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It is shown that the Wilson fermion doubling phenomenon on irregular lattices (simplicial complexes)
does exist. This means that the irregular (not smooth) zero or soft modes exist in the case when the “naive
fermions” are introduced. The statement is proved on a four-dimensional lattice by means of the Atiyah-
Singer index theorem, and then it is extended easily into the cases D < 4. But there is a fundamental
difference between doubled quanta on regular and irregular lattices: in the latter case, the propagator
decreases exponentially. This means that the doubled quanta on irregular lattices are “bad” quasiparticles.

DOI: 10.1103/PhysRevD.92.025053 PACS numbers: 11.15.-q, 11.15.Ha

I. INTRODUCTION

The Wilson fermion doubling phenomenon on the
regular periodic lattices was discovered long ago in
Ref. [1]. The phenomenon and its influence on physics
was studied in a number of works (for example, see
Refs. [2–4]). It was proved in Refs. [5,6] that the fermion
doubling phenomenon indeed takes place on any periodic
lattice with local fermion action transforming to the usual
Dirac action in the long-wavelength region. But the
question about the existence of the Wilson fermion dou-
bling on irregular lattices is open at present. This means that
the problem is unsolved in the case of lattice quantum
gravity theory [7] (see Refs. [8,9]).
In this paper, I show that the Wilson fermion doubling

phenomenon on irregular lattices (simplicial complexes)
with D ≤ 4 does exist [10]. The statement is proved on a
four-dimensional lattice by means of the Atiyah-Singer
index theorem, then it is extended easily into the cases
D < 4. However, there exists a fundamental difference
between the propagation of doubling modes on regular and
irregular lattices. In the first case, the propagator of the
irregular modes is the same as the propagator of the regular
modes from the spectrum origin, i.e., power behaved. On
the contrary, the propagation of irregular modes on an
irregular lattice is similar to the Markov process of a
random walk. So it turns out that the propagator of irregular
modes on an irregular lattice decreases very quickly
(exponentially); the doubled irregular modes are “bad”
quasiparticles.
From here, the motivation of the work follows. The

subsequent considerations in this section have a speculative
character.
Let us suppose that the space-time is discrete on the

microscopic level; the corresponding lattice is an irregular

and “breathing” one. This means that the dynamics of the
variables êWij (see Sec. II) describing the metrics is
governed by a wave function [see also Sec. V and (5.9)].
Suppose also that there are nonzero densities of the
irregular quanta of the three known neutrinos.
Nonzero densities ðnI ≠ 0Þ of the irregular quanta do not

contradict the fundamental notions of astrophysics, since
the irregular quanta energy can be arbitrarily small (see the
end of Sec. IV).
The following consequences might have resulted from

these suppositions:
(1) The problem of dark matter in cosmology.

Do nonzero densities of the neutrino irregular
quanta form dark matter in cosmology? It seems that
this hypothesis does not contradict the main proper-
ties of dark matter: (i) the irregular quanta are “bad”
quasiparticles, so such dark matter can be localized;
and (ii) the irregular quanta interact very slightly
with all normal quanta.
But nonzero densities of the neutrino irregular

quanta give a contribution to the energy-momentum
tensor, and therefore to the gravitational potential in
the vicinity of a metagalaxy.

(2) The problem of neutrino oscillation.
The neutrino oscillations, i.e., the mutual oscillat-

ing transitions of the neutrinos of different gener-
ations, have been observed for a long time now. The
common explanation of the phenomenon is based on
the assumption that the neutrino mass matrix is
nondiagonal. Moreover, in order to match all the
experimental evidence, extra neutrino fields are
introduced which are sterile regarding all inter-
actions (naturally, except for the gravitational
one). These sterile neutrinos cannot be observed
directly; they are coupled to the three known
neutrino generations only by means of a common
mass matrix, and this is the way they give a*vergeles@itp.ac.ru
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contribution to the neutrino oscillations. The intro-
duction of sterile neutrinos does not exhaust
all difficulties of the theory: possibly, the most
confounding factor of the theory consists in the
fact that the electroweak interaction becomes non-
renormalizable.
A detailed description of the neutrino oscillation

experiments and theory can be found, for example,
in Refs. [11,12], and in numerous references there.

Now, let us consider the possibility of another physics
which may provide the neutrino oscillations. The basis for
this physics is the Wilson fermion doubling phenomenon
on irregular lattices discussed above.
Let us consider the scattering of the usual normal long-

wavelength electron neutrino quantum with the momentum
ke, jkej ≪ l−1P , by the condensate of muon irregular quanta.
Suppose the interaction is mediated by the gravitational
field [13]. This scattering process is pictured in Fig. 1.
Obviously, the time-mean value of the irregular quantum
momentum is equal to zero, and the corresponding neces-
sary minimal averaging time is τ ∼ lP. This means that the
irregular quantum has zero momentum in the interaction
process of the long-wavelength neutrino quantum with
neutrino irregular excitation. Suppose also that vacuum is
translation invariant. Then the scattering process in Fig. 1
conserves the momentum of the long-wavelength neutrino:
kμ ¼ ke. The same process as in Fig. 1 takes place with νe
and νμ interchanging. Finally, we conclude that the neutrino
oscillations should be observed, since there are mutual
transitions of the electron and muon neutrinos with fixed
and equal momenta.

II. FERMIONS ON AN IRREGULAR LATTICE

First of all, one must outline shortly the Dirac system on
irregular lattices. This goal is solved more gracefully in the
frame of the problem of discrete gravity theory on sim-
plicial complexes (see Refs. [8,9]). The definition
and necessary properties of the simplicial complexes can

also be found in Refs. [8,9]. Here the orientable four-
dimensional simplicial complexes are interesting. Below,
only the necessary designations concerning simplicial
complexes are introduced.
The vertices of the complex K are denoted as aV ; the

index V ¼ 1; 2;…;N → ∞ enumerates the vertices. Let
the index W enumerate 4-simplices. It is necessary to use
the local enumeration of the vertices aV attached to a given
4-simplex: all five vertices of a 4-simplex with indexW are
enumerated as aWi, i ¼ 1; 2; 3; 4; 5. It must be kept in mind
that the same vertex, 1-simplex, etc., can belong to another
adjacent 4-simplex. The later notations with the extra index
W indicate that the corresponding quantities belong to the
4-simplex with index W. The Levi-Cività symbol within
pairs different indices εWijklm ¼ �1 depending on whether
the order of vertices s4W ¼ aWiaWjaWkaWlaWm defines the
positive or negative orientation of the 4-simplex s4W . We
introduce the following notation for oriented 1-simplices in
the case where the vertices ai and aj belong to the
4-simplex with index W:

XW
ij ¼ aiaj ¼ −XW

ji : ð2:1Þ

Let

s4W ¼ aWi0aWi1aWi2aWi3aWi4 ð2:2Þ

be a positively oriented 4-simplex. An oriented frame of a
simplex (2.2) at a vertex ai0 is the ordered set of four
oriented 1-simplices (2.1): by definition, the frame

RWi0 ¼ ðXW
i0i1

; XW
i0i2

; XW
i0i3

; XW
i0i4

Þ ð2:3Þ

is oriented positively, and each permutation of these
1-simplices conserves or changes the orientation of the
frame depending on the permutation parity.
Let γa; a; b; c;… ¼ 1; 2; 3; 4 be 4 × 4 Dirac matrices

with Euclidean signature. Thus, all Dirac matrices as well
as the matrix

γ5 ¼ γ1γ2γ3γ4; trγ5γaγbγcγd ¼ 4εabcd ð2:4Þ

are Hermitian. The Dirac spinors ψV and ψ†
V , each of whose

components assumes values in a complex Grassman
algebra, are assigned to each vertex aV . In the case of
Euclidean signature, the spinors ψV and ψ†

V are independent
variables and are interchanged under the Hermitian
conjugation.
Let us assign to each oriented edge aWiaWj an element

of the group Spinð4Þ:

ΩWij ¼ Ω−1
Wji ¼ expðωWijÞ;

ωWij ≡ 1

2
σabωab

Wij; σab ¼ 1

4
½γa; γb�: ð2:5Þ

FIG. 1. The process of the electron neutrino transition to the
muon one.
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Holonomy element ΩWij of the gravitational field executes
a parallel transformation of spinor ψWj from vertex aWj of
edge aWiaWj to neighboring vertex aWi. Let each oriented
edge aWiaWj be put in correspondence with element
êWij ≡ eaWijγ

a, such that

êWij ≡ −ΩWijêWjiΩ−1
Wij: ð2:6Þ

The quantities assigned to each oriented edge aWiaWj and
satisfying Eq. (2.6) are called 1-forms.

We define the orientation of the complex by defining the

orientation of each 4-simplex. In this case, if two

4-simplices have a common tetrahedron, the two orienta-

tions of the tetrahedron, which are defined by the orienta-

tions of these two 4-simplices, are opposite. In our case, the

complex obviously has only two orientations.
We can now write the Euclidean action in the model in

question:

A ¼ 1

5 × 24

X
W

X
i;j;k;l;m

εWijklmtrγ5 ×

�
−

1

2l2P
ΩWmiΩWijΩWjmêWmkêWml −

1

24
Θ̂WmiêWmjêWmkêWml

�
; ð2:7Þ

Θ̂Wij ¼
i
2
γaðψ†

Wiγ
aΩWijψWj − ψ†

WjΩWjiγ
aψWiÞ≡ Θa

Wijγ
a: ð2:8Þ

The quantity Θ̂Wij, as well as the whole action (2.7), represents a Hermitian operator. One can easily verify that the 1-form
(2.8), just as the 1-form êij, satisfies the relation (2.6). This fact is established by the repeated application of the formula

S−1γaS ¼ Sabγ
b; ð2:9Þ

where

S≡ exp
1

2
εabσ

ab; εab ¼ −εba ¼ εab; S
a
b ≡ ðexp εÞab ¼ δab þ εab þ

1

2
εacε

c
b þ � � � : ð2:10Þ

The dynamic variables are quantities ΩWij and êWij,
which describe the gravitational degrees of freedom, and
fields ψ†

Wi and ψWi, which are material fermion fields.
In the space of fields, there acts a gauge group according

to the following rule: To each vertex aWi, let us assign an
element of the group SWi ∈ Spinð4Þ. According to the
principle of gauge invariance, the fields Ω, e, ψ , and the
transformed fields

~ΩWij ¼ SWiΩWijS−1Wj;

~eWij ¼ SWieWijS−1Wi;

~ψWi ¼ SWiψAi;
~ψ†

Wi ¼ ψ†
WiS

−1
Wi ð2:11Þ

are physically equivalent. This means that the action (2.7) is
invariant under the transformations (2.11). Under the gauge
transformations (2.11), the 1-form Θ is transformed in the
same way as the form e:

~̂ΘWij ¼ SWiΘ̂WijS−1Wi: ð2:12Þ

The last formula is verified with the help of Eqs. (2.9),
(2.10), and (2.11). Gauge invariance of the action (2.7) is
established by using Eqs. (2.11) and (2.12).

It is natural to interpret the quantity

l2Wij ≡ 1

4
trðêWijÞ2 ¼

X4
a¼1

ðeaWijÞ2 ð2:13Þ

as the square of the length of the edge aWiaWj. Thus, the
geometric properties of a simplicial complex prove to be
completely defined.
Now, let us show in the limit of slowly varying fields

that the action (2.7) reduces to the continuum action of
gravity, minimally connected with a Dirac field, in a four-
dimensional Euclidean space.
Consider a certain subset of vertices from the simplicial

complex, and assign the coordinates (real numbers)

xμWi ¼ xμV ≡ xμðaWiÞ≡ xμðaVÞ; μ ¼ 1; 2; 3; 4

ð2:14Þ

to each vertex aWi from this subset. We stress that these
coordinates are defined only by their vertices rather than by
the higher-dimensional simplices to which these vertices
belong; moreover, the correspondence between the vertices
from the considered subset and the coordinates (2.14) is
one to one.
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Suppose that

jxμWi − xμWjj ∼ lP; ð2:15Þ

where the parameter lP is of the order of the lattice spacing.
Estimate (2.15) can be valid only if the complex contains a
very large number of simplices and its geometric realization
is an almost smooth four-dimensional surface [14].
Suppose also that the four 4-vectors

dxμWji ≡ xμWi − xμWj; i ¼ 1; 2; 3; 4 ð2:16Þ

are linearly independent, and

�������
dx1Wm1 dx2Wm1 … dx4Wm1

… … … …

dx1Wm4 dx2Wm4 … dx4Wm4

������� ≷ 0; ð2:17Þ

depending on whether the frame ðXW
m1;…; XW

m4Þ is pos-
itively or negatively oriented. Here, the differentials of
coordinates (2.16) correspond to one-dimensional simpli-
ces aWjaWi, so that if the vertex aWj has the coordinates
xμWj, then the vertex aWi has the coordinates x

μ
Wj þ dxμWji.

In the continuum limit, the holonomy group elements
(2.5) are close to the identity element, so that the quantities
ωab
ij tend to zero, being of the order of OðdxμÞ. Thus, one

can consider the following system of equations for ωWmμ:

ωWmμdx
μ
Wmi ¼ ωWmi; i ¼ 1; 2; 3; 4: ð2:18Þ

In this system of linear equations, the indices W and m are
fixed, the summation is carried out over the index μ, and the
index runs over all its values. Since the determinant (2.17)
is nonzero, the quantities ωWmμ are defined uniquely.
Suppose that a one-dimensional simplex XW

mi belongs to
four-dimensional simplices with indices W1;W2;…;Wr.
Introduce the quantity

ωμ

�
1

2
ðxWm þ xWiÞ

�
≡ 1

r
fωW1mμ þ � � � þ ωWrmμg;

ð2:19Þ

which is assumed to be related to the midpoint of the
segment ½xμWm; x

μ
Wi�. Recall that the coordinates xμWi, just as

the differentials (2.16), depend only on vertices but not on
the higher-dimensional simplices to which these vertices
belong. According to the definition, we have the following
chain of equalities:

ωW1mi ¼ ωW2mi ¼ � � � ¼ ωWrmi: ð2:20Þ

It follows from (2.16) and (2.18)–(2.20) that

ωμ

�
xWm þ 1

2
dxWmi

�
dxμWmi ¼ ωWmi: ð2:21Þ

The value of the field ωμ in (2.21) on each one-dimensional
simplex is uniquely defined by this simplex.
Next, we assume that the fields ωμ smoothly depend on

the points belonging to the geometric realization of each
four-dimensional simplex. In this case, the following
formula is valid up to OððdxÞ2Þ inclusive:

ΩWmiΩWijΩWjm ¼ exp

�
1

2
RμνðxWmÞdxμWmidx

ν
Wmj

�
;

ð2:22Þ

where

Rμν ¼ ∂μων − ∂νωμ þ ½ωμ;ων�: ð2:23Þ

When deriving formula (2.22), we used the Hausdorff
formula.
In exact analogy with (2.18), let us write out the

following relations for a tetrad field without explanations:

êWmμdx
μ
Wmi ¼ êWmi: ð2:24Þ

Using (2.5) and (2.18), we can rewrite the 1-form (2.8) as

Θ̂Wij ¼ γa
i
2
½ψ†γaDμψ − ðDμψÞ†γaψ �dxμAij ≡ Θaγa

ð2:25Þ

to within OðdxÞ; here,

Dμψ ¼ ∂μψ þ ωμψ ; ð2:26Þ

and the smooth field ψðxÞ takes the values ψðxWiÞ ¼ ψWi.
Applying formulas (2.22)–(2.26) to the discrete action

(2.7) and changing the summation to integration, we obtain
in the continuum limit the well-known gravity action:

A¼
Z

εabcd

�
−
1

l2P
Rab ∧ ec ∧ ed −

1

6
Θa ∧ eb ∧ ec ∧ ed

�
:

ð2:27Þ

Here,

ea ¼ eaμdxμ; ω≡ 1

2
σabωab

μ dxμ;

1

4
σabRab ¼ 1

2
R≡ dωþ ω ∧ ω;

Θa ¼ i
2
½ψ†γaDμψ − ðDμψÞ†γaψ �dxμ: ð2:28Þ

Thus, in the naive continuum limit, the action (2.7)
proves to be equal to the gravity action in the Palatini form
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minimally coupled to a Dirac field with Euclidean
signature.
We further simplify the problem by assuming that the

four-dimensional simplicial complex K is embedded into
four-dimensional Euclidean space and that the curvature
and torsion are equal to zero. This has the following
implications:
Let xa be a set of Cartesian coordinates in the Euclidean

space, and xaWi be the Cartesian coordinates of the vertex
aWi. Then eaWij ¼ ðxaWj − xaWiÞ. Now

ω ¼ 0 → R ¼ 0:

But instead of a gravity field, the gauge (isotopic) field is
introduced into the Dirac part of the action:

ΩWij → UWij ¼ U−1
Wji ¼ exp ðieAWijÞ; AWij ∈ L;

ð2:29Þ

where L is the Lie algebra of the gauge group. The Dirac
spinors and the gauge field AWij belong to the same
representation of algebra L.
Thus, the Dirac part of the action (2.7) acquires the form

Aψ ¼ −
1

3!5!

X
W

X
i;j;k;l;m

εWijklmε
abcdðiψ†

Wmγ
aUWmiψWiÞebWmje

c
Wmke

d
Wml

≡ X
V1V2

ψ†
V1s1

½−iγas1s2Da
V1;V2

�ψV2s2 ≡
X
V1V2

ψ†
V1s1

½−iDV1;V2
�s1s2ψV2s2 : ð2:30Þ

The indices s1; s2 ¼ 1; 2; 3; 4 are the Dirac ones. The action
(2.30) is invariant under the gauge transformations

UWij → SWiUAijS−1Wj; SWi ∈ SUð2Þ;
ψWi → SWiψWi; ψ†

Wi → ψ†
WiS

−1
Wi: ð2:31Þ

Let

vW ¼ 1

ð4!Þð5!Þ εabcdεWijklmeaWmie
b
Wmje

c
Wmke

d
Wml ð2:32Þ

be the oriented volume of the 4-simplex sW , and vV be the
sum of the volumes vW for those W-4-simplices which
contain the vertex aV . Here, the factor 1=4! is required since

the volume of a four-dimensional parallelepiped with
generatrices eaWmi; e

b
Wmj; e

c
Wmk, and edWml is 4! times larger

than the volume of a 4-simplex with the same generatrices,
while the factor 1=5! is due to the fact that all five vertices
of each simplex are taken into account independently.
Thus, the spinor space scalar product is given by

hψ1jψ2i ¼
1

5

X
V

vVψ
†
ð1ÞVψ ð2ÞV : ð2:33Þ

The operator ½iDV1;V2
� in (2.30), as well as the operator

½iðvV1
Þ−1=2DV1;V2

ðvV2
Þ−1=2�, is Hermitian. Thus, the eigen-

function problem

X
V2

�
i

�
1ffiffiffiffiffiffiffivV1

p
�
DV1;V2

�
1ffiffiffiffiffiffiffivV2

p
��

ð ffiffiffiffiffiffiffi
vV2

p
ψ ðPÞV2

Þ ¼ 1

5
ϵPð ffiffiffiffiffiffiffi

vV1

p
ψ ðPÞV1

Þ ⟷
X
V2

�
−

i
vV1

DV1;V2

�
ψ ðPÞV2

¼ 1

5
ϵPψ ðPÞV1

ð2:34Þ

is correct, and the set of eigenfunctions fψ ðPÞg forms a
complete orthonormal basis in the metric (2.33):

1

5

X
V

vVψ
†
ðP1ÞVψ ðP2ÞV ¼ δP1P2

⟷
X
P

ψ ðPÞV1
ψ†
ðPÞV2

¼ 5

vV1

δV1V2
: ð2:35Þ

Let us expand the Dirac fields in this basis:

ψV ¼
X
P

ηPψ ðPÞV ; ψ†
V ¼

X
P

η†Pψ
†
ðPÞV : ð2:36Þ

The new dynamic variables fηP; η†Pg are Grassmann. The
scalar product (2.33) in these variables is rewritten as

hψ1jψ2i ¼
X
P

η†ð1ÞPηð2ÞP: ð2:37Þ

It is important here that

γ5iDV1;V2
¼ −iDV1;V2

γ5: ð2:38Þ

The long-wavelength limit of the theory is straightfor-
ward (see above). To do this, one should believe the
quantities AWij and eaWij are the smooth 1-forms
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AWij → AaðxÞdxa; eaWij → dxa;

taking the small values AWij and eaWij on the vector eaWij,
and substitute the smooth Dirac field ψðxÞ, taking the value
ψV on the vertex aV for the set of spinors ψV . As a result,
the action (2.30), the scalar product (2.33), and the
eigenvalue problem (2.34) transform to the well-known
expressions and equations:

Aψ ¼
Z

ð−iψ†γa∇aψÞdx1 ∧ dx2 ∧ dx3 ∧ dx4;

∇a ¼ ∂a þ ieAa; ð2:39Þ

hψ1jψ2i ¼
Z

ψ†
1ðxÞψ2ðxÞdð4Þx; ð2:40Þ

−iγa∇aψ ðPÞðxÞ ¼ ϵPψ ðPÞðxÞ: ð2:41Þ

III. THE GAUGE ANOMALY AND
ATIYAH-SINGER INDEX THEOREM

The partition function of the fermion system as the
functional of the quantities feaWijg and fAWijg is given by
the integral

ZfeaWij; AWijg ¼
Z

ðDψ†DψÞ expAψ : ð3:1Þ

Here the fermion functional measure is defined according to

ðDψ†DψÞ≡Y
V

dψ†
VdψVFfeaWijg; ð3:2Þ

where

dψV ¼
Y
ϰ

Y4
s¼1

dψVϰs; dψ†
V ¼

Y
ϰ

Y4
s¼1

dψ†
Vϰs; ð3:3Þ

and the index ϰ enumerates the components of the gauge
representation. The functional FfeaWijg in (3.2) can be
calculated easily with the help of the metric (2.33), but it
is not interesting here. The scalar product (2.37) in
Grassmann variables fηP; η†Pg permits us to rewrite the
measure (3.2) as below:

ðDψ†DψÞ ¼
Y
P

dη†PdηP: ð3:4Þ

Let us study the chiral transformation of the Dirac field

ψV → exp ðiαVγ5ÞψV ; ψ†
V → ψ†

V exp ðiαVγ5Þ: ð3:5Þ

Obviously, the measure (3.2) is invariant under the trans-
formation (3.5). Moreover, even the factors ðQ4

s¼1 dψVϰsÞ
and ðQ4

s¼1 dψ
†
VϰsÞ of the measure (3.2) are each invariant,

since the matrix γ5 is traceless. It follows from here that the
measure on the right-hand side of Eq. (3.4) is also invariant
under the chiral transformation and the corresponding
Jacobian J ¼ 1. The last statement permits us to extract
some interesting information.
Suppose the chiral transformation is infinitesimal:

αV → 0. From the linearized transformations of the
Dirac field (3.5), we obtain linearized transformations
for the variables fηP; η†Pg:

ηP → ηP þ i
5

X
Q

ηQ
X
V

αVvVψ
†
PVγ

5ψQV ;

η†P → η†P þ i
5

X
Q

η†Q
X
V

αVvVψ
†
QVγ

5ψPV : ð3:6Þ

The Jacobian of this transformation is equal to

J ¼
�
1þ 2i

5

X
V

αVvV
X
P

ψ†
PVγ

5ψPV

�
:

On the other hand, as was stated before, J ¼ 1. Therefore,
since the quantities αV are arbitrary at each vertex, we have

X
P

ψ†
PVγ

5ψPV ¼ 0: ð3:7Þ

For the following analysis, it is necessary to decompose
the sum (3.7) into an infrared or long-wavelength part and
the rest into an ultraviolet part. This is possible only for a
very large number of vertices N, while the sum rule (3.7)
remains valid always.
First, let us consider the infrared part. One must

introduce the following scales: the gauge field wavelength
order ∼λ; the scale of ultraviolet cutoff of the long-
wavelength sector Λ; the lattice scale lP ∼ jeaWijj. The
scales satisfy the inequalities

λ−1 ≪ Λ ≪ l−1P : ð3:8Þ

Let us divide the total index set fPg into three subsets.
For the long-wavelength ψPðxÞ:

P ∈ Sinfra ⇔ jϵPj < Λ1; λ−1 ≪ Λ1 ≪ l−1P ;

P ∈ S⊚
infra ⇔ Λ1 < jϵPj < Λ2 ≪ l−1P :

The rest of the indices are designated as I , so that

Sinfra þ S⊚
infra þ I ¼ fPg:

In consequence of Eq. (2.38), it is evident that for all P
with ϵP ≠ 0 [see Eq. (2.34)],
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1

5

X
V

vVψ
†
PVγ

5ψPV ¼ 0: ð3:9Þ

Due to Eq. (3.9) and the identity γ5 ≡ ½ð1þ γ5Þ=2−
ð1 − γ5Þ=2�, we obtain the relation

1

5

X
V

vV
X
P∈S

ψ†
PVγ

5ψPV ¼ nSþ − nS−; ð3:10Þ

where S is a subset of the index set fPg and nSþðnS−Þ is the
number of right (left) zero modes on the index subset S. In
any case, the value of the left-hand side of Eq. (3.10) is a
whole number 0;�1;….
The value of the long-wavelength part of the sum (3.7) is

well known:

X
P∈Sinfra

ψ†
PðxÞγ5ψPðxÞ

¼ −
e2

32π2
εabcdtrfFabðxÞFcdðxÞg

þ O

�
1

ðλΛ1Þ2
�
F 1fAg þ O

�
lP
λ

�
F 2fAg;

Fab ¼ ∂aAb − ∂bAa þ ie½Aa; Ab�: ð3:11Þ

Here F 1fAg and F 2fAg are some local gauge invariant
functionals of the gauge field. Note that the first summand
on the right-hand side of the last equation is generalized
easily into a simplicial complex in such a way that the
lattice value transforms into the corresponding original
continual value in the long-wavelength limit.
The rigorous lattice expression for the left-hand side of

Eq. (3.11) looks like

X
P∈Sinfra

ψ†
PVγ

5ψPV ¼ trγ5KV;VðΛ1Þ;

KV1;V2
ðΛ1Þ≡

X
P

exp

�
−
ðϵPÞ2
Λ2
1

�
ψPV1

ψ†
PV2

¼ exp

�
−
ðiDÞ2
Λ2
1

�
V1;V2

: ð3:12Þ

The expansion of the lattice operator KV1;V2
ðΛ1Þ into a

power series in ðλΛ1Þ−2 ≪ 1 and ðlP=λÞ ≪ 1 leads to the
expression on the right-hand side of Eq. (3.11). It is
important that this expansion is correct, since the operator
KV1;V2

ðΛ1Þ is well defined.
The space integral of the right-hand side of Eq. (3.11) is

equal to

qþ O

�
1

ðλΛÞ2
�
c1 þ O

�
lP
λ

�
c2;

c1
ðλΛÞ2 → 0;

lPc2
λ

→ 0:

ð3:13Þ

Here q ¼ 0;�1;… is the topological charge of the gauge
field instanton, and the numbers c1 and c2 tend to some
finite values in the limit ð1=λΛÞ → 0 and ðlP=λÞ → 0. Since
the value of the left-hand side of Eq. (3.11) is a whole
number [see Eq. (3.10)] and the latter two summands in
(3.13) are negligible in comparison with 1, one must
conclude that c1 ¼ c2 ¼ 0 [15]. Finally, we have

1

5

X
V

vV
X

P∈Sinfra

ψ†
PVγ

5ψPV ¼ q: ð3:14Þ

This equation is rigorous for ð1=λΛÞ ⋘ 1, ðlP=λÞ ⋙1.
Moreover, it follows from Eq. (3.11) that

X
P∈Sinfra

ψ†
PðxÞγ5ψPðxÞ ¼ −

e2

32π2
εabcdtrfFabðxÞFcdðxÞg

ð3:15Þ

in the limit ð1=λΛÞ → 0 and ðlP=λÞ → 0. It is well known
that the right-hand side of Eq. (3.15) is half of the axial
vector anomaly. Here the expression for the anomaly is
extracted from the fermion measure (3.4). This method was
suggested by Vergeles [16] and Fujikawa [17].
Note that the value of the sum in (3.15) does not depend

on the cutoff parameter Λ if it is enclosed in a range of
values (3.8). This fact, in turn, means that

X
P∈S⊚

infra

ψ†
PðxÞγ5ψPðxÞ ¼ 0: ð3:16Þ

It is clear from here that the decomposition of the sum in (3.7)
into long-wavelength and ultraviolet parts is well defined.
The comparison of Eqs. (3.10), (3.7), (3.14), and (3.16)

leads to the following equality:

1

5

X
V

vV
X
P∈I

ψ†
PVγ

5ψPV ¼ nIþ − nI− ¼ −q: ð3:17Þ

Here nIþðnI−Þ is the number of the right (left) irregular zero
modes of Eq. (2.34). The difference between the usual and
irregular modes is as follows: For the usual modes and
adjacent vertices aWi and aWj, we have

jψ ðPÞWi − ψ ðPÞWjj ∼ lPϵPjψ ðPÞWjj → 0: ð3:18Þ

By definition, the irregular modes cannot satisfy the
estimation (3.18), but they satisfy the estimation

jψI
ðPÞWi − ψI

ðPÞWjj ∼ jψI
ðPÞWij ð3:19Þ

at least at a part of vertices. Thus, the usual and irregular
modes are well separated not only by the energy ϵP but also
by the “momentum.”
It is important that the relations (3.17) are rigorous.
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IV. WILSON FERMION DOUBLING
PHENOMENON

Let q ∈ Z andDðqÞ
V1;V2

be the Dirac operator defined on an
instanton with the topological charge ðqÞ. Denote by ψI

ð0ξÞV
the irregular zero mode of Eq. (2.34):

X
V2

�
−

i
vV1

DðqÞ
V1;V2

�
ψI
ð0ξÞV2

¼ 0: ð4:1Þ

The index ξ enumerates the zero modes.
Now, let us denote by ½−ði=vV1

ÞDðfreeÞ
V1;V2

� the free lattice
Dirac operator. The free Dirac operator is obtained
from the general one by the gauge field elimination
UWmi ¼ exp ðieAWmiÞ → 1.
It is easy to obtain the following estimation:

X
V2

�
−

i
vV1

DðfreeÞ
V1;V2

�
ψI
ð0ξÞV2

¼ O
�
e
ρ
jψI

ð0ξÞV1
j
�
: ð4:2Þ

Here ρ is the scale of the instanton field AðinstÞ
Wmi . The proof of

(4.2) is based on the estimations

AðinstÞ
Wmi ∼ ðlP=ρÞ ≪ 1;

1 ≈ exp ðieAðinstÞ
WmiÞ − ieAðinstÞ

Wmi ¼ UWmi þ O

�
elP
ρ

�
;

and the fact that the lattice Dirac operator is linear in UWmi.
Therefore,

DðfreeÞ
V1;V2

¼ DðqÞ
V1;V2

þ O

�
el4P
ρ

�
:

Since vV1
∼ l4P, the estimation (4.2) follows from Eq. (4.1).

Let us expand the field configuration ψI
ð0ξÞV in a series of

the free Dirac operator eigenfunctions:

ψI
ð0ξÞV ¼

X
P

cPψ
ðfreeÞ
ðPÞV ;

X
V2

�
−

i
vV1

DðfreeÞ
V1;V2

�
ψ ðfreeÞ
ðPÞV2

¼ ϵPψ
ðfreeÞ
ðPÞV1

: ð4:3Þ

Here cP are some complex numbers.
We are interested in the irregular modes’ contribution to

the expansion (4.3):

ψI
ð0ξÞV ¼

X
P0

cP0ψ ðfreeÞI
ðP0ÞV þ � � � ; ð4:4Þ

where the indices P0 enumerate the irregular modes. It is
evident that at least some numbers cP0 in (4.4) are nonzero:

cP0 ≠ 0: ð4:5Þ

Indeed, the irregular field configuration cannot be
expanded in a series of the regular smooth modes only.
The estimation (4.2) and expansion (4.4) allow us to

arrive at the final conclusion: the Wilson fermion doubling
phenomenon on irregular four-dimensional lattices does
exist. Otherwise, the energy gap of the order of ϵIP ∼ 1=lP
would be expected to take place in the sector of all irregular
modes of the free Dirac operator. As was said, in any case
the expansion (4.4) contains the irregular modes of the
operator. Thus, the additional contributions of the order of
ðcP0=lPÞ would be on the right-hand side of the estimation
(4.2), the numbers cP0 ≠ 0. But the right-hand side of the
estimation (4.2) does not depend on the lattice parameter lP.
Thus, there are the soft or low-energy irregular Dirac
modes; the index P0 in the expansion (4.4) enumerates
only the soft modes. The soft irregular eigenfunctions of the
free Dirac operator are called here doubled fermion modes.
It is necessary to notice that the suggested approach is

valid also for the regular lattices or partially regular lattices
such as those that are periodic in one dimension and
irregular in the other dimensions.
To prove the existence of the Wilson fermion doubling

phenomenon on irregular three-dimensional lattices, let us
consider the Dirac action on the Cartesian product of a
three-dimensional simplicial complex K and the set of
integers R. As before, I assume that the three-dimensional
simplicial complex is embedded into three-dimensional
Euclidean space; the vertices of the complex are denoted as
aV ; the index V ¼ 1; 2;…;N → ∞ enumerates the verti-
ces; and the index W enumerates 3-simplices. Again it is
necessary to use the local enumeration of the vertices aV
attached to a given 3-simplex: all four vertices of a
3-simplex with index W are enumerated as aWi,
i; j;… ¼ 1; 2; 3; 4. Later the notations with the extra index
W indicate that the corresponding quantities belong to the
3-simplex with index W. The Levi-Cività symbol within
pairs different indices εWlijk ¼ �1 depending on whether
the order of vertices aWlaWiaWjaWk defines the positive or
negative orientation of this 3-simplex. For each oriented
1-simplex aWiaWj of the simplicial complex an elementary
vector

eαWij ≡ −eαWji; α; β; γ ¼ 1; 2; 3

is assigned. The vector eαWij connects the vertex aWi with
the vertex aWj in 3D Euclidean space. The rest of the
notations are evident, and they are similar to those in
the beginning of Sec. II, but they are supplied here by the
additional index n ¼ 0;�1;… ∈ R, since the dynamic
variables are defined now on the discrete set K ×R.
The Euclidean Hermitean action of the Dirac field

associated with the set K ×R has the form
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Aψ ¼ −
1

2!4!Þ
X
n

X
W

X
i;j;k;l

εWlijkε
αβγðiψ†

Wl;nγ
αψWi;nÞeβWlj;ne

γ
Wlk;n −

1

2

X
n

X
V

vVðiψ†
V;nγ

4ðψV;nþ1 − ψV;n−1ÞÞ

¼
X
n

X
V1V2

ψ†
V1n

½−iγαDα
V1;V2

�ψV2n þ
X
V

vV
X
n;n0

ψ†
V;n½−iγ4Dn;n0 �ψV;n0 : ð4:6Þ

Here vV is the total sum of oriented volumes of the adjacent 3-simplices with common vertex aV . The eigenfunction
problem (2.34) for irregular modes now looks like

X
V2

�
−

i
vV1

γαDα
V1;V2

�
ψI
ðPÞV2n

þ
X
n0
½−iγ4Dn;n0 �ψI

ðPÞV1n0
¼ ϵPψ

I
ðPÞV1n

; ð4:7Þ

or briefly

fγαð−i=vVÞDα þ γ4ð−iDÞgψI
ðPÞ ¼ ϵPψ

I
ðPÞ: ð4:8Þ

Both operators ð−i=vV1
ÞDα

V1;V2
and −iDn;n0 are Hermitian,

and they commute mutually. Therefore, the repeated
application of the operator fγαð−i=vV1

ÞDα þ γ4ð−iDÞg
to (4.8) leads to the equation

f½ði=vVÞDα�2 þ ½iD�2gψI
ðPÞ ¼ ϵ2Pψ

I
ðPÞ ð4:9Þ

due to the fact that γαγ4 þ γ4γα ¼ 0. It has been shown that
the soft irregular modes of Eqs. (4.8) and (4.9) do exist, i.e.,
there exist the eigenvalues of Eq. (4.8) in the subspace of
irregular eigenfunctions of the order of jϵPj ≪ l−1P . There-
fore, the spectrum of the operator ½ði=vVÞDα� in the
subspace of irregular eigenfunctions contains the eigen-
values of the order of jϵPj ≪ l−1P . This conclusion follows
from Eq. (4.9).
Thus, the doubled fermion modes exist also on three-

dimensional irregular lattices.
The classification of the doubled fermion modes should

be a subject of future scientific research.

V. THE PROPAGATION OF THE
IRREGULAR QUANTA

First, let us fix the necessary properties of the usual Dirac
propagators

iScðx − yÞ≡ h0jTψðxÞψ̄ðyÞj0i ð5:1Þ

in ð3þ 1Þ continual space-time with Minkowski signature:
(i) The translational and Lorentz invariance.
(ii) For massless theory,

γ5iScðx − yÞ þ iScðx − yÞγ5 ¼ 0: ð5:2Þ

(iii) For x0 > z0 > y0,

Z
dð3Þz½iScðx − zÞ�γ0½iScðz − yÞ� ¼ iScðx − yÞ:

ð5:3Þ

(iv) The propagating particles are “good” quasiparticles;
i.e., they live indefinitely, have well-defined four-
momentum, and their energy is positive.

Property 3 above is the quantum-mechanical superposition
principle, and at the same time the property implies that the
propagating particle cannot be absorbed or created by
vacuum; i.e., the particle is distinguishable against the
background of the vacuum.
It is easy to see that all four of the properties uniquely

define the particle propagator. Indeed, the most general
expression for the propagator in the case x0 > y0 is

iScðx − yÞ ¼
Z �

dð3Þk
ð2πÞ32jkj

�

× ðγ0jkj − γαkαÞeikðx−yÞ−ijkjðx0−y0ÞfðkaÞ:
ð5:4Þ

Here the measure, the expression in the parentheses, and
the exponent are Lorentz-invariant. Property 2 above is also
fulfilled. Since the propagator (5.4) describes the propa-
gation of the real “good” quasiparticles, all its dependence
on the space-time coordinates ðx − yÞ is given by the
exponent. The function fðkaÞ in (5.4) must also be
Lorentz-invariant. This means that it can depend only on
kaka ¼ 0, and thus it is constant: f ¼ C. Property 3 gives
C2 ¼ C. Therefore, fðkaÞ ¼ 1.
If we insist on properties 1–2 only and reject properties

3–4, then the propagator describes the propagation of some
irregular quanta and it can acquire other forms. For
example,

iSIc ðx − yÞ ∼ l2Piγ
að∂=∂xaÞδð4Þðx − yÞ: ð5:5Þ
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It is shown below that the propagators of the irregular
quanta are similar to the expression (5.5). In order to do
this, the structure of the fermion vacuum must be described
in general.
Now I return to the Euclidean metric. For simplicity, the

gauge group is assumed to be trivial, so that the index ϰ will
be omitted. Note that from the integration rules

Z
dψVs ¼ 0;

Z
dψVs · ψVs0 ¼ δss0 ;Z

dψ†
Vs ¼ 0;

Z
dψ†

Vs · ψ
†
Vs0 ¼ δss0 ; ð5:6Þ

it follows that the nonzero value of the integral (3.1) is
obtained only if the complete products of the fermion
variable

�Y4
s¼1

ψVsψ
†
Vs

�
ð5:7Þ

are present at each vertex aV . These products can arise
only due to the exponent expansion under the integral (3.1).
As a consequence of the expansion, the expression
fψ†

V1s1
½−iDV1;V2

�s1s2ψV2s2g related to the 1-simplex aV1
aV2

can appear [see the Dirac action (2.30)] [18]. Let us assign to
the corresponding 1-simplex aV1

aV2
an arrow in this case.

The arrow is vectored from vertex aV2
to vertex aV1

which
can be designated as aV2

aV1





! or aV1
aV2





!. Four arrows come
into each vertex, and four arrows come out from each vertex
as a result of integration in (3.1). This geometrical picture is
realized analytically by assigning to each 1-simplex aVaV1




!
the matrix ½−iDV;V1

�ss1 and to each 1-simplex aVaV1




! the
matrix ½−iDV1;V �s1s. Thus, there is the factor

� X4
s1;s2;s3;s4¼1

εs1s2s3s4 ½−iDV;V1
�s1s01 ½−iDV;V2

�s2s02 ½−iDV;V3
�s3s03 ½−iDV;V4

�s4s04
�

×

� X4
s5;s6;s7;s8¼1

εs5s6s7s8 ½−iDV5;V �s0
5
s5
½−iDV6;V �s0

6
s6
½−iDV7;V �s0

7
s7
½−iDV8;V �s0

8
s8

�
ð5:8Þ

in every vertex aV .
We are interested in the two-point correlator

hψ s1ðxμðaV1
Þψ†

s2ðyμðaV2
Þiψ ;e ≡

�R ðDψ†DψÞψV1s1ψ
†
V2s2

expAψR ðDψ†DψÞ expAψ

�
e

¼
�X

P

1

ϵP
ψ ðPÞðxV1

Þψ†
ðPÞðyV2

Þ
�

e

: ð5:9Þ

Here the subscript e means that the quantum e-fluctuations
average. These fluctuations are inessential in the long-
wavelength case, since the long-wavelength quanta lost the
information about lattice. But in the case of the irregular
quanta propagation, these fluctuations are crucial. The
e-fluctuations averaging implies that the geometrical in-
terval

jx − yj ¼
Z

2

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eaμeaνdxμdxν

q

[see (2.13) and (2.28)] between fermion fields in the two-
point correlator (5.9) remains constant. Obviously, for a
fixed value jx − yj, due to the e-fluctuations, the vertices
aV1

and aV2
will be variable quantities also, so that in the

case jx − yj ≫ lP many vertices aV1
and aV2

will be taken
into account in (5.9). By definition, the irregular modes
change much in passing from one vertex to the neighbour-
ing one. Therefore, one can conclude from the above
discussion that the irregular quanta propagator decreases

very quickly at ðjx − yj=lPÞ → ∞. From here the estima-
tion (5.5) follows.
Below the problem is considered in more detail.
Further, the sign of e-fluctuations averaging is omitted.
Since there is the external factor ψ†

V2s2
in the vertex aV2

[see the numerator in (5.9)], the number of the arrows
related with the factors

½−iDV2;V 0 �s2s0 ð5:10Þ

and coming into the vertex aV2
is reduced up to tree.

Mathematically, this fact is realized by the assigning the
inverse matrix

½−iDV2;V 0 �−1s0s2 ;
X
s0
½−iDV2;V 0 �−1s1s0 ½−iDV2;V 0 �s0s2 ¼ δs1;s2

ð5:11Þ

to the corresponding 1-simplex aV2
aV 0 (see Fig. 2).

Therefore, the number of factors ψV 0s0 presented at the
vertex aV 0 is reduced up to tree also. To compensate for this
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reduction, one must introduce the additional factor (see
Fig. 2)

½−iDV 00;V 0 �s00s0 : ð5:12Þ

Now the condition at the vertex aV 00 is the same as at the
beginning of the process at the vertex aV2: the additional

factor (5.12) gives an additional arrow coming into the
vertex aV 00 . To eliminate one of them, say ←aV 00aV 000, one
should introduce the factor ½−iDV 00;V 000 �−1s000s00, and so on. It is
evident that the last link in the chain is ½−iDV 0000;V1

�−1s1s0000 .
It follows from the above that the correlator (5.9) can be

represented in the form

hψV1s1ψ
†
V2s2

i ¼
X

all paths

f½−iDV 00000;V1
�−1½−iDV 00000;V 00000 �…½−iDV 00;V 000 �−1½−iDV 00;V 0 �½−iDV2;V 0 �−1gs1s2 : ð5:13Þ

Obviously, the number of the operators ½−iD�−1 is greater
than the number of the operators ½−iD� by the unity on the
right-hand side of Eq. (5.13). Therefore, the total power of
the operators ½−iD� and ½−iD�−1 on the right-hand side of
Eq. (5.13) is odd. Since both these operators are linear in
the Dirac matrices γa, the expression on the right-hand side
of Eq. (5.13) satisfies property 2. But property 3 cannot be
fulfilled on the microscopic level—if only because the
correlator (5.9) is odd in the total power of the Dirac
matrices, while the bilinear form of the correlator is even in
this sense. Note that a part of the information is lost in
passing from the microscopic description to the long-
wavelength limit, and thus property 3 becomes true.
Indeed, the information about the lattice is lost completely
in the long-wavelength limit, and the lattice action (2.30)
transforms to the usual continuum Dirac action (2.39).
Therefore, the correlator (5.9) transforms to the expression
(5.4) with fðkaÞ ¼ 1.
Now, let us proceed to the estimation of the irregular

quanta correlator. In this case, the information related with
the lattice is determinative. Because of this, Eq. (5.13)
should be used. Since the direct correlator estimation with
the help of Eq. (5.13) is impossible, I apply a simple and
adequate computational model which describes the prob-
lem in terms of continuum theory. Thus, the model forgets
the details of the lattice.
It is supposed here that the microscopic geometry of the

lattice is not fixed. This means that the elementary vectors
(2.6) connecting the nearest vertices aWi and aWj are
quantum variables, so that their quantum fluctuations are
described by the corresponding wave function. This point
of view is necessary in the lattice quantum theory of gravity
[8,9]. Though this theory is not satisfactory at present, I
hold to the following point of view: if the space-time is
discrete on the microscopic level, then the corresponding
lattice is irregular, and the geometrical values describing
the lattice are quantum variables. Such a lattice is called a
“breathing” one.
It seems that the propagation of an irregular fermion on

the considered “breathing” lattice is similar in a sense to the
dynamics of a Brownian particle: in the process of
successive movements of fermions from one vertex to

another, the information of a previous jump is forgotten due
to the irregularity and “breathing” of the lattice. Thus, the
propagation of irregular fermions can be described by a
slightly modified Markov process which must model the
correlator (5.13) in the four-dimensional Euclidean space.
It is seen from Eqs. (2.30) and (2.32) that

X4
a¼1

eaV1;V2
Da

V1;V2
∼ vV1;V2

ð5:14Þ

is the sum of oriented volumes of all 4-simplices with the
common 1-simplex aV1

aV2
. Therefore, the model of the

amplitude ½−iγaDa
V1;V2

� in (5.13) will be the following one:

½−iDV1;V2
� → ½−iDðx − yÞ�

≡
�
ρ

πb
ð−iγa∂aÞ exp

�
−
ðx − yÞ2

b2

��
: ð5:15Þ

The right-hand side of (5.15) is the amplitude of the jump
from the point x into the point y. Here the dimensionless
Cartesian coordinates xa → xa=lP are used. The numerical
constant b ∼ 1 is a parameter of the model, and ρ is an
unknown normalization constant which is of no impor-
tance. It is seen that the direction of the jump vector ðy − xÞ
is unconstrained, but the jump step value is constrained by
the Gauss distribution. The model of the inverse amplitude
½−iDV1;V2

�−1 is as follows:

½−iDV1;V2
�−1 → ½−iDðx − yÞ�−1

≡
�

1

πρb
ð−iγa∂aÞ exp

�
−
ðx − yÞ2

b2

��
: ð5:16Þ

Now the analog of the relation (5.11) is the equality

Z
dð4Þy½−iDðx − yÞ�−1½−iDðy − xÞ� ¼ 1: ð5:17Þ

Thereby, the model of the correlator representation (5.13)
looks like ðz0 ¼ yÞ
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hψðxÞψ†ðyÞiI ¼
X∞
k¼0

Y2kþ1

i¼1

�Z
dð4Þzi

�
δð4Þðx − z2kþ1Þ½−iDðz2kþ1 − z2kÞ�−1½−iDðz2k − z2k−1Þ�…½−iDðz3 − z2Þ�−1

× ½−iDðz2 − z1Þ�½−iDðz1 − yÞ�−1:

Since the operators ½−iD� and ½−iD�−1 are coupled, one can set ρ ¼ 1. This expression is rewritten by passing to the new
integration variables ~zi ¼ zi − zi−1; i ¼ 1;…; 2kþ 1:

hψðxÞψ†ð0ÞiI ¼
X∞
k¼0

Y2kþ1

i¼1

Z
dð4Þziδð4Þ

�
x −

X2kþ1

j¼1

zj

�
½−iDðz2kþ1Þ�−1½−iDðz2kÞ�…½−iDðz2Þ�½−iDðz1Þ�−1:

With the help of Eqs. (5.15) and (5.16), the right-hand side of the last relation is rewritten once again:

hψðxÞψ†ð0ÞiI ¼
X∞
k¼0

Z
…

Z
dð4Þz1…dð4Þz2kþ1δ

ð4Þ
�X2kþ1

i¼1

zi − x

� Y2kþ1

i¼1

�
1

πb
ð−iγa∂aÞ exp

�
−
z2i
b2

��

¼
X∞
k¼0

Z
dð4Þq
ð2πÞ4 e

−iqx
Y2kþ1

i¼1

�
2

πb3

Z
ðiγazai Þ exp

�
−
z2i
b2

þ iqzi

�
dð4Þzi

�

¼
Z

dð4Þq
ð2πÞ4 e

−iqx
X∞
k¼0

�
2πb

�
γa

∂
∂qa

�
exp

�
−
q2b2

4

��
2kþ1

¼
�
−iγa

∂
∂xa

�Z
dð4Þq
ð2πÞ4

πb3 exp ð− q2b2

4
− iqxÞ

1 − π2b6q2 exp ð− q2b2

2
Þ
:

ð5:18Þ

The integral on the right-hand side of Eq. (5.18) is determined for

0 < b <

�
e
2π2

�
1=4

≈ 0; 61: ð5:19Þ

Integration over the angle variables leads to the expression ðr≡ jxjÞ

hψðxÞψ†ð0ÞiI ¼
�
−iγa

∂
∂xa

���
b3

4πr

�Z
∞

0

dq · q2
J1ðqrÞ exp ð− q2b2

4
Þ

1 − π2b6q2 exp ð− q2b2

2
Þ

�
: ð5:20Þ

The characteristic value of the variable q saturating the integral (5.20) is determined by the nearest zero of the denominator
in the integral. So jqj ∼ 1. Since we are interested in the correlator behavior for r ≫ 1, the argument qr of the Bessel
function under the integral (5.20) is effectively large: qr ≫ 1. Therefore, one can use the asymptotic behavior of the Bessel
function:

J1ðqrÞ →
1ffiffiffiffiffiffiffiffiffiffi
2πqr

p ½eiqr−3πi=4 þ e−iqrþ3πi=4�:

With the help of the last relation, the integral (5.20) is rewritten as follows:

hψðxÞψ†ð0ÞiI ¼
�
−iγa

∂
∂xa

��
b3

2ð2πrÞ3=2
Z
C
dq · q3=2

exp ð− q2b2

4
þ iqr − 3πi=4Þ

1 − π2b6q2 exp ð− q2b2

2
Þ

�
: ð5:21Þ

The integration contour C is pictured in Fig. 3.
We are interested in the denominator zeros in the upper half-plane of the complex variable q ¼ q0 þ iq00. The zeros are

determined by the following set of equations:

ðq02 − q002Þ ¼ 2q0q00ctgðb2q0q00Þ; 2π2b4 exp½−ðb2q0q00Þctgðb2q0q00Þ� ¼ sinðb2q0q00Þ
b2q0q00

: ð5:22Þ
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Since the solutions of the set of equations (5.22) are
symmetrized relative to the imaginary axis, it is enough
to solve the system for q0 > 0; q00 > 0. The approximative
solution of the last set of equations looks like

b2q0q00 ≈ ð2nþ 1=2Þπ; n ¼ 0; 1;…;

q0n ∼ q00n ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ 1=2Þπp

b
: ð5:23Þ

All zeros of the denominator under the integral (5.21)
lead to the simple poles of the expression under the integral
sign. Indeed, the derivative of the denominator respect to
the integration variable is equal to zero only for
q ¼ 0;� ffiffiffi

2
p

=b. Therefore,

The denominator ¼ cnðq − qnÞ at q → qn:

Thus, contour C in the integral (5.21) can be deformed
upward, so that the integral becomes a sum over poles
residue. The sum is saturated by the pair of poles which are
nearest to the real axis and placed at q0 ¼ �κ0=b; q00 ¼ κ=b,
where κ0; κ ∼ 1 [n ¼ 0 in (5.23)].

Finally, we have

hψðxÞψ†ð0ÞiI ∼
�
iγa

∂
∂xa

��
1

r3=2
expð−κr=bÞ cos κ

0r
b

�
:

ð5:24Þ

The right-hand side of the relation (5.5) simulates the
obtained result (5.24) in Minkowski space-time with
restored dimensionality.
We see that the irregular quanta are “bad” quasiparticles.
The fermion lines, such as in Fig. 1, represent the

creation (at V2), propagation, and annihilation (at V1) of
a fermion quantum, and the quantum creation and annihi-
lation events are induced by the external sources only. If the
fermion line is everywhere continuous and endless in the
space, then it describes the propagation of a real particle.

VI. SUMMARY

Let us summarize the content of the paper.
At the beginning of the paper, the model of discrete

gravity on a simplicial complex is defined. A few years ago,
the model was introduced by the author in a series of works
(see Refs. [8,9]). Here it is interesting to note that any
theory with the action appearing as an integral of the form
over the space-time can be generalized easily into a
simplicial complex. Thus, the “naive fermions” are intro-
duced which conserve γ5-invariance.
In the subsequent two sections, the existence of theWilson

fermion doubling phenomenon on an irregular lattice (sim-
plicial complex) is established. It means that the irregular soft
(low-energy) fermion quanta are real. The statement is proved
on a four-dimensional lattice by means of the Atiyah-Singer
index theorem, and then it is extended easily into the cases
D < 4. By irregular quanta, we mean the quanta with the
wave functions essentially depending on the details of the
simplicial complex. On the contrary, the long-wavelength
quanta are regular in the sense that the corresponding wave
functions have lost the information about the irregular lattice.
From there, the fundamental difference between the

regular and irregular quanta is established: the irregular
quanta cannot propagate in space-time since their propa-
gator decreases exponentially, while the regular quanta
propagate “without difficulty” as usual particles. Therefore,
the irregular quanta are unphysical. The statement is proved
in the last section of the paper.
The term “unphysical” does not indicate that the corre-

spondingquanta are inessential in physics. Some speculations
about the possible role of irregular quanta in astrophysics and
particle physics are given in the Introduction.
In conclusion, I want to make some remarks.
(1) General regularizations based on the simplicial com-

plex usually break the hypercubic symmetry of the
regular lattice. Then, it is reasonable to askwhether or
not the breaking of the symmetry is related to the

FIG. 2. The graphical representation of the curly brackets on
the right-hand side of Eq. (5.13).

FIG. 3. The integration contour in the integral (5.21) and the
location of the integral poles in the complex plane of the q
variable.
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emergenceof theunphysicalmodes?Theanswer to this
question seems to be negative. Indeed, boson unphys-
icalmodes exist besides the fermion unphysicalmodes
onthesimplicialcomplexaswell: inourcase,themodes
are graviton irregular modes, i.e., the graviton quanta
with the wave functions essentially depending on the
details of the simplicial complex. However, there is no
cause for the existence of soft bosonic irregularmodes.
So the energies of the bosonic irregular quanta are not
soft, but they are of the order of l−1P . This estimation is
valid also on the regular hypercubic lattice for the
bosonic quanta on the boundary of the Brillouin zone.
Thus, the bosonic irregular quanta are doubly unphys-
ical: they cannot propagate, and they cannot be created
by physical quanta of any nature. On the contrary, the
discussed fermion irregular quanta on the irregular
latticeor the fermionquantaon the regular latticeon the
boundary of the Brillouin zone are light. It seems that
thisproperty is fundamental for theDirac fermions; this
property does not depend on the construction of the
lattice.

(2) Another question is concerned with the relation
between the topology of the simplicial complex

and the existence or absence of the zero or soft
irregular fermion modes. The answer to this question
seems to be as follows:
Suppose that the topology of the space-time

admits the existence of Yang-Mills instantons, and
the Dirac field belongs to the corresponding gauge
group representation. Thus, our approach guarantees
the existence of the irregular zero fermion modes on
the background of of the Yang-Mills instanton field
for N → ∞. It follows from here that the soft
irregular fermion modes exist even if the instanton
field is absent. Since the wave functions of the
irregular modes are local, the soft irregular fermion
modes exist independently of the topology of space-
time. But if the instanton field is absent, the
existence of an irregular local and actually zero
mode is not guaranteed.
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