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Quantum chromodynamics is notoriously difficult to solve at nonzero baryon density, and most models
or effective theories of dense quark or nuclear matter are restricted to a particular density regime and/or a
particular form of matter. Here we study dense (and mostly cold) matter within the holographic
Sakai-Sugimoto model, aiming at a strong-coupling framework in the wide density range between
nuclear saturation density and ultrahigh quark matter densities. The model contains only three parameters,
and we ask whether it fulfills two basic requirements of real-world cold and dense matter, a first-order onset
of nuclear matter and a chiral phase transition at high density to quark matter. Such a model would be
extremely useful for astrophysical applications because it would provide a single equation of state for
all densities relevant in a compact star. Our calculations are based on two approximations for baryonic
matter—first, an instanton gas and, second, a homogeneous ansatz for the non-Abelian gauge fields on the
flavor branes of the model. While the instanton gas shows chiral restoration at high densities but an
unrealistic second-order baryon onset, the homogeneous ansatz behaves exactly the other way around. Our
study, thus, provides all ingredients that are necessary for a more realistic model and allows for systematic
improvements of the applied approximations.
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I. INTRODUCTION

A. Motivation

Quantum chromodynamics (QCD) at nonzero baryon
densities and zero (or very small) temperatures is very
difficult, and progress has mostly been made with the help
of various effective theories and phenomenological models.
What we know for certain is that there is a first-order
transition from the vacuum to nuclear matter at nuclear
saturation density n0 ≃ 0.16 fm−3 and that QCD becomes
weakly interacting at ultrahigh densities due to asymptotic
freedom [1,2], wherefore sufficiently dense matter is a
weakly coupled gas of quarks. Hence, there must be chiral
and deconfinement phase transitions—presumably at mod-
erate densities well in the strong-coupling regime—from
nuclear to quark matter.1 All current rigorous studies are
restricted to a particular density regime, for example,

“ordinary” nuclear physics at and slightly above saturation
density, lattice studies for baryon chemical potentials
smaller than or at most of the order of the temperature,
and perturbative studies at extremely large densities. But
even giving up on some rigor, it is very difficult to come up
with a reasonable model that describes QCD matter over a
wide density regime. For example, the quark-meson model
(see for instance Refs. [9,10]) and the Nambu-Jona Lasinio
(NJL) model [11,12] (see for instance Refs. [13–15]) and
variants thereof can be very useful to get some insight into
quark matter phases and possibly the chiral and deconfine-
ment phase transitions, but they usually do not include
nuclear matter, although it is possible [16]. On the other
hand, nucleon-meson models, such as in Refs. [17–21], are
based on the properties of nuclear matter at saturation and
may describe moderately dense nuclear matter realistically,
but give a poor description, if at all, of chirally restored
quark matter. Therefore, attempts to study strongly coupled
dense matter from the onset of baryons all the way to quark
matter at high densities are mostly based on patching
together various models and, not surprisingly, depend on
many parameters [22,23]. Having a single model at hand—
and be it only a very distant relative of the fundamental
theory—would be very interesting not only from a theo-
retical point of view, but also for the applications in the
context of compact stars. Compact stars have a density
profile, and thus knowledge about the strongly coupled
physics from nuclear saturation density possibly up to
quark matter densities in the center of the star is
required [24].
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1Although most models predict a first-order phase transition

for small temperatures, it is conceivable that there is a smooth
crossover [3–5] from nuclear matter to color-flavor locked (CFL)
quark matter [6,7]. In this paper, we shall ignore color-super-
conducting phases such as the CFL phase, although it is an
interesting question whether it can be implemented in the Sakai-
Sugimoto model, possibly following existing attempts within
holography [8]. Also, we shall work in the chiral limit, such that
the transition between chirally broken baryonic matter and
chirally restored quark matter must be a phase transition in the
strict sense.
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B. Model

The gauge-gravity correspondence [25–27] provides a
powerful tool to study strongly coupled physics. Although
the existence of a gravity dual of QCD is suggested by
general principles, it is currently unknown and probably out
of reach in the near future, and most studies have focused on
theories that are different, sometimes very different, from
QCD. The most prominent example is N ¼ 4 super Yang-
Mills theory where Nf quark flavors are introduced in the
gravity dual by Nf D7-branes in the background given by
Nc D3-branes; for studies in this setup aiming at the QCD
phase diagram, see for instance Ref. [28] and, including
baryonic matter, Refs. [29,30]. The Sakai-Sugimoto model
[31–33] is the holographic model that currently comes
closest to QCD. In this paper we ask the question whether
it can be employed in the dense matter context we have just
outlined. Like the D3/D7 system, the Sakai-Sugimoto model
is a “top-down” approach, i.e., it is rigorously based on an
underlying type-IIA string theory, and the dual field theory
is known. Namely, in a certain limit, it is dual to large-Nc
QCD. Here, we apply several approximations and extrap-
olations, giving up some of this rigor in favor of feasibility
and of potentially coming closer to real-world Nc ¼ 3 QCD
at large baryon chemical potentials: firstly, as in most
previous applications of the model, we work in the classical
gravity approximation, which is a good approximation for
very large values of the ’t Hooft coupling λ (although we
shall extrapolate some of our results to small λ), while large-
Nc QCD is the dual field theory only in the opposite,
inaccessible, limit of small λ. Secondly, our main results are
obtained in the “deconfined geometry”, which has a richer
phase structure concerning chiral symmetry. While the
“confined geometry” can be connected to the confined
phase of the dual field theory, this is less clear for the
deconfined geometry [34–36]. We thus do not a priori know
the (phases of) the field theory we are actually working in,
especially regarding confinement/deconfinement (chiral
symmetry, on the other hand, and its spontaneous breaking
are implemented unambiguously). Thirdly, as in most related
studies, we shall work in the probe brane limit, i.e., we shall
not include the backreaction of the flavor branes on the
background geometry (for studies going beyond this
quenched approximation, see Refs. [37,38]). And, we shall
make use of a certain, not uniquely defined, prescription for
the non-Abelian Dirac-Born-Infeld (DBI) action to all orders
in the string tension. Therefore, at very large densities, where
effects of backreaction as well as higher-order terms in the
string tension may become important, our results must be
considered as an extrapolation from the low-density regime,
where the approach is rigorous.

C. Goal and relation to previous works

One important benefit of the given holographic approach
is that there is a well defined way to implement baryons.

Following the general idea of a “baryon vertex” in AdS/
CFT [39,40], baryons in the Sakai-Sugimoto model are
implemented as D4-branes, which have Nc string end-
points, wrapped on the 4-sphere of the background geom-
etry. Equivalently, they can be considered as instantons of
the gauge field theory on the connected D8- and D8-branes
[32,41–43]. Baryon properties have been computed
with the help of the Belavin-Polyakov-Schwarz-Tyupkin
(BPST) instanton solution [44], using instantons in flat
space as a trial function for the equations of motion of
the curved geometry [42], although improvements to this
approach might be necessary [45–49]. Here we are not
interested in single baryons in vacuum, but in baryonic
matter. We shall restrict ourselves to homogeneous matter;
for studies of inhomogeneities and instanton crystals in
the confined geometry of the Sakai-Sugimoto model, see
Refs. [50–52]. A simple and very useful approximation
for homogeneous baryonic matter makes use of pointlike
instantons [53] and has been employed in both confined
and deconfined geometries. This approximation shows an
unrealistic second-order phase transition from vacuum to
baryonic matter (in both geometries), and, also unrealisti-
cally, low-temperature baryonic matter remains the pre-
ferred phase for arbitrarily large chemical potentials. In the
confined geometry, this is obvious from the geometry of the
model in the probe brane approximation and a consequence
of the large-Nc limit. (Although it might be possible to see
signatures of chiral restoration also in the confined geom-
etry [54], in particular by going beyond the probe brane
approximation [38].) In the deconfined geometry, where
chiral restoration at large chemical potentials is a priori
possible, it turns out that the free energy of the baryonic
phase asymptotically approaches that of the chirally
restored phase, but always remains lower [55]. The main
question we address in this paper is whether going beyond
the pointlike approximation of baryons in the deconfined
geometry can remedy one or both of these unphysical
properties. It has been argued that, at least in the confined
geometry, finite-size instantons indeed give rise to a first-
order baryon onset [56,57]. The first part of our calcu-
lations is based on this finite-size instanton approach, but
we shall argue that a fully dynamical calculation does not
show a first-order onset (see Sec. III D and, in particular,
footnote 3). The second part of our calculations makes use
of a simple homogeneous ansatz instead of the instanton
solution, which, for the confined geometry, has been
introduced in Ref. [58].

D. Outline of the paper

We start with presenting the general setup in Sec. II,
where we introduce the gauge field action on the flavor
D8-branes. The next two sections deal with our two
different approaches: in Sec. III we discuss the instanton
gas and Sec. IV is devoted to the homogeneous ansatz. In
the case of the instanton gas, we discuss the expansion of
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the Dirac-Born-Infeld (DBI) action for small non-Abelian
field strengths and the relation to the pointlike approxi-
mation in Sec. III A. Our actual calculation is then
performed using the full DBI action, and we derive the
necessary equations and explain the numerical evaluation
in Secs. III B and III C. These sections are rather technical
and readers only interested in the result may jump to
Sec. III D where we present our results (including the
results for the confined geometry). Section IV is structured
similarly: we first explain our approach and the calculation
in Sec. IVA, before we present the numerical results in
Sec. IV B. The main results are Figs. 3 and 4 for the
instanton gas and Figs. 6 and 7 for the homogeneous
ansatz. Finally, we give our conclusions in Sec. V.

II. SETUP

We start by setting the stage without going into details of
or reviewing the Sakai-Sugimoto model since there are
numerous works in the literature where this has been done
(see for instance Refs. [36,38,52,59–62]). In the following
we focus on the features of the model that are relevant for
us and write down the action we are using.
The Sakai-Sugimoto model incorporates a deconfine-

ment phase transition by allowing for two different back-
ground geometries, and realizes a chiral phase transition
by two different embeddings of the flavor branes in these
background geometries. In the original version of the
model, the flavor D8- and D8-branes, corresponding to
left- and right-handed fermions, are maximally separated at
the boundary U ¼ ∞, where U is the holographic coor-
dinate. Denoting this asymptotic separation by L, maximal
separation means L ¼ π=MKK, where the Kaluza-Klein
mass MKK is the inverse radius of the compactified extra
dimension X4 of the model, X4 ≡ X4 þ 2π=MKK. In this
version, the chiral and deconfinement phase transitions
coincide, i.e., in the confined geometry the D8- and D8-
branes are always connected, which corresponds to the
chirally broken phase, and in the deconfined geometry they
are always disconnected, indicating an unbroken chiral
symmetry. Both phase transitions occur at a critical temper-
ature Tc ¼ MKK=ð2πÞ and do not depend on the baryon
chemical potential μ if the backreaction of the flavor branes
on the background geometry is neglected. The reason is
that the chemical potential is introduced via the gauge fields
on the flavor branes and thus—within this probe brane
approximation—cannot affect the background geometry
and therefore has no effect on either deconfinement or
chiral phase transitions.
In this paper, we are mostly interested in nonantipodal

asymptotic separations where L ≪ π=MKK. This version of
the model can be considered as the “decompactified” limit,
because it is achieved by either choosing L very small
compared to a fixed radius M−1

KK or by keeping L fixed and
choosing a very large radius, i.e., by decompactifying the
extra dimension. Of course, the dual field theory is only

truly four-dimensional in the opposite limit, i.e., for a very
small radius of the extra dimension, and effects of the fifth
dimension can be expected to become important in the
decompactified limit. Since a large radius corresponds to a
very small Kaluza-Klein mass, the critical temperature for
deconfinement goes to zero in the decompactified limit.
Thus, when we work in the deconfined geometry, we shall
ignore that below Tc the confined geometry is preferred.
Besides the Kaluza-Klein mass MKK and the asymptotic
separation of the flavor branes L, the only other free
parameter of the model is the ’t Hooft coupling λ.
For our purpose, the decompactified limit is most

interesting because here the chiral phase transition is no
longer locked to the deconfinement phase transition and
depends on T and μ. The resulting phase diagram in the
T − μ plane in the absence of baryons [63] (and including a
background magnetic field [64,65]) shows striking simi-
larities to that of a Nambu-Jona-Lasinio (NJL) model, in
accordance with Ref. [66,67], where the connection to the
NJL model was first pointed out. Two differences to the
NJL model are the current quark masses, which are very
naturally included in NJL but very difficult to implement in
Sakai-Sugimoto (although some attempts have been made
[68–71]), and the order of the chiral phase transition which,
in the chiral limit, can be second or first order in NJL but is
always first order in Sakai-Sugimoto.
The asymptotic separation of the flavor branes L there-

fore extrapolates between the original version of the Sakai-
Sugimoto model, where the dual theory is large-Nc QCD
(at least in the inaccessible limit of small λ), and the
decompactified limit, which has an NJL-like dual. Since
dense matter at large Nc is very different from that at
Nc ¼ 3 [72,73], we are less interested in the more rigorous
large-Nc limit and focus our attention on the NJL-like limit,
even though some important physics related to the gluon
dynamics are thrown out. One may for instance ask what it
really means to include baryons in a limit of the model
where there is no confinement. We shall not discuss this
question in detail and simply observe that instantons and
thus baryon number can be introduced in the deconfined
geometry completely analogously to the confined
geometry.
The two scenarios in which we study baryonic matter are
(i) Confined geometry with antipodal separation,

L¼π=MKK (free parameters: λ, MKK). This sce-
nario is used as a reference and preparation for the
more complicated calculation in the deconfined
geometry. The calculation is simpler than that of
the deconfined geometry because the embedding
of the connected branes does not have to be
determined dynamically. All equations and deriva-
tions are deferred to the Appendix; in the main part
we only present the results, which are also useful as
a comparison to the existing literature. The results
are independent of temperature, and thus the only
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relevant thermodynamic variable is the baryon
chemical potential.

(ii) Deconfined geometry (free parameters: L, λ, MKK).
Our main results are obtained in this geometry and
all derivations in the main text refer to this case. The
results depend on temperature and baryon chemical
potential. Although we have in mind the decom-
pactified limit when we discuss this geometry for all
temperatures, we do not make use of L ≪ π=MKK in
the actual calculation and simply treat L as a free
parameter.

Our calculation starts from the gauge field action on the
D8- and D8-branes, which consists of a Dirac-Born-Infeld
(DBI) and a Chern-Simons (CS) contribution,

S ¼ SDBI þ SCS: ð1Þ
We first discuss the DBI term, which has the form

SDBI ¼ 2T8V4

Z
1=T

0

dτ
Z

d3X

×
Z

∞

Uc

dUe−Φ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgþ 2πα0F Þ

p
; ð2Þ

where α0 ¼ l2
s is the string tension with the string length ls,

T8 ¼ 1=½ð2πÞ8l9
s � is the D8-brane tension, and eΦ ¼

gsðU=RÞ3=4 is the dilaton with the string coupling gs
and the curvature radius of the background geometry R.
We have already performed the trivial integration over
the 4-sphere, resulting in the volume factor V4 ¼ 8π2=3.
The remaining integral is taken over Euclidean time τ,
3-dimensional position space, and the holographic
coordinate U, from the tip of the connected D8- and
D8-branes U ¼ Uc to the holographic boundary U ¼ ∞.
This integral is taken over one half of the connected branes,
hence the prefactor 2 to account for both halves. The
induced metric on the flavor branes g in the deconfined
geometry is given by

ds2D8 ¼
�
U
R

�
3=2

ðfTdτ2 þ δijdXidXjÞ

þ
�
R
U

�
3=2

��
1

fT
þ
�
U
R

�
3

ð∂UX4Þ2
�
dU2

þU2dΩ2
4

�
; ð3aÞ

where i ¼ 1; 2; 3, and dΩ2
4 is the metric of the 4-sphere.

The function X4ðUÞ describes the embedding of the flavor
branes in the background geometry, and

fT ≡ 1 −
U3

T

U3
; ð4Þ

whereUT is the location of the tip of the cigar-shaped τ −U
subspace, related to temperature and curvature radius via

T ¼ 3

4π

U1=2
T

R3=2 : ð5Þ

The following relations between the parameters of the model
will be useful,

R3 ¼ πgsNcl3
s ; λ ¼ 2R3MKK

l2
s

; ð6Þ

whereNc is the number of colors, i.e., the gauge group of the
dual field theory is SUðNcÞ.
We are considering two flavors, i.e., aUð2Þ gauge theory

in the bulk, whose local symmetry group corresponds to a
global symmetry in the dual field theory. The field strength
tensor is decomposed into a Uð1Þ and an SUð2Þ part,

F μν ¼ F̂μν þ Fμν; Fμν ¼ Fa
μνσa; ð7Þ

where μ; ν ¼ 0; 1; 2; 3; U, and the Pauli matrices σa
(a ¼ 1; 2; 3). We shall use the same notation for the
gauge fields, i.e., Âμ and Aμ for Abelian and non-Abelian
components, respectively. The physics we are interested
in requires us to introduce a baryon chemical potential
and baryons. The quark chemical potential (related to the
baryon chemical potential by a factor Nc) is introduced as
the boundary value of Â0, while the baryons are introduced
in the SUð2Þ part via the field strengths Fij, FiU. Thus, our
only nonvanishing field strengths will be F̂0U ¼ −∂UÂ0,
Fij, FiU. We shall set F̂i0 ¼ ∂i ¼ Â0 ¼ 0 from the begin-
ning because we are only interested in homogeneous
matter, i.e., Â0 will only depend on the holographic

coordinate U, not on ~X.
Within this ansatz, the CS contribution is

SCS¼
Nc

4π2

Z
1=T

0

dτ
Z

d3X
Z

∞

Uc

dUÂ0Tr½FijFkU�ϵijk: ð8Þ

III. BARYONIC MATTER FROM
AN INSTANTON GAS

A. Expansion in non-Abelian field strengths

The DBI action as written in Eq. (2) does not define how
to treat the case of non-Abelian gauge fields. A general
form, keeping all orders of the non-Abelian gauge fields, is
not known. In expansions for small F (more precisely, for
small string tension α0), usually the symmetrized trace is
used for all terms of OðF4Þ and higher, which however is
known to be incomplete starting from OðF6Þ [74]. For our
instanton gas approximation, we discuss two different
approaches: in the current section, we expand the DBI
action for small non-Abelian field strengths up to quadratic
order, while keeping the Abelian field strength to all orders,
following Ref. [56]. Later, in Sec. III B, we shall employ
an “Abelianized” prescription that keeps Abelian and
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non-Abelian field strengths to all orders and that we use for
our numerical calculation (for our purposes, it is actually
simpler not to expand the square root).
For the expansion to second order in the non-Abelian

field strengths we need to replace the square root of the DBI
action (2) as follows,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgþ 2πα0F Þ

p
→

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgþ 2πα0F̂Þ

q �
1−

ð2πα0Þ2
4

Tr½ðgþ 2πα0F̂Þ−1F�2
�

þOðF4Þ; ð9Þ

with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgþ 2πα0F̂Þ

q
¼ U4

�
R
U

�
3=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u3fTx024 − â020
q

;

ð10aÞ

Tr½ðgþ 2πα0F̂Þ−1F�2 ¼ −
�
R
U

�
3

Tr½F2
ij�

−
2fTTr½F2

iU�
1þ u3fTx024 − â020

; ð10bÞ

where the trace on the left-hand side of Eq. (10b) is taken
over 8þ 1-dimensional metric space and 2-dimensional
flavor space, while the trace on the right-hand side is only
taken over flavor space. We have replaced Â0 → iÂ0, which
is necessary since we work in Euclidean space-time, and
the prime denotes derivative with respect to u. Moreover,
we have introduced the dimensionless quantities u, x4, â0,
defined in Table I together with all other dimensionless
quantities used in this paper.2

Inserting these results into the DBI action (2), we obtain

SDBI ¼ N
Z

1=T

0

dτ
Z

d3X
Z

∞

uc

duu5=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u3fTx024 − â020

q

×

�
1þ R3ð2πα0Þ2

4U3
Tr½F2

ij� þ
fT
2

ð2πα0Þ2Tr½F2
iU�

1þ u3fTx024 − â020

�
;

ð11Þ

where we have abbreviated

N ≡ 2T8V4

gs
R5ðMKKRÞ7 ¼

Nc

6π2
R2ðMKKRÞ7
ð2πα0Þ3 : ð12Þ

Instead of solving the full equations of motion for
Abelian and non-Abelian fields, we shall for simplicity
employ an ansatz for the non-Abelian field strengths that is
based on the BPST instanton solution. We then will have
to minimize the free energy with respect to the parameters
that are introduced by this ansatz (the number density of
instantons and their width), together with solving the
equations of motion for the Abelian field â0 and the
embedding function x4. The instanton solution is best
introduced in a coordinate that extends continuously over
both halves of the connected flavor branes. This new
coordinate Z is defined via

U ¼ ðU3
c þ UcZ2Þ1=3; ∂U

∂Z ¼ 2U1=2
c

ffiffiffiffiffi
fc

p
3U1=2 ; ð13Þ

where

fc ≡ 1 −
U3

c

U3
: ð14Þ

While U ∈ ½Uc;∞�, we have Z ∈ ½−∞;∞�, where
Z ¼ 0 corresponds to the tip of the connected branes.
The instanton solution is well known for the flat-space
Yang-Mills (YM) action. As explained in Appendix A
[see Eq. (A11)], within this solution the traces of the field
strengths become

TABLE I. Relation between the dimensionless quantities (first row) and their dimensionful counterparts, for example
x4 ¼ MKKX4; t ¼ T=MKK, etc. Generally, we use capital letters for dimensionful and small letters for dimensionless quantities.
Exceptions are ρ (here we use only one symbol for both quantities, which does not cause confusion since both quantities appear always
well separated from each other), qðzÞ [where the dimensionful version is denoted by qðZÞ], μ (for which we never introduce a
dimensionful version), and nI (where the dimensionful version is NI=V, NI being the instanton number, V the 3-volume, and nI the
dimensionless instanton number density).

x4;l u; uc; uT; uKK; z; ρ t qðzÞ â0; μ; h nI

MKK
1

RðMKKRÞ2
1

MKK
RðMKKRÞ2 2πα0

RðMKKRÞ2 ¼
4π

λMKK

Nc
N

RðMKKRÞ2
2πα0 ¼ 96π4

λ2M3
KK

2There is a slight difference in convention compared to
Refs. [53,55], which otherwise use the same notation: in that
references, for example â0 ¼ 2πα0=RÂ0. We have included
additional powers of the dimensionless factor MKKR because
then all observable quantities (chemical potential, baryon density,
temperature) are directly obtained from their dimensionless
counterparts by choosing values solely of λ and MKK (and not
also values for R and α0, which have no direct interpretation in the
dual field theory).
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Tr½F2
iZ� ¼

6

γ2
4ðρ=γÞ4

½ξ2 þ ðρ=γÞ2�4 ;

Tr½F2
ij� ¼ 12

4ðρ=γÞ4
½ξ2 þ ðρ=γÞ2�4 ;

Tr½FijFkZ�ϵijk ¼ −
12

γ

4ðρ=γÞ4
½ξ2 þ ðρ=γÞ2�4 ; ð15Þ

where we have used Tr½σaσa� ¼ 6, abbreviated ξ2≡
ð~X − ~X0Þ2 þ ½ðZ − Z0Þ=γ�2, and

γ ¼ 3U3=2
c

2R3=2 ¼ 3u3=2c

2
ðMKKRÞ3: ð16Þ

The instanton is located at the point ~X0 in position space
and the point Z0 in the bulk and its width is characterized
by ρ. The factor γ was introduced in the BPST solution
(A8): while the instanton width in the holographic coor-
dinate is ρ, it is ρ=γ in position space. In the confined
geometry with maximally separated flavor branes, γ is just
a constant [see Eq. (A10)], and one can choose units in
which γ ¼ 1. Therefore, the simplest form of the instanton
used as a trial function in the Sakai-Sugimoto model is
SOð4Þ symmetric. We have generalized this instanton to the
deconfined geometry in the most natural way, by simply
replacing UKK in γ with its analogue in the deconfined
geometry Uc. Since Uc is not constant, we cannot work in
units where γ ¼ 1. It has been argued that corrections
beyond the limit of infinitely large ’t Hooft coupling λ lead
to anisotropic instantons which break SOð4Þ and which
might be more realistic [48]. For simplicity, we will not
allow for these nontrivial configurations which go beyond
the BPST ansatz, but it is instructive to keep in mind the
role of γ as a parameter for making the instantons
anisotropic in a very simple way.
In this paper, we are not interested in a single baryon, but

in homogeneous baryonic matter. We thus consider a
noninteracting gas ofNI instantons [56] located at positions

ð~X0n; Z0nÞ, n ¼ 1;…; NI. We shall assume that all instan-
tons sit at the same point in the bulk, at the tip of the flavor
branes, Zn0 ¼ 0 for all n. This is similar to the approxi-
mation from Ref. [53], where pointlike baryons were
placed at the tip. Our approximation goes beyond the
pointlike scenario, but does not determine the instanton
distribution in the bulk dynamically. Moreover, we shall

not solve the full ~X-dependent equations of motion, but
rather approximate the instanton distribution by its spatial

average, such that the locations ~X0n drop out. Therefore,
we replace

4ðρ=γÞ4
½ξ2 þ ðρ=γÞ2�4

→
1

V

XNI

n¼1

Z
d3X

4ðρ=γÞ4
½ð~X − ~X0nÞ2 þ ðZ=γÞ2 þ ðρ=γÞ2�4

¼ 2π2

3
γqðZÞNI

V
; ð17Þ

where V is the 3-volume, and we have defined the
normalized function

qðZÞ≡ 3ρ4

4ðZ2 þ ρ2Þ5=2 ;
Z

∞

−∞
dZqðZÞ ¼ 1: ð18Þ

Baryon number is generated by the F2 term that couples to
the Abelian gauge field Â0 in the CS term, because the
Abelian part of the gauge group Uð1Þ corresponds to the
global group at the boundary that is associated with baryon
number conservation (by choosing the same chemical
potential as a boundary value for Â0 at both boundaries,
Z ¼ þ∞ and Z ¼ −∞, we ensure that we include a baryon
chemical potential, not an axial chemical potential). We can
thus write the baryon number as [32]

−
1

8π2

Z
d3X

Z
∞

−∞
dZTr½FijFkZ�ϵijk ¼ NI; ð19Þ

where we have inserted Eqs. (15) and (17), i.e., the baryon
number is identical to the number of instantons in our
instanton gas. We can now write the CS part of the action as

SCS ¼ −Nc
V
T
NI

V

Z
∞

−∞
dZÂ0qðZÞ ¼ −N

V
T
nI

Z
∞

−∞
dzâ0qðzÞ;

ð20Þ

with the dimensionless baryon number density nI and the
dimensionless function qðzÞ given in Table I [the function
qðzÞ depends on the dimensionless baryon width ρ which,
for notational convenience, we shall continue to denote
with the same symbol as the dimensionful baryon width].
With the help of Eqs. (15) and (17), we write all traces over
the field strengths in terms of the baryon density,

Tr½F2
iU�

ðMKKRÞ3
→

1

3γ

∂z
∂u

nIqðuÞ
ð2πα0Þ2 ;

Tr½F2
ij�

ðMKKRÞ3
→

2γ

3

∂u
∂z

nIqðuÞ
ð2πα0Þ2 ;

Tr½FijFkU�ϵijk
ðMKKRÞ3

→ −
2

3

nIqðuÞ
ð2πα0Þ2 ; ð21Þ

where we have introduced
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qðuÞ≡ 2
∂z
∂u qðzÞ ¼

9u1=2

4
ffiffiffiffiffi
fc

p ðρ2ucÞ2
ðu3 − u3c þ ρ2ucÞ5=2

;Z
∞

uc

duqðuÞ ¼ 1: ð22Þ

We have included a factor 2 in the definition of qðuÞ for
convenience to ensure that qðuÞ is normalized to one
with respect to integration over one half of the connected
flavor branes. The DBI action (11), with the Tr½F2� terms
from Eq. (21), together with the CS term (20), yields the
action

S ¼ N
V
T

Z
∞

uc

duL; ð23Þ

with the Lagrangian

L ¼ L0 þ nIqðuÞ
�
u

ffiffiffiffiffiffi
fT

p
6

�
u2c

ffiffiffiffiffi
fc

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u3fTx024 − â020

p
u2

ffiffiffiffiffiffi
fT

p

þ u2
ffiffiffiffiffiffi
fT

p

u2c
ffiffiffiffiffi
fc

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u3fTx024 − â020

p �
− â0

�
; ð24Þ

where

L0 ≡ u5=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u3fTx024 − â020

q
ð25Þ

is the DBI Lagrangian in the absence of instantons.
Let us discuss the relation of this Lagrangian to the

approximation of pointlike instantons. In that case, the
instanton profile is replaced by a delta function δðu − ucÞ.
The function qðuÞ is the generalization of that delta
function. The Lagrangian for pointlike instantons is [53]

Lpointlike¼L0þnI

�
u
3

ffiffiffiffiffiffiffiffiffiffiffiffi
fTðuÞ

p
− â0ðuÞ

�
δðu−ucÞ: ð26Þ

The first term is the same as in our Lagrangian (24), as well
as the last term with δðu − ucÞ → qðuÞ. The second term is
obtained from the action of NI D4-branes that are wrapped
on the 4-sphere at u ¼ uc,

SD4 ¼ NIT4

Z
dΩ4dτe−Φ

ffiffiffi
g

p ¼ N
V
T
nI

uc
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fTðucÞ

p
;

ð27Þ

with the D4-brane tension T4 ¼ 1=½ð2πÞ4l5
s �. The energy of

the D4-branes ED4 ¼ TSD4 can then be interpreted as the
mass of NI baryons. With the help of Table I we can write
this energy as

ED4 ¼ NIMKK
λNc

4π

uc
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fTðucÞ

p
: ð28Þ

We recover the baryon mass in the confined geometry
with maximally separated flavor branes by setting
uc → uKK ¼ 4=9 and dropping the temperature-dependent
factor. This yields λNcMKK=ð27πÞ as the mass of a
single baryon to leading order in λ, in accordance with
Refs. [32,42]. In the deconfined geometry, uc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fTðucÞ

p
=3

depends on chemical potential and temperature, giving rise
to amedium-dependent baryonmass.We shall come back to
this interpretation when we compare uc in our calculation
with the result from the pointlike scenario (see Fig. 3).
We show the phase diagram in the plane of temperature

and chemical potential for the pointlike approximation in
Fig. 1. The calculation that leads to this phase diagram was
first presented in Ref. [53], and we recapitulate it in
Appendix B. Besides the free energy of pointlike baryons,
we also compute the free energy of the vacuum (¼mesonic
phase) and the chirally symmetric phase (¼ quark matter
phase) in that appendix. The most important features of
this phase diagram in our context are the second-order
transition from the vacuum to nuclear matter and the
nonrestoration of chiral symmetry for small temperatures
and arbitrarily large chemical potential. In the rest of the
paper we ask the question whether these two unphysical

baryonic
mesonic

chirally symmetric

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.00

0.05

0.10

0.15

2

t

FIG. 1. Phase diagram in the plane of temperature and chemical
potential in the deconfined geometry with pointlike baryons (first
computed in Ref. [53]). The baryon onset is a second-order phase
transition (thick dashed line), while the chiral phase transition is
first order (solid line). The thin dashed line would be the chiral
phase transition if baryons were ignored (first computed in
Ref. [63]). At small temperatures, chiral symmetry remains
broken for all values of the chemical potential. We have rescaled
temperature and chemical potential with the asymptotic separa-
tion of the flavor branes l. In all plots we use dimensionless
scales (see Table I); we do not fit the parameters of the model
since in this paper we are only interested in qualitative features of
the phase diagram, and before the basic features of real-world
dense matter are not reproduced by the model, any fit would be
meaningless. The critical value for tl below which the confined
geometry is preferred can be made arbitrarily small in the
decompactified limit, and thus the deconfinement transition is
not seen here.
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properties can be improved by going beyond the pointlike
approximation.

B. All orders in non-Abelian field strengths

We will now discuss a version of the DBI action in which
we keep the non-Abelian field strengths to all orders. For
small chemical potentials (which correspond to small baryon
densities) the results of this action are identical to the ones
from the expanded action. For large chemical potentials, the
results will obviously differ, and a priori it is not clear which
version—if any—is “correct”, because there is no unique
definition of the non-Abelian DBI action to all orders in the
string tension α0. We shall work with a nonexpanded action

mainly for two reasons. Firstly, the evaluation of the
expanded Lagrangian (24) is challenging, and using the
nonexpanded Lagrangian discussed here is considerably
simpler [see remarks below Eq. (36)]. Secondly, we have
checked that for the expanded Lagrangian there is—within
our ansatz—no solution already beyond a moderately large
chemical potential, while the solution for the nonexpanded
Lagrangian extends to very large chemical potentials, into
a regime where the baryonic phase is already disfavored
compared to the chirally restored phase.
For the non-Abelian DBI action we shall use the

following prescription. Let us first suppose we work only
with Abelian field strengths F̂0U, F̂ij, F̂iU. Then, we obtain

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgþ 2πα0F̂Þ

q
¼ U4

�
R
U

�
3=4

�
ð2πα0Þ2fTF̂2

iU þ ð1þ u3fTx024 − â020 Þ
�
1þ

�
R
U

�
3 ð2πα0Þ2F̂2

ij

2

�

þ
�
R
U

�
3 ð2πα0Þ4fTðF̂ijF̂kUϵijkÞ2

4

�1=2

: ð29Þ

Following Ref. [58], we simply replace F̂iU → FiU and
F̂ij → Fij and perform the trace of each term separately.
Using the expressions in Eq. (21), we arrive at the
Lagrangian

L ¼ u5=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ g1 þ u3fTx024 − â020 Þð1þ g2Þ

q
− nIâ0ðuÞqðuÞ; ð30Þ

where we have abbreviated

g1ðuÞ≡ fTðuÞu1=2
3u2c

ffiffiffiffiffiffiffiffiffiffiffi
fcðuÞ

p nIqðuÞ;

g2ðuÞ≡ u2c
ffiffiffiffiffiffiffiffiffiffiffi
fcðuÞ

p
3u7=2

nIqðuÞ: ð31Þ

Our goal is to solve the equations of motion for x4 and â0
and determine the free energy of the resulting state. We
work in the grand-canonical ensemble, where the chemical
potential is externally given and introduced via the boun-
dary value of â0,

â0ð∞Þ ¼ μ: ð32Þ

To be precise, this is the quark chemical potential, such that
Ncμ is the baryon chemical potential. The boundary
condition for x4 is given by the asymptotic separation L
of the flavor branes,

l
2
¼

Z
∞

uc

dux04; ð33Þ

with the dimensionless separation l ¼ MKKL.
The equations of motion for x4 and â0 in integrated

form are

u5=2â00
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g1 þ u3fTx024 − â020

p ¼ nIQ; ð34aÞ

u5=2u3fTx04
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g1 þ u3fTx024 − â020

p ¼ k; ð34bÞ

where k is an integration constant (to be determined), and
we have denoted

QðuÞ≡
Z

u

uc

dvqðvÞ ¼ u3=2
ffiffiffiffiffi
fc

p
2

3ρ2uc þ 2ðu3 − u3cÞ
ðu3 − u3c þ ρ2ucÞ3=2

; ð35Þ

such that Qð∞Þ ¼ 1, QðucÞ ¼ 0. We can solve these
equations algebraically for â020 and x024 ,

â020 ¼ ðnIQÞ2
u5

1þ g1

1þ g2 − k2

u8fT
þ ðnIQÞ2

u5

; ð36aÞ

x024 ¼ k2

u11f2T

1þ g1

1þ g2 − k2

u8fT
þ ðnIQÞ2

u5

: ð36bÞ

At this point, the benefit of using the nonexpanded
Lagrangian (30) becomes apparent: had we worked with
the expansion in non-Abelian gauge fields (24), â020 and x024
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would have been solutions to cubic equations, which is
much more complicated to deal with (unless we had also
employed an expansion in the Abelian gauge fields).
The asymptotic behavior at u ¼ ∞ of the solutions is

x04ðuÞ ¼
k

u11=2
þ � � � ; â00ðuÞ ¼

nI
u5=2

þ � � � ; ð37Þ

confirming that nI is the baryon density according to the
usual AdS/CFT dictionary, which can also be checked later
numerically by computing the derivative of the free energy
with respect to μ. Using these solutions, we can write the
free energy density Ω ¼ T

V S in the useful forms

Ω
N

¼
Z

∞

uc

du

�
ð1þ g2Þ

u8fTx04
k

þ nIâ00Q
�
− μnI

¼
Z

∞

uc

duu5=2ζ
�
1þ g2 þ

ðnIQÞ2
u5

�
− μnI; ð38Þ

where we have introduced the abbreviation

ζ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g1 þ u3fTx024 − â020

1þ g2

s
¼ u11=2fTx04

k
¼ u5=2â00

nIQ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2 − k2

u8fT
þ ðnIQÞ2

u5

q : ð39Þ

This free energy is divergent at the holographic boundary
u → ∞. Replacing the upper boundary of the integral by a
cutoff Λ, one finds that the divergent contribution is
2=7Λ7=2. All phases we consider in this paper have the
same divergence, which is a pure vacuum contribution, i.e.,
does not depend on μ or T. Therefore, and since we are only
interested in differences of free energies, we can simply
drop this contribution.
Besides the functions x4ðuÞ and â0ðuÞ, the system

contains the parameters nI , ρ, and uc, and we have to
minimize the free energy with respect to them. At first sight
it seems curious to minimize with respect to the density nI,
since we work in the grand-canonical ensemble where the
density should be given as a function of μ. However, in our
setup nI should primarily be considered as a parameter of
the Lagrangian. This parameter turns out to be identical
to the baryon density. This is not necessarily the case, since
the total density may receive contributions from other
sources, for instance through a magnetic field [55].
In order to minimize the free energy with respect to nI , ρ,

and uc, it is convenient to read the Lagrangian as a
functional of â0ðuÞ; â00ðuÞ; x04ðuÞ; nI; ρ; uc, where the three

functions â0ðuÞ; â00ðuÞ; x04ðuÞ also depend on nI; ρ; uc.
Then, the minimization with respect to nI can be written as

0 ¼
�∂L
∂â00

∂â0
∂nI þ

∂L
∂x04

∂x4
∂nI

�
u¼∞

u¼uc

þ
Z

∞

uc

du
∂L
∂nI ; ð40Þ

where we have used the equations of motion. All boundary
terms vanish because the derivative is taken at fixed
μ ¼ â0ð∞Þ and fixed separation l=2 ¼ x4ð∞Þ − x4ðucÞ,
and because

∂L
∂â00

				
u¼uc

¼ 0 ð41Þ

due to Eq. (34a). Consequently, only the explicit derivative
with respect to nI remains. The derivative with respect to
the baryon width ρ is taken completely analogously. The
derivative with respect to uc is a bit more subtle. We obtain

0 ¼
�∂L
∂â00

∂â0
∂uc þ

∂L
∂x04

∂x4
∂uc

�
u¼∞

u¼uc

− Lju¼uc þ
Z

∞

uc

du
∂L
∂uc :
ð42Þ

Now we need to take into account that â0ðucÞ and x4ðucÞ
depend on uc explicitly and through the dependence on u.
In the boundary terms, however, only the explicit depend-
ence is relevant. We thus write

∂x4
∂uc

				
u¼uc

¼ ∂x4ðucÞ
∂uc − x04ðucÞ ð43Þ

(and the same for â0), where the left-hand side is needed in
Eq. (42), the first term on the right-hand side denotes the
full dependence on uc, and the second term the dependence
via u. Using this relation and

∂L
∂x04 ¼ k; ð44Þ

which follows from Eq. (34b), it turns out that the boundary
term at u ¼ uc gives a contribution kx04ðucÞ, i.e., Eq. (42)
becomes

0 ¼ ðkx04 − LÞu¼uc þ
Z

∞

uc

du
∂L
∂uc : ð45Þ

In summary, the three equations to minimize the free
energy can be written as

0 ¼
Z

∞

uc

du

�
u5=2

2

�∂g1
∂nI ζ

−1 þ ∂g2
∂nI ζ

�
þ â00Q

�
− μ; ð46aÞ
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0 ¼
Z

∞

uc

du
�
u5=2

2

�∂g1
∂ρ ζ−1 þ ∂g2

∂ρ ζ

�
þ nIâ00

∂Q
∂ρ

�
; ð46bÞ

0 ¼ −u5=2c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ g1ðucÞ�

�
1þ g2ðucÞ −

k2

u8cfTðucÞ
�s
þ
Z

∞

uc

du

�
u5=2

2

�∂g1
∂uc ζ

−1 þ ∂g2
∂uc ζ

�
þ nIâ00

∂Q
∂uc

�
: ð46cÞ

In all three equations, we have eliminated â0 in favor of â00
via partial integration. This is advantageous because â0
can only be obtained by numerically integrating Eq. (36a),
i.e., by eliminating â0 we avoid two nested numerical
integrations.
We have arrived at a system of coupled algebraic

equations—Eqs. (46) plus the equation for the asymptotic
separation (33)—which has to be solved for k, nI , uc, and ρ
for given chemical potential μ and temperature T [which
appears in fTðuÞ]. Before discussing the results, let us
comment on the numerical evaluation of these equations.

C. Numerical evaluation

The equation that requires some explanation is the
minimization with respect to uc (46c), for which we need
to know the behavior of various functions at the tip of the
connected flavor branes, u ¼ uc. We find

nIqðuÞ ¼
ffiffiffi
3

p
αu2cffiffiffiffiffiffiffiffiffiffiffiffiffi

u − uc
p þO½ðu − ucÞ1=2�;

nIQðuÞ ¼ 2
ffiffiffi
3

p
αu2c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u − uc

p þO½ðu − ucÞ3=2�; ð47Þ

which implies

g1ðuÞ ¼
αfTðucÞuc
3ðu − ucÞ

þOð1Þ; g2ðuÞ ¼ αþOðu − ucÞ;

ð48Þ
where we have abbreviated

α≡ 3nI
4ρu3=2c

: ð49Þ

Inserting these expansions into the solution for x04 (36b), we
find that x04 diverges at u ¼ uc,

x04ðuÞ ¼
c1ffiffiffiffiffiffiffiffiffiffiffiffiffi
u − uc

p þO½ðu − ucÞ1=2�;

c1 ≡ 1ffiffiffi
3

p
uc

α1=2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u8cfTðucÞð1þ αÞ − k2

p : ð50Þ

Consequently, the embedding of the flavor branes x4ðuÞ is
smooth at u ¼ uc for all values of nI . This shows that the
cusp, introduced by the approximation of the deltalike

baryons, is, not surprisingly, removed by the smooth
instantonic baryons; see also Appendix B 1, where we
review the pointlike approximation and see that in that case
x04 is finite at u ¼ uc and only diverges for nI → 0.
We can now compute

− u5=2c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ g1ðucÞ�

�
1þ g2ðucÞ −

k2

u8cfTðucÞ
�s

¼ −
αk

3u2cc1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u − uc

p þO½ðu − ucÞ1=2�; ð51Þ

i.e., we have obtained a divergent contribution (and no
constant term). However, the integral in Eq. (46c) also
contains a divergent term, and both divergences exactly
cancel each other. The divergent term of the integral arises in

∂g1
∂uc ζ

−1 þ ∂g2
∂uc ζ

¼ g1ðuÞ
�
pðuÞ − 2

uc

�
ζ−1ðuÞ þ g2ðuÞ

�
pðuÞ þ 2

uc

�
ζðuÞ

−
g1ðuÞ
fcðuÞ

∂fc
∂uc ζ

−1ðuÞ; ð52Þ

where we have abbreviated the function

pðuÞ≡ 2

uc
þ 5

2

3u2c − ρ2

u3 − u3c þ ρ2uc
; ð53Þ

which originates from taking the derivative of qðuÞ with
respect to uc. Now, with

∂Q
∂uc ¼ −qðuÞ u

3 þ 2u3c
3u2uc

; ð54Þ

we can write Eq. (46c) as

0 ¼
Z

∞

uc

du
�
u5=2

ζg2ðpþ 2
uc
Þ þ ζ−1g1ðp− 2

uc
Þ

2

− nIqâ00
u3 þ 2u3c
3u2uc

−
αk

6u2cc1ðu− ucÞ3=2
þ 3u2c
u1=2fc

ζ−1g1
2

�
;

ð55Þ
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and one easily checks that the divergences in the two last
terms cancel each other, rendering the integral finite. The
other equations (33), (46a), and (46b), are evaluated much
more straightforwardly and require no further explanation.
For the numerical evaluation, we first note that rescaling

of all quantities with appropriate powers of l eliminates l
from all equations. The various powers of l are given in
Table II. We shall not introduce new symbols for the
quantities rescaled with l, but rather write l explicitly in
all plots. Then, we can proceed analogously with uc
(remember that l is a constant parameter, while uc is a
dynamically determined variable). Firstly, this removes the

variable uc from the lower boundary of the integrals,
which is convenient for the numerical evaluation. And
secondly, after this rescaling, uc drops completely out of
Eqs. (46a)–(46c), i.e., we can solve them for (the rescaled)
k, nI , ρ and afterwards compute uc from Eq. (33), which is
then used to undo the rescaling of k, nI, ρ.
We also note that μ only appears in Eq. (46a), and thus

one can further reduce the number of coupled equations to
two if one fixes nI and solves for k and ρ, and afterwards
computes the resulting μ and uc. Finally, we mention that
the numerical integration is best done after a change of
variables according to Eq. (13) from u to zwith z defined as
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FIG. 2. Confined geometry with maximally separated flavor branes: baryon width ρ (upper left panel), baryon density nI (upper right
panel), value of â0 at the tip of the connected flavor branes (lower left panel), and free energy density (lower right panel), all as a function
of the chemical potential μ. (Note the larger μ scale in the lower right panel.) The dashed lines correspond to the results for pointlike
baryons, where ρ ¼ 0. The plots show the second-order baryon onset at μ ¼ uKK=3 ¼ 4=27≃ 0.148. Below the onset, i.e., in the
mesonic phase, â0ðuKKÞ ¼ μ, nI ¼ 0, Ω ¼ 0, and ρ is undefined. For the dimensionless units used here and in all following plots,
see Table I.

TABLE II. The system of four coupled equations (33), (46a)–(46c) is most conveniently solved by first rescaling
all quantities with the constant l, and then with the variable uc, as given in this table. As a consequence, l
disappears from the equations, and uc only remains in Eq. (33), which thus decouples from the other three equations.

x04 q; p; c1 x4 Q; â00; g1; g2; α; ζ u; uT; ρ; â0; μ nI Ω=N k

l3 l2 l 1 l−2 l−5 l−7 l−8

u−3=2c u−1c u−1=2c 1 uc u5=2c u7=2c u4c
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u ¼ ð1þ z2Þ1=3 (after scaling out uc). This is particularly
helpful for the numerical integration in Eq. (55), which is
the most challenging one.

D. Second-order baryon onset and chiral restoration

In this section, we present our numerical results for the
instanton gas. Our emphasis is on the deconfined geometry.
Nevertheless, we start with the confined geometry with
maximally separated flavor branes. This allows us to
compare our results to the literature and serves as a
warm-up exercise for the more difficult calculations in
the deconfined geometry. All relevant equations for the
confined geometry are collected in Appendix A 1;
the calculation basically reduces to solving Eqs. (A20),
the stationarity equations for the baryon density nI and the
baryon width ρ. In contrast to the deconfined geometry,
the results do not depend on temperature. The location of
the tip of the connected flavor branes is fixed in the case of
maximally separated branes and identical to uKK. Baryon

width, baryon density, â0ðuKKÞ, and the free energy density
are plotted as a function of the chemical potential in
Fig. 2. We see that for small nI we reproduce the results
of the pointlike approximation, in particular we find a
second-order baryon onset.3 The onset occurs at
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FIG. 3. Deconfined geometry at zero temperature: baryon density nI (upper left panel), baryon width ρ (upper right panel), location of
the tip of the connected flavor branes uc (lower left panel), and ratio of the pressures of baryonic and quark matter phases (lower right
panel), all as a function of μ and rescaled with the asymptotic separation of the flavor branes l. (Note the larger μ scale in the two lower
panels—logarithmic in the lower left panel.) The dashed lines are the results for pointlike baryons. Due to numerical difficulties for very
small ρ, the solid lines do not connect with the lines of the mesonic phase below the second-order baryon onset. In the lower right panel,
the solid line stops at a point beyond which we have not found any solutions (and where baryonic matter is already disfavored).

3In Ref. [56] it was claimed in an almost identical calculation
that the baryon onset becomes first order within the approxima-
tion of the instanton gas. Even though in that reference the DBI
action was expanded for small non-Abelian gauge fields, the
transition to baryonic matter should be of the same order because
our result reduces to that of the expanded action for small baryon
densities. However, in Ref. [56], â0ðuKKÞ has been set to zero. In
doing so, a lower boundary for the baryon density is “forced”
upon the system (and the free energy is minimized only with
respect to ρ, not also with respect to nI). Our calculation shows
that if â0ðuKKÞ is determined dynamically, it chooses to approach
μ at the baryon onset, connecting continuously to the mesonic
phase, where â0ðuÞ ¼ μ for all u (see lower left panel of Fig. 2).
As a consequence, the baryon density vanishes at that point and
the onset is second order.
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μ ¼ uKK=3 ¼ 4=27. With the help of Table I and the
comments below Eq. (28) we see that this critical chemical
potential is identical to the baryon mass, which implies that
there is no binding energy. The plot of the free energy
shows that at very large chemical potentials the finite-size
baryons become energetically more costly than pointlike
baryons. At even higher chemical potentials, μ ≳ 2.37,
beyond the scale shown in Fig. 2, we do not find any
solution. (There is a second solution up to that chemical
potential μ≃ 2.37 which we have not included in the plots
since its free energy is always higher than the one of the
solution plotted here).
We now turn to the deconfined geometry, whose results

are shown in Figs. 3 (zero temperature) and 4 (phase
diagram). In the upper left panel of Fig. 3 we show the
baryon density nI and compare it to that of the pointlike
approximation. As for the confined geometry, we observe a
second-order phase transition whose properties around the
transition (i.e., for small nI) are well approximated by
pointlike baryons. This transition is reminiscent of a Bose-
Einstein condensation [55], which is maybe not surprising
since at infinitely large Nc baryons may lose their Nc ¼ 3
fermionic nature. Our numerical result for the instanton gas
is not shown all the way down to the onset because the
numerical evaluation becomes problematic at very small
baryon densities. This regime corresponds to very small
baryon widths ρ, as the upper right panel shows, and thus

we have to integrate numerically over highly peaked
functions, which is hard. However, the plots show that
our calculation works well down to a regime where the
result already merges with the pointlike approximation.
And, in the confined geometry, where we can perform the
calculation down to the onset, we have seen that instanton
gas and pointlike approximation become indeed identical.
Therefore, it would be very surprising if the full result in the
deconfined case did not follow this approximation down to
the baryon onset, even though our numerics cannot prove it.
The lower left panel shows the location of the tip of the

connected flavor branes uc. This is an interesting quantity
because it can be related to the medium-dependent baryon
mass, at least in the pointlike approximation (see Eq. (28)
and comments below that equation). Interestingly, the
behavior of uc for the instanton gas at large chemical
potentials differs qualitatively from that of the pointlike
approximation. While instantonic baryons appear to
become heavier without bound, the pointlike baryon mass
saturates at a finite value. As a consequence, one can expect
the instanton gas to become energetically more costly with
increasing μ relative to the gas of pointlike baryons. This
expectation is borne out in the lower right panel: the
pressure P ¼ −Ω of pointlike baryons approaches that of
the chirally restored phase, P ∝ μ7=2, from above [55], thus
being favored over quark matter for arbitrarily large μ.
(The free energy of the chirally restored phase is derived
in Appendix B 3.) In contrast, while the instanton gas is
energetically less costly (¼ has higher pressure) at small μ
than the pointlike baryons, the curve of its pressure crosses
the pressure curves of the pointlike approximation and the
one of chirally restored quark matter. This shows that in the
instanton gas approximation there is a zero-temperature
chiral phase transition to quark matter at large chemical
potential. The corresponding critical chemical potential is
extremely large, about 200 times larger than the chemical
potential for the baryon onset (μ≃ 35=l2, while the onset
occurs at μ≃ 0.17=l2). Therefore, if we were to fit the
baryon onset to QCD (which makes little sense due to its
obviously unrealistic properties), our calculation would
predict chiral restoration to occur at a baryon chemical
potential of about 200 GeV. We have to keep in mind,
however, that the result at large μ has to be taken with a lot
of care because of various reasons: we have used a simple,
not uniquely defined, prescription of the non-Abelian DBI
action, whose validity is guaranteed only for sufficiently
small μ; we have employed the probe brane approximation,
which becomes questionable for very large gauge fields
on the flavor branes; and, the instantons start to overlap
at densities well below the critical chemical potential for
the chiral phase transition, which challenges our instanton
gas approximation. For these reasons we do not attempt to
use this approximation for any quantitative predictions,
since clearly it first has to be improved in the future.
Nevertheless, the existence of chiral restoration of baryonic
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FIG. 4 (color online). Phase diagram in the deconfined geom-
etry with baryons in the instanton gas approximation. Since for
small baryon density the result approaches the one from pointlike
baryons, the second-order baryon onset (as well as the transition
from the mesonic to the chirally restored phase) are identical to
the ones in Fig. 1. The first-order transition between baryonic and
chirally symmetric phases is shown by the thin (blue) line for
pointlike baryons and by the thick line for instantonic baryons.
The main qualitative difference is the chiral restoration for small
temperatures at very large μ (note the logarithmic μ scale, while
the μ scale in Fig. 1 is linear). The black line for the instanton gas
is not connected to the critical point where the second-order onset
line meets the first-order chiral transition line because of
numerical difficulties at small baryon width (see also Fig. 3).
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matter in the Sakai-Sugimoto model at high densities, at
least within a certain approximation, is a very interesting
and—to our knowledge—new observation and important
progress towards a high-density, strongly coupled model
outlined in the introduction.
We can now compute the phase transition between

baryonic and chirally restored phases for all temperatures.
The resulting phase diagram is shown in Fig. 4.

IV. BARYONIC MATTER FROM A
HOMOGENEOUS ANSATZ

A. Ansatz and calculation

So far, we have worked with an ansatz for the non-
Abelian gauge fields that was based on the BPST instanton
solution. In this section, we discuss a second ansatz,
given by [58]

AZ ¼ 0; AiðZÞ ¼ −σi
HðZÞ
2

; ð56Þ

with some function HðZÞ, to be determined. With
Fμν ¼ ∂μAν − ∂νAμ þ i½Aμ; Aν�, the field strengths become

Fij ¼ −ϵijkσk
H2

2
; FiZ ¼ σi

∂ZH
2

; ð57Þ

where ½σi; σj� ¼ 2iϵijkσk has been used. This ansatz is
different from the instanton solution (A8), where both AZ
and Ai are nonvanishing and depend not only on the
holographic coordinate Z but also on position space. In
our approximation of the previous section, we have
integrated out the position space dependence before solving
the equations of motion, i.e., eventually also our instanton
gas was spatially homogeneous. Nevertheless, we shall
refer to Eq. (56) as “homogeneous” since it does not
involve any spatial dependence to begin with. As noticed

already in Ref. [58], the ansatz (56) only yields a nonzero
baryon density if AiðZÞ is allowed to become discontinuous
at Z ¼ 0. The reason is that the baryon density assumes
the form

−
1

8π2

Z
∞

−∞
dZTr½FijFkZ�ϵijk ¼

1

8π2

Z
∞

−∞
dZ∂ZH3; ð58Þ

and Hð�∞Þ ¼ 0 has to be required in order to ensure
a finite free energy (up to a constant divergent term
that we always subtract). Therefore, if H3 was a conti-
nuous function, the integral (58) would simply give
Hðþ∞Þ3 −Hð−∞Þ3 ¼ 0. We shall briefly return to this
issue below Eq. (70), when we know the exact behavior of
HðZÞ around Z ¼ 0.
As for the instanton gas, we shall work in the coordinate

U and on one half of the connected flavor branes [for the
relation between Z and U, see Eq. (13)]. With Tr½σiσi� ¼ 6
we have

Tr½F2
iU� ¼

3h02

2ð2πα0Þ2 ;

Tr½F2
ij�

ðMKKRÞ6
¼ 3λ20h

4

ð2πα0Þ2 ;

Tr½FijFkU�ϵijk
ðMKKRÞ3

¼ −
3λ0h2h0

ð2πα0Þ2 ; ð59Þ

where the dimensionless gauge field h is defined analo-
gously to â0 (see Table I), and where we have abbreviated

λ0 ≡ λ

4π
: ð60Þ

Replacing all Abelian F̂2 terms in Eq. (29) with these non-
Abelian versions and using the CS term (8) yields the action

S ¼ N
Z

∞

uc

du

�
u5=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ 3fTh02

2
þ u3fTx024 − â020

��
1þ 3λ20h

4

2u3

�s
− â0λ0

9h2h0

2

�
: ð61Þ

In contrast to the instanton gas, the Lagrangian now
depends on the ’t Hooft coupling explicitly, there is no
rescaling of the fields by which we can get rid of λ. The
reason is the asymmetric ansatz for AZ and Ai, which leads
to a different scaling behaviour of Fij and FiU. Even though
this ansatz is somewhat more simplistic than the instanton
gas, the explicit appearance of λ allows us to capture some
physics away from the λ ¼ ∞ limit. We shall see that only
at finite λ we obtain a realistic first-order onset of baryonic
matter. Of course, since we do not go beyond the classical
gravity approximation, we cannot claim to include finite-λ

corrections systematically and have to consider our results
at finite λ as an extrapolation.
The Lagrangian now contains the additional unknown

function hðuÞ, besides â0ðuÞ and x4ðuÞ. We thus have to
solve an additional Euler-Lagrange equation. This seems
to render the calculation more tedious, but we shall see
that the three differential equations can be decoupled, and
eventually the effort needed to evaluate this approach
numerically is comparable to the one needed for the
instanton gas. Employing the same compact notation as
in Sec. III B, we abbreviate
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g1ðuÞ≡ 3fTh0ðuÞ2
2

; g2ðuÞ≡ 3λ20hðuÞ4
2u3

: ð62Þ

The baryon density is obtained from the CS term,

nI ¼
3λ0
2

Z
∞

uc

du∂uh3 ¼ −
3λ0
2

hðucÞ3; ð63Þ

where we have used hð∞Þ ¼ 0. (For the sake of a
consistent notation, we continue to denote the baryon
density by nI, although the current approach is not based
on the instanton solution.)
The equations of motion for â0 and x4 are

u5=2â00
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g1 þ u3fTx024 − â00

p ¼ nIQ; ð64aÞ

u5=2u3fTx04
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g1 þ u3fTx024 − â00

p ¼ k; ð64bÞ

with the integration constant k and, in analogy to the
function Q from Eq. (35),

QðuÞ≡ 3λ0
2nI

½hðuÞ3 − hðucÞ3� ¼ 1þ 3λ0
2nI

hðuÞ3: ð65Þ

(To emphasize the analogy to the calculation of Sec. III, we
use the same symbols g1, g2, Q, but of course need to keep
in mind that they denote different functions.) In complete
analogy to Eqs. (36), we thus find

â020 ¼ ðnIQÞ2
u5

1þ g1

1þ g2 − k2

u8fT
þ ðnIQÞ2

u5

; ð66aÞ

x024 ¼ k2

u11f2T

1þ g1

1þ g2 − k2

u8fT
þ ðnIQÞ2

u5

: ð66bÞ

For the equation of motion for h, we need

∂L
∂h ¼ u5=2ζ

2

∂g2
∂h − 9λ0â0h0h;

∂L
∂h0 ¼

u5=2ζ−1

2

∂g1
∂h0 −

9λ0
2

â0h2; ð67Þ

where

ζ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g1 þ u3fTx024 − â020

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2 − k2

u8fT
þ ðnIQÞ2

u5

q :

ð68Þ

The expression on the right-hand side does not contain â0
and x4 anymore, which can thus be eliminated from the
equation of motion for h,

∂u

�
u5=2ζ−1

∂g1
∂h0

�
−
9λ0h2ζnIQ

u5=2
¼ u5=2ζ

∂g2
∂h : ð69Þ

We are thus left with this single differential equation for h
which has to be solved numerically. From Eq. (63) we
know the boundary value at u ¼ uc in terms of nI . By
expanding Eq. (69) around u ¼ uc, we find the behavior

hðuÞ ¼ −
�
2nI
3λ0

�
1=3

þ a1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u − uc

p þ a2ðu − ucÞ þ � � � ;

ð70Þ

with coefficients a1, a2. Inserting this expansion into
Eq. (66b), we see that x04 ∝ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u − uc

p
for u close to uc.

This divergent derivative shows that the embedding of the
flavor branes is smooth, just like for the instanton gas, i.e.,
there is no cusp at the tip of the connected flavor branes,
which occurs in the pointlike approximation. Remember
from the discussion at the beginning of this section that the
function hðzÞ must be discontinuous at the tip. Thus, if we
want to continue hðzÞ into the second half of the connected
flavor branes, we have to add a factor sgnðzÞ, such that h is
antisymmetric under z → −z. As a consequence, ∂zh3 is
symmetric and continuous, and the z < 0 half of the
connected branes gives the same contribution to the baryon
density as the z > 0 half. The function ∂zh3 is the analogue
of the instanton profile qðzÞ [see Eq. (18)]. In contrast to the
instanton profile, ∂zh3 has a cusp at z ¼ 0. But unlike the
deltalike baryons from the pointlike approximation, ∂zh3 is
finite at z ¼ 0 and has a finite width. Having this picture
of the complete connected flavor branes in mind, we can
now go back to working on one single half.
For a given a1, we can compute k: from the requirement

that Eq. (69) be fulfilled to lowest order, ðu − ucÞ0, we
find

k2 ¼ u8cfTðucÞ
8uc − 3a21ð5 − 2

u3T
u3c
Þ þ 3λ2

0
hðucÞ4
2u3c

½8uc − 3a21ð2þ u3T
u3c
Þ�

8uc þ 9a21fTðucÞ
: ð71Þ
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(The higher-order terms contain the higher-order coeffi-
cients a2 etc., which can be computed successively as a
function of a1 in this way, but will not be needed in the
following.) We can thus eliminate k in favor of a1. For a
given baryon density nI, which determines the boundary
value hðucÞ, we determine the coefficient a1 numerically
via the shooting method, such that hð∞Þ ¼ 0.
Next, we need to take into account the minimization of

the free energy with respect to nI . Reading the Lagrangian
as a functional of â0, â00, x

0
4, h, h

0 (with no further explicit
dependence on nI), we obtain

0 ¼ ∂L
∂â00

∂â0
∂nI

				u¼∞

u¼uc

þ ∂L
∂x04

∂x4
∂nI

				u¼∞

u¼uc

þ ∂L
∂h0

∂h
∂nI

				u¼∞

u¼uc

⇒
∂L
∂h0

				
u¼uc

¼ 0; ð72Þ

where we have used that â0ð∞Þ ¼ μ,
x4ð∞Þ − x4ðucÞ ¼ l=2, hð∞Þ ¼ 0 are fixed and thus do
not depend on nI , and ∂L

∂â0
0

ju¼uc ¼ 0, ∂L
∂x0

4

ju¼uc ¼ k.

With the help of Eq. (67), the condition (72) can be used
to compute â0ðucÞ,

â0ðucÞ ¼
uc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fTðucÞ

p
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2u3c

3λ20h
4ðucÞ

�
1 −

k2

u8cfTðucÞ
�s
:

ð73Þ

From this relation we can already see that for large ’t Hooft
couplings, λ0 → ∞, we recover the result of pointlike
baryons [see Eq. (B6)]. We shall come back to this
observation in our discussion of the numerical results.
Recall that in the case of the instanton gas we addition-

ally had to minimize with respect to the instanton width ρ
and the location of the tip of the connected flavor branes uc.
Now, there is no parameter ρ, and the minimization with
respect to uc is automatically included in the equations of
motion, which can be seen as follows. Minimizing the free
energy with respect to uc yields

0 ¼ ∂L
∂â00

∂â0
∂uc

				u¼∞

u¼uc

þ ∂L
∂x04

∂x4
∂uc

				u¼∞

u¼uc

þ ∂L
∂h0

∂h
∂uc

				u¼∞

u¼uc

− Lju¼uc

¼
�
kx04 þ h0

∂L
∂h0 − L

�
u¼uc

; ð74Þ

where we used the same arguments as explained below
Eq. (42). We compute

kx04 þ h0
∂L
∂h0 − L

¼ u5=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2 −

k2

u8fT
þ ðnIQÞ2

u5

s

×

�
g1

1þ g1
−

1þ g2 − k2

u8fT

1þ g2 − k2

u8fT
þ ðnIQÞ2

u5

�
: ð75Þ

Since QðucÞ ¼ 0, we obtain

�
kx04 þ h0

∂L
∂h0 −L

�
u¼uc

¼ −
u5=2ffiffiffiffiffiffiffiffiffiffiffiffi
1þ g1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2 −

k2

u8fT

s 				
u¼uc

¼ 0; ð76Þ

because g1 ∝ ðu − ucÞ−1, and g2 ¼ const at u ¼ uc, i.e., we
are already sitting on a stationary point of the free energy
with respect to uc once we fulfill the equations of motion.
Finally, we need to fulfill the boundary conditions (32)

and (33). For a given chemical potential μ, these two
boundary conditions, together with the equation for h (69),
determine a1, nI, and uc. Instead of solving this compli-
cated system of equations simultaneously, we can proceed
as follows. First, we rescale all quantities by appropriate
powers of uc and the asymptotic separation l, as explained
in Sec. III C (see Table II). In addition to the quantities
listed in that table, we need λ ∼ u−1=2c , a1 ∼ u1=2c , h ∼ uc and
accordingly for l, using l ∼ u−2c . Then, l is completely
eliminated from the equations, while uc only appears in a
trivial way in the boundary condition (33), which thus
decouples. We now choose a value for (the rescaled) nI, and
determine a1 and hðuÞ via the shooting method from
Eq. (69). Then, after determining â0ðucÞ from Eq. (73),
we use the boundary condition (32) in the form

μ ¼
Z

∞

uc

duâ00 þ â0ðucÞ ð77Þ

to compute (the rescaled) μ. [Computing μ as a function of
nI is advantageous also because it is a single-valued
function, while nIðμÞ is two-valued.] The disadvantage
of this procedure is that we only work with rescaled
quantities, and the rescaling with uc has to be undone to
obtain the final results (the rescaling with l is trivial
because l is a constant). As a consequence, we have used
this procedure for the zero-temperature phase diagram in
Fig. 7, but it cannot be used when we wish to work with a
fixed ’t Hooft coupling λ. In this case, we must not rescale
λ, and the numerics become somewhat more difficult
because we now have to simultaneously solve the differ-
ential equation for h and the boundary condition (33) to
determine uc. This has been done for the plots in Fig. 6.
For the free energy comparison to the mesonic and

chirally symmetric phases, we notice that, due to our choice
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of notation, the free energy has exactly the same form as
given in Eq. (38), only with different functions ζ, g2, andQ.

B. First-order baryon onset and λ‐μ phase diagram

Again we start our discussion of the numerical results
with the confined geometry with maximally separated
flavor branes, whose equations for the homogeneous ansatz
are collected in Appendix A 2. The results are shown in
Fig. 5. The two upper panels, where we plot the baryon
density and the free energy as a function of μ at a fixed
value of λ, show a first-order baryon onset. This is in
accordance with Ref. [58], where this observation was
already made for the confined geometry, but without a full
numerical evaluation. The lower two panels show the
dependence on the ’t Hooft coupling λ of the baryon
density just above the onset nI;onset and of the chemical
potential at the onset μonset. We see that nI;onset vanishes for
λ → ∞, while μonset approaches that of the second-order

onset of the pointlike approximation and the instanton gas
of Sec. III.
In the deconfined geometry we restrict ourselves to zero

temperature and present our results in Figs. 6 and 7. In the
upper left panel of Fig. 6 we plot the baryon density as a
function of the chemical potential for three values of the ’t
Hooft coupling, λ=l ¼ 20; 40; 103. As for the confined
geometry, we obtain two solutions, but only show the stable
branch to keep the plot simple. We see that the jump in nI
becomes small for large λ (although the size of the jump is
not a monotonic function of λ), and the critical chemical
potential approaches that of the pointlike approximation.
In the upper right panel we show the free energy of the
solutions, in comparison to the mesonic and the chirally
restored phases. Here we have included the metastable and
unstable branches, whose free energy is larger than that of
the mesonic phase for all μ. In the lower left panel we show
the location of the tip of the connected D8- and D8-branes
on a very large μ scale. We see that uc saturates at a finite
value for μ → ∞, just like for pointlike baryons and in
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FIG. 5. Upper panels: first-order baryon onset for the confined geometry with maximally separated flavor branes within the
homogeneous ansatz at a fixed ’t Hooft coupling λ ¼ 10. The left panel shows the baryon density, which is discontinuous at the onset,
while the right panel shows the free energy which favors baryonic matter forΩ < 0. In both panels, the dashed continuation of the curve
shows the metastable solution (up to the turning point) and the unstable solution. Lower panels: baryon density just above and chemical
potential at the first-order baryon onset as a function of the ’t Hooft coupling λ; the critical chemical potential approaches that of the
second-order onset in the pointlike approximation μ ¼ uKK=3 for λ → ∞.
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contrast to the instanton gas approximation. The value
at infinitely large λ and μ depends on the order in which
these limits are taken: if μ is fixed to any arbitrarily large,
but finite value, uc approaches the pointlike result,
uc ≃ 1.69=l2, for λ → ∞; if, on the other hand, λ is held
fixed, uc approaches a smaller value for μ → ∞, namely
uc ≃ 1.23=l2. Finally, in the lower right panel, we show the
ratio of the pressures of the baryonic and chirally restored
phases, in analogy to the lower right panel of Fig. 3. This
plot demonstrates that there is no chiral restoration: for any
finite value of λ, the ratio approaches a finite value larger
than 1 for μ → ∞.
We may now compute the critical chemical potential for

the baryon onset for all λ. The resulting zero-temperature
phase diagram in the λ − μ plane is shown in Fig. 7. As
the results of Fig. 6 have already suggested, we recover the
result of the pointlike approximation at very large λ: the
baryon onset becomes a weak first-order transition (second

order for λ → ∞), and we even reproduce asymptotically—
within the numerical accuracy and performing the calcu-
lation up to λ≃ 1.4 × 104—the numerical value for the
critical chemical potential, μ≃ 0.17=l2. Going to smaller
values of λ, the critical chemical potential increases and
the system behaves as just discussed and shown in the
other three panels. For sufficiently low values of λ, the
situation differs qualitatively. In this case, the mesonic
phase is not superseded by baryonic matter, but a chiral
phase transition to quark matter occurs, and only at very
large μ baryonic matter becomes favored, resulting in
another chiral phase transition. The topology of the phase
structure in the λ − μ plane gives rise to a tricritical point at
ðλ; μÞ≃ ð10.1l; 0.44=l2Þ, where all three phases coexist.
The main conclusion from this phase diagram is that,

at fixed ’t Hooft coupling, once baryonic matter is created
in a realistic first-order phase transition, it never wants to
disappear again, i.e., the baryon onset is never superseded
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FIG. 6 (color online). Upper left panel: zero-temperature baryon density for three different values of the ’t Hooft coupling as a function
of the chemical potential, showing the discontinuity at the first-order transition. In all panels of this figure, the dashed line is the result for
pointlike baryons. Upper right panel: corresponding free energy, including the metastable and unstable branches. The thin dashed-
dotted lines are the free energies of the mesonic phase (horizontal line) and the chirally restored phase. Lower left panel: location of the
tip of the connected flavor branes on a large, logarithmic μ scale. Lower right panel: ratio of the pressures of the baryonic and chirally
restored phases for two large values of the ’t Hooft coupling on a large, linear μ scale.
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by chiral restoration at high densities, as one would expect
from QCD. In this sense, the homogeneous ansatz behaves
exactly opposite to the instanton gas, where the onset was
an unrealistic second-order phase transition, but there was
chiral restoration at high densities.
Interestingly, the phase diagram of Fig. 7 shows that if

the ’t Hooft coupling were allowed to vary as a function
of μ, it would be possible to move from the vacuum through
a first-order onset into the baryonic phase and then via a
chiral phase transition to the quark matter phase, as
expected from QCD. To this end, the ’t Hooft coupling
λ ¼ g2Nc would have to decrease with μ, in accordance
with the running of the QCD coupling g. It is thus tempting
to speculate what the trajectory of the running coupling
would be in the phase diagram of Fig. 7. Suppose we reach
the quark matter phase with a running coupling. Then, we
know that at some sufficiently large μ the QCD coupling
runs logarithmically, g2 ∝ 1= ln μ. The transition line
between the quark matter and baryonic phases in Fig. 7,
however, decreases with λ through a power law (the
numerics suggest μ ∝ λ−5=2, but computing this phase
transition line numerically becomes increasingly difficult
for large μ). As a consequence, it seems the system
necessarily has to re-enter the baryonic phase at large μ.
But, we need to keep in mind that the current model cannot
be expected to be valid in the asymptotically dense regime
where the system becomes weakly coupled. Therefore,
it is perfectly conceivable that the (strong) coupling runs
through the three phases of Fig. 7 in the “right order”
before we anyway have to stop trusting our calculation. The
chiral phase transition is expected to occur at moderate, not
asymptotically large, densities. Of course, in the present

approximation, there is no prediction for how λ might run,
and thus here we do not make any attempts to model such a
running. Possibly this question can be addressed by taking
into account the backreaction of the flavor branes on the
background geometry, which appears to result in a running
coupling, although different from QCD [38].

V. CONCLUSIONS

We have studied cold and dense baryonic matter in the
Sakai-Sugimoto model and have addressed the question
whether the model can account for a first-order baryon
onset and a zero-temperature chiral phase transition from
baryonic to quark matter. To this end, we have focused on
the deconfined geometry and the decompactified limit,
where the separation of the flavor branes at the holographic
boundary is small compared to the radius of the compacti-
fied extra dimension of the model. To our knowledge, this
is the first time that holographic baryonic matter beyond the
simple pointlike approximation has been considered in this
setup. As a reference calculation and for a comparison to
existing results in the literature we have also considered the
confined geometry with maximally separated flavor branes.
In our description of baryonic matter we followed two

different approaches. Firstly, we have considered an
instanton gas [56], which makes use of the BPST instanton
solution that has been employed to study vacuum proper-
ties of baryons in the Sakai-Sugimoto model [42]. This
approach can be considered as a generalization of the
pointlike approximation for baryonic matter [53]. We have
recovered the pointlike approximation in our calculation
for the case of small baryon densities. It has turned out that
the baryon density is allowed to become arbitrarily small,
resulting in a second-order phase transition from the
vacuum to baryonic matter. At large densities, however,
the instanton gas differs qualitatively from pointlike
baryons. Most notably, the medium-dependent baryon
mass increases without bound, such that baryonic matter
becomes energetically more and more costly. As a conse-
quence, and in contrast to the pointlike approximation,
chiral symmetry is restored at zero temperature at
(extremely) large densities.
Secondly, we have employed a homogeneous ansatz

for the non-Abelian gauge fields, which only depends on
the holographic direction [58]. This approach, in contrast to
the instanton gas approximation, allows for a nontrivial
dependence on the ’t Hooft coupling λ and thus for going
away from the infinite coupling limit (at least in an
extrapolating sense since we do not compute finite-λ
corrections systematically). This is important because only
for finite values of the ’t Hooft coupling do we see a first-
order baryon onset, as expected from QCD. If λ is kept
fixed and not too small, we have found that after baryonic
matter is created in a first-order phase transition, it remains
favored for all densities, i.e., there is no chiral restoration.
A sequence of phases with increasing chemical potential
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FIG. 7. Phases in the plane of chemical potential μ and ’t Hooft
coupling λ at zero temperature for the homogeneous ansatz of
the non-Abelian gauge fields. All solid lines are first-order
phase transitions. The thin dashed line marks the (second-order,
λ-independent) baryon onset for the instanton gas. For not
too small values of the ’t Hooft coupling, there is a first-order
phase transition from the vacuum to baryonic matter, but—if
the coupling is kept fixed—no subsequent transition to chirally
restored matter.
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that is expected from QCD (vacuum—nuclear matter—
quark matter) is only possible if λ were to decrease with
increasing chemical potential. Although this is an in-
triguing observation since this is exactly what is expected
from the QCD coupling, the present approximation does
not include any running of λ. The main conclusion from our
two different approaches is thus that neither one shows a
first-order baryon onset and chiral restoration at high
density, but we see chiral restoration in the instanton gas
approximation and a first-order onset in the homogeneous
approach.
In order to interpret this conclusion we need to keep in

mind that we have employed several approximations and
extrapolations. We have used a simple prescription for the
non-Abelian DBI action and neglected any backreaction of
the flavor branes on the metric. Therefore, our results for
very large densities have to be taken with some care. We
have used the simple flat-space, SOð4Þ symmetric BPST
instanton solution. In going from a single instanton profile
to a gas of instantons, we have employed a simple spatial
averaging in order to obtain homogeneous baryonic matter
and have placed all instantons at the tip of the connected
flavor branes, i.e., we have not determined their location in
the bulk dynamically. All these deficiencies of our calcu-
lation can be improved in a systematic way, and thus we
believe that our observations will help to move closer
towards a holographic picture of real-world dense matter.
For example, our observation of the first-order phase
transition in the homogeneous approach is a clear indica-
tion that some of the physics away from the λ ¼ ∞ limit
must be included, and we are currently working on
extending the instanton gas approach in this direction.
We have mainly focused on two crucial properties of

dense matter, a first-order baryon onset and chiral restora-
tion at large densities. Of course, fulfilling these necessary
properties does not guarantee that we are quantitatively
close to real-world QCD. Indeed, as we have argued, there
are reasons to expect that, at best, the Sakai-Sugimoto
model in the decompactified version can only be a rough
guide to high-density QCD. Nevertheless, the lack of first-
principle calculations and of any model for cold matter that

is reasonably applicable over a wide density regime would
make even a semi-realistic strong-coupling model very
valuable. The Sakai-Sugimoto model in the limit consid-
ered here has only three free parameters, the ’t Hooft
coupling, the Kaluza-Klein mass, and the asymptotic
separation of the flavor branes. At this point, we have
not attempted to fit them to any physical properties. After
the model has been improved along the lines just indicated,
it will be very interesting to fit them for instance to nuclear
ground state properties and use the model for quantitative
predictions, e.g., for the equation of state in the context of
compact stars.
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APPENDIX A: CONFINED GEOMETRY

All derivations in the main text are done in the decon-
fined geometry. In this appendix we discuss the confined
geometry which, in our context, mainly serves as a warm-
up exercise for the numerical calculations of the deconfined
geometry. The reason is that it allows for a very simple
scenario where the embedding of the flavor branes in the
background geometry is trivial. Most of the arguments are
completely analogous (in many instances simpler) as in the
deconfined geometry.
The induced metric on the flavor branes is

ds2D8 ¼
�
U
R

�
3=2

ðdτ2 þ δijdXidXjÞ þ
�
R
U

�
3=2

��
1

f
þ f

�
U
R

�
3

ð∂UX4Þ2
�
dU2 þ U2dΩ2

4

�
; ðA1Þ

where

f ≡ 1 −
U3

KK

U3
; ðA2Þ

and UKK is related to the Kaluza-Klein mass through

MKK ¼ 3

2

U1=2
KK

R3=2 : ðA3Þ

1. Baryonic matter from
an instanton gas

As for the deconfined geometry, we first expand the
action for small non-Abelian field strengths, use this
expansion to introduce the instanton gas with the help of
the instanton solution of the YM action, and then consider
the action to all orders in the non-Abelian field strengths.
For the expansion we need
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgþ 2πα0F̂Þ

q
¼ U4ffiffiffi

f
p

�
R
U

�
3=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u3f2x024 − fâ020
q

; ðA4Þ

Tr½ðgþ 2πα0F̂Þ−1F�2 ¼ −
�
R
U

�
3

Tr½F2
ij� −

2fTr½F2
iU�

1þ u3f2x024 − fâ020
; ðA5Þ

which gives the DBI action

SDBI ¼
2T8V4R3=2

gs

Z
d4X

Z
∞

UKK

dU
U5=2ffiffiffi

f
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u3f2x024 − fâ020

q �
1þ R3ð2πα0Þ2

4U3
Tr½F2

ij� þ
f
2

ð2πα0Þ2Tr½F2
iU�

1þ u3f2x024 − fâ020

�
: ðA6Þ

In order to discuss the instanton solution, we need to
consider the YM action, which is immediately obtained
from this expansion. We consider the case of maximally
separated branes, such that the embedding of the flavor
branes is trivial, x04 ¼ 0 (for a generalization to the non-
antipodal case, see Ref. [75]). We also set the chemical
potential to zero, i.e., â0ð∞Þ ¼ 0. Nevertheless, due to the
CS term, â0ðuÞ acquires a nontrivial profile even in that
case [42], which affects the instanton solution. For now,
we also ignore the CS contribution, such that we can set
â0ðuÞ ¼ 0. Then, dropping the term that is independent of
the gauge fields, we obtain the YM action [32,33,42],

SYM ¼ λNc

216π3

Z
d4X

Z
∞

−∞
dZ

�
hðZÞ
2

Tr½F2
ij�

þM2
KK

U2
KK

kðZÞTr½F2
iZ�
�
; ðA7Þ

where we have used Eqs. (6) and (A3), the variable Z from
Eq. (13) with Uc replaced by UKK (we now integrate over
both halves of the connected flavor branes), and abbreviated
kðZÞ≡U3

KK þ Z2UKK, hðZÞ≡ ðU3
KK þ Z2UKKÞ−1=3.

In flat space, setting kðZÞ ¼ U3
KK and hðZÞ ¼ U−1

KK, the
YM equations of motion are solved by the instanton
solution [42]

AZð~X; ZÞ ¼ −iϕψ∂Zψ
−1; Aið~X; ZÞ ¼ −iϕψ∂iψ

−1;

ðA8Þ

with

ϕð~X; ZÞ ¼ ξ2

ξ2 þ ðρ=γÞ2 ; ψð~X; ZÞ ¼ Z=γ − i~X · ~σ
ξ

;

ξ2 ≡ ð~X − ~X0Þ2 þ
ðZ − Z0Þ2

γ2
; ðA9Þ

where we have abbreviated

γ ≡MKKUKK ¼ 3U3=2
KK

2R3=2 : ðA10Þ

The reason for the appearance of this factor, which rescales

Z relative to ~X, is the relative factor between the F2
ij and F

2
iZ

terms in the YM action (we have taken the flat-space limit
by dropping the Z dependence, but not setting the constant
prefactors to one). Since the instanton width will later be
determined dynamically, we are free to denote it by ρ=γ.
This will turn out to be convenient when we take the spatial
average of the instanton gas [see Eq. (17)] after which γ
simply becomes a prefactor of the instanton profile.
With Fμν ¼ ∂μAν − ∂νAμ þ i½Aμ; Aν�, the resulting field

strengths are

Fij ¼ ϵijaσa
2ðρ=γÞ2

½ξ2 þ ðρ=γÞ2�2 ;

FiZ ¼ −
σi
γ

2ðρ=γÞ2
½ξ2 þ ðρ=γÞ2�2 : ðA11Þ

The generalization of this single instanton to a gas of
instantons is explained in the main text for the deconfined
geometry [see Sec. III A]. In our approximation, this gener-
alization results in the field strengths (21). Completely
analogously, we obtain for the confined geometry

Tr½F2
iU� →

u1=2

3u2KK
ffiffiffi
f

p nIqðuÞ
ð2πα0Þ2 ;

Tr½F2
ij�

ðMKKRÞ6
→

2u2KK
ffiffiffi
f

p
3u1=2

nIqðuÞ
ð2πα0Þ2 ;

Tr½FijFkU�ϵijk
ðMKKRÞ3

→ −
2

3

nIqðuÞ
ð2πα0Þ2 ; ðA12Þ

with

qðuÞ ¼ 9u1=2

4
ffiffiffi
f

p ðρ2uKKÞ2
ðu3 − u3KK þ ρ2uKKÞ5=2

: ðA13Þ

With uKK defined in Table I and using Eq. (A3), we have
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uKK ¼ 4

9
: ðA14Þ

As in the deconfined case, our actual calculation is performed by keeping all orders in the field strengths. For the Abelian case,
this yields [compare with the corresponding expression of the deconfined geometry (29)]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgþ 2πα0F̂Þ

q
¼ U4ffiffiffi

f
p

�
R
U

�
3=4

�
ð2πα0Þ2fF̂2

iU þ ½1þ u3f2x024 þ fâ020 �
�
1þ

�
R
U

�
3 ð2πα0Þ2F̂2

ij

2

�

þ
�
R
U

�
3 ð2πα0Þ4fðF̂ijF̂kUϵijkÞ2

4

�1=2

: ðA15Þ

We now generalize this expression to the non-Abelian case,
following the prescription explained at the beginning of
Sec. III B. With the help of Eq. (A12), working with
maximally separated flavor branes, x04 ¼ 0, and including
the CS term, we arrive at the Lagrangian

L ¼ u5=2ffiffiffi
f

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ g1 − fâ020 Þð1þ g2Þ

q
− nIâ0ðuÞqðuÞ;

ðA16Þ

where

g1ðuÞ≡ u1=2
ffiffiffiffiffiffiffiffiffi
fðuÞp

3u2KK
nIqðuÞ;

g2ðuÞ≡ u2KK
ffiffiffiffiffiffiffiffiffi
fðuÞp

3u7=2
nIqðuÞ; ðA17Þ

with qðuÞ from Eq. (A13). The solution of the equation of
motion for â0 is given by

â020 ¼ ðnIQÞ2
u5f

1þ g1

1þ g2 þ ðnIQÞ2
u5

; ðA18Þ

where

QðuÞ ¼ u3=2
ffiffiffi
f

p
2

3ρ2uKK þ 2ðu3 − u3KKÞ
ðu3 − u3KK þ ρ2uKKÞ3=2

: ðA19Þ

Following the arguments in Sec. III B, we minimize the free
energy with respect to nI and ρ, which leads to the coupled
equations

0 ¼
Z

∞

uKK

du

�
u5=2

2
ffiffiffi
f

p
�∂g1
∂nI ζ

−1 þ ∂g2
∂nI ζ

�
þ â00Q

�
− μ;

ðA20aÞ

0 ¼
Z

∞

uKK

du

�
u5=2

2
ffiffiffi
f

p
�∂g1
∂ρ ζ−1 þ ∂g2

∂ρ ζ

�
þ nIâ00

∂Q
∂ρ

�
;

ðA20bÞ

where

ζ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g1 − fâ020

1þ g2

s
¼ u5=2

ffiffiffi
f

p
â00

nIQ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2 þ ðnIQÞ2

u5

q ;

ðA21Þ

and we can write the free energy as

Ω
N

¼
Z

∞

uKK

du
u5=2ffiffiffi
f

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2 þ

ðnIQÞ2
u5

s
− μnI:

ðA22Þ

2. Baryonic matter from a homogeneous ansatz

In the confined geometry with maximally separated
flavor branes, the homogeneous ansatz for the gauge fields
(56) yields, in analogy to Eq. (61), the action

S ¼ N
Z

∞

uKK

du

�
u5=2ffiffiffi
f

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ g1 − fâ020 Þð1þ g2Þ

q

−
9λ0
2

â0h2h0
�
; ðA23Þ

where

g1ðuÞ≡ 3fðuÞh0ðuÞ2
2

; g2ðuÞ≡ 3λ20hðuÞ4
2u3

: ðA24Þ

We now proceed completely analogously to the deconfined
geometry, as explained in Sec. IVA: the baryon density
is related to the boundary value of h in the bulk,
nI ¼ −3λ0=2 hðuKKÞ3, and the equation of motion for â0
in integrated form is

u5=2
ffiffiffi
f

p
â00

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g1 − fâ020

p ¼ nIQ; QðuÞ≡ 1þ 3λ0
2nI

hðuÞ3;

ðA25Þ

such that
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â020 ¼ ðnIQÞ2
u5f

1þ g1

1þ g2 þ ðnIQÞ2
u5

: ðA26Þ

With the abbreviation

ζ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g1 − fâ020

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2 þ ðnIQÞ2

u5

q ðA27Þ

the equation of motion for h becomes

∂u

�
u5=2ζ−1ffiffiffi

f
p ∂g1

∂h0
�
−
9λ0h2ζnIQ

u5=2
ffiffiffi
f

p ¼ u5=2ζffiffiffi
f

p ∂g2
∂h ; ðA28Þ

and we find that h behaves around u ¼ uKK as given in
Eq. (70) for the deconfined geometry. The minimization
with respect to nI yields

â0ðuKKÞ ¼
uKK
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2u3KK

3λ2
0
hðuKKÞ4

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8uKK

9a2
1

q ; ðA29Þ

and the free energy becomes

Ω
N

¼
Z

∞

uKK

du
u5=2ffiffiffi
f

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2 þ

ðnIQÞ2
u5

s
− μnI:

ðA30Þ

[We have checked that minimizing this expression numeri-
cally with respect to nI gives the same result as using the
simpler (A29).]

APPENDIX B: POINTLIKE BARYONS, MESONIC
PHASE, AND CHIRALLY RESTORED PHASE

In this appendix we discuss the baryonic phase in the
approximation of pointlike baryons as well as the mesonic
and chirally restored phases, which are needed for the
discussion of the phase structure in the main text. Most of
the discussion in this appendix concerns the deconfined
geometry, but we also briefly discuss the (much simpler)
results for the baryonic and mesonic phases of the confined
geometry with maximally separated flavor branes. The
chirally restored phase exists only in the deconfined
geometry.

1. Pointlike baryons

a. Deconfined geometry

As argued in the main text, we recover the Lagrangian
for pointlike baryons (26) in the limit of vanishing baryon
width ρ → 0,

L ¼ L0 þ nI

�
u
3

ffiffiffiffiffiffiffiffiffiffiffiffi
fTðuÞ

p
− â0ðuÞ

�
δðu − ucÞ; ðB1Þ

with L0 from Eq. (25). This Lagrangian was the starting
point in Ref. [53], and here we recapitulate the calculation
of that reference in a concise way (a very similar calculation
can be found in Ref. [55], where a background magnetic
field was included). The equations of motion in integrated
form are

u5=2â00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u3fTx024 − â020

p ¼ nI; ðB2aÞ

u5=2u3fTx04ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u3fTx024 − â020

p ¼ k; ðB2bÞ

with an integration constant k that has to be determined
in the following. These equations are easily solved for â00
and x04,

â00ðuÞ ¼
nIu3=2

ffiffiffiffiffiffiffiffiffiffiffiffi
fTðuÞ

pffiffiffiffiffiffiffiffiffi
gðuÞp ;

x04ðuÞ ¼
k

u3=2
ffiffiffiffiffiffiffiffiffiffiffiffi
fTðuÞ

p ffiffiffiffiffiffiffiffiffi
gðuÞp ; ðB3Þ

where we have abbreviated

gðuÞ≡ ðu8 þ u3n2I ÞfTðuÞ − k2: ðB4Þ

Consequently, â0 and x4 are

â0ðuÞ ¼ nI

Z
u

uc

dv
v3=2

ffiffiffiffiffiffiffiffiffiffiffiffi
fTðvÞ

pffiffiffiffiffiffiffiffiffi
gðvÞp þ â0ðucÞ;

x4ðuÞ ¼ k
Z

u

uc

dv

v3=2
ffiffiffiffiffiffiffiffiffiffiffiffi
fTðvÞ

p ffiffiffiffiffiffiffiffiffi
gðvÞp ; ðB5Þ

where we have set x4ðucÞ ¼ 0.
As explained in the main text for finite-size baryons, we

need to minimize the free energy with respect to nI and uc.
From the minimization with respect to nI we obtain

â0ðucÞ ¼
uc
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fTðucÞ

p
: ðB6Þ

As a consequence, the on-shell action is solely determined
by L0. The minimization with respect to uc yields [using
Eq. (B6)]

nI
3

1þ fTðucÞ
2

¼
ffiffiffiffiffiffiffiffiffiffiffi
gðucÞ

p
u3=2c

: ðB7Þ

This relation can be used to determine k as a function of uc
and nI ,
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k2 ¼ ðu8c þ u3cn2I ÞfTðucÞ − u3c

�
nI
3

�
2
�
1þ fTðucÞ

2

�
2

:

ðB8Þ
By inserting this result into the expression for x04ðuÞ from
Eq. (B3), we see that x04ðuÞ assumes a finite value at u ¼ uc
for all nonzero nI. Therefore, the embedding of the
connected flavor branes aquires a cusp, in contrast to the
instanton gas approximation, as shown in the main text.
The quantities uc and nI are then determined by the

coupled system of equations,

l
2
¼ k

Z
∞

uc

du

u3=2
ffiffiffiffiffiffiffiffiffiffiffiffi
fTðuÞ

p ffiffiffiffiffiffiffiffiffi
gðuÞp ;

μ − â0ðucÞ ¼ nI

Z
∞

uc

du
u3=2

ffiffiffiffiffiffiffiffiffiffiffiffi
fTðuÞ

pffiffiffiffiffiffiffiffiffi
gðuÞp ; ðB9Þ

where we have imposed the boundary condition
μ ¼ â0ð∞Þ. Since the right-hand side of the second
equation is larger than zero, there can only be solutions
for μ > â0ðucÞ. In the limit nI → 0, μ assumes this
minimum value, i.e., with Eq. (B6), the critical chemical
potential for the second-order onset of baryonic matter is

μonset ¼
uc
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fTðucÞ

p
; ðB10Þ

where uc at nI → 0 is determined from

l
2
¼

Z
∞

uc

du
u4c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fTðucÞ

p
u3=2

ffiffiffiffiffiffiffiffiffiffiffiffi
fTðuÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u8fTðuÞ − u8cfTðucÞ

p :

ðB11Þ

At zero temperature, this can be evaluated analytically, and
we find

μonsetðT ¼ 0Þ ¼ 16π

3l2

�
7Γð31

16
Þ tan π

16

15Γð23
16
Þ

�
2

≃ 0.17495
l2

:

ðB12Þ

By solving Eq. (B11) numerically we can compute the
baryon onset for all temperatures. The result is the thick
dashed line in Fig. 1. For the free energy comparison with
the mesonic and chirally restored phases, we need the free
energy

Ωpointlike ¼ N
Z

∞

uc

duu5
u3=2

ffiffiffiffiffiffiffiffiffiffiffiffi
fTðuÞ

pffiffiffiffiffiffiffiffiffi
gðuÞp : ðB13Þ

As mentioned in the main text below Eq. (39), a divergent
vacuum contribution has to be subtracted, as for all free
energies in this paper. With this simple renormalization and
using the results from the following two subsections, one

finds that the free energy (B13) is smaller than the free
energy of the mesonic and chirally restored phases as soon
as baryons are allowed to appear. Therefore, the chemical
potential (B10) marks the transition from vacuum to
baryonic matter.

b. Confined geometry

The Lagrangian for pointlike baryons with maximally
separated flavor branes in the confined geometry is

L ¼ L0 þ nI

�
uKK
3

− â0ðuKKÞ
�
δðu − uKKÞ; ðB14Þ

with

L0 ¼
u5=2ffiffiffi
f

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fâ020

q
: ðB15Þ

The equation of motion for â0 in integrated form is thus

u5=2
ffiffiffi
f

p
â00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − fâ020
p ¼ nI: ðB16Þ

By defining the new variable

yðuÞ ¼
Z

u

uKK

dvffiffiffi
f

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v5 þ n2I

p ; ðB17Þ

the equation of motion becomes

∂yâ0 ¼ nI ⇒ â0ðyÞ ¼ nIyþ c: ðB18Þ

We determine the integration constant cwith the help of the
boundary condition â0ðy∞Þ ¼ μ, where

y∞ ≡ yðu ¼ ∞Þ ¼
Z

∞

uKK

duffiffiffi
f

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u5 þ n2I

p : ðB19Þ

We find c ¼ μ − nIy∞ and thus

â0ðyÞ ¼ nIðy − y∞Þ þ μ: ðB20Þ
Minimization with respect to nI yields [completely analo-
gously to the deconfined geometry, see Eq. (B6)]

â0ðuKKÞ ¼
uKK
3

: ðB21Þ

Consequently, since yðu ¼ uKKÞ ¼ 0, we obtain the fol-
lowing implicit equation for nI,

μ − nIy∞ ¼ uKK
3

: ðB22Þ

As in the deconfined geometry, the free energy only
receives a contribution from L0. With
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â00 ¼
dy
du

∂yâ0 ¼ nI
dy
du

⇒ 1 − fâ020 ¼ u5

u5 þ n2I
; ðB23Þ

we obtain

Ω ¼ N
Z

∞

uKK

du
u5ffiffiffi

f
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u5 þ n2I
p : ðB24Þ

2. Mesonic phase

a. Deconfined geometry

For the mesonic phase, we simply set nI ¼ 0 in the
Lagrangian (26), such that L ¼ L0. This leads to the
equations of motion in integrated form

u5=2â00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u3fTx024 − â020

p ¼ 0; ðB25aÞ

u5=2u3fTx04ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u3fTx024 − â020

p ¼ f1=2T ðu0Þu40; ðB25bÞ

where we have denoted the location of the tip of the
connected branes by u0 (at the second-order onset of
pointlike baryons, u0 ¼ uc), and where we have deter-
mined the integration constants on the right-hand side from
the boundary conditions

â00ðu0Þ ¼ 0; â0ð∞Þ ¼ μ;

x04ðu0Þ ¼ ∞;
l
2
¼

Z
∞

u0

dux04: ðB26Þ

Consequently,

â00 ¼ 0; x04 ¼
f1=2T ðu0Þu40

f1=2T ðuÞu3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u8fTðuÞ − u80fTðu0Þ

q :

ðB27Þ

In particular, â0 is constant, indicating that the baryon
density vanishes in this phase. It thus remains to determine
u0 as a function of temperature (it does not depend on μ).
This is done with the help of the last relation of Eq. (B26).
At zero temperature, where fTðuÞ ¼ 1, one finds the
analytical solution

u0ðT ¼ 0Þ ¼ 16π

l2

�
Γð 9

16
Þ

Γð 1
16
Þ
�
2

≃ 0.52486
l2

: ðB28Þ

The free energy becomes

Ωmesonic ¼ N
Z

∞

u0

duu5=2
u4f1=2T ðuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u8fTðuÞ − u80fTðu0Þ
q :

ðB29Þ

Again, at T ¼ 0, this can be evaluated analytically.
Introducing a cutoff Λ, we obtain

ΩmesonicðT ¼ 0Þ
N

¼
Z

Λ

u0

duu5=2
u4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u8 − u80

q
¼ 2

7
Λ7=2 −

215π4

15l7

Γð31
16
Þ tan π

16

Γð23
16
Þ

�
Γð 9

16
Þ

Γð 1
16
Þ
�
7

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≃5.4 × 10−3=l7

:

ðB30Þ

This value is used for example in the upper right panel
of Fig. 6.

b. Confined geometry

Setting nI ¼ 0, the Lagrangian is simply given by
L ¼ L0 with L0 from Eq. (B15), which yields the equation
of motion for â0 in integrated form

u5=2
ffiffiffi
f

p
â00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − fâ020
p ¼ 0: ðB31Þ

Here we have set the integration constant to zero to ensure
â00ðuKKÞ ¼ 0. As a consequence, the solution is trivial,
â0ðuÞ ¼ μ, and the free energy becomes

Ω ¼ N
Z

∞

uKK

du
u5=2ffiffiffi
f

p : ðB32Þ

3. Chirally restored phase

In the chirally restored phase, we start from the same
Lagrangian as in the mesonic phase, but since the flavor
branes are straight and disconnected, the holographic
coordinate assumes values in the interval u ∈ ½uT;∞�,
and we have x04 ¼ 0. Therefore, there is only one nontrivial
equation of motion whose integration constant is the
baryon density nI,

u5=2â00ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − â020

p ¼ nI: ðB33Þ

In this phase, there are no baryons, the baryon density is
generated by quarks. With the boundary conditions

â0ðuTÞ ¼ 0; â0ð∞Þ ¼ μ; ðB34Þ
we find
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â0ðuÞ ¼ μ −
n2=5I Γð 3

10
ÞΓð6

5
Þffiffiffi

π
p þ u 2F1

�
1

5
;
1

2
;
6

5
;−

u5

n2I

�
;

ðB35Þ
and the following implicit equation for nI as a function of μ
and T,

0 ¼ μ −
n2=5I Γð 3

10
ÞΓð6

5
Þffiffiffi

π
p þ uT 2F1

�
1

5
;
1

2
;
6

5
;−

u5T
n2I

�
: ðB36Þ

At zero temperature, we have the simple result

nIðμ; T ¼ 0Þ ¼ π5=4μ5=2

½Γð 3
10
ÞΓð6

5
Þ�5=2 : ðB37Þ

The free energy is

Ωquark

N
¼

Z
∞

uT

du
u5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u5 þ n2I
p ¼ 2

7
Λ7=2

−
2Γð 3

10
ÞΓð6

5
Þ

7
ffiffiffi
π

p n7=5I −
2uTnI
7

η

�
u5=2T

nI

�
; ðB38Þ

where again we have introduced a cutoff for u → ∞, and
abbreviated

ηðxÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
− 2F1

�
1

5
;
1

2
;
6

5
;−x2

�
: ðB39Þ

At zero temperature,

ΩquarkðT ¼ 0Þ
N

¼ 2

7
Λ7=2 −

2π5=4μ7=2

7½Γð 3
10
ÞΓð6

5
Þ�5=2 : ðB40Þ

By comparing this free energy to the one from the mesonic
phase (B30), we compute the critical chemical potential for
the chiral phase transition at T ¼ 0,

μcðT ¼ 0Þ ¼ 16π11=14

l2

�
7Γð31

16
Þ tan π

16

15Γð23
16
Þ

�
2=7�Γð 9

16
Þ

Γð 1
16
Þ
�
2
�
Γ
�
3

10

�
Γ
�
6

5

��
5=7 ≃ 0.440472

l2
: ðB41Þ

For nonzero temperatures, the critical chemical potential has to be computed numerically. The result is shown in Fig. 1,
where we see that for small temperatures there is no chiral phase transition because the mesonic phase is superseded by the
baryonic phase before the chirally restored phase becomes favored over the mesonic phase.
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