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Exact solutions of the Dirac equation in external electromagnetic background fields are very helpful for
understanding nonperturbative phenomena in quantum electrodynamics. However, for the limited set of
known solutions, the field often depends on one coordinate only, which could be the time t, a spatial
coordinate such as x or r, or a light-cone coordinate such as ct − x. By swapping the roles of known and
unknown quantities in the Dirac equation, we are able to generate families of solutions of the Dirac
equation in the presence of genuinely space-time dependent electromagnetic fields in 1þ 1 and 2þ 1

dimensions.
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I. INTRODUCTION

Quantum electrodynamics (QED) as the theory of
charged particles interacting with electromagnetic fields
is well understood in the context of standard perturbation
theory and can describe several intriguing phenomena of
nature. However, QED contains other fascinating effects
that cannot be explained using perturbative methods. Such
nonperturbative effects can arise when the electromagnetic
field is so strong that it cannot be treated as a perturbation.
In order to understand these phenomena, it is often useful to
study the behavior of exact solutions in those external
background fields.
Unfortunately, although the Dirac equation was first

formulated more than eighty years ago [1], the set of known
exact solutions is still quite limited (see, e.g., [2] for a
review). Apart from the Coulomb field ∝ 1=r2 [3,4], exact
solutions are known for a constant electric field and a Sauter
profile in space ∝ 1=cosh2ðkxÞ or time ∝ 1=cosh2ðωtÞ, for
example. The latter are relevant for the nonperturbative
Sauter-Schwinger effect [5–7] corresponding to electron-
positron pair creation fromvacuumvia tunneling. In contrast
to electron-positron pair creation in the perturbative (multi-
photon) regime which has been observed at SLAC [8], this
nonperturbative prediction of quantum field theory has not
been conclusively experimentally verified yet. However,
there are several experimental initiativeswhichmight be able
to eventually reach the ultrastrong field regime necessary for
observing this striking effect [9].
Furthermore, exact solutions are known for a constant

magnetic field (relativistic Landau levels, see [10,11]) and
plane waves, where the fields depend on one of the light-
cone coordinates such as ct − x (Volkov solutions, see e.g.
[12–15]). These (transverse) fields do not induce pair
creation from vacuum.

Nevertheless, in all these cases, the fields depend on one
coordinate only (such as r, x, t, or ct − x). As a result of this
high degree of symmetry, the set of partial differential
equations can be reduced to an ordinary differential
equation, which greatly simplifies the analysis. An analo-
gous limitation applies to our theoretical understanding of
the Sauter-Schwinger effect. Even though there are many
results for fields which depend on one coordinate only, we
are just beginning to understand the impact of the interplay
between spatial and temporal dependencies, see, e.g.,
[16–21].
In the following, we develop a method which allows us

to obtain solutions of the Dirac equation for genuinely
space-time dependent fields. To this end, we pursue a
different approach by assuming that we already know a
solution to the Dirac equation. We then calculate the vector
potential Aμ corresponding to the given solution from the
Dirac equation. This is feasible as the Dirac equation does
not contain any derivatives of the vector potential. More
generally speaking, we write down a solution to a partial
differential equation and then try to find a physical problem
associated with the solution—a concept also well known in
the field of fluid dynamics, see, for example, [22].

II. LIGHT-CONE COORDINATES

Let us start with the most simple and yet nontrivial
case—the Dirac equation in 1þ 1 dimensions. For the
following derivation, it is convenient to transform to light-
cone coordinates x� defined as (ℏ ¼ c ¼ 1)

xþ ¼ tþ xffiffiffi
2

p ; x− ¼ t − xffiffiffi
2

p : ð1Þ

Since perhaps not all readers will be familiar with the form of
the subsequent expressions in light-cone coordinates, let us
insert a brief reminder. The Jacobian matrix of the coordinate
transformation betweenCartesian and light-cone coordinates,*ralf.schuetzhold@uni‑due.de
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Jμν ¼
∂ðxþ; x−Þ
∂ðt; xÞ ¼ 1ffiffiffi

2
p

�
1 1

1 −1

�
; ð2Þ

yields the transformation laws for tensors such as the partial
derivatives

∂μ
0 ¼ ðJ−1Þνμ∂ν¼

1ffiffiffi
2

p
�∂tþ∂x

∂t−∂x

�
¼
�∂xþ

∂x−

�
≕
�∂þ
∂−

�
: ð3Þ

In1þ 1 dimensions, the electromagnetic field strength tensor
contains only one independent component, the electric field
Eðt; xÞ

Fμν ¼ ∂μAν − ∂νAμ ¼
�

0 E

−E 0

�
; ð4Þ

which thus reads in light-cone coordinates

F0
μν ¼ ðJ−1ÞλμðJ−1ÞρνFλρ ¼

�
0 −E
E 0

�
: ð5Þ

Transforming the Cartesian Minkowski metric tensor ημν ¼
diagðþ1;−1Þ to light-cone coordinates as well gives

gμν ¼
�
0 1

1 0

�
: ð6Þ

Apossible choice of light-conegammamatrices satisfying the
Clifford algebra’s anticommutation relation

fγμ; γνg ¼ 2gμν; ð7Þ
therefore is

γþ ¼
�
0

ffiffiffi
2

p

0 0

�
; γ− ¼

�
0 0ffiffiffi
2

p
0

�
: ð8Þ

Note that in 1þ 1 and 2þ 1 dimensions, the Clifford algebra
can be satisfied with 2 × 2-matrices.

III. INVERSE APPROACH

The Dirac equation, minimally coupled to the electro-
magnetic potential Aμ via the charge q

ðiγμ½∂μ þ iqAμ� −mÞψ ¼ 0; ð9Þ

assumes the following simple form in terms of the light-
cone gamma matrices (8):

�
−m i

ffiffiffi
2

p ½∂þþ iqAþ�
i

ffiffiffi
2

p ½∂−þ iqA−� −m

��
ψ1

ψ2

�
¼ 0: ð10Þ

Traditionally, the Dirac equation is treated as a partial
differential equation. A solution ψ for a specific potential

Aμ is typically calculated by reducing the Dirac equation to
an ordinary differential equation. In our approach, we
assume that we know a specific spinor ψ ¼ ðψ1;ψ2ÞT
which is a solution to the Dirac equation and calculate
the corresponding potential. Thus, we solve (10) for the
components of Aμ

qAþ ¼ i
∂þψ2

ψ2

−
mffiffiffi
2

p ψ1

ψ2

;

qA− ¼ i
∂−ψ1

ψ1

−
mffiffiffi
2

p ψ2

ψ1

: ð11Þ

For arbitrary ψ, these expressions are not necessarily real.
Therefore, we require the imaginary parts of qAþ and qA−
to vanish, giving two conditions which we use to eliminate
2 real degrees of freedom of the spinor ψ. Using the polar
representation for the spinor components ψk ¼ rkeiφk ,
these conditions can be written as

r2∂þr2 −
mffiffiffi
2

p r1r2 sin ðφ1 − φ2Þ ¼ 0;

r1∂−r1 þ
mffiffiffi
2

p r1r2 sin ðφ1 − φ2Þ ¼ 0: ð12Þ

Adding the two equations gives

∂−r21 ¼ −∂þr22; ð13aÞ

∂−r1 ¼
mffiffiffi
2

p r2 sin ðφ2 − φ1Þ: ð13bÞ

The first equation (13a) can be solved for r2 by integrating
with respect to xþ

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðx−Þ −

Z
∂−r21dxþ

s
; ð14Þ

where cðx−Þ is an integration constant that may still depend
on x−. The remaining equation (13b) determines the phase
difference φ2 − φ1

φ2 − φ1 ¼ arcsin
� ffiffiffi

2
p

m
∂−r1
r2

�
; ð15Þ

where we could also use other branches of the arcsin
function such as Δφ ¼ φ2 − φ1 → π − Δφ, leading to
different solutions in general—see the remark after
Eq. (17). Using the abbreviation

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c −

Z
∂−r2dxþ −

2

m2
ð∂−rÞ2

s
; ð16Þ

and Eqs. (14) and (15), we can calculate the form of the
spinor ψ
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ψ ¼
�
ψ1

ψ2

�
¼ eiφ

�
r

�sþ i
ffiffi
2

p
m ∂−r

�
; ð17Þ

where we have set r ¼ r1 and φ ¼ φ1. Note that we find
two different solutions with �s corresponding to the
different branches of the arcsin or square-root functions
in Eqs. (15) and (16), respectively.
Local gauge invariance allows us to eliminate the phase

eiφ by applying a gauge transformation ψ ↦ ψ 0 ¼ e−iφψ ,
which adds a term ∂μφ to qAμ. The components of Aμ using
the spinor given in (17) finally are

qAþ ¼ ∓ mffiffiffi
2

p r
s
∓

ffiffiffi
2

p

m
∂þ∂−r

s
;

qA− ¼ ∓ mffiffiffi
2

p s
r
: ð18Þ

These are obviously real as long as r and s are real, too. The
electric field corresponding to this potential according to
(5) is

E ¼ ∂−Aþ − ∂þA−: ð19Þ

In summary, by choosing a real generating function
rðxþ; x−Þ and a real supplementary boundary value func-
tion cðx−Þ, we can generate arbitrary space-time dependent
solutions ψðxþ; x−Þ of the Dirac equation in the presence of
an electromagnetic background Aμ, which can also depend
on space and time.
Obviously, the associated electromagnetic field strength

tensor Fμν in Eq. (5) automatically satisfies the homo-
geneous Maxwell equations as it has been derived from a
vector potential Aμ. If we demand that it also obeys the
inhomogeneous Maxwell equations (μ0 ¼ 1)

∂νFμν ¼ jμ; ð20Þ

we have to specify the sources jμ accordingly. In 1þ 1
dimensions we find

ρ ¼ −∂xE ¼ 1ffiffiffi
2

p ð∂−E − ∂þEÞ;

j ¼ ∂tE ¼ 1ffiffiffi
2

p ð∂−Eþ ∂þEÞ; ð21Þ

where ρ is the charge density and j is the current density.
For nontrivial field profiles Eðt; xÞ, they will be nonzero in
general. However, this is no surprise because the only
vacuum solution of the Maxwell equations in 1þ 1
dimensions is a constant electric field E ¼ const.

IV. SOLUTIONS

In order to illustrate the approach presented in the
previous section, let us discuss some exemplary solutions

that can be found using this method, starting with the most
simple ones. The expressions for the spinor and the
potential components are significantly simplified if r is
independent of x−.

A. Plane waves

Choosing r and s ¼ � ffiffiffi
c

p
to be constant,

ψ ¼
�
r

s

�
¼ const; ð22Þ

leads to a constant electromagnetic vector potential

qAþ ¼ −
mffiffiffi
2

p r
s
¼ const;

qA− ¼ −
mffiffiffi
2

p s
r
¼ const: ð23Þ

Thus, a gauge transformation ψ ↦ ψ 0 ¼ e−ipμxμψ with

pμ ≔
�
pþ
p−

�
¼ mffiffiffi

2
p

�
r=s

s=r

�
ð24Þ

can be used to set the potential components to zero and
reveals that these solutions are plane wave solutions to the
free Dirac equation of either positive or negative energy.
Transforming the light-cone momenta p� back to the usual
Cartesian representation p0 ¼ ðpþ þ p−Þ=

ffiffiffi
2

p
, we find that

the energy is given by p0 ¼ mðr=sþ s=rÞ=2. Thus a
solution where both r and s are positive (or both negative)
corresponds to a positive energy whereas different signs of
r and s yield a negative energy.

B. Single pulses

In this subsection, we find solutions for arbitrary light-
cone fields EðxþÞ and Eðx−Þ, i.e., pulses moving along the
light lines. Such solutions were found before using tradi-
tional methods as well [14,15].

1. xþ-dependent pulse

Let us assume that the function r depends on xþ only
while s ¼ � ffiffiffi

c
p ¼ const

ψ ¼
�
rðxþÞ
s

�
: ð25Þ

In this case, neither the spinor nor the vector potential
depends on x− which simplifies the expression for the
electric field

qE ¼ q∂−Aþ|fflffl{zfflffl}
¼0

− q∂þA− ¼ mffiffiffi
2

p s∂þ
1

rðxþÞ
: ð26Þ
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This is a first-order ordinary differential equation for rðxþÞ
which can be integrated easily

rðxþÞ ¼ rin

�
1þ

ffiffiffi
2

p

m
rin
s
q
Z

xþ

−∞
Eð~xþÞd~xþ

�−1
; ð27Þ

with rin ¼ rðxþ → −∞Þ. Comparison with Sec. IVA
reveals that the prefactor

ffiffiffi
2

p
rin=ðmsÞ in front of the above

xþ-integral over qE is just the inverse initial momentum
1=pin

− . As already discussed in [14], the term in the square
bracket in Eq. (27) vanishes and thus r diverges when this
xþ-integral over qE becomes large enough to compensate
pin
− . Note that the light-cone dispersion relation pþp− ¼

m2=2 shows that pþ must diverge when p− vanishes and
vice versa.
Now, let us recall that the phenomenon of electron-

positron pair creation (such as in the Sauter-Schwinger
effect) can be described by the situation where an initial
solution with positive energy transforms into a final
solution which contains contributions with negative ener-
gies (or vice versa). Assuming that r becomes constant
initially and finally, we find that pair creation can only
occur if rðxþÞ changes its sign somewhere, i.e., if rðxþÞ
vanishes or diverges at some point. If rðxþÞ crosses zero,
the electric field (26) diverges—whereas a diverging rðxþÞ
precisely corresponds to the case discussed above, see also
[14]. Thus, we find that we cannot describe particle creation
in this case without introducing some singularity (see the
Appendix).

2. x−-dependent pulse

In a similar way, we can derive solutions for electric
fields only depending on x− by setting r ¼ const and letting
sðx−Þ ¼ � ffiffiffiffiffiffiffiffiffiffiffi

cðx−Þ
p

depend on x−

ψ ¼
�

r

sðx−Þ

�
: ð28Þ

Thus, the electric field can be calculated as follows:

qE ¼ q∂−Aþ − q∂þA−|fflffl{zfflffl}
¼0

¼ −
mffiffiffi
2

p r∂−
1

sðx−Þ
; ð29Þ

which is again a first-order ordinary differential equation
for sðx−Þ. The solution is given by

sðx−Þ ¼ sin

�
1 −

ffiffiffi
2

p

m
sin
r
q
Z

x−

−∞
Eð~x−Þd~x−

�−1
; ð30Þ

with sin ¼ sðx− → −∞Þ. In complete analogy, the same
arguments as for an xþ-dependent pulse apply in this case.

C. Two pulses

As a nontrivial extension of these two cases, we can
combine the previous two solutions into a single spinor

ψ ¼
�
rðxþÞ
sðx−Þ

�
; ð31Þ

where the two components are given by

rðxþÞ¼ rin

�
1þ

ffiffiffi
2

p

m
rin
sin

q
Z

xþ

−∞
Eþð~xþÞd~xþ

�−1
;

sðx−Þ¼ sin

�
1−

ffiffiffi
2

p

m
sin
rin

q
Z

x−

−∞
E−ð~x−Þd~x−

�−1
: ð32Þ

We may calculate the electric field using (18) and (19)

Eðxþ; x−Þ ¼
rðxþÞ
rin

E−ðx−Þ þ
sðx−Þ
sin

EþðxþÞ: ð33Þ

Initially, we have Eðxþ; x−Þ ¼ E−ðx−Þ þ EþðxþÞ which
corresponds to two independent pulses approaching each
other from different directions. When these two pulses
meet, however, this is no longer true—which shows that the
mapping from ψ (i.e., r and s) to Aμ is not linear. For late
times, these pulses propagate again independently, but with
modified amplitudes in general.

D. Emerging pulses

Another solution where the corresponding electric field
consists of two pulses can be generated by setting

rðxþ; x−Þ ¼ rin þ
ξ

1þ e−γxþ þ e−γx−
: ð34Þ

FIG. 1. Plot of rðxþ; x−Þ as given in (34) with rin ¼ 1, ξ ¼ 0.2,
and γ ¼ 1.2=m.
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For nonvanishing ξ and γ > 0, the chosen rðxþ; x−Þ will be
constant almost everywhere except in the vicinity of the
forward light cone (see Fig. 1).
In this case, the expression for s according to (16) is not

as simple as before because r is not independent of x−.
Nevertheless, s can be calculated analytically, although the
resulting expressions for s and the electric field qE are quite
lengthy. Thus, we will only give a plot of the resulting
electric field which shows the two pulses emerging from
the origin and moving along the forward light lines
(see Fig. 2).

V. EXTENSION TO 2þ 1 DIMENSIONS

The approach presented here can be extended to 2þ 1
dimensional space-times as well. We use the Cartesian
coordinate y in addition to the light-cone coordinates xþ
and x−. Thus, the metric tensor becomes

gμν ¼

0
B@ 0 1 0

1 0 0

0 0 −1

1
CA: ð35Þ

In order to complete our set of gamma matrices from (8),
we choose the third γ-matrix according to

γ2 ¼ iσz ¼
�
i 0

0 −i

�
: ð36Þ

Thus the Dirac equation in 2þ 1 dimensions is given by

�−m − ½∂y þ iqAy� i
ffiffiffi
2

p ½∂þ þ iqAþ�
i

ffiffiffi
2

p ½∂− þ iqA−� −mþ ½∂y þ iqAy�

��
ψ1

ψ2

�
¼ 0:

ð37Þ

In complete analogy to Sec. III, we solve the Dirac equation
for qAþ and qA− and reduce the spinor’s number of degrees
of freedom by requiring the imaginary parts of the
electromagnetic potential’s components to vanish. After
some calculation, we are able to write the spinor and the
electromagnetic potential in terms of three real functions
r1ðxþ; x−; yÞ, r2ðxþ; x−; yÞ and cðxþ; x−Þ. Explicitly, a
spinor of the form

ψ ¼
�

r1
s − iu

�
; ð38Þ

with

s ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 − u2

q
ð39Þ

and

u ¼ 1ffiffiffi
2

p
r1

�
cðxþ; x−Þ þ

Z
ð∂−r21 þ ∂þr22Þdy

�
ð40Þ

is a solution of the Dirac equation with the potential
components

qAþ ¼ −
mffiffiffi
2

p r1
s
−

1ffiffiffi
2

p ∂yr1
s

þ ∂þu
s

;

qA− ¼ −
mffiffiffi
2

p r22
r1s

þ 1ffiffiffi
2

p r2∂yr2
r1s

−
u∂−r1
r1s

;

qAy ¼ −m
u
s
−
u∂yr1
r1s

þ 1ffiffiffi
2

p ∂þr22
r1s

: ð41Þ

In contrast to 1þ 1 dimensions, the electromagnetic field
strength tensor contains three independent components, for
example the two electric fields Ex;y in x and y directions
plus the perpendicular magnetic field Bz. These compo-
nents of the electromagnetic field can be calculated as
follows:

Ex ¼ ∂−Aþ − ∂þA−;

Ey ¼
1ffiffiffi
2

p ð∂−Ay − ∂yA− þ ∂þAy − ∂yAþÞ;

Bz ¼
1ffiffiffi
2

p ð∂−Ay − ∂yA− − ∂þAy þ ∂yAþÞ: ð42Þ

We see that these expressions simplify significantly if r1
and r2 are independent of y. In that case, the electromag-
netic field does only depend on the light-cone coordinates
as before and similar solutions as in the 1þ 1 dimensional

FIG. 2. Plot of the electric field qE corresponding to the
solution generated by rðxþ; x−Þ given in (34) with rin ¼ 1,
ξ ¼ 0.2, and γ ¼ 1.2=m.
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case can be found, e.g. one and two wave fronts. In fact, the
solutions given in Sec. IV are solutions to the 2þ 1
dimensional Dirac equation as well but can be extended
to also include a transverse electric and magnetic field
component.
To verify that our method reproduces known solutions,

we insert the lowest Landau level solution

ψ ¼ N exp

�
−
1

2
qB

�
x −

ky
qB

�
2
��

1

1

�
ð43Þ

into our formalism, i.e. we set

r1ðxþ; x−Þ ¼ N exp

�
−
1

2
qB

�
xþ − x−ffiffiffi

2
p −

ky
qB

�
2
�
;

r2ðxþ; x−Þ ¼ r1ðxþ; x−Þ; c ¼ 0; ð44Þ

where N is a normalization constant. Calculating the
potential components gives

qAþ ¼ qA− ¼ −
mffiffiffi
2

p ; qAy ¼ −qB
xþ − x−ffiffiffi

2
p þ ky; ð45Þ

so that the electromagnetic field is

Ex ¼ Ey ¼ 0; Bz ¼ B; ð46Þ

which is the expected result.

VI. CONCLUSIONS AND OUTLOOK

We have developed an inverse approach for generating
families of exact solutions of the Dirac equation in the
presence of space-time dependent electromagnetic fields in
1þ 1 and 2þ 1 dimensions. Somewhat similar to optimal
control theory, we start with a suitable ansatz for the spinor
ψ and then derive the appropriate background field Aμ

which supports this solution. In 1þ 1 dimensions, we may
choose a real generating function rðxþ; x−Þ and a suitable
real supplementary boundary value function cðx−Þ such
that the radicand in Eq. (14) stays positive. In 2þ 1
dimensions, we may choose two real generating functions
r1ðxþ; x−; yÞ and r2ðxþ; x−; yÞ as well as one real boundary
value function cðxþ; x−Þ.
The solutions generated in this way may depend on

space and time in a complicated manner—a situation which
is quite difficult to treat with traditional methods. As one
possible application, our method could be used to solve
steering problems such as: given an initial wave packet ψ in,
which electromagnetic field Aμ induces an evolution to a
prescribed final wave packet ψout? As another application,
these exact solutions could be used as touchstones for
already existing exact or approximate nonperturbative
derivation techniques (e.g. the worldline instanton method
[23]) or as starting point for new approximative methods,

such as WKB [24] or linearization around a given back-
ground solution (see the Appendix).
The structure of the Dirac equation suggests that this

general strategy can also be applied to 3þ 1 dimensions,
where both the potential Aμ and the Dirac bispinor ψ have
four components. Thus, for a given ψ , we get four
equations for the four components Aμ, which can be solved
(except in singular cases). However, the four constraints
ℑðAμÞ ¼ 0 assume a form which is far more complicated
than in 1þ 1 and 2þ 1 dimensions. This renders the
identification of real generating functions which corre-
spond to the remaining degrees of freedom rather cumber-
some. The analysis could be simplified by restricting the
space-time dependence to 1þ 1 and 2þ 1 dimensions,
which should be the subject of further investigations.
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APPENDIX: PERTURBED SOLUTION

To find solutions for electric fields that create electron-
positron pairs (see, e.g., [26–29]), we use the ansatz

r ¼ αþ β sinðmγÞ; ðA1Þ

where the Bogoliubov coefficients α and β as well as the
eikonal function γ are slowly varying functions of the light
cone coordinates. (We consider 1þ 1 dimensions for
simplicity.) The main idea here is that α is an exact solution
and β is used to slowly turn on an oscillating perturbation.
The value of β then is related to the pair creation rate.
However, the calculation of s and qE is rather compli-

cated for arbitrary functions α, β, and γ because s depends
nonlinearly on r. Hence, as the perturbation should be
small, we calculate the electric field only up to linear order
in β

E ¼ EðαÞ þ EðβÞ þOðβ2Þ; ðA2Þ

where qEðαÞ is the unperturbed force of order β0 and qEðβÞ
is the first-order perturbation of order β1. Apart from this
linearization, we assume that the mass m represents the
largest energy scale in the problem and thus we employ a
large-m expansion on top of the approximation in Eq. (A2).
Expanding qEðβÞ into powers of m and keeping only the
highest-order term gives
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qEðβÞ ¼
ffiffiffi
2

p
β
cosðmγÞ
sα∂þγ

�
m2ð∂þγÞ2ð∂−γÞ2

−
�

mffiffiffi
2

p α

sα|fflffl{zfflffl}
¼−qAðαÞ

þ

∂−γ þ
mffiffiffi
2

p sα
α|fflffl{zfflffl}

¼−qAðαÞ
−

∂þγ
�

2
�
þOðm1Þ; ðA3Þ

with the abbreviation

sα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c −

Z
∂−α

2dxþ

s
: ðA4Þ

[qAðαÞ
þ and qAðαÞ

− are the leading-order contributions to
the vector potential.] Since α, β, and γ are supposed to be
slowly varying, the leading contribution (A3) would be
rapidly oscillating due to the prefactor cosðmγÞ unless the

phase function γ has a stationary point (see below). Of
course, such a rapidly oscillating force with a frequency of
order m could well create pairs, but this process would be
typically in the perturbative (multiphoton) regime. Here, we
are interested in nonperturbative phenomena such as the
Sauter-Schwinger effect and thus we demand that these
rapidly oscillating contributions are absent—at least to
leading order. Thus, we require the term of order m2 in
qEðβÞ to vanish. This is the case if S ¼ mγ solves the
eikonal equation

m2

2
¼ ð∂þSþ qAðαÞ

þ Þð∂−Sþ qAðαÞ
− Þ: ðA5Þ

Therefore, this condition can be used to fix γ for a given α.
Then, the leading order of qEðβÞ is of order m1

qEðβÞ ¼ mffiffiffi
2

p 1

sα
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�∂−γ

∂þγ
þ
�
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2
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�
1þ

�
sα
α

�
2 ∂þγ
∂−γ

�

þ β

�∂þα
α

�∂−γ

∂þγ
þ
�
α

sα

∂−γ

∂þγ

�
2

þ 2

�
sα
α

�
2
�
þ ∂−α

α

�
2þ

�
sα
α

�
2 ∂þγ
∂−γ

þ
�
α

sα

�
2
�
2ð∂−γÞ2 −

∂−γ

∂þγ

��

þ ∂þð∂−γÞ2 þ
�
α

sα

�
2 ∂−γ

∂þγ
∂þ

�∂−γ

∂þγ

��	
þOðm0Þ; ðA6Þ

where we have used the eikonal equation (A5) to simplify
some expressions. If we require this rapidly oscillating term
to vanish as well, we get a linear first-order partial differ-
ential equation for β. However, this linear equation does not
have any source term. Therefore, a solution where β
vanishes initially will not generate any pairs unless the
coefficients of ∂þβ and ∂−β vanish at some point. As those
are proportional to

mffiffiffi
2

p α

sα
∂−γ þ

mffiffiffi
2

p sα
α
∂þγ; ðA7Þ

we only obtain pair creation at this level of description
if (A7) vanishes somewhere. According to the eikonal
equation (A3), this in turn implies that ∂þγ or ∂−γ has to
vanish somewhere, i.e., that the phase function becomes
stationary.
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