form

V ¼ 2M−5F−5=3½λþ aR2ðFÞ þ 2bR3ðFÞ�; ð10Þ

where (for phenomenological reasons) we confine our-
selves to a specific branch, namely

RðFÞ ¼ −a −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − 3bð1 − FÞ

p
3b

: ð11Þ

1This would also have been forced upon us in the GW-like
scenario were backreaction taken into account.

2While it has been argued that fðRÞ models and generalized
scalar-tensor theories are equivalent, the mapping is a very non-
trivial one [7]. For example, the geometrical dual of the GW
scenario requires an extremely complicated, and ill-motivated,
form for fðRÞ. On the contrary, we restrict ourselves to some of the
leading quantum corrections to the EH action [see Eq. (9)].
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We look for a situation whereby, in the Einstein frame, the
only nontrivial dependence of the metric is on the coor-
dinate ~y≡ rcy, namely

ds2 ¼ e−2σð~yÞημνdxμdxν þ d~y2: ð12Þ
The Einstein’s equations reduce to

6σ02 ¼ 1

4M3

�
1

2
ϕ02 − V

�
;

3σ00 ¼ 1

4M3
½ϕ02 þ e−γϕðλhδðyÞ þ λvδðy − lÞÞ�; ð13Þ

whereas the scalar field satisfies

ϕ00 − 4σ0ϕ0 −
dV
dϕ

þ γe−γϕ½λhδðyÞ þ λvδðy − lÞ� ¼ 0:

ð14Þ
Canonical quantization of the SM fields requires a field
redefinition factor of exp ½γϕðπÞ=2þ krcπ� and the corre-
sponding masses are scaled as mi → mi exp ½−krcπ�.
Although the system can be solved numerically, it is

instructive to consider an approximation so as to allow for
closed form analytic expressions. Expanding around
ϕ ¼ ϕa ∼ ϕmin, we write

V
M5

¼ V0 þ
�

V1

M7=2

�
ξþ

�
V2

M2

�
ξ2; ð15Þ

where ξð~yÞ ¼ M−3=2ðϕ − ϕaÞ and Vi are constants. It might
seem counterintuitive to consider ϕa ≠ ϕmin; this, however,
is useful to enhance the applicability of the approximation,
which we require to be better than ∼10% over the range of
interest (see Fig. 1).
Neglecting the backreaction altogether would reduce the

system to the standard GW scenario with the corresponding
warping σð0Þð~yÞ being linear in j~yj with the coefficient
determined by V0 which corresponds to the effective bulk
cosmological constant in this scenario. However, doing so

is not really justified as it can be as much as 10% or larger.
Hence, we effect an inclusion by solving the bulk equations
iteratively. To the lowest order, the function σðj~yjÞ is linear,
with the degree of warping being controlled by a constant k
defined through

k2 ≡ 1

24M3

�
V2
1

4V2

− V0

�
: ð16Þ

Note that even the definition of k differs somewhat from
the original RS form [3] on account of the linear term V1 in
Eq. (15). Introducing the notation

ν≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 2V2=k2

q
; α1;2 ≡ ð2� νÞk; ð17Þ

the first order solution to the warping is

σð1Þ ¼ kj~yj þ 1

18M3

�
c21e

2α1j~yj þ c22e
2α2j~yj −

c1c2V2

k2
e4kj~yj

�
:

ð18Þ

The dimensionless constants c1;2 can be determined by
matching the discontinuities, leading to

0 ¼ c1
2ν − 21

−
c2

2νþ 21
þ
�
20

ffiffiffi
3

p
þ 25

V1

V2

�
;

0 ¼ c1eð2þνÞkl

2ν − 21
−
c2eð2−νÞkl

2νþ 21
þ
�
20

ffiffiffi
3

p
þ 25

V1

V2

�
;

l≡ rcπ: ð19Þ
For large kl (applicable since we need kl ≈ 35 to explain
the hierarchy), one obtains

c1 ≃
�
20

ffiffiffi
3

p
þ 25

V1

V2

�
e−2νkl − e−ð2þνÞkl

2ν − 21
;

c2 ≃
�
20

ffiffiffi
3

p
þ 25

V1

V2

�
1þ e−2νkl − e−ð2þνÞkl

2νþ 21
: ð20Þ

The nonlinear terms in Eq. (18) account for the leading
backreaction due to the scalar field, which, to this order, is
given by

ξð1Þð~yÞ ¼
−V1

2V2

þM3=2½c1eα1j~yj þ c2eα2j~yj�: ð21Þ

One could extend this to even higher orders, with the
additional corrections being given in terms of confluent
hypergeometric functions (also see Ref. [9]).
Substituting Eq. (21) in the action and integrating over

~y, the effective potential for the modulus field is obtained
to be

Veff

M3k
¼ ½d0 þ d1ðe−2νkl − 2e−ð2þνÞklÞ þ d2e−4kl� ð22Þ

where

4 5 6 7 8 9

2.3

2.2

2.1

2.0

1.9

M3 2

V

M5

FIG. 1. The solid line denotes the potential for a ¼ 0.01;
b ¼ 0.01; λ ¼ −0.6, while the dashed line denotes a typical
approximation for ϕa ¼ 5.05M3=2.
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d0 ¼ 24 −
12V2

1

V2
1 − 4V0V2

þ ν − 2

4ð2νþ 21Þ2
�
40

ffiffiffi
3

p
þ 25

V1

V2

�
2

þ 25

16ð2ν − 21Þ2
�
5V1

V2

þ 8
ffiffiffi
3

p �

×

�
8

ffiffiffi
3

p
ð67 − 4νÞ þ 125

V1

V2

�
;

d1 ¼
250ν

4ν2 − 441

�
5V1

V2

þ 8
ffiffiffi
3

p ��
ðν2 þ 21ÞV1

V2

þ 210
ffiffiffi
3

p �
;

d2 ¼
48ð21ν − ν2 þ 46Þ

ð2ν − 21Þ2 þ 250
ffiffiffi
3

p ðνþ 2Þ
ð2ν − 21Þ2

V1

V2

þ 48V0V2

V2
1 − 4V0V2

þ 625ð4ν − 17Þ
16ð2ν − 21Þ2

V2
1

V2
2

: ð23Þ

The consequent extrema are given by

eð2−νÞkl ¼ ð2þ νÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ νÞ2 − 8νd2=d1

p
2ν

: ð24Þ

A minimum is present only for the solution correspond-
ing to the negative sign above. Approximating ν≃ 2þ ϵ
with ϵ ¼ V2=2k2, its position is given by

kl≃ −ϵ−1 ln n0; ð25Þ

where

n0 ¼ 1 −
17

8

�
768V0V3

2 þ V2
1V0V2 − 25V4

1

ð4V0V2 − V2
1Þð1008V2

2 þ 250
ffiffiffi
3

p
V1V2 þ 25V2

1Þ

�
1=2

: ð26Þ

At this stage, it is useful to recall the relationship chain
between the parameters of the theory and the hierarchy.
The expansion coefficients Vi [see Eq. (15)] are determined
in terms of the parameters a; b; λ [see Eq. (9) or Eq. (10)].
A particular combination of the Vi, viz. k is the primary
driver of the hierarchy, vide Eq. (16). Along with V2, the
quantity k determines the warping function σð1Þð~yÞ, with
the constants ci determining the corrections to the brane
tensions λv;h (once the radius has been stabilized). Other
combinations of the Vi, determine, in turn, the coefficients
di’s [Eq. (23)] appearing in Veff (the effective potential for
the radion ) and, hence, the equilibrium configuration [see
Eqs. (25) and (26)]. The entire relationship can be sum-
marized numerically in terms of isohierarchy contours in
the parameter space (see Fig. 2).
To understand the figure, note that for V1 → 0, n0 →

0.0726 leading to a direct correspondence between the
hierarchy and V2=2k2. Since V2 has only a very weak
dependence on b, this implies λ ∝ 1=

ffiffiffi
b

p
for a given kl, a

relation exhibited to a very large degree by the curves in
Fig. 2. This clearly rules out the possibility of b ¼ 0 and
indicates the importance of the R3 term. On the other hand,
a ¼ 0 is clearly admissible. While the relationship between
a and λ (Fig. 3) is more complicated, it is interesting to note
that the isohierarchy curves tend to a fixed point in this
plane with the location depending on the value of b.
It is important to note that, our scalar field ϕ is of a

geometrical origin and we are not allowed to introduce
brane-localized potentials (as in the GW scenario) unless
accompanied by a corresponding change in the geometro-
dynamics [e.g., the introduction of additional and arbitrary
brane-localized fðRÞ terms]. Appealing to Occam’s razor,
we deliberately eschew this. In other words, the values of ϕ

at the two branes are fixed by the warp factor σð~yÞ. This, in
turn, fixes the value of the brane tensions λv;h which are no
longer equal and opposite, but differ slightly in magnitude
[to the same extent as σð~yÞ differs from linearity] so that the
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FIG. 2 (color online). Isohierarchy (krc) contours in the ðb; λÞ
plane for a ¼ 0 (top) and a ¼ 0.1 (bottom).
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entire solution is a self-consistent one. This is analogous to
the scenario discussed in Ref. [9] where the effects of
the backreaction of the bulk scalar field are taken into
consideration. As mentioned in the beginning, this is but a
consequence of incorporating the backreaction (in the
Einstein frame) or, equivalently, the nonlinear form of
fð ~RÞ (in the Jordan frame). Note that this small difference
between λv and λh does not imply an additional fine-tuning.
Indeed, even within the GW scenario, such a difference
between the brane tensions (as opposed to the values of the
brane-localized expectation values of the stabilizing field)
would have been required if the backreaction on gravity (due
to the GW scalar) is taken into account, as it should have
been. In fact a similar consequence would be forced upon us
for any variant of the original RS scenario as soon as the
nongravity fields are allowed to intrude into the bulk. It is
also interesting to note that if the brane tensions were fixed
externally, it would amount to fixing the combination kl
(and, thus, the hierarchy) by matching the discontinuities in
the derivatives of the warp-function σð~yÞ. However, it should
be borne in mind that such a scenario may need one to
consider higher order corrections to σð~yÞ [i.e., going beyond
σð1Þð~yÞ], and, in severe cases, may even invalidate the
approximation method that we have adopted. Once again,
such an eventuality might befall any generic warping

scenario with a nontrivial backreaction. Only very special
potentials (such as those in Ref. [9]) may escape this.
Given that mh ≈ 125 GeV, the fairly sensitive nature of

the hierarchy contour, in principle, allows us a determi-
nation of the fðRÞ parameters. Note, however, that the
exact hierarchy in any such warped scenario is determined
in terms of the value of the Higgs mass on the Planck brane,
mhðPlÞ. The latter, though, is unprotected by any symmetry,
and consequently, its natural value is close to the cutoff of
the theorym0, which, nominally should be the fundamental
scale M itself. For the RS model, it has been argued [11],
under the assumption of the bulk curvature k being
sufficiently small compared to M ensuring the validity
of the classical solution [12], the nonobservation of the
Kaluza-Klein (KK) gravitons at the LHC [13] indicates that
m0 must be at least 2 orders of magnitude lower than M.
This little hierarchy would be further exacerbated if the
gravitons continue to evade discovery. In contrast, the
scenario we discuss here provides a concrete threshold in
the shape of m, the mass of the scalar. With the latter being
of geometrodynamical origin, its value is determined by the
same quantum corrections that determine the hierarchy and,
indeed, there is a nonzero correlation between the two. For
example, if one were to start with a six-dimensional doubly
warped scenario [14] (which has been shown to evade this
tension [15]), a nontrivial fð ~RÞ would be generated once
the smaller of the two warped directions is integrated out.
The quantum fluctuations of ϕ about the classical

configuration ϕclð~yÞ are endowed with a bulk mass two
orders below MPl, and, thus, play no role in observable
physics except for, presumably, late time cosmology. The
mass (mrad) of the radion fluctuation T̂ ð≡T − rcÞ is
determined by Veff and turns out to be

m2
rad ≃ 3d0ϵe−2krcπk2: ð27Þ

Now, to Oðϵ0Þ,

d0 ¼
4032

289
þ 1000

ffiffiffi
3

p
V1

289V2

−
5625V2

1

4624V2
2

þ 48V0V2

V2
1 − 4V0V2

;

and for a vanishing V1, we have d0 → 2, or, in other words,

m2
rad → 3V2e−2krcπ:

The exponential factor brings down the radion mass from
the Planck scale to the TeV scale without the need for any
additional fine-tuning of parameters. The parametric
dependence, in this limit, is encapsulated in the various
panels of Fig. 4. The information in the figure has to be
interpreted carefully. Note that the middle panel (krc ¼ 11)
is the one that corresponds to the correct value of the
hierarchy. It is worthwhile to notice that the radion, in the
present scheme, tends to be somewhat heavier than in
the GW case. A smaller value of krc (upper panel) would
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FIG. 3 (color online). Isohierarchy (krc) contours in the ða; λÞ
plane for b ¼ 0.1 (top) and b ¼ 0.5 (bottom).
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lead to a little hierarchy problem and it is not surprising that
the associated radion would be in the Oð100 TeVÞ range.
The lower panel, on the other hand, corresponds to a
somewhat unphysical situation (of oversuppression of the
electroweak scale), and has been included only to facilitate
comparisons. To the leading order, the radion couples to
the SM fields through the trace of the energy-momentum
tensor with the difference from the GW case [16] being
generated through the heavy field ϕ̂. And while radion-
Higgs mixing does take place, it is too small to be of any
consequence.
Before we end, it is worthwhile to reexamine some

theoretical aspects pertaining to this paper. The model
proposed here is a generalization of RS-like warped
geometry where, in addition to the Einstein-Hilbert and

five-dimensional cosmological constant terms, certain
higher curvature terms are also present. The latter are
presumably the lowest order quantum corrections to the
classical action, arising from an as yet undefined UV
completion. It may be argued, though, that in a specific
such completion wherein compactification can be obtained
dynamically, not only would typically more terms appear
in the low-energy gravity action, but other fields, including
scalars, one of which could be an analogue of the
Goldberger-Wise field, would appear naturally too. For
example, starting with an AdS5 × S5 model in type IIB
string theory, in the presence of multiple D-branes and
three-form fluxes, it has been shown [17,18] that one can
obtain a metric with a large warping similar to the RS
model. The warp factor depends on the flux integers and the
three-form fluxes play a crucial role in stabilizing the
radion.
Rather than appeal to such a specific UV completion, our

work demonstrates that in an effective field theoretic
description within the gravity framework alone, the exist-
ence of higher curvature terms can lead to a natural and
dynamic stabilization of the radion. In other words, just as
the original RS model captures the essence of warped
solution of a more UV complete theory, a bulk with higher-
curvature terms not only admits such a solution, but also
stabilizes it. In the spirit of effective field theories, it thus
captures the essence of UV-complete theories (such as the
ones referred to above), without tying itself to a particularly
restrictive class.
To summarize, we have shown that the modulus field in

the RS scenario can be stabilized in a purely geometrical
way. Appealing to plausible quantum corrections to the
Einstein-Hilbert action, we trade the higher derivatives of
the metric tensor for an equivalent scalar field with a
complicated potential form and a nonminimal coupling to
gravity. On going over to the Einstein frame (characterized
by a nonminimal coupling), the corresponding potential is
seen to have a local minimum leading to an negative
effective bulk cosmological constant, and a fluctuation field
with a naturally small mass. The resulting framework leads
to the stabilization of the modulus without the need to
appeal to boundary localized interactions or neglecting the
backreaction. The correct hierarchy is obtained for a wide
range of parameters. Moreover, the mechanism offers a
natural way out of the tension between the theoretical
expectations for the KK-graviton masses and the strong
bounds obtained at the LHC.
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FIG. 4 (color online). The mass of the radion as a function of b
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