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Wilson fermion doubling phenomenon on an irregular lattice:
Similarity and difference with the case of a regular lattice
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It is shown that the Wilson fermion doubling phenomenon on irregular lattices (simplicial complexes)
does exist. This means that the irregular (not smooth) zero or soft modes exist in the case when the “naive
fermions” are introduced. The statement is proved on a four-dimensional lattice by means of the Atiyah-

Singer index theorem, and then it is extended easily into the cases D < 4. But there is a fundamental
difference between doubled quanta on regular and irregular lattices: in the latter case, the propagator
decreases exponentially. This means that the doubled quanta on irregular lattices are “bad” quasiparticles.
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I. INTRODUCTION

The Wilson fermion doubling phenomenon on the
regular periodic lattices was discovered long ago in
Ref. [1]. The phenomenon and its influence on physics
was studied in a number of works (for example, see
Refs. [2—4]). It was proved in Refs. [5,6] that the fermion
doubling phenomenon indeed takes place on any periodic
lattice with local fermion action transforming to the usual
Dirac action in the long-wavelength region. But the
question about the existence of the Wilson fermion dou-
bling on irregular lattices is open at present. This means that
the problem is unsolved in the case of lattice quantum
gravity theory [7] (see Refs. [8,9]).

In this paper, I show that the Wilson fermion doubling
phenomenon on irregular lattices (simplicial complexes)
with D <4 does exist [10]. The statement is proved on a
four-dimensional lattice by means of the Atiyah-Singer
index theorem, then it is extended easily into the cases
D < 4. However, there exists a fundamental difference
between the propagation of doubling modes on regular and
irregular lattices. In the first case, the propagator of the
irregular modes is the same as the propagator of the regular
modes from the spectrum origin, i.e., power behaved. On
the contrary, the propagation of irregular modes on an
irregular lattice is similar to the Markov process of a
random walk. So it turns out that the propagator of irregular
modes on an irregular lattice decreases very quickly
(exponentially); the doubled irregular modes are “bad”
quasiparticles.

From here, the motivation of the work follows. The
subsequent considerations in this section have a speculative
character.

Let us suppose that the space-time is discrete on the
microscopic level; the corresponding lattice is an irregular
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and “breathing” one. This means that the dynamics of the
variables eyy;; (see Sec. II) describing the metrics is
governed by a wave function [see also Sec. V and (5.9)].
Suppose also that there are nonzero densities of the
irregular quanta of the three known neutrinos.

Nonzero densities (n? # 0) of the irregular quanta do not
contradict the fundamental notions of astrophysics, since
the irregular quanta energy can be arbitrarily small (see the
end of Sec. IV).

The following consequences might have resulted from
these suppositions:

(1) The problem of dark matter in cosmology.

Do nonzero densities of the neutrino irregular
quanta form dark matter in cosmology? It seems that
this hypothesis does not contradict the main proper-
ties of dark matter: (i) the irregular quanta are “bad”
quasiparticles, so such dark matter can be localized;
and (ii) the irregular quanta interact very slightly
with all normal quanta.

But nonzero densities of the neutrino irregular
quanta give a contribution to the energy-momentum
tensor, and therefore to the gravitational potential in
the vicinity of a metagalaxy.

(2) The problem of neutrino oscillation.

The neutrino oscillations, i.e., the mutual oscillat-
ing transitions of the neutrinos of different gener-
ations, have been observed for a long time now. The
common explanation of the phenomenon is based on
the assumption that the neutrino mass matrix is
nondiagonal. Moreover, in order to match all the
experimental evidence, extra neutrino fields are
introduced which are sterile regarding all inter-
actions (naturally, except for the gravitational
one). These sterile neutrinos cannot be observed
directly; they are coupled to the three known
neutrino generations only by means of a common
mass matrix, and this is the way they give a
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FIG. 1. The process of the electron neutrino transition to the
muon one.

contribution to the neutrino oscillations. The intro-
duction of sterile neutrinos does not exhaust
all difficulties of the theory: possibly, the most
confounding factor of the theory consists in the
fact that the electroweak interaction becomes non-
renormalizable.

A detailed description of the neutrino oscillation
experiments and theory can be found, for example,
in Refs. [11,12], and in numerous references there.

Now, let us consider the possibility of another physics
which may provide the neutrino oscillations. The basis for
this physics is the Wilson fermion doubling phenomenon
on irregular lattices discussed above.

Let us consider the scattering of the usual normal long-
wavelength electron neutrino quantum with the momentum
k,, |k,| < 3!, by the condensate of muon irregular quanta.
Suppose the interaction is mediated by the gravitational
field [13]. This scattering process is pictured in Fig. 1.
Obviously, the time-mean value of the irregular quantum
momentum is equal to zero, and the corresponding neces-
sary minimal averaging time is 7 ~ [p. This means that the
irregular quantum has zero momentum in the interaction
process of the long-wavelength neutrino quantum with
neutrino irregular excitation. Suppose also that vacuum is
translation invariant. Then the scattering process in Fig. 1
conserves the momentum of the long-wavelength neutrino:
k, = k.. The same process as in Fig. 1 takes place with v,
and v, interchanging. Finally, we conclude that the neutrino
oscillations should be observed, since there are mutual
transitions of the electron and muon neutrinos with fixed
and equal momenta.

II. FERMIONS ON AN IRREGULAR LATTICE

First of all, one must outline shortly the Dirac system on
irregular lattices. This goal is solved more gracefully in the
frame of the problem of discrete gravity theory on sim-
plicial complexes (see Refs. [8,9]). The definition
and necessary properties of the simplicial complexes can
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also be found in Refs. [8,9]. Here the orientable four-
dimensional simplicial complexes are interesting. Below,
only the necessary designations concerning simplicial
complexes are introduced.

The vertices of the complex & are denoted as ay; the
index V=1,2,...,9 - co enumerates the vertices. Let
the index WV enumerate 4-simplices. It is necessary to use
the local enumeration of the vertices ay, attached to a given
4-simplex: all five vertices of a 4-simplex with index }V are
enumerated as ayy;, i = 1,2, 3,4, 5. It must be kept in mind
that the same vertex, 1-simplex, etc., can belong to another
adjacent 4-simplex. The later notations with the extra index
WV indicate that the corresponding quantities belong to the
4-simplex with index W. The Levi-Civita symbol within
pairs different indices €yy; i, = *1 depending on whether

the order of vertices s}, = ayyiayyjayiayyayyy, defines the
positive or negative orientation of the 4-simplex sj‘,\,. We
introduce the following notation for oriented 1-simplices in
the case where the vertices a; and a; belong to the
4-simplex with index W:

X)) = aa; = =X (2.1)

J

Let

S% = Awi, Awi, Awi, Awiy Awi, (2.2)
be a positively oriented 4-simplex. An oriented frame of a
simplex (2.2) at a vertex a;, is the ordered set of four
oriented 1-simplices (2.1): by definition, the frame
RWiO = (X};\;l’X}Q;z’X};\;fX}:)\;) (23)

is oriented positively, and each permutation of these
I-simplices conserves or changes the orientation of the
frame depending on the permutation parity.

Let y*,a,b,c,... =1,2,3,4 be 4 x4 Dirac matrices
with Euclidean signature. Thus, all Dirac matrices as well
as the matrix

1,,2,3,4

v =r'rrivt, (2.4)

tryiyaybycyd — 4gabcd
are Hermitian. The Dirac spinors ), and I//L, each of whose
components assumes values in a complex Grassman
algebra, are assigned to each vertex ay. In the case of
Euclidean signature, the spinors ), and l;/; are independent
variables and are interchanged under the Hermitian
conjugation.

Let us assign 'to each oriented edge ayy;ayy; an element
of the group Spin(4):

QWij = Q;\}ji = eXP(wWij)’

1
— b b b __ b
Dyij = 507 Dy o =—[r".y"].
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Holonomy element €2,;; of the gravitational field executes
a parallel transformation of spinor yy; from vertex ayy; of
edge ayy;ayy; to neighboring vertex ayy;. Let each oriented
edge ayy;ay; be put in correspondence with element
eyyij = e?,wjy“, such that

- 5 -1

ewij = _QWijeriQWij‘ (2.6)
The quantities assigned to each oriented edge ayy;ayy; and
satisfying Eq. (2.6) are called 1-forms.

PHYSICAL REVIEW D 92, 025053 (2015)

We define the orientation of the complex by defining the
orientation of each 4-simplex. In this case, if two
4-simplices have a common tetrahedron, the two orienta-
tions of the tetrahedron, which are defined by the orienta-
tions of these two 4-simplices, are opposite. In our case, the

complex obviously has only two orientations.
We can now write the Euclidean action in the model in

question:

1

1 1 N . A PO o
A= VY E E EijkmtTy° X {——212 Qi Qi jm @ Wmk €ywmi — o ®Wmiewmjewmk€wmz}, (2.7)
P

W ijklm

. i
Owij = 7 (W “ Qi ww; —

2

Wiy Qi W) = Oy 1. (2.8)

The quantity (:)W,» j» as well as the whole action (2.7), represents a Hermitian operator. One can easily verify that the 1-form

(2.8), just as the 1-form &;;,

satisfies the relation (2.6). This fact is established by the repeated application of the formula

S7lyeS = Sgyb, (2.9)
where
— 1 ab _ _ sa Qa4 — a _ sa a 1 a,c 2.1
S:expieaba , gab__gba_gb’Sb:(eng)b_5b+€b+58c€b+"'- (2.10)
|
The dynamic variables are quantities Qy;; and &)y, It is natural to interpret the quantity
which describe the gravitational degrees of freedom, and
fields l//LW and yyy;, which are material fermion fields. 1 4
In the space of fields, there acts a gauge group according l%/\/ij = Ztr(@vw i) = Z(e‘,’/w j)z (2.13)

to the following rule: To each vertex ayy;, let us assign an
element of the group Sy, € Spin(4). According to the
principle of gauge invariance, the fields Q, e, y, and the
transformed fields

5 -1
Quij = SwiwijSw;s
~ 1
ewij = SwiewijSyyi»

-,

Ywi = Swi¥ais v (2.11)

N o |
Wi = WSy

are physically equivalent. This means that the action (2.7) is
invariant under the transformations (2.11). Under the gauge
transformations (2.11), the 1-form @ is transformed in the
same way as the form e:

The last formula is verified with the help of Egs. (2.9),

(2.10), and (2.11). Gauge invariance of the action (2.7) is
established by using Eqgs. (2.11) and (2.12).

a=1

as the square of the length of the edge ayy;ayy;. Thus, the
geometric properties of a simplicial complex prove to be
completely defined.

Now, let us show in the limit of slowly varying fields
that the action (2.7) reduces to the continuum action of
gravity, minimally connected with a Dirac field, in a four-
dimensional Euclidean space.

Consider a certain subset of vertices from the simplicial
complex, and assign the coordinates (real numbers)

My = Xy = ¥ (aw;) = ¥ (ay). p=1234

(2.14)

to each vertex ay,; from this subset. We stress that these
coordinates are defined only by their vertices rather than by
the higher-dimensional simplices to which these vertices
belong; moreover, the correspondence between the vertices
from the considered subset and the coordinates (2.14) is
one to one.
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Suppose that

[ = Xyl ~ Lp. (2.15)
where the parameter [ is of the order of the lattice spacing.
Estimate (2.15) can be valid only if the complex contains a
very large number of simplices and its geometric realization
is an almost smooth four-dimensional surface [14].
Suppose also that the four 4-vectors

Ay = Xy — Xy i=1234 (2.16)
are linearly independent, and
dx11/\/m 1 dx%/\/ml dx?/vml
=0, (2.17)
dxll/\/m4 d“xiz/\/m4 dx%m4

W, X)) is pos-
itively or negatively oriented. Here, the differentials of
coordinates (2.16) correspond to one-dimensional simpli-
ces ayy;ayy;, so that if the vertex ayy; has the coordinates
X}y;» then the vertex ay; has the coordinates xjy,; + dx), ;.

In the continuum limit, the holonomy group elements
(2.5) are close to the identity element, so that the quantities
a)?jb tend to zero, being of the order of O(dx*). Thus, one

can consider the following system of equations for wyy,,,,:

depending on whether the frame (X

OWmp Xy = Oy i=1,2,3,4. (2.18)
In this system of linear equations, the indices ¥V and m are
fixed, the summation is carried out over the index y, and the
index runs over all its values. Since the determinant (2.17)
is nonzero, the quantities wyy,,, are defined uniquely.
Suppose that a one-dimensional simplex X};‘i belongs to
four-dimensional simplices with indices Wy, W,, ..., W,..
Introduce the quantity

1 1
@l 5 (Xpym + X)) | = ;{a)Wlmy + @yt

(2.19)

which is assumed to be related to the midpoint of the
segment [x},,, . x},,]. Recall that the coordinates x},,, just as
the differentials (2.16), depend only on vertices but not on
the higher-dimensional simplices to which these vertices
belong. According to the definition, we have the following
chain of equalities:

OW mi = OW,mi =+ = OW i+ (220)

It follows from (2.16) and (2.18)—(2.20) that
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w, <xwm + %dxwmi>dx"wmi = Oyymi- (2.21)
The value of the field w,, in (2.21) on each one-dimensional
simplex is uniquely defined by this simplex.

Next, we assume that the fields @, smoothly depend on
the points belonging to the geometric realization of each
four-dimensional simplex. In this case, the following

formula is valid up to O((dx)?) inclusive:

1
QpymiQwijQyjm = €xp Emﬂb(me)dx”Wmidxl{/ij ,
(2.22)

where

R, = 0,0, — 0,0, + [0, o,]. (2.23)

When deriving formula (2.22), we used the Hausdorff
formula.

In exact analogy with (2.18), let us write out the
following relations for a tetrad field without explanations:

éwmﬂdx’;/vmi = éWmi' (224)

Using (2.5) and (2.18), we can rewrite the 1-form (2.8) as

. i
Owij = 15 [w'r Dy — (Duw)Tr*ylde,; = Oy

(2.25)
to within O(dx); here,

Dy = 0y + o, (2.26)
and the smooth field y(x) takes the values y(xyy;) = wyy;-.

Applying formulas (2.22)—(2.26) to the discrete action
(2.7) and changing the summation to integration, we obtain
in the continuum limit the well-known gravity action:

1 1
?[:/eabcd{—l—zm”b AeS A ed—6®“ Ael A e /\ed}.
P

(2.27)
Here,
e’ = e,dx*, w= %a“bwﬁbdx”,
U abopar _ Lo _
Zo R —59{=dw+a}/\w,
O = 2 [y Dy — (D) 'y wlde.  (228)

2

Thus, in the naive continuum limit, the action (2.7)
proves to be equal to the gravity action in the Palatini form
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minimally coupled to a Dirac field with Euclidean
signature.

We further simplify the problem by assuming that the
four-dimensional simplicial complex & is embedded into
four-dimensional Euclidean space and that the curvature
and torsion are equal to zero. This has the following
implications:

Let x“ be a set of Cartesian coordinates in the Euclidean
space, and xjy),; be the Cartesian coordinates of the vertex
ayi- Then e, = (xf),; — x3);). Now

w=0->R=0.

1
2[ pr—

= E :’l/vlsl[ lyéle V1 V, l//VzYz
ViV,

The indices s, s, = 1, 2, 3, 4 are the Dirac ones. The action
(2.30) is invariant under the gauge transformations

UWU - SWiUAijS;\,lvja Swi € SU(2),

Wi = Swiwis Wi = WoyiSi- (2.31)

Let

1 9
D = Ty (o CebedWiikim i€ Sk St (2:32)

be the oriented volume of the 4-simplex sy, and vy, be the
sum of the volumes vy, for those VV-4-simplices which
contain the vertex ay,. Here, the factor 1/4! is required since
|

(SRR N

is correct, and the set of eigenfunctions {y/ sy} forms a
complete orthonormal basis in the metric (2.33):

! 1
gZUVW(‘BI)VW(’Bz)V = Op.p,
v
5
«—> ZW Vl == 751} V- (235)
1
Let us expand the Dirac fields in this basis:
(2.36)

_ - o
Yy = Z"W(’B)V Vy = Z”m"’(m)v
P P

(Vovw )y,
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But instead of a gravity field, the gauge (isotopic) field is
introduced into the Dirac part of the action:

QWU - UWU AWij € E?

(2.29)

UWﬂ = exp (ieAyy;;),

where L is the Lie algebra of the gauge group. The Dirac
spinors and the gauge field Ayy;; belong to the same
representation of algebra L.

Thus, the Dirac part of the action (2.7) acquires the form

bed (i T b e d
v = 73151 E ewijkim€" Wy  UwmiWwi) €y i €Symk €vmi
W djklm

Zwvlsl

ViV,

Vl Vz]s]hwvﬂz (230)

|
the volume of a four-dimensional parallelepiped with
generatrices e, .. e}, i» €y and €Sy, is 4! times larger
than the volume of a 4-simplex with the same generatrices,
while the factor 1/5! is due to the fact that all five vertices
of each simplex are taken into account independently.
Thus, the spinor space scalar product is given by

5 Zvvu/ W)

(ilya) = (2.33)

The operator [iPy, ] in (2.30), as well as the operator
[i(vy,)"/2Dy, v, (vy,)71/?], is Hermitian. Thus, the eigen-
function problem

1

Dy, vz}‘ﬂ(’n)vz =5V, (2.34)

=Xl

The new dynamic variables {7y, n‘m} are Grassmann. The
scalar product (2.33) in these variables is rewritten as

(wilwa) Zn I (2.37)
It is important here that
riDy,y, = =Dy, v,y (2.38)

The long-wavelength limit of the theory is straightfor-
ward (see above). To do this, one should believe the
quantities Ayy;; and ey, are the smooth 1-forms
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Apij = Ag(x)dx?, ey — dx?,

taking the small values A,y;; and ey, on the vector ey, ,
and substitute the smooth Dirac field y(x), taking the value
yy on the vertex ay, for the set of spinors yy,. As a result,
the action (2.30), the scalar product (2.33), and the
eigenvalue problem (2.34) transform to the well-known
expressions and equations:

A, = / (=iy Ty V p)dx! A dx? A dx® A dx*,

V, =09, +ieA,, (2.39)
<mw»—/ﬂmwww%, (2.40)
—iy*Vap sp) (x) = ey sp)(x). (2.41)

III. THE GAUGE ANOMALY AND
ATIYAH-SINGER INDEX THEOREM

The partition function of the fermion system as the
functional of the quantities {ef,, } and {Ay;;} is given by
the integral

(3.1)

Here the fermion functional measure is defined according to

Z{€Wij» Awij = / (Dy'Dy)exp,,.

(Dy"Dy) = [ [dyidyyFiegy,; ), (32)
1%
where
4 . 4
dyy = [[]Tdwre.  dvy =[] dvis.. (3.3)

x s=1 x s=1

and the index » enumerates the components of the gauge
representation. The functional F{ef,,;} in (3.2) can be

calculated easily with the help of the metric (2.33), but it
is not interesting here. The scalar product (2.37) in

Grassmann variables {'7‘13"720} permits us to rewrite the
measure (3.2) as below:

(Dy"Dy) = [ [dniydnyp. (34)

B

Let us study the chiral transformation of the Dirac field

yy = exp iy )y, yy = wiexp (imy®). (3.5)

Obviously, the measure (3.2) is invariant under the trans-
formation (3.5). Moreover, even the factors ([T4_; dy,)

and ([]%_, dy], ) of the measure (3.2) are each invariant,
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since the matrix y> is traceless. It follows from here that the
measure on the right-hand side of Eq. (3.4) is also invariant
under the chiral transformation and the corresponding
Jacobian J = 1. The last statement permits us to extract
some interesting information.

Suppose the chiral transformation is infinitesimal:
ay — 0. From the linearized transformations of the
Dirac field (3.5), we obtain linearized transformations

for the variables {77, n,TB}:

i i
np = N+ 5 Z’?QZGVUVV/JDVVSV/QV’
Q v

i
My =l TS D R @ tWeyr Wy (3.6)
2 %

The Jacobian of this transformation is equal to
2i P
J = 1+§Zavvv2wwy Wy |-
v B

On the other hand, as was stated before, J = 1. Therefore,
since the quantities ay, are arbitrary at each vertex, we have

Zl//jpyl’sl//snv =0. (3.7)

B

For the following analysis, it is necessary to decompose
the sum (3.7) into an infrared or long-wavelength part and
the rest into an ultraviolet part. This is possible only for a
very large number of vertices N, while the sum rule (3.7)
remains valid always.

First, let us consider the infrared part. One must
introduce the following scales: the gauge field wavelength
order ~A4; the scale of ultraviolet cutoff of the long-
wavelength sector A; the lattice scale [p ~ [ey), |. The

scales satisfy the inequalities

IMT< A< (3.8)

Let us divide the total index set {B} into three subsets.
For the long-wavelength g (x):

s’B € Sinfra < |€’B| < Alv
PeS®

infra

<A<,

< Al < |€§B| < A2 < ll__)l
The rest of the indices are designated as Z, so that
Sinfra + Sig;)fra +7= {s‘p}

In consequence of Eq. (2.38), it is evident that for all *3
with ey # 0 [see Eq. (2.34)],
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1
gZ”V‘/’jvaSl//zpv =0. (3.9)
v

Due to Eq. (3.9) and the identity y° =[(1 +7°)/2—
(1 —y°)/2], we obtain the relation

1
£ D gy = =
% BeS

(3.10)

where S is a subset of the index set {B} and ng (n%) is the
number of right (left) zero modes on the index subset S. In
any case, the value of the left-hand side of Eq. (3.10) is a
whole number 0, 1, ....

The value of the long-wavelength part of the sum (3.7) is
well known:

> wp)ryy(x)

s'Besinfm

2
e
- b F o (x)F q(x)}

N O<(/1A11)2> F A} 4+ 0<2">J—“2{A},

Fab :aaAb—abAa-l-ie[Aa,Ab]. (311)
Here F{A} and F,{A} are some local gauge invariant
functionals of the gauge field. Note that the first summand
on the right-hand side of the last equation is generalized
easily into a simplicial complex in such a way that the
lattice value transforms into the corresponding original
continual value in the long-wavelength limit.

The rigorous lattice expression for the left-hand side of
Eq. (3.11) looks like

Z Y Wy = Ky (Ay),

s‘Besinﬁa
()’
Ky, v,(A) = Z exp {—% ‘l/*livl‘l’gnvz
P 1
79\ 2
o[- o
1 V.V,

The expansion of the lattice operator Ky, y,(A;) into a
power series in (AA;)™2 < 1 and (Ip/A) < 1 leads to the
expression on the right-hand side of Eq. (3.11). It is
important that this expansion is correct, since the operator
KVI’VZ (Al) is well defined.

The space integral of the right-hand side of Eq. (3.11) is
equal to

1 / [
reofgap)ero(i)egip-o e

(3.13)
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Here ¢ = 0, %1, ... is the topological charge of the gauge
field instanton, and the numbers ¢; and ¢, tend to some
finite values in the limit (1/AA) — 0 and (Ip/A) — 0. Since
the value of the left-hand side of Eq. (3.11) is a whole
number [see Eq. (3.10)] and the latter two summands in
(3.13) are negligible in comparison with 1, one must
conclude that ¢; = ¢, = 0 [15]. Finally, we have

ézvv > vy =q.

v s‘B e‘S‘infm

(3.14)

This equation is rigorous for (1/1A) <« 1, (Ip/2) >>1.
Moreover, it follows from Eq. (3.11) that

b {F o, (x)Foq(x)}

> wp@)riygx) = - ¢

2
s’nesinfra 3 2”

(3.15)

in the limit (1/AA) — 0 and (Ip/A) — 0. It is well known
that the right-hand side of Eq. (3.15) is half of the axial
vector anomaly. Here the expression for the anomaly is
extracted from the fermion measure (3.4). This method was
suggested by Vergeles [16] and Fujikawa [17].

Note that the value of the sum in (3.15) does not depend
on the cutoff parameter A if it is enclosed in a range of
values (3.8). This fact, in turn, means that

> w0 wyx) =0.
Pes®

infra

(3.16)

Itis clear from here that the decomposition of the sum in (3.7)
into long-wavelength and ultraviolet parts is well defined.

The comparison of Egs. (3.10), (3.7), (3.14), and (3.16)
leads to the following equality:

1
52”1)2‘//;31;751//2131/ =nl —nl=—q.
v BeZ

(3.17)

Here n® (n2) is the number of the right (left) irregular zero

modes of Eq. (2.34). The difference between the usual and
irregular modes is as follows: For the usual modes and
adjacent vertices ayy; and ayy;, we have

Wpwi = Wepwil ~ el spywil = 0. (3.18)

By definition, the irregular modes cannot satisfy the
estimation (3.18), but they satisfy the estimation

v

|W(S,p)wl' (3.19)

7 7
~Vigwil ~ Wi
at least at a part of vertices. Thus, the usual and irregular
modes are well separated not only by the energy egs but also
by the “momentum.”

It is important that the relations (3.17) are rigorous.
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IV. WILSON FERMION DOUBLING
PHENOMENON

Letg € Z and DV V be the Dirac operator defined on an
instanton with the topologlcal charge (¢q). Denote by y~ 06y

the irregular zero mode of Eq. (2.34):

I @) | 1
Z {‘KD vl,vz] Yogy, = 0-

(4.1)

The index & enumerates the zero modes.

Now, let us denote by [—(i/vy,) gre;)] the free lattice
Dirac operator. The free Dirac operator is obtained
from the general one by the gauge field elimination
Upwmi = exp (ieAyy;) = 1.

It is easy to obtain the following estimation:

i (free) o €
Z |:_ v_gvl»vz] W(Iof)vz =0 (;; |W(105)V1 |> : (42)

V) Vi
Here p is the scale of the instanton field Ag,l\’,l;ff The proof of
(4.2) is based on the estimations

Al ~ (Ip/p) < 1.

[
UWml +0 <e P)
p

and the fact that the lattice Dirac operator is linear in Uyy,,;.
Therefore,

(inst) (inst)
=~ eXp (leAsz) —i Asz

(free) __ ps(q) elp
Dy v, = pv, v, T O< P >

Since vy, ~ l‘,‘,, the estimation (4.2) follows from Eq. (4.1).
Let us expand the field configuration W(Zo £y in a series of
the free Dirac operator eigenfunctions:

o (free)
’V(Ioz;)v = ;C‘B’/’(‘—BW’
i (free) (free) (free)
) {_v—v,z vl,vz] Vipw, = 8V py,- (43)

12

Here ¢y are some complex numbers.
We are interested in the irregular modes’ contribution to
the expansion (4.3):

. (free)Z
v =D w¥igy o
m/

where the indices 3’ enumerate the irregular modes. It is
evident that at least some numbers cgy in (4.4) are nonzero:

(4.4)

ey #0. (4.5)

PHYSICAL REVIEW D 92, 025053 (2015)

Indeed, the irregular field configuration cannot be
expanded in a series of the regular smooth modes only.

The estimation (4.2) and expansion (4.4) allow us to
arrive at the final conclusion: the Wilson fermion doubling
phenomenon on irregular four-dimensional lattices does
exist. Otherwise, the energy gap of the order of e% ~1/lp
would be expected to take place in the sector of all irregular
modes of the free Dirac operator. As was said, in any case
the expansion (4.4) contains the irregular modes of the
operator. Thus, the additional contributions of the order of
(cqy/1p) would be on the right-hand side of the estimation
(4.2), the numbers cgy # 0. But the right-hand side of the
estimation (4.2) does not depend on the lattice parameter /p.
Thus, there are the soft or low-energy irregular Dirac
modes; the index P’ in the expansion (4.4) enumerates
only the soft modes. The soft irregular eigenfunctions of the
free Dirac operator are called here doubled fermion modes.

It is necessary to notice that the suggested approach is
valid also for the regular lattices or partially regular lattices
such as those that are periodic in one dimension and
irregular in the other dimensions.

To prove the existence of the Wilson fermion doubling
phenomenon on irregular three-dimensional lattices, let us
consider the Dirac action on the Cartesian product of a
three-dimensional simplicial complex & and the set of
integers R. As before, I assume that the three-dimensional
simplicial complex is embedded into three-dimensional
Euclidean space; the vertices of the complex are denoted as
ay; the index V =1,2,...,9 — oo enumerates the verti-
ces; and the index WV enumerates 3-simplices. Again it is
necessary to use the local enumeration of the vertices ay,
attached to a given 3-simplex: all four vertices of a
3-simplex with index )V are enumerated as ayy,
i,j,...=1,2,3,4. Later the notations with the extra index
W indicate that the corresponding quantities belong to the
3-simplex with index W. The Levi-Civita symbol within
pairs different indices &y, = =1 depending on whether
the order of vertices ayyayy;ayy;ayy defines the positive or
negative orientation of this 3-simplex. For each oriented
1-simplex ayy;ayy; of the simplicial complex an elementary
vector

eWU eij a,p,y=1,2,3

is assigned. The vector ef),; connects the vertex ayy; with
the vertex ayy; in 3D Euclidean space. The rest of the
notations are evident, and they are similar to those in
the beginning of Sec. I, but they are supplied here by the
additional index n =0,=£1,... € R, since the dynamic
variables are defined now on the discrete set & x R.

The Euclidean Hermitean action of the Dirac field
associated with the set & x R has the form
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1 .
2[1// = 2'4, z z Z SWlljkg ﬂy(”//]/\}[ ny l//Wl n)ee/\)lj nerk n_ 5 Z Z ’UV(ZW;nyAt(WV,nJrI —Yyn-1 ))
n %

W i,j.kl

- Z Z WV]n l}/ap{];] V, WVzn + ZDVZWV n l}/ Dn n l//Vn

n VW,

(4.6)

Here vy, is the total sum of oriented volumes of the adjacent 3-simplices with common vertex ay. The eigenfunction

problem (2.34) for irregular modes now looks like

123

or briefly

{r*(=i/vy)D* + y*(= lD)}W(Is,p) = €‘13W(Is13)~ (4.8)

Both operators (—i/ vy, )D %y, and —iD,, ,, are Hermitian,
and they commute mutually Therefore, the repeated
application of the operator {y*(—i/vy )D* + y*(—iD)}
to (4.8) leads to the equation

2,

{[(i/vy)DP + [iDP Yyl = equly  (49)

due to the fact that y*y* + y*y* = 0. It has been shown that
the soft irregular modes of Eqgs. (4.8) and (4.9) do exist, i.e.,
there exist the eigenvalues of Eq. (4.8) in the subspace of
irregular eigenfunctions of the order of |eg;| < I5!. There-
fore, the spectrum of the operator [(i/vy)D? in the
subspace of irregular eigenfunctions contains the eigen-
values of the order of |eg;| < I5'. This conclusion follows
from Eq. (4.9).

Thus, the doubled fermion modes exist also on three-
dimensional irregular lattices.

The classification of the doubled fermion modes should
be a subject of future scientific research.

V. THE PROPAGATION OF THE
IRREGULAR QUANTA

First, let us fix the necessary properties of the usual Dirac
propagators

O[Ty (x)yr(»)10) (5.1)

i c (x -y ) =
in (3 + 1) continual space-time with Minkowski signature:
(i) The translational and Lorentz invariance.
(i) For massless theory,

PiSe(x = y) +iS.(x =y)y’ = 0. (5.2)

i T iyt 1 = z
> [_EV“D?»I,J Vipvan D17 Dy = exWigv, e
1 n

(4.7)

(iii) For x° > 70 > 0,

/ dOz[iS.(x = 2)]y°[iSc(z = y)] = iS.(x = y).
(5.3)

(iv) The propagating particles are “good” quasiparticles;
i.e., they live indefinitely, have well-defined four-
momentum, and their energy is positive.

Property 3 above is the quantum-mechanical superposition
principle, and at the same time the property implies that the
propagating particle cannot be absorbed or created by
vacuum; i.e., the particle is distinguishable against the
background of the vacuum.

It is easy to see that all four of the properties uniquely

define the particle propagator. Indeed, the most general

expression for the propagator in the case x° > y° is
d®k
'S (x— ) — Ak
)
X (]/0|k| aka) ik (x—y)—i|k|(x° f(ku)
(5.4)

Here the measure, the expression in the parentheses, and
the exponent are Lorentz-invariant. Property 2 above is also
fulfilled. Since the propagator (5.4) describes the propa-
gation of the real “good” quasiparticles, all its dependence
on the space-time coordinates (x —y) is given by the
exponent. The function f(k%) in (5.4) must also be
Lorentz-invariant. This means that it can depend only on
k%k, = 0, and thus it is constant: f = C. Property 3 gives
C? = C. Therefore, f(k%) = 1.

If we insist on properties 1-2 only and reject properties
3—4, then the propagator describes the propagation of some
irregular quanta and it can acquire other forms. For
example,

iSE(x—y) ~ Liy"(9/0x) 5

(x =) (5.5)
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It is shown below that the propagators of the irregular
quanta are similar to the expression (5.5). In order to do
this, the structure of the fermion vacuum must be described
in general.

Now I return to the Euclidean metric. For simplicity, the
gauge group is assumed to be trivial, so that the index s will
be omitted. Note that from the integration rules

/dl//Vs =0, / dlI/Vx YWy = 5&\"’

/dWTVS - 0’ / dw;v ’ WTVS’ = 553/’ (56)

it follows that the nonzero value of the integral (3.1) is
obtained only if the complete products of the fermion
variable

PHYSICAL REVIEW D 92, 025053 (2015)
4
.
(H l//vsl//w)
s=1

are present at each vertex ay. These products can arise
only due to the exponent expansion under the integral (3.1).
As a consequence of the expansion, the expression

(5.7)

{w;f,]sl [_izvl;vz]slszwvzsz} related to the 1-simplex ay, ay,
can appear [see the Dirac action (2.30)] [18]. Let us assign to
the corresponding 1-simplex ay, ay, an arrow in this case.
The arrow is vectored from vertex ay, to vertex ay, which
can be designated as m or W. Four arrows come
into each vertex, and four arrows come out from each vertex
as a result of integration in (3.1). This geometrical picture is
realized analytically by assigning to each 1-simplex W
the matrix [—iD),y ]
o~ Thus, there is the factor

and to each 1-simplex ayay, the

S8

matrix [—iDy, v

4
{5 cmnlBonloy Pl P P |

§1,82,83,84=1

4
0 Pl Pl Pl P |
55,5

6.57.55=1

in every vertex ay.
We are interested in the two-point correlator

(5.8)

. [ (Dy Dy )y, yry,  exp A, 1 .
i i u = 1°1 252 — .
<l//s| ()C (al)] )l//sz (y (aVZ )>l//.e < f (DWTDW) exp 2[1// >e < E P N W(‘B) (XVI )W(S,p) (yVZ ) >e

Here the subscript ¢ means that the quantum e-fluctuations
average. These fluctuations are inessential in the long-
wavelength case, since the long-wavelength quanta lost the
information about lattice. But in the case of the irregular
quanta propagation, these fluctuations are crucial. The
e-fluctuations averaging implies that the geometrical in-
terval

2
lx —y] :/ \/ enegdxtdx”
1

[see (2.13) and (2.28)] between fermion fields in the two-
point correlator (5.9) remains constant. Obviously, for a
fixed value |x —y|, due to the e-fluctuations, the vertices
ay, and ay, will be variable quantities also, so that in the
case |x — y| > Ip many vertices ay, and ay, will be taken
into account in (5.9). By definition, the irregular modes
change much in passing from one vertex to the neighbour-
ing one. Therefore, one can conclude from the above
discussion that the irregular quanta propagator decreases

|
very quickly at (|x —y|/lp) = oo. From here the estima-
tion (5.5) follows.
Below the problem is considered in more detail.
Further, the sign of e-fluctuations averaging is omitted.
Since there is the external factor 1//;257 in the vertex ay,
[see the numerator in (5.9)], the number of the arrows
related with the factors
[—iﬂvﬂr]m, (5.10)
and coming into the vertex ay, is reduced up to tree.
Mathematically, this fact is realized by the assigning the
inverse matrix

[=iDy, y]5L, - Z[—mvz,v’];ﬂf =iy, vy, = 0.5,
S/

(5.11)

to the corresponding 1-simplex ay,ay (see Fig. 2).
Therefore, the number of factors yy»y presented at the
vertex ay» is reduced up to tree also. To compensate for this
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reduction, one must introduce the additional factor (see factor (5.12) gives an additional arrow coming into the
Fig. 2) vertex ay». To eliminate one of them, say <—ayray», one
should introduce the factor [—iPy |51, and so on. It is
evident that the last link in the chain is [—iﬂv””.v.]s_]lsw-

It follows from the above that the correlator (5.9) can be
represented in the form

[—iDV”.V/]S//S/. (512)

Now the condition at the vertex ay» is the same as at the
beginning of the process at the vertex ay,: the additional
|

v W) = D =By I iy ] [=iByr ] 7 =By | [=iB, ] - (5.13)

all paths

I
Obviously, the number of the operators [—iD]~! is greater ~ another, the information of a previous jump is forgotten due
than the number of the operators [—iD] by the unity on the  to the irregularity and “breathing” of the lattice. Thus, the
right-hand side of Eq. (5.13). Therefore, the total power of ~ propagation of irregular fermions can be described by a
the operators [—iP)] and [—iZ]~! on the right-hand side of  slightly modified Markov process which must model the
Eq. (5.13) is odd. Since both these operators are linear in correlator (5.13) in the four-dimensional Euclidean space.

the Dirac matrices y“, the expression on the right-hand side It is seen from Egs. (2.30) and (2.32) that

of Eq. (5.13) satisfies property 2. But property 3 cannot be

fulfilled on the microscopic level—if only because the 4

correlator (5.9) is odd in the total power of the Dirac Ze{‘,l’vzl)@hw ~ vy, y, (5.14)
matrices, while the bilinear form of the correlator is even in a=1

this sense. Note that a part of the information is lost in

passing from the microscopic description to the long-  is the sum of oriented volumes of all 4-simplices with the

wavelength limit, and thus property 3 becomes true. ~ common I-simplex ay, ay,. Therefore, the model of the
Indeed, the information about the lattice is lost completely ~ amplitude [_iVuD?)l,vz] in (5.13) will be the following one:
in the long-wavelength limit, and the lattice action (2.30)

transforms to the usual continuum Dirac action (2.39). =Py v.] = [iB(x — )]

Therefore, the correlator (5.9) transforms to the expression n 5

(5.4) with f(k) = 1. _ 2 i yexp (220N (sas)
Now, let us proceed to the estimation of the irregular b b?

quanta correlator. In this case, the information related with

the lattice is determinative. Because of this, Eq. (5.13)  The right-hand side of (5.15) is the amplitude of the jump
should be used. Since the direct correlator estimation with ~ from the point x into the point y. Here the dimensionless
the help of Eq. (5.13) is impossible, I apply a simple and Cartesian coordinates x? — x%/[p are used. The numerical
adequate computational model which describes the prob- ~ constant b~ 1 is a parameter of the model, and p is an

lem in terms of continuum theory. Thus, the model forgets unknown normalization constant which is of no impor-
the details of the lattice tance. It is seen that the direction of the jump vector (y — x)

It is supposed here that the microscopic geometry of the is unconstra.ine.d ’ b.ut the jump step Value.is constrain§d by
lattice is not fixed. This means that the elementary vectors the Gauss distribution. The model of the inverse amplitude

_ ., _1 . .
(2.6) connecting the nearest vertices ay,; and ay; are [=iDy,p,]7" is as follows:
quantum variables, so that their quantum fluctuations are

described by the corresponding wave function. This point  [—iBPy, y,|7" — [—iD(x — y)]™!

of view is necessary in the lattice quantum theory of gravity 1 (x —y)?

[8,9]. Though this theory is not satisfactory at present, I = [—b(—iyaaa) exp <— T)] (5.16)
p

hold to the following point of view: if the space-time is

discrete on the microscopic level, then the corresponding

lattice is irregular, and the geometrical values describing

the lattice are quantum variables. Such a lattice is called a

“blieathlng” one. . - . /d(“)y[—iﬂ(x _ y)]—l —iP(y —x)] = 1. (5.17)
t seems that the propagation of an irregular fermion on

the considered “breathing” lattice is similar in a sense to the

dynamics of a Brownian particle: in the process of  Thereby, the model of the correlator representation (5.13)

successive movements of fermions from one vertex to  looks like (zy = y)

Now the analog of the relation (5.11) is the equality
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w0 = TT{ [ 092 b0 o= s P = )Ml = 2P0 = )]

x [=iD(zy — 2)][~iP(z = y)] 7

Since the operators [—iD] and [—iD]~! are coupled, one can set p = 1. This expression is rewritten by passing to the new
integration variables z; = z; —z;_1, i = 1,...,2k+ 1:

w07 =311 I] [avas (x—zkfz])[ Do) D). P[Pz,

kOll =1

With the help of Eqgs. (5.15) and (5.16), the right-hand side of the last relation is rewritten once again:

<w<x>w<o>>f=g / / AWz Wy, 8¢ (ZZ—> H [ﬂ—lb("’y“aa)exp (‘Z‘)]
/

i=1

d(4)q ' 2k+1 2 .
27 g% r[l [ﬁ/(zyazf)exp < b2 +iqz; )d( ) }

d9g e { ( ) ) G2b?\ 2+ Iqg b’ exp (-2} oo igx)
= el 2zb | y? — | exp (— —)} < iy? ) / .
/ (27)* ; dq 4 Ox* (27)* 1 — 22b0¢2 exp (- #)

(5.18)
The integral on the right-hand side of Eq. (5.18) is determined for
e \ /4
0<b< <—2> ~0,61. (5.19)
2r

Integration over the angle variables leads to the expression (r = |x|)

i - (ar () o ]

The characteristic value of the variable g saturating the integral (5.20) is determined by the nearest zero of the denominator
in the integral. So |g| ~ 1. Since we are interested in the correlator behavior for r > 1, the argument gr of the Bessel
function under the integral (5.20) is effectively large: gr > 1. Therefore, one can use the asymptotic behavior of the Bessel
function:

]](qr) N 1 [eiqr—3ﬂi/4 _|_e—iqr+3/ti/4]'
2rqr

With the help of the last relation, the integral (5.20) is rewritten as follows:

_ 0 b? exp (——"zb2 + igr —3zi/4)
w(x)p'(0))* = <—i7“ ) [7/61(1-(13/2 4 |- 5.21
(w( (0)) Ox 2(27”,)3/2 c 1 — m2b0¢% exp (_qzb) ( )

The integration contour C is pictured in Fig. 3.
We are interested in the denominator zeros in the upper half-plane of the complex variable ¢ = ¢’ + iq”. The zeros are
determined by the following set of equations:

Sln(b2 / //)

(ql2_q//2) :2q’q”ctg(b2 / //) 272 b4 exp[ (bz / ”)Ctg(b2 / //)] _ b2 - ”

(5.22)
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FIG. 2. The graphical representation of the curly brackets on
the right-hand side of Eq. (5.13).
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FIG. 3. The integration contour in the integral (5.21) and the
location of the integral poles in the complex plane of the g
variable.

Since the solutions of the set of equations (5.22) are
symmetrized relative to the imaginary axis, it is enough
to solve the system for ¢’ > 0, ¢” > 0. The approximative
solution of the last set of equations looks like

b’qq" ~(2n+1/2)x,n=0,1,...,

2n+1/2)n
-

/ /5

qn ~4q4n = (5 23)

All zeros of the denominator under the integral (5.21)
lead to the simple poles of the expression under the integral
sign. Indeed, the derivative of the denominator respect to
the integration variable is equal to zero only for
qg=0, ix/i/b. Therefore,

The denominator = ¢,(¢ —¢,) at q — q,.
Thus, contour C in the integral (5.21) can be deformed
upward, so that the integral becomes a sum over poles
residue. The sum is saturated by the pair of poles which are

nearest to the real axis and placed at ¢’ = +«'/b, ¢" = x/b,
where ¥,k ~1 [n =0 in (5.23)].

PHYSICAL REVIEW D 92, 025053 (2015)

Finally, we have

/

o O ~ (172 ) | estonr/pyeos’y]

(5.24)

The right-hand side of the relation (5.5) simulates the
obtained result (5.24) in Minkowski space-time with
restored dimensionality.

We see that the irregular quanta are “bad” quasiparticles.

The fermion lines, such as in Fig. 1, represent the
creation (at V,), propagation, and annihilation (at V) of
a fermion quantum, and the quantum creation and annihi-
lation events are induced by the external sources only. If the
fermion line is everywhere continuous and endless in the
space, then it describes the propagation of a real particle.

VI. SUMMARY

Let us summarize the content of the paper.

At the beginning of the paper, the model of discrete
gravity on a simplicial complex is defined. A few years ago,
the model was introduced by the author in a series of works
(see Refs. [8,9]). Here it is interesting to note that any
theory with the action appearing as an integral of the form
over the space-time can be generalized easily into a
simplicial complex. Thus, the “naive fermions” are intro-
duced which conserve y>-invariance.

In the subsequent two sections, the existence of the Wilson
fermion doubling phenomenon on an irregular lattice (sim-
plicial complex) is established. It means that the irregular soft
(low-energy) fermion quanta are real. The statement is proved
on a four-dimensional lattice by means of the Atiyah-Singer
index theorem, and then it is extended easily into the cases
D < 4. By irregular quanta, we mean the quanta with the
wave functions essentially depending on the details of the
simplicial complex. On the contrary, the long-wavelength
quanta are regular in the sense that the corresponding wave
functions have lost the information about the irregular lattice.

From there, the fundamental difference between the
regular and irregular quanta is established: the irregular
quanta cannot propagate in space-time since their propa-
gator decreases exponentially, while the regular quanta
propagate “without difficulty” as usual particles. Therefore,
the irregular quanta are unphysical. The statement is proved
in the last section of the paper.

The term ‘“‘unphysical” does not indicate that the corre-
sponding quanta are inessential in physics. Some speculations
about the possible role of irregular quanta in astrophysics and
particle physics are given in the Introduction.

In conclusion, I want to make some remarks.

(1) General regularizations based on the simplicial com-
plex usually break the hypercubic symmetry of the
regular lattice. Then, it is reasonable to ask whether or
not the breaking of the symmetry is related to the
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emergence of the unphysical modes? The answer to this
question seems to be negative. Indeed, boson unphys-
ical modes exist besides the fermion unphysical modes
onthe simplicial complex as well: in our case, the modes
are graviton irregular modes, i.e., the graviton quanta
with the wave functions essentially depending on the
details of the simplicial complex. However, there is no
cause for the existence of soft bosonic irregular modes.
So the energies of the bosonic irregular quanta are not
soft, but they are of the order of /5. This estimation is
valid also on the regular hypercubic lattice for the
bosonic quanta on the boundary of the Brillouin zone.
Thus, the bosonic irregular quanta are doubly unphys-
ical: they cannot propagate, and they cannot be created
by physical quanta of any nature. On the contrary, the
discussed fermion irregular quanta on the irregular
lattice or the fermion quanta on the regular lattice on the
boundary of the Brillouin zone are light. It seems that
this property is fundamental for the Dirac fermions; this
property does not depend on the construction of the
lattice.

(2) Another question is concerned with the relation
between the topology of the simplicial complex

PHYSICAL REVIEW D 92, 025053 (2015)

and the existence or absence of the zero or soft
irregular fermion modes. The answer to this question
seems to be as follows:

Suppose that the topology of the space-time
admits the existence of Yang-Mills instantons, and
the Dirac field belongs to the corresponding gauge
group representation. Thus, our approach guarantees
the existence of the irregular zero fermion modes on
the background of of the Yang-Mills instanton field
for M — oo. It follows from here that the soft
irregular fermion modes exist even if the instanton
field is absent. Since the wave functions of the
irregular modes are local, the soft irregular fermion
modes exist independently of the topology of space-
time. But if the instanton field is absent, the
existence of an irregular local and actually zero
mode is not guaranteed.
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