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The coefficients of the membrane instantons in the ABJM theory are known to be quadratic polynomials
of the chemical potential. For better insight into this nonconstantness, we consider more general
superconformal Chern–Simons theories labelled by two parameters ðq; pÞ. In these theories, we show
that the membrane instantons split into three types of nonperturbative effects, one more type compared with
the previous observation. We also determine their explicit coefficients which are independent of the
chemical potential. We find that, although these constants contain poles at certain values of q and p
including the ABJM case, all of the poles cancel among themselves, and the finite quadratic polynomial
coefficients are reproduced at these values. This is similar to what happens between the membrane
instantons and the worldsheet instantons in the ABJM theory.
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I. INTRODUCTION AND SUMMARY

A. ABJM membrane instantons revisited

Recently there has been much progress in understanding
the world volume theory of multiple M2-branes. It was
found in [1] that the world volume theory of N coincident
M2-branes on a geometry C4=Zk is described by the N ¼
6 UðNÞk ×UðNÞ−k superconformal Chern–Simons theory
where the subscripts k and −k denote the Chern–Simons
levels associated to each UðNÞ factor.1 We shall call this
theory Aharony-Bergman-Jafferis-Maldacena (ABJM)
theory hereafter. After applying the localization theorem
[6,7], the infinite-dimensional path integral in defining the
partition function of the ABJM theory on S3 is reduced to a
finite-dimensional matrix integral.
One of the most remarkable results in the study of this

matrix model is the determination of the coefficient of the
membrane instantons. It was found that the nonperturbative
effects in 1=N consist of two types of instantons and their
bound states. One is called the worldsheet instanton. If we
define the grand potential JABJMðμÞ dual to the partition
function

eJABJMðμÞ ¼
X∞
N¼0

ZABJMðNÞeμN; ð1:1Þ

by introducing the chemical potential μ dual to N, the
effects of the worldsheet instantons can be written as

JWS
ABJMðμÞ ¼

X∞
n¼1

dmðkÞe−
4mμ
k : ð1:2Þ

In the IIA picture, the exponent e−
4μ
k is interpreted as a

fundamental string wrapping CP1 [8,9] in C4=Zk.
The other is the membrane instanton. Though the

membrane instanton was first introduced in Ref. [10],
quantitative studies of it in general situations remain
difficult. In the case of the ABJM theory where the
membrane instanton corresponds to a D2-brane wrapping
RP3 [11] in C4=Zk, however, the complete determination
of the membrane instanton effects was finally achieved,

JMB
ABJMðμÞ ¼

X∞
l¼1

ðalðkÞμ2 þ blðkÞμþ clðkÞÞe−2lμ; ð1:3Þ

where alðkÞ, blðkÞ, and clðkÞ are μ-independent constants
given in Refs. [12,13]. For example, the explicit form
of the coefficients of the first membrane instanton is given
with [14,15]

a1ðkÞ ¼ −
4 cos πk

2

π2k
; b1ðkÞ ¼

2cos2 πk
2

π sin πk
2

;

c1ðkÞ ¼
π

6

�
1þ k2

8

�
a1ðkÞ −

k2

2

∂
∂k

�
b1ðkÞ
k

�
: ð1:4Þ

Compared with the worldsheet instanton, it is perplexing
to find that the coefficients of the membrane instanton (1.3)
are quadratic polynomials of the chemical potential due to
the following reasons:

(i) In the standard situations, an instanton coefficient
is usually a constant independent of the instanton
exponent, which is related to the volume of the
instanton moduli space.

(ii) From the M-theoretical viewpoint, both the world-
sheet instantons and the membrane instantons stem
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from the same M2-branes. It is reasonable to expect
both of them to appear in the same manner in the
grand potential.

The fact of the coefficients being polynomials may suggest
that the membrane instanton contains some further structures
to be clarified. In this paper, after identifying the structures,
we can resolve the polynomial coefficients into constants.

B. Clues

Some clues to this unfamiliar situation were already
found in the developments so far. The first clue is the so-
called pole cancellation mechanism [14] used to determine
the expression of (1.3). Let us first recapitulate it.
Following many interesting aspects of the ABJM matrix
model [9,16–19], it was discovered [20] that we can regard
the partition function as that of a noninteracting ideal Fermi
gas system with N particles which are governed by a
nontrivial one-particle Hamiltonian,

e−ĤABJM ¼ 1

2 cosh Q̂
2

1

2 cosh P̂
2

; ð1:5Þ

with the Planck constant in the canonical commutation
relation ½Q̂; P̂� ¼ iℏ given by ℏ ¼ 2πk. In terms of this
Hamiltonian, the grand potential is given by

JABJMðμÞ ¼
X∞
l¼1

ð−1Þl−1elμ
l

tre−lĤABJM : ð1:6Þ

This Fermi gas formalism is not only suitable for the
systematic Wentzel-Kramers-Brilouin (WKB) ℏ expansion
[15,20] but also applicable to the study of the exact values of
the partition function [21,22] which lead directly to the
numerical results of the grand potential [12,14]. Combining
with the results from the ’t Hooft genus expansion [9,18,23]
and the dual description through the topological string theory
on localP1 × P1 [16], finally the whole large μ expansion of
the grand potential including the nonperturbative terms were
written down explicitly [13]. The worldsheet instanton (1.2)

were found to be described by the free energy of the
topological string theory on local P1 × P1 [9,14,16]. For
the membrane instantons, after the whole studies of the
partition function of the ABJM theory, we finally discovered
that they are described by the free energy of the refined
topological string theory in the Nekrasov–Shatashvili limit
[24] on the same background [13].2

In the determination of these nonperturbative effects, the
so-called pole cancellation mechanism [14] played a crucial
role. It was found [14] that the coefficients of the world-
sheet instanton (1.2) contain poles at certain values of k.
Since the matrix model itself takes finite values, these poles
must be cancelled by those from other nonperturbative
contributions. If we assume that the coefficients of the
membrane instantons also have the poles thus required, we
finally obtain the exact expressions of the coefficients of the
membrane instantons, which are consistent with the WKB
ℏ expansion [15,20] and reproduce the numerical results of
[12,14] after the pole cancellation. Furthermore, if we adopt
the free energy of the refined topological strings in the
Nekrasov–Shatashvili limit for the membrane instantons,
we can see [13] that all of the poles from the free energy of
the topological strings describing the worldsheet instantons
are cancelled. In this sense, we can say that the whole
membrane instantons in the ABJM theory are determined
by the pole cancellation mechanism.
The second clue is the appearance of two types of

membrane instantons in the generalizations of the ABJM
theory. It is interesting to ask how general it is that the pole
cancellation mechanism can determine the nonperturbative
expansions.3 In our previous work [38], we proceeded
to more general N ¼ 4 superconformal Chern–Simons
theories of the circular quiver type [39] with the levels
given by4

ka ¼
k
2
ðsa − sa−1Þ; sa ¼ �1: ð1:7Þ

The Fermi gas formalism is also applicable to this class of
theories, and the Hamiltonian is given by

e−Ĥ ¼ 1

ð2 cosh Q̂
2
Þq1

1

ð2 cosh P̂
2
Þp1

1

ð2 cosh Q̂
2
Þq2

1

ð2 cosh P̂
2
Þp2

� � � 1

ð2 cosh Q̂
2
Þqm

1

ð2 cosh P̂
2
Þpm

; ð1:8Þ

for fsagMa¼1 ¼ fðþ1Þq1 ; ð−1Þp1 ; ðþ1Þq2 ; ð−1Þp2 ;…; ðþ1Þqm; ð−1Þpmg. Here this expression denotes a sequence consisting
of q1 elements of þ1, p1 elements of −1 and so on in this ordering. For the perturbative part and the membrane instanton
part, we fully utilized the WKB ℏ expansion for this Fermi gas system

3For a generalization to the case of two different ranks UðN1Þk × UðN2Þ−k [31,32], see Refs. [33–37].

2Some further studies such as the spectral problem, the perturbation series, and the special supersymmetry enhancements can be
found in Refs. [25–30].

4A special case of the N ¼ 4 theories called orbifold ABJM theory [40–42] was studied in Ref. [43]. Also, a similar analysis on a
closely related model [44] in a slightly different language, which corresponds to the fsagMa¼1 ¼ fðþ1ÞNf ; ð−1Þg case in our language,
can be found in Ref. [45], which appeared almost simultaneously as Ref. [38].
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JpertþMBðμÞ ¼
X∞
n¼1

ℏn−1JnðμÞ: ð1:9Þ

In Ref. [38] we analyzed the first few terms in the ℏ
expansion in the models with

q ¼
Xm
a¼1

qa; p ¼
Xm
a¼1

pa; ð1:10Þ

for several pairs of values ðq; pÞ ∈ N2. As a result, we
observed two types of nonperturbative effects with the

exponents e−
2μ
q and e−

2μ
p , though the explicit form of the

coefficients was obscure. As the exponents are independent
of k, we expected that they can be interpreted as gener-
alizations of the membrane instantons.

C. Resolutions

Now let us come back to the original question, the
quadratic polynomial coefficients in the membrane instan-
tons. From the above two clues, if we introduce two
deformation parameters ðq; pÞ, it is natural to expect that
the ABJMmembrane instanton (1.3) splits into two or more
fundamental nonperturbative effects with constant coeffi-
cients containing poles at certain values of ðq; pÞ and that
the polynomial coefficients in (1.3) appear after cancelling
these poles. In fact, in this paper we shall see that this
is the case.
Our setup is as follows. We study the “minimal”

generalization fsagMa¼1 ¼ fðþ1Þq; ð−1Þpg with general
values of ðq; pÞ, which reduces to the ABJM case for
ðq; pÞ ¼ ð1; 1Þ.5 We consider only the WKB expansion of
the membrane instanton around k ¼ 0. The grand potential
in this case was found to be [38]

J0ðμÞ ¼
X∞
l¼1

ð−1Þl−1elμ
l

Z
dQdP
2π

1

ð2 coshQ
2
Þql

1

ð2 cosh P
2
Þpl

¼
X∞
l¼1

ð−1Þl−1elμ
2πl

Γðql
2
Þ2

ΓðqlÞ
Γðpl

2
Þ2

ΓðplÞ ; ð1:11Þ

without much change from the ABJM case [20].
Let us summarize our main results. Although the original

definition (1.11) is given in the small eμ expansion, if we
generalize ðq; pÞ to irrational numbers, we can rewrite it
into the large eμ expansion. Aside from the perturbative
part

Jpert0 ðμÞ ¼ 4

3πqp
μ3 þ πð4 − q2 − p2Þ

3qp
μþ 2ðq3 þ p3Þ

πqp
ζð3Þ;

ð1:12Þ

we obtain the explicit expression of the instanton coef-

ficients for e−
2μ
q and e−

2μ
p ,

JðqÞ0 ðμÞ ¼
X∞
m¼1

�
2m

m

�
1

m sin 2πm
q

Γð− pm
q Þ2

Γð− 2pm
q Þ e

−2mμ
q ;

JðpÞ0 ðμÞ ¼
X∞
n¼1

�
2n

n

�
1

n sin 2πn
p

Γð− qn
p Þ2

Γð− 2qn
p Þ e

−2nμ
p : ð1:13Þ

Moreover, we discover the third kind of instantons

Jð2Þ0 ðμÞ ¼
X∞
l¼1

ð−1Þl−1
2πl

Γð− ql
2
Þ2

Γð−qlÞ
Γð− pl

2
Þ2

Γð−plÞ e
−lμ: ð1:14Þ

Note that the coefficients of the nonperturbative effects
are not quadratic polynomials anymore but constants
independent of the chemical potential. If we take the
deformation parameters ðq; pÞ back to (1, 1) for the
ABJM theory, we encounter various poles. After cancelling
all the poles, we come back to the original quadratic
polynomials of the ABJM theory. This indicates that we
have decomposed the original membrane instanton of the
ABJM theory into more fundamental ones.
Before closing the Introduction, at this point let us stress

some bonus of the resolution:
(i) Technically, the resolution is helpful in disentan-

gling the complexity and clarifying the mathematical
structure of the nonperturbative effects. In fact, in the
ABJM theory, it was not until we split the non-
perturbative effects into the worldsheet instantons
and the membrane instantons that we were able to
describe them in terms of the (refined) topological
string.

(ii) We have encountered a new type of instanton effects
(1.14). Interestingly, if q; p are integers, these
instantons never have distinct exponents from the
other two. These instantons become detectable only
after we deform ðq; pÞ to irrational numbers. For
these reasons we shall call them “ghost instantons.”

The remaining part of this paper is organized as follows.
In Sec. II, we shall rewrite the small eμ expansion of the
grand potential (1.11) into the large eμ expansion, where we
find three types of nonperturbative effects (1.13) and
(1.14). Although the coefficients contain poles at various
values of ðq; pÞ, all of the poles cancel among themselves
to reproduce the quadratic polynomials, as we shall see in
Sec. III. In Sec. IV, we apply our large μ expansion to the
subsequent orders in the WKB ℏ expansion. We conclude
in Sec. V with discussions, emphasizing the above bonus.

5The explicit expansion of J0ðμÞ is valid also for general N ¼
4 theories with (1.10), since the ordering of operators is irrelevant
in the strictly classical limit. Our argument on the pole cancella-
tion among the membrane instantons can be straightforwardly
extended also for the higher-order corrections. This is because the
arguments of the hypergeometric series (1.11) and (4.1) depend
on fqa; pag only through ðq; pÞ (1.10), as observed in Ref. [38].
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II. FROM SMALL eμ TO LARGE eμ

The grand potential in the classical limit ℏ → 0, J0ðμÞ, is
obtained as a power series in eμ (1.11), which is appropriate
at μ → −∞. In this section, we shall rewrite this series into
a large μ expansion to derive the perturbative part (1.12)
and the nonperturbative corrections (1.13), (1.14) in J0ðμÞ.
Below we generalize q and p to be irrational numbers, to
avoid any divergences which possibly appear.
We first introduce numerical constants γm defined by

ΓðxÞ2
Γð2xÞ ¼

2

22x

X∞
m¼0

γm
mþ x

; γm ¼ 1

22m

�
2m

m

�
: ð2:1Þ

Using these constants, the power series expansion of J0ðμÞ
with respect to eμ (1.11) is rewritten into

J0ðμÞ ¼ −
8

πqp

X∞
l¼1

ð−eμ0 Þl
X∞
m¼0

X∞
n¼0

γmγn
lðlþ 2m

q Þðlþ 2n
p Þ

:

ð2:2Þ

Here we have introduced

μ0 ¼ μ − ðqþ pÞ log 2 ð2:3Þ
for abbreviation. Using the partial fraction decomposition,
we find that the coefficient in the summand is written as

X∞
m¼0

X∞
n¼0

γmγn
lðlþ 2m

q Þðlþ 2n
p Þ

¼
X∞
m¼1

X∞
n¼0

q2γmγn
4m2ð1 − nq

mpÞ
1

lþ 2m
q

þ
X∞
m¼0

X∞
n¼1

p2γmγn
4n2ð1 − mp

nqÞ
1

lþ 2n
p

þ
X∞
m¼1

X∞
n¼1

qpγmγn
4mn

1

l

þ
X∞
m¼1

γm

�
q
2m

1

l2
−

q2

4m2

1

l

�
þ
X∞
n¼1

γn

�
p
2n

1

l2
−

p2

4n2
1

l

�
þ 1

l3
; ð2:4Þ

where we have used γ0 ¼ 1. Now let us perform the
summation over l in (2.2). To obtain the large μ expansion,
we use the formulas

X∞
l¼1

ð−eμÞl
lþ α

¼ −
1

α
þ π

sin πα
e−αμ −

X∞
l¼1

ð−eμÞ−l
−lþ α

ð2:5Þ

and

Li1ð−eμÞ ¼ −μþ Li1ð−e−μÞ;

Li2ð−eμÞ ¼ −
μ2

2
−
π2

6
− Li2ð−e−μÞ;

Li3ð−eμÞ ¼ −
μ3

6
−
π2μ

6
þ Li3ð−e−μÞ; ð2:6Þ

for the polylogarithm function

LisðzÞ ¼
X∞
l¼1

zl

ls : ð2:7Þ

Here all of these formulas (2.5) and (2.6) can be derived from6

X∞
l¼−∞

ð−eμÞl
lþ α

¼ π

sin πα
e−αμ: ð2:8Þ

With the help of these formulas, we divide J0ðμÞ into four
parts: the perturbative terms and the nonperturbative terms

of e−
2μ
q , e−

2μ
p , e−μ.

First let us consider the nonperturbative terms of e−
2μ
q

and e−
2μ
p , which are collected as

JðqÞ0 ðμÞ ¼ 2
X∞
m¼1

X∞
n¼0

γmγn
mðn − mp

q Þ sin 2πm
q

e−
2mμ0
q ;

JðpÞ0 ðμÞ ¼ 2
X∞
n¼1

X∞
m¼0

γmγn
nðm − nq

p Þ sin 2πn
p

e−
2nμ0
p : ð2:9Þ

In these expressions, we can perform the summation over n

in JðqÞ0 ðμÞ [or over m in JðpÞ0 ðμÞ] just by the definition (2.1),
and we finally obtain (1.13).
Next we consider the nonperturbative terms of e−μ,

which are

Jð2Þ0 ðμÞ ¼ 8

πqp

X∞
l¼1

ð−eμ0 Þ−l
�X∞
m¼1

X∞
n¼0

q2γmγn
4m2ð1 − nq

mpÞ
1

−lþ 2m
q

þ
X∞
m¼0

X∞
n¼1

p2γmγn
4n2ð1 − mp

nqÞ
1

−lþ 2n
p

−
X∞
m¼1

X∞
n¼1

qpγmγn
4mn

1

l
þ
X∞
m¼1

γm

�
q
2m

1

l2
þ q2

4m2

1

l

�
þ
X∞
n¼1

γn

�
p
2n

1

l2
þ p2

4n2
1

l

�
−

1

l3

�
: ð2:10Þ

6It is interesting to note that the same formula with μ purely imaginary was used in the light-cone string field theory [46,47] to prove
the unitarity [48,49] of the overlapping matrices.
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This expression of Jð2Þ0 ðμÞ seems lengthy. However, we can
compute it without much effort. First we notice that the
expression (2.10) is obtained by using (2.5) and (2.6). The
formula (2.5) converts the eμ terms into the e−μ terms just by
replacing lwith−l and simultaneously changing the overall
signs. This is the case also for (2.6) if we substitute the power
series expression of the polylogarithm function (2.7). This

observationmeans that Jð2Þ0 ðμÞ can be computed by using the
formula (2.4) inversely, with the same flips of signs

Jð2Þ0 ðμÞ ¼ 8

πqp

X∞
l¼1

ð−eμ0 Þ−l

×
X∞
m¼0

X∞
n¼0

γmγn
−lð−lþ 2m

q Þð−lþ 2n
p Þ

: ð2:11Þ

Summing over m and n by (2.1), one ends up with (1.14).
Finally we consider the perturbative terms,

Jpert0 ðμÞ ¼ −
q
πp

X∞
m¼1

X∞
n¼0

γmγn
m2ðnp − m

qÞ
−

p
πq

X∞
n¼1

X∞
m¼0

γmγn
n2ðmq − n

pÞ
þ
�
2γ̄21
π

−
2γ̄2
π

�
q
p
þ p

q

��
μ0

þ 4γ̄1
π

�
1

p
þ 1

q

��
μ02

2
þ π2

6

�
þ 8

πqp

�
μ03

6
þ π2μ0

6

�
: ð2:12Þ

Here we have introduced other numerical constants

γ̄s ¼
X∞
m¼1

γm
ms ; ð2:13Þ

the explicit values of which are

γ̄1 ¼ 2 log 2; γ̄2 ¼
π2

6
− 2ðlog 2Þ2;

γ̄3 ¼ −
π2 log 2

3
þ 4ðlog 2Þ3

3
þ 2ζð3Þ: ð2:14Þ

To calculate this expression, note that the first two terms
sum up to

γ̄3
π

�
q2

p
þ p2

q

�
−
γ̄1γ̄2ðqþ pÞ

π
: ð2:15Þ

Plugging this in, with the explicit values of γ̄s (2.14), we
obtain the result (1.12).

III. POLE CANCELLATION MECHANISM

In the previous section, we have seen the large μ
expansion of the classical limit of the grand potential
J0ðμÞ. We have found that the large μ expansion contains

three types of nonperturbative contributions e−
2μ
q , e−

2μ
p , and

e−μ respectively in JðqÞ0 ðμÞ, JðpÞ0 ðμÞ, and Jð2Þ0 ðμÞ with
coefficients being constant independent of the chemical
potential μ. There we have extrapolated ðq; pÞ into general
irrational numbers to obtain the results (1.13) and (1.14).
These resulting expressions indicate that, in the case of
integral ðq; pÞ, which is our original interest, the coefficient
of each sector contains divergent contributions.
In this section, we shall see that these divergences

completely cancel among themselves. The cancellation is
indeed consistent, since the grand potential J0ðμÞ (1.11) itself
is well defined for arbitrary positive ðq; pÞ. Remarkably, the

coefficients in the nonperturbative effects remaining after
these pole cancellations are generally polynomials in μ.
In the following, we first rewrite the results into a

symmetric expression which is suitable for seeing how
the pole cancellation occurs. Then, restricting ourselves to
the cases where all the three sectors contribute to the
cancellation (which is the only possibility for the ABJM
theory), we explicitly write down the general form of the
remaining coefficients. We obtain quadratic polynomials in
these cases, which exactly coincide with the previously
obtained ones for the ABJM theory [15,20] and the N ¼ 4
theories [38]. Finally we see an implication of the form of
these quadratic polynomials.

A. Symmetric expression

To simplify the discussion of the pole cancellation, let us
first rewrite the three sectors of nonperturbative contribu-
tions, JðqÞ0 ðμÞ, JðpÞ0 ðμÞ, and Jð2Þ0 ðμÞ, into an expression
symmetric under the exchange of q, p, and 2. We find
that they can be expressed as7

JðziÞ0 ðμÞ ¼
X∞
li¼1

Fðlizi ; μÞ
li

Y3
j¼1ð≠iÞ

cot
πzjli

zi
; ð3:1Þ

where we have introduced zi ¼ ðq;p; 2Þ, li ¼ ðm; n; lÞ, and

Fðr; μÞ ¼ −
2π

cos 2πr
Γð2qrþ 1Þ
Γðqrþ 1Þ2

Γð2prþ 1Þ
Γðprþ 1Þ2 e

−2rμ: ð3:2Þ

7In the discovery of this expression, we are partially stimulated
by some previous works. In Ref. [50], the n-ple sine function is
decomposed into n sectors symmetric under the exchange of the n
parameters, each of which takes the form of the series expansion.
In Ref. [51], the partition function on S5 is expressed similarly.
Also in a note by Kazumi Okuyama, he was trying to formulate
the cancellation mechanism between the membrane instantons
and the worldsheet instantons in the analogy of these works.
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Indeed it is not difficult to find that each sector in (3.1) reduces
to (1.13) and (1.14) after the substitution ðz1; z2; z3Þ ¼
ðq; p; 2Þ. In the derivation, we need to flip the signs in the
arguments of the Gamma functions using

ΓðxÞΓð1 − xÞ ¼ π

sin πx
: ð3:3Þ

In the expression (3.1) all of the Gamma functions in the
coefficients are free from divergence, while the cotangent
factors imply that each sector contains the nonperturbative
effects with divergent coefficients. Explicitly speaking, the

divergence appears at m ∈ q
gcdðq;pÞN ∪ q

gcdðq;2ÞN in JðqÞ0 ðμÞ,
at n ∈ p

gcdðp;2ÞN ∪ p
gcdðp;qÞN in JðpÞ0 ðμÞ and at l ∈

2
gcdð2;qÞN ∪ 2

gcdð2;pÞN in Jð2Þ0 ðμÞ. However, as Fðr; μÞ from

different sectors share the same instanton exponent at these
points, we expect that the divergences are cancelled among
those terms with the same exponent. By replacing ðq; pÞ
with ðqð1þ ε1Þ; pð1þ ε2ÞÞ to regularize the divergences
and taking the limit ε1; ε2 → 0 after summing all the
contributions, we find that our expectation is indeed
correct. In the next subsection, as an example, we dem-
onstrate this in detail for the cancellation among the three
sectors and determine the finite coefficients remaining after
the cancellation.

B. Cancellation among three sectors

When the instanton numbers of the three sectors ðm; n; lÞ
satisfy

m
q
¼ n

p
¼ l

2
ð≕ rÞ; ð3:4Þ

where r ∈ N= gcdðq; p; 2Þ, all the three sectors contribute
to the nonperturbative effect of e−2rμ.
Letusseehowthepolecancellationworks.For thispurpose,

wesubstitutezið1þ εiÞ forzi andsendεi → 0.Note thatwedo
not have to introduce ε3 to shift z3 ¼ 2 in discussing the
cancellation. The cancellation becomes clearer, however, by
introducing ε3 and treating three zi on the equal footing. For
simplicity, we introduce the notation

Fεðr; μÞ ¼ Fðr; μÞjq→q0;p→p0 ð3:5Þ

with q0 ¼ qð1þ ε1Þ, p0 ¼ pð1þ ε2Þ and leave q0 and p0 in
Fεðr; μÞ untouched while expanding other factors around

εi → 0. Then we find that the term in JðziÞ0 ðμÞ contributing to
e−2rμ is

Fε

�
li

zið1þ εiÞ
; μ

�
1

li
cot

πzjli

zi

1þ εj
1þ εi

cot
πzkli

zi

1þ εk
1þ εi

¼
�
Fεðr; μÞ −

εir
1þ εi

∂Fεðr; μÞ þ
ε2i r

2

2ð1þ εiÞ2
∂2Fεðr; μÞ þOðε3Þ

�

×
1

zir

�
1þ εi
πzjrεji

−
1

3

πzjrεji
1þ εi

þOðε3Þ
��

1þ εi
πzkrεki

−
1

3

πzkrεki
1þ εi

þOðε3Þ
�
; ð3:6Þ

where j, k denote the two indices8 other than i andwe have introduced the shorthand notation εji ¼ εj − εi. Collecting the terms
which formally scale in the nonpositive powers in ε, we find

Fεðr; μÞ
π2r3z1z2z3

ð1þ εiÞ2
εjiεki

−
∂Fεðr; μÞ
π2r2z1z2z3

εið1þ εiÞ
εjiεki

þ ∂2Fεðr; μÞ
2π2rz1z2z3

ε2i
εjiεki

−
Fεðr; μÞ
3rz1z2z3

�
z2kεki
εji

þ z2jεji
εki

�
: ð3:7Þ

With the help of the identities

X3
i¼1

1

εjiεki
¼ 0;

X3
i¼1

εi
εjiεki

¼ 0;
X3
i¼1

ε2i
εjiεki

¼ 1;

ð3:8Þ
we can show that the terms in the formally negative
power of ε vanish after summed over all the three

sectors.9 Because of it, we can safely change Fεðr; μÞ back
to Fðr; μÞ. Finally, the finite part is given by

8The readers should not confuse the index k appearing only in
this subsection with the Chern–Simons level k ¼ ℏ=2π.

9Note that the terms of formally positive power in ε simplify
into a homogeneous polynomial of that degree. For example, the
terms proportional to ðϵjiϵkiÞ−1 sum up to the Schur polynomial
ðn > 2Þ

X3
i¼1

εni
εjiεki

¼ χðn−2Þðε1; ε2; ε3Þ: ð3:9Þ

This fact guarantees that these contributions vanish in the limit of
εi → 0, regardless of the direction of the limit.
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Fðr; μÞ − r∂rFðr; μÞ þ 1
2
r2∂2

rFðr; μÞ
π2z1z2z3r3

−
ðz21 þ z22 þ z23ÞFðr; μÞ

3z1z2z3r
: ð3:10Þ

Calculating Fðr; μÞ and its derivatives, with the explicit form of Fðr; μÞ in (3.2), we finally obtain the following
contribution of the nonperturbative effects e−2rμ:

Fðr; μÞ
2π2qpr3

�
2r2μ2 þ ð2r − 4r2H1ðrÞÞμþ 1 − 2rH1ðrÞ þ r2ð2H1ðrÞ2 −H2ðrÞÞ þ

π2r2ð4 − q2 − p2Þ
6

�
: ð3:11Þ

Here HsðrÞ is defined with the harmonic numbers

hsðmÞ ¼
Xm
l¼1

1

ls ; ð3:12Þ

as

HsðrÞ ¼ qsð2s−1hsð2qrÞ − hsðqrÞÞ
þ psð2s−1hsð2prÞ − hsðprÞÞ: ð3:13Þ

These HsðrÞ result from the derivatives of the Gamma
functions in Fðr; μÞ, using the formula

ψ ð0ÞðmÞ ¼ −γ þ h1ðm − 1Þ;

ψ ð1ÞðmÞ ¼ π2

6
− h2ðm − 1Þ; ð3:14Þ

where γ is the Euler–Mascheroni constant and the poly-
gamma functions are defined as

ψ ðs−1ÞðxÞ ¼
�
d
dx

�
s
logΓðxÞ: ð3:15Þ

As we have expected in section I, quadratic polynomial
coefficients have appeared in (3.11) as a result of the pole
cancellation.
This explicit form indeed reproduces the previous results

in the N ¼ 4 theories of fsag ¼ fðþ1Þq; ð−1Þpg [38]
which were obtained by expressing the grand potential
J0ðμÞ with the generalized hypergeometric function

qþpþ2Fqþpþ1
ðe2μ0 Þ where q; p were the numbers of the

parameters and should be integers throughout the analysis.
Especially, with q ¼ p ¼ 1, the membrane instanton coef-
ficients in the limit k → 0 in the ABJM theory [15,20] are
reproduced.
At the poles where only two of the three sectors

contribute, on the other hand, we obtain linear polynomials
in μ as the remaining finite parts. These are again consistent
with the results obtained in Ref. [38].

C. Effective chemical potential

As a byproduct, in this subsection we shall discuss an
implication of the expressions (3.11) for general N ¼ 4
theories. Let us express the results for the WKB expansion
(1.9) schematically as

JpertþMBðμÞ ¼ C
3
μ3 þ Bμþ Aþ JaðμÞμ2

þ JbðμÞμþ JcðμÞ: ð3:16Þ

Here A, B, and C are perturbative coefficients. The explicit
form of C [52] and B [38] is

C¼ 4

πℏqp
; B¼ 1

π

�
ℏqp
48

þπ2
4−q2−p2

3ℏqp

�
; ð3:17Þ

while the explicit form of A is not used below. On the other
hand, the nonperturbative contributions JaðμÞ, JbðμÞ, and
JcðμÞ are given by ðr ∈ N= gcdðq; p; 2ÞÞ

JaðμÞ ¼
1

πℏ

X
r

are−2rμ þOðℏÞ; JbðμÞ ¼
1

πℏ

X
r

bre−2rμ þ � � � þOðℏÞ;

JcðμÞ ¼
1

πℏ

X
r

ðcr þ π2c0rÞe−2rμ þ � � � þOðℏÞ; ð3:18Þ

where all of the coefficients ar, br, cr, and c0r are rational
numbers of which the explicit forms are given in (3.11).
Note that there are also nonperturbative contributions with
different exponents in JbðμÞ and JcðμÞ, though they do not

affect the argument in this subsection. In the case of the
ABJM theory, it was found [12] that the large μ expansion
simplifies extensively if we redefine the chemical potential
μ into
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μeff ¼ μþ JaðμÞ
C

: ð3:19Þ

Indeed, the worldsheet instanton part takes care of all the
bound states of the worldsheet instanton and the membrane
instanton; the quadratic part of the instanton coefficients is
completely absorbed into the perturbative part; the c0r terms
are also absorbed, and the cr terms are the derivatives of br.
In this subsection we shall find that in the redefinition
μeffðμÞ in a general ðq; pÞ model one of the simplifications,
the cancellation of the c0r terms, still takes place.
In fact, in terms of μeff , it is not difficult to find that the

linear part and the constant part are shifted as

~JbðμeffÞ ¼ JbðμÞ −
JaðμÞ2
C

;

~JcðμeffÞ ¼ JcðμÞ −
JaðμÞJbðμÞ

C
−
BJaðμÞ

C
þ 2JaðμÞ3

3C2
:

ð3:20Þ

Now we find that not only the coefficients in ~JbðμeffÞ but
also those in ~JcðμeffÞ are rational numbers except the
overall factor 1=π. Indeed the terms in π ~JcðμeffÞ propor-
tional to π2, coming only from JcðμÞ and −BJaðμÞ=C,
completely cancel as

c0r −
B
C
· ar ¼

r2ð4 − q2 − p2Þ
6

−
4−q2−p2

3ℏqp
4

ℏqp

· 2r2 ¼ 0:

ð3:21Þ

Remarkably, this cancellation of irrationality is also true for
the higher ℏ corrections, as we explain at the end of the next
section.
In the ABJM theory, the introduction of the effective

chemical potential μeff was important as we have explained
above. This nontrivial rationality in the coefficients of
nonperturbative contributions might imply that the effective
chemical potential also plays an important role in the
N ¼ 4 theories.

IV. HIGHER-ORDER CORRECTIONS

So far we have considered the grand potential J0ðμÞ
in the leading order of the classical limit ℏ → 0. In this
section, we shall consider the higher-order correction in ℏ
to the grand potential. We shall see that our results for J0ðμÞ
obtained in the previous sections are straightforwardly
generalized to these corrections.
In Ref. [38], we found that, introducing a generalization

of the power series (1.11),

F ðα; β; μÞ ¼
X∞
l¼1

ð−1Þl−1elμ
l

Z
dQdP
2π

1

ð2 cosh Q
2
Þqlþα

1

ð2 cosh P
2
Þplþβ

¼
X∞
l¼1

ð−1Þl−1elμ
2πl

Γðqlþα
2

Þ2
Γðqlþ αÞ

Γðplþβ
2

Þ2
Γðplþ βÞ ; ð4:1Þ

with α and β being non-negative even integers, then, as well as the leading-order J0ðμÞ ¼ F ð0; 0; μÞ, the ℏ corrections J2ðμÞ
and J4ðμÞ to the grand potential (1.9) are also expressed in terms of F ðα; β; μÞ as

J2ðμÞ ¼
qp
24

ð1 − ∂2
μÞF ð2; 2; μÞ;

J4ðμÞ ¼
ðqpÞ2
5760

½−ð1 − ∂2
μÞð9 − ∂2

μÞf41 þ ð1 − ∂2
μÞð4 − ∂2

μÞf42�; ð4:2Þ

with

f41 ¼ F ð4; 4; μÞ þ 1

2
F ð2; 4; μÞ þ 1

2
F ð4; 2; μÞ þ 1

4
F ð2; 2; μÞ; f42 ¼ F ð2; 2; μÞ: ð4:3Þ

If we continue q and p to irrational numbers, we can obtain the large μ expansion of the function F ðα; β; μÞ by the same
method used in Sec. II. In the current case, instead of (2.1), the expansion of the ratio of the Gamma functions reads

Γðxþ α
2
Þ2

Γð2xþ αÞ ¼
2

22xþα

X∞
m¼α

2

γm−α
2

mþ x
; ð4:4Þ

and, instead of (2.4), for α; β ≥ 2 the partial fraction decomposition is simply
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1

lðlþ 2m
q Þðlþ 2n

p Þ
¼ qp

4mn
1

l
−

q
2mð2np − 2m

q Þ
1

lþ 2m
q

−
p

2nð2mq − 2n
p Þ

1

lþ 2n
p

: ð4:5Þ

We finally obtain the large μ expansion of F ðα; β; μÞ which consists of, other than the perturbative parts,

F pertðα; β; μÞ ¼ 1

2π

Γðα
2
Þ2

ΓðαÞ
Γðβ

2
Þ2

ΓðβÞ ½μ − qðψ ð0ÞðαÞ − ψ ð0Þðα=2ÞÞ − pðψ ð0ÞðβÞ − ψ ð0Þðβ=2ÞÞ�; ð4:6Þ

the three nonperturbative parts

F ðziÞðα; β; μÞ ¼
X∞
li¼λi

Fðα;βÞðli
zi
; μÞ

li

Y3
j¼1ð≠iÞ

cot
πzjli

zi
: ð4:7Þ

Here we have defined ðλ1; λ2; λ3Þ ¼ ðα
2
; β
2
; 1Þ and

Fðα;βÞðr; μÞ ¼ −
2π

cos 2πr
Γð2qr − αþ 1Þ
Γðqr − α

2
þ 1Þ2

Γð2pr − β þ 1Þ
Γðpr − β

2
þ 1Þ2 e

−2rμ: ð4:8Þ

In the derivation, we have used (3.3) to change the
arguments of the Gamma functions as previously.
Roughly speaking, the pole cancellation works in the

same way as in the case of α ¼ β ¼ 0 discussed in Sec. III:
terms from different sectors share the same instanton
exponent at the point where the cotangent factors diverge.

The main difference is that the pole cancellation among
the three sectors happens at ðm; n; lÞ ¼ ðqr; pr; 2rÞ with
r ∈ N= gcdðq; p; 2Þ, only when the instanton number is

large enough to satisfy m ≥ α
2
and n ≥ β

2
. Finally, the finite

part remaining after the cancellation is given by

Fðα;βÞðr; μÞ − r∂rFðα;βÞðr; μÞ þ 1
2
r2∂2

rFðα;βÞðr; μÞ
π2z1z2z3r3

−
ðz21 þ z22 þ z23ÞFðα;βÞðr; μÞ

3z1z2z3r
; ð4:9Þ

or explicitly, as a quadratic polynomial in μ,

Fðα;βÞðr; μÞ
2π2qpr3

�
2r2μ2 þ ð2r − 4r2H1ðα;βÞðrÞÞμþ 1 − 2rH1ðα;βÞðrÞ þ r2ð2H1ðα;βÞðrÞ2 −H2ðα;βÞðrÞÞ þ

π2r2ð4 − q2 − p2Þ
6

�
:

ð4:10Þ

Here we define the generalization of HsðrÞ in (3.13), Hsðα;βÞðrÞ as

Hsðα;βÞðrÞ ¼ qs
�
2s−1hsð2qr − αÞ − hs

�
qr −

α

2

��
þ ps

�
2s−1hsð2pr − βÞ − hs

�
pr −

β

2

��
; ð4:11Þ

which again comes from the derivatives of the Gamma
functions in Fðα;βÞðr; μÞ.
For the small instanton number, we have to be careful,

since the corresponding contribution from F ðqÞðα; β; μÞ or
from F ðpÞðα; β; μÞ sometimes do not exist due to the lower
bounds on the instanton number, m ≥ α

2
and n ≥ β

2
. At first

sight it might seem that we have too many divergent
cotangent factors to obtain the finite result. In these
cases, however, the ratio of the Gamma functions becomes
zero, which reduces the power of divergences. This can

also be seen from the expression before the rewriting
using (3.3).
In Sec. III C, we have discussed the simplification of the

nonperturbative effects of e−2rμ with r ∈ N= gcdðq; p; 2Þ
associated to the redefinition of the chemical potential
(3.19). In the discussion there, the following properties of
the coefficient (3.11) are essential: the rationality of
ar; br; cr; c0r in (3.18) and the r-independence of the ratio
of ar and c0r (3.21). As we have claimed in Sec. III C, the
same simplification occurs also in the higher ℏ corrections.
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Here we shall see it explicitly by showing these properties.
Since these properties are preserved under the differential
operations in (4.2) which convert F ðα; β; μÞ to JnðμÞ, we
have only to care about the coefficients of the nonperturba-
tive effects inF ðα; β; μÞ themselves. For the case of the large
instanton number, m ≥ α

2
and n ≥ β

2
, the coefficients in

F ðα; β; μÞ are given by (4.10), and these properties can
be explicitly checked as for J0ðμÞ in Sec. III C. For the case
where one of these two conditions is not satisfied, the result
(4.10) is no longer valid. However, we can see ar ¼ c0r ¼ 0.
First, since the divergence is at mostOðε−1Þ, as argued in the
paragraph below (4.11), the second derivative of Fðα;βÞðr; μÞ
does not appear, and thus ar ¼ 0. Secondly, the relative π2

factor would only appear in the second derivative of
Fðα;βÞðr; μÞ or in the cross terms of Oðε−1Þ and OðεÞ
between two cotangent factors. Since both of these terms
are absent in this case, c0r is also zero. Moreover, the explicit
calculation shows the rationality of the other two, br and cr.
Therefore, the required properties hold also in this case.
There is still another way to obtain the large μ expansion

of the function F ðα; β; μÞ. From the power series definition
(4.1), we find that the following differential relations are
satisfied:

ðq∂μ þ αþ 1ÞF ðαþ 2; β; μÞ ¼ 1

4
ðq∂μ þ αÞF ðα; β; μÞ;

ðp∂μ þ β þ 1ÞF ðα; β þ 2; μÞ ¼ 1

4
ðp∂μ þ βÞF ðα; β; μÞ:

ð4:12Þ

Decomposing these equations further into those for the
terms with the same instanton exponents, we obtain the
recursion relation between the coefficient in F ðαþ 2; β; μÞ
[or in F ðα; β þ 2; μÞ] and the corresponding one in
F ðα; β; μÞ. Regarding the constant coefficient in the non-
perturbative sectors of J0ðμÞ ¼ F ð0; 0; μÞ in (3.1) as the
initial value for the recursion relation, we can reproduce the
results for F ðα; β; μÞ in (4.7). In passing let us note that we
can also use the relation (4.12) to obtain the perturbative
part or the polynomial coefficients of the nonperturbative
effects remaining after the pole cancellation.
To summarize our analysis for the higher-order

corrections, we find that the total grand potential
JpertþMBðμÞ in the WKB expansion obtained so far are
given by

JpertþMBðμÞ ¼
�
1

ℏ
D0 þ ℏD2 þ ℏ3D4

�
J0ðμÞ þOðℏ5Þ;

ð4:13Þ

with

D0 ¼ 1; D2 ¼
q2p2ð1 − ∂2

μÞ∂2
μ

384ð1þ q∂μÞð1þ p∂μÞ
;

D4 ¼
q3p3ð1 − ∂2

μÞ∂2
μ

92160ð1þ q∂μÞð1þ p∂μÞ

×

�
−
ð9 − ∂2

μÞð8þ 3q∂μÞð8þ 3p∂μÞ
16ð3þ q∂μÞð3þ p∂μÞ

þ 4 − ∂2
μ

�
:

ð4:14Þ

Here we have used the recursion relation (4.12) to relate
F ðα; β; μÞ to F ð0; 0; μÞ. For the nonperturbative effects
with constant coefficients, each ∂μ is replaced with −2m=q,
−2n=p or −l. We hope that this expression is helpful in
determining the coefficients of the membrane instantons at
finite k.

V. CONCLUSION AND DISCUSSION

In this paper we have obtained a new understanding of
the coefficients of the membrane instantons in the ABJM
theory. First, the ABJM matrix model is generalized to
include two parameters q and p. Due to these deformation
parameters, the membrane instantons are subdivided into

three instanton sectors e−
2μ
q , e−

2μ
p , and e−μ. The coefficients

of these instantons are μ-independent constants, which are
singular in the undeformed limit ðq; pÞ → ð1; 1Þ. The
quadratic polynomial coefficients of the membrane instan-
tons in the ABJM theory emerge as a result of the pole
cancellation among these sectors.
The existence of the third kind of instanton e−μ, the

exponent of which is completely independent of the
deformation parameters ðq; pÞ, is rather surprising.
Interestingly, if both q and p are odd integers, this instanton
always vanishes for odd instanton numbers, while other-
wise it cannot be distinguished from the other two kinds

e−
2μ
q and e−

2μ
p . This is why we could not detect it in our

previous work [38] and decide to call it a ghost instanton.
For this property, one would suspect that the third instan-
tons are just artificial. However, since they form an infinite
instanton series as the other two kinds of instantons and the
poles appearing in the other two would never be cancelled
without the third instantons, it is natural to regard them as
physical.
Conceptually, we have to confess that we are still far

from understanding the instanton effects clearly. Though
the divergence of the instanton coefficients is essential in
our argument, there is no intuitive description of the
occurrence of the divergence itself. In view of the standard
interpretation of the instanton coefficient as the volume of
the instanton moduli space, we are tempted to give a similar
interpretation to our results. From this viewpoint the
divergence might denote the noncompactness of the
instanton moduli space, while the cancellation implies
the nonperturbative compactification of the moduli space.
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Also, the role of the third instantons is unclear to us.
Though their appearance is inevitable, they do not give any
distinct exponents from the other two for integral ðq; pÞ.
However, we do not have a concrete field theoretic picture
of the instanton effects to answer these questions. Some
hints may be provided from the gravity dual of the
deformed theory.
TheN ¼ 4 theory with sa satisfying (1.10) is dual to the

11-dimensional supergravity on AdS4 × S7=Γ, where Γ is
generated by three nonindependent operations Zk, Zq, and
Zp, with the discrete torsion [41,53]. On the gravity side,
the nonperturbative effects may be understood as M2-
branes wrapping this complicated orbifold in various ways,
as in Ref. [11]. An interesting point indicated by our
explicit calculation is that, although there are bound states
of the worldsheet instantons and the membrane instantons,
there are no bound states among the three types of the
membrane instantons without the worldsheet instantons.
We hope that the study in the gravity side will shed new
light on the instantons.
Technically, it is important to further analyze the

partition function of the N ¼ 4 circular quiver super-
conformal Chern–Simons theories. Denoting the theory
with fsagMa¼1 ¼ fðþ1Þq; ð−1Þpg as ðq; pÞk, we would like
to stress that our current work is the first one which
succeeds in studying the model with the two-parameter
deformation, ðq; pÞ0. This is in contrast to the recent studies
of ðNf; 1Þ1 in Ref. [45] and ð2; 1Þk in Ref. [38], both of
which contain only one-parameter deformation. We believe
that to study the deformations with as many parameters as
possible along this line is important for the exact compu-
tation of the instanton effects. In fact, in the ABJM theory,
it is only after we deformed the integral Chern–Simons

level k into an irrational number that we were able to split
the nonperturbative effects into the worldsheet instantons
and the membrane instantons and describe them in terms of
the refined topological strings. We expect that the irration-
ality of q; p will play a similar role in determining the
membrane instantons in the N ¼ 4 theories.
Let us point out some possibilities that the nonperturba-

tive effects have more abundant fine structures to be
clarified by introducing additional deformations. After
seeing that the combination ðq; p; 2Þ can be put on the
equal footing in Sec. III B, we expect that we can introduce
an additional deformation parameter which changes the
exponent of the third instanton e−μ. Also, the results
obtained in Refs. [43,45] suggest further deformations.
The grand potential obtained in Ref. [43] for r ¼ 4, k ¼ 2
and the one obtained in [45] with k ¼ 3, 6 contain
polynomials of degree higher than 2 in instanton coef-
ficients. Since the coefficients of the membrane instantons
are at most quadratic, these results imply that the world-
sheet instantons also have the nonconstant structure, which
requires more deformations.
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