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We present a Lorentz-breaking supersymmetric algebra characterized by a critical exponent z. Such
construction requires a nontrivial modification of the supercharges and superderivatives. The improvement
of renormalizability for supersymmetric scalar QED is shown, and the Kählerian effective potentials are
calculated in different cases. We also show how the theory flows naturally to the Lorentz symmetric case at
low energies.
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I. INTRODUCTION

It is known that the addition of higher-derivative cor-
rections improves the ultraviolet (UV) behavior of generic
quantum field theories allowing in particular the construc-
tion of a renormalizable class of quantum gravity models
[1]. However, usually the price to pay is the appearance of
ghost excitations and the breaking of unitarity [2,3]. One
possible way out of this problem consists of assuming
scaling properties which are anisotropic between space and
time, so that only high spatial derivatives are introduced,
the so-called Horava-Lifshitz (HL) models (see [4–7]).
Such anisotropy is characterized by a critical exponent z,
related with the degree of the highest spatial derivative in
such way that for z ¼ 1, the isotropy between time and
space holds and the theory is Lorentz invariant. For other
values of z, Lorentz symmetry is broken although it is
expected to be restored at low energies [8,9]. This
procedure has been applied to models without or with
gauge symmetry and also to supersymmetric theories.
Concerning the building of HL-like supersymmetric

models, two approaches have been proposed; accordingly
the superalgebra has the standard form [10] or was deformed
to accommodate higher spatial derivatives [11]. In the first
situation, modifications are made directly in the action
leading to terms containing both time and spatial derivatives
which break the simplicity of the original proposal. On the
other hand, the inclusion of high spatial derivatives in the
generators of the superalgebra has a drawback in the sense
that they do not verify the Leibniz rule making it difficult to
introduce self-interactions of chiral (or antichiral) super-
fields. We will show that, in spite of this difficulty, it is
possible to formulate a theory free of pathologies. The
crucial observation to take into account is that, although the
self-interacting terms constructed as products of at least
three chiral quantities are not chiral any longer, they do not

break the supersymmetry (SUSY) if they are integrated over
the whole Grassmann space. Usually, for z ¼ 1 theories,
such a procedure leads to nonrenormalizable models but in
the anisotropic situation z > 1, because of the ultraviolet
improvement of the propagators, they may be allowed. In
this work, we study a HL-like version of supersymmetric
QED constructed along these lines, determine its Kählerian
effective potential, and discuss the emergence of Lorentz
symmetry at low energies.
This paper is organized as follows. In Sec. II we present a

higher spatial derivative supersymmetric algebra and some
considerations related with it. In Sec. III we supersymme-
trize an anisotropic version of scalar QED and determine
the superpropagators and the superficial degree of diver-
gence of the theory. Section IV is devoted to one-loop
calculations: the Kählerian effective potential, for N ¼ 1
SUSY and the analysis of the restoration of Lorentz
symmetry at low energies. Finally, in Sec. V we present
our conclusions. In the Appendix we collected some details
of the calculations.

II. LORENTZ-VIOLATING SUSY

We are interested in the formulation of supersymmetric
theories which behave anisotropically under a generic
scaling, xi → bxi, t → bzt. We recall that the usual
Lorentz-invariant supersymmetric algebra is defined by
the following anticommutation relation of the supercharges
(we follow the notation of [12]):

fQα; Q̄ _αg ¼ 2iσμα _α∂μ; ð1Þ
where

Qα ¼
∂
∂θα − iσμα _αθ̄

_α∂μ; ð2Þ

Q̄ _α ¼ −
∂
∂θ̄ _α

þ iθασμα _α∂μ: ð3Þ

In this case, the anticommutator fQα; Q̄ _αg is propor-
tional to Pμ ¼ i∂μ but, in the Lorentz-violating case, the
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Coleman-Mandula theorem is compatible with a larger
class of superalgebras, allowing for a more general anti-
commutation relation [11]:

fQα; Q̄ _αg ¼ 2σμ
0

α _αPμ þ 2ησiα _αOi; ð4Þ

where σ0
0 ¼ σ0 and σi

0 ¼ cσi, the dimension of the constant
c is ½c� ¼ z − 1, and η is a free parameter measuring the
breaking of the Lorentz invariance. The operator Oi will
depend in general on the spatial part of the momentum
(the Lorentz-violating SUSY in isotropic space was treated
in [13]). For our purposes we are interested in the following
operator:

Oi ¼ Δz−1
2 ∂i; ð5Þ

where Δ ¼ −∂i∂i. The Lorentz-breaking parameter is z,
and when z → 1 we recover the usual Lorentz-invariant
algebra up to an appropriate redefinition of the constants.
This new term in the superalgebra requires a modification
of the supercharges (for more details see [11]),

Qα ¼
∂
∂θα − iσμ

0
α _αθ̄

_α∂μ − iησiα _αθ̄
_αΔz−1

2 ∂i; ð6Þ

Q̄ _α ¼ −
∂
∂θ̄ _α

þ iθασμ
0

α _α∂μ þ iησiα _αθ̄
_αΔz−1

2 ∂i; ð7Þ

and superderivatives

Dα ¼
∂
∂θα þ iσμ

0
α _αθ̄

_α∂μ þ iησiα _αθ̄
_αΔz−1

2 ∂i; ð8Þ

D̄ _α ¼ −
∂
∂θ̄ _α

− iθασμ
0

α _α∂μ − iησiα _αθ̄
_αΔz−1

2 ∂i: ð9Þ

Note that the η parameter is dimensionless for this choice
of Oi operator. Since for z ≠ 1 the operators Qα, Q̄ _α, and
the corresponding superderivatives do not obey the Leibniz
rule, we cannot define chiral superfields in the usual way.
Indeed, the deformed supercharges (6) and (7) require the
modification of the chiral superfields,

~Φ ¼ ϕþ iθσμθ̄ ~∂μϕþ 1

4
θθθ̄ θ̄ ~□ϕþ

ffiffiffi
2

p
θψ

−
iffiffiffi
2

p θθ ~∂μψσ
μθ̄ þ θθF; ð10Þ

where ~∂0 ¼ ∂0; ~∂i ¼ c∂i þ ηΔz−1
2 ∂i, and the modified

D’Alembertian ~□≡ ~∂2
0− ~∂i

~∂i¼∂2
0þc2Δþ2cηΔzþ1

2 þη2Δz.
The modified superfield satisfies the chirality condition
D̄Φ ¼ 0.

Besides that, we introduce a vector superfield

V ¼ −θσμθ̄ ~Aμ þ iθθθ̄ λ̄−iθ̄ θ̄ θλþ 1

2
θθθ̄ θ̄D; ð11Þ

where ~A0 ¼ A0; ~Ai ¼ cAi þ ηΔz−1
2 Ai.

This is a natural modification of the gauge field
preserving the gauge symmetry (a deformation only on
the derivatives would lead to the breaking of gauge
symmetry). Note that the deformed field strength ~Fμν ¼
~∂μ

~Aν − ~∂ν
~Aμ is invariant under the usual gauge trans-

formation Aμ → Aμ þ ∂μΛ.
Because of the fact that D̄ _αðΦ1Φ2Þ ≠ D̄ _αðΦ1ÞΦ2þ

Φ1D̄ _αðΦ2Þ, it is impossible to define chiral composed
operators as products of chiral superfields. In this context,
a question that naturally arises concerns the class of
supersymmetric actions one may construct with this
deformed algebra. Now, every D-term (obtained after
integrating over all Grassmann space) is still supersym-
metric. Let us analyze the F-terms. For a general super-
symmetric variation δ ¼ ϵαQα þ ϵ̄ _αQ̄ _α and a general chiral
F-term

R
d2θWðΦÞ, we have

δ

Z
d2θWðΦÞ ¼

Z
d2θðϵαQαWðΦÞ þ ϵ̄ _αQ̄ _αWðΦÞÞ:

ð12Þ

The term proportional to ϵα vanishes because differ-
entiation with respect to θ gives zero after the θ-integration,

Z
d2θ

∂
∂θ ðSomethingÞ ¼ 0; ð13Þ

and the term proportional to θ̄ is a total derivative vanishing
after integration on the coordinate space,

Z
d4x
Z

d2θð−iσμ0α _αθ̄ _α∂μ − iσiα _αθ̄
_αΔz−1

2 ∂iÞðSomethingÞ ¼ 0:

ð14Þ

Let us now analyze the term proportional to ϵ̄ _α,

δjϵ̄
Z

d2θWðΦÞ≡ϵ̄ _α

Z
d2θQ̄ _αWðΦÞ

¼ ϵ̄ _α
Z

d2θð−iσμ0α _αθ̄ _α∂μ−iσiα _αθ̄
_αΔz−1

2 ∂iÞWðΦÞ

−ϵ̄ _α
Z

d2θ
∂
∂θ̄ _α

WðΦÞ: ð15Þ

The last term in the above relation in general is not a total
derivative; therefore,
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δjϵ̄
Z

d2θWðΦÞ ¼ total derivative − ϵ̄ _α
Z

d2θ
∂
∂θ̄ _α

WðΦÞ:
ð16Þ

For WðΦÞ ¼ Φn we get schematically

Z
d2θ

∂
∂θ̄ _α

Φn ∝ ðn − 1Þϕn−2Oμϕψα þ ϕn−1Oμψα: ð17Þ

For Oμ ¼ ∂μ, as in the Lorentz invariant situation, the
above expression is a total derivative, and the SUSY is
preserved. If Oμ is a higher derivative operator (and this is
our case), the above expression is not a total derivative for
n > 2. The consequence of this observation, as it was
pointed out by [11], is that our Lorentz-violating SUSY
does not allow for F-terms of degree greater that 2; hence
self-interacting chiral terms explicitly break the SUSY.

A. Deformed projection operators

Projection operators usually simplify superfield calcu-
lations in Lorentz-invariant supersymmetric theories. The
ones we are interested in are the following:

Π1 ¼
D2D̄2

16□
; Π2 ¼

D̄2D2

16□
;

Π0 ¼
1

16

fD2; D̄2g
□

; Π1=2 ¼ −
1

8□
DαD̄2Dα: ð18Þ

As we will see below we only need the multiplication
rule for the last two of them. Those operators are idempo-
tents, and their cross composition vanishes,

ΠiΠj ¼ δijΠi; i; j ¼ 0; 1; 2; 1=2: ð19Þ

Wewant to show that when we deformed these operators
(i.e. ∂μ → ~∂μ), these properties still hold. First we write the
new projectors in terms of the deformed superderivatives
and D’Alembertians,

~Π0 ¼
1

16

f ~D2; ~̄D
2g

~□
; ~Π1=2 ¼ −

1

8 ~□
~Dα ~̄D

2 ~Dα; ð20Þ

but since ½ ∂
∂θα ; ~∂μ� ¼ 0 and ½ ~∂μ; ~∂ν� ¼ 0, the relation for

tilde operators is the same as for the usual ones (19),

~Πi
~Πj ¼ δij ~Πi; i; j ¼ 0; 1; 2; 1=2: ð21Þ

From now on, we will omit tildes in the projectors and
superderivatives, all quantities being understood to be the
tilde ones. With this supersymmetric structure we are ready
to do some calculations.

III. SUPERSYMMETRIC HL-LIKE
ELECTRODYNAMICS

The model we are going to analyze is a Lorentz broken
version of supersymmetric scalar QED. Without SUSY,
variants of this model with different critical exponents and
nonlocal operators were treated in the literature (see for
example [14–18]).
The Lagrangian for an Abelian gauge theory with an

arbitrary critical exponent z looks like

L ¼ 1

2
c2F0iF0i −

1

4
c4FijFij þ 1

2
F0iQ1ðΔ; zÞF0i

−
1

4
c4FijQ2ðΔ; zÞFij: ð22Þ

The first two terms in the above expression correspond to
the usual Abelian gauge theory with the appropriate
anisotropic scaling. The other two terms constitute higher
derivative corrections. The operators Q1ðΔ; zÞ and
Q2ðΔ; zÞ are polynomials in Δ, with increasing degree
in z ð≥ 1Þ; we will fix them in order to obtain the super-
symmetric extension. We can add a minimally coupled
complex field ϕ,

L2 ¼ −ϕ̄ð∂2
0 − c2∂2

i Þϕ − ϕ̄Q1ðΔ; zÞ∂2
iϕ

þ gauge interactions: ð23Þ

The gauge interactions will be introduced by promoting
the usual interaction term igAμðϕ̄∂μϕ − ∂μϕ̄ϕÞ þ
g2AμAμϕ̄ϕ to the deformed version, by replacing gauge
fields and operators as defined in the text after Eqs. (10)
and (11). We need also to add a gauge fixing term. A
natural extension of the Feynman gauge to our anisotropic
space has the form

Lgf ¼ −
1

2
ð∂0A0 − c2∂iAi −Q1ðΔ; zÞ∂iAiÞ2: ð24Þ

This gauge fixing eliminates the cross terms of the gauge
fields, without the introduction of nonlocal terms in the
action (see for example [16,17]). The free propagators of
the theory are

hϕϕ̄i ¼ i
ðk20 − c2k̄2Þ −Q1ðk̄2; zÞk̄2

; ð25Þ

hA0A0i ¼
−i

ðk20 − c2k̄2Þ −Q1ðk̄2; zÞk̄2
; ð26Þ

hAiAji ¼
−iδij

ðk20 − c2k̄2Þ −Q1ðk̄2; zÞk20 −Q2ðk̄2; zÞk̄2
: ð27Þ

Thus, if we choose the polynomials Qiðk̄2; 1Þ ¼ α, α
being a dimensionless constant, then after a redefinition of
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the variables to absorb the constants, the propagators have
exactly the standard form. If, for a suitable choice of z, the
degree of Qiðk̄2; zÞ in k̄2 is greater than one, then, at high
energy, the propagators are dominated by this aniso-
tropic term.
Our next step is to build the supersymmetric version of

this family of models. The nice point of our “deformed”
SUSY is that it provides a natural formulation for this class
of theories. The supersymmetric version of the model
ð22Þ þ ð23Þ has the familiar form

L ¼ 1

4

�Z
d2θWαWα þ

Z
d2θ̄W̄ _αW̄ _α

�

þ
Z

d2θd2θ̄ Φ̄ egVΦ; ð28Þ

where all the superfields are understood to be the ones
corresponding to the modified superalgebra (10) and (11)
such that the superfield strengths are

Wα ¼ D̄2DαV: ð29Þ

For the gauge fixing action we choose

Lgf ¼
1

16λ

Z
d2θd2θ̄ðD̄2VÞD2V: ð30Þ

If we expand in components, the bosonic sector (with
F ¼ D ¼ 0) of this theory corresponds to (22) and (23)
where

Q1ðΔ; zÞ ¼ PðΔ; zÞ2 − c2;

Q2ðΔ; zÞ ¼ PðΔ; zÞ4 − c4;
ð31Þ

being PðΔ; zÞ ¼ cþ ηΔz−1
2 . Note that it is possible to

change these higher derivative corrections in the super-
symmetric theory by changing the superalgebra adding
other spatial operators. Such a change modifies the poly-
nomial PðΔ; zÞ but the forms (31) of Q1 and Q2 remain
unchanged.
The superpropagators are then

hΦðξ1ÞΦ̄ðξ2Þi ¼ i
D̄2D2

16 ~□
δ8ðξ1 − ξ2Þ; ð32Þ

hVðξ1ÞVðξ1Þi ¼ −
i
~□

�
λ
fD2; D̄2g
16 ~□

−
DαD̄2Dα

8 ~□

�
δ8ðξ1 − ξ2Þ;

ð33Þ
where ξ ¼ ðx; θ; θ̄Þ.
All the observations we made for the propagators also

hold for the superpropagators. It will also be useful to write
(32) and (33) in terms of the modified projection operators
(Sec. II A)

hΦðξ1ÞΦ̄ðξ2Þi ¼ iΠ1δ
8ðξ1 − ξ2Þ; ð34Þ

hVðξ1ÞVðξ2Þi ¼ −i
1

~□
ðΠ1=2 þ λΠ0Þδ8ðξ1 − ξ2Þ: ð35Þ

A. Superficial degree of divergence

With the explicit expressions of the superpropagators we
may determine the superficial degree of divergence (SDD).
Because of the anisotropic scaling between time and space
coordinates, the dimensions of the derivatives are ½∂0� ¼ z
and ½∂i� ¼ 1, and therefore, in d spatial dimensions we have

½A0� ¼
dþ z
2

− 1; ½Ai� ¼
d − z
2

; ð36Þ

and

½ϕ� ¼ ½ϕ̄� ¼ d − z
2

; ½g� ¼ z − d
2

þ 1: ð37Þ

However, the deformed operators in the supersymmetric
algebra are such that the dimensions of space and time
components are equal and the anisotropy is compensated
(since ½c� ¼ z − 1),

½ ~∂0� ¼ ½ ~∂i� ¼ z; ½ ~A0� ¼ ½ ~Ai� ¼
d − z
2

: ð38Þ

Let us consider a supergraph with L loops and P internal
propagators. From the integration over the internal
momenta, each loop contributes to the SDD with a factor
ðdþ zÞ, so that the total contribution will be ðdþ zÞL. For
the power counting, it is convenient to associate the D2 and
D̄2 factors in the scalar propagator with the vertices joined
by the corresponding line. Thus, each propagator, hVVi or
hΦΦ̄i contributes with a factor −2z, and to the SDD with
−2zP. From each vertex, and due to the factors D2 and D̄2,
we get an extra contribution 2zV, unless the vertex is
connected to a external chiral or antichiral line, which gives
an extra factor −zEc. Besides that, taking into account the
following fundamental relation:

δ12D2D̄2δ12 ¼ 16δ12; ð39Þ

we have to subtract 2z for every loop, and thus −2zL for
the SDD. Putting all together, the SDD is given by

ω ¼ ðdþ zÞL − 2zP − 2zLþ 2zV − zEc: ð40Þ

Finally, the use of the topological relation LþV−P¼1
yields

ω ¼ ðd − zÞ þ ðd − 3zÞðP − VÞ − zEc; ð41Þ
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so that, for d ¼ 3,

ω ¼ ð3 − zÞ þ 3ð1 − zÞðP − VÞ − zEc: ð42Þ

Note that for z ¼ 1 we recover the SDD of the Lorentz
invariant theory. The model is superrenormalizable when
z > 1. As expected, the behavior of the theory is improved
by the critical exponent z. For example, in the relativistic
theory (z ¼ 1) tadpole diagrams with one external leg
diverge linearly, but in the LV theory for z > 3=2 they
converge; also, in the relativistic context graphs with two
external legs diverge logarithmically, but in the LV theory
with z > 1 such diagrams are convergent.

IV. ONE-LOOP CALCULATIONS AND THE
KÄHLER POTENTIAL

With the superpropagators written in terms of the
projection operators we can determine the Kähler potential.
For details in the computation of Kähler potentials see
[19–21]. Our calculation follows closely the one presented
in [22], but with the modified SUSY in anisotropic space-
time. First we need to sum over all one-loop diagrams that
have n − Φ̄Φ external legs and contain only internal gauge
propagators, as shown in Fig. 1, which corresponds to the
following series:

iKa ¼
Z

d8ξ
X∞
n¼1

ð−1Þn
2n

�
g2Φ̄Φ
~□

ðΠ1=2þ λΠ0Þ
�n

δ8ðξ1 − ξ2Þ:

ð43Þ

By carrying out the Fourier transformation, performing
a Wick rotation, and taking into account the algebra (21)
of the projection operators which satisfy the relations
~□Π0δ

8ðξ1−ξ2Þjθ1¼θ2
¼2 and ~□Π1=2δ

8ðξ1−ξ2Þjθ1¼θ2
¼−2,

we get

Ka ¼
Z

d8ξ
Z

d4kE
ð2πÞ4

1

~k2E

�
ln

�
1þ g2Φ̄Φ

~k2E

�

− ln

�
1þ λg2Φ̄Φ

~k2E

��
; ð44Þ

where ~k2E ¼ k20 þ c2k2 þ 2cηðk2Þzþ1
2 þ η2ðk2Þz. At the

one-loop level, there is yet another family of diagrams
contributing to the Kähler potential involving both V and Φ
propagators, but, before considering that, we need to add all
possible insertions of Φ̄Φ external legs in all V-propaga-
tors. We can perform this sum by introducing the “dressed”
propagator [17], consisting of the VV-propagator with all
possible insertions of Φ̄Φ external legs (Fig. 2).
The dressed propagator has the following expression:

hVðξ1ÞVðξ2ÞiD
¼ hVVi

X∞
n¼0

ðg2Φ̄ΦhVViÞnδ8ðξ1 − ξ2Þ

¼ −
X∞
n¼0

ðg2Φ̄ΦÞn
�
1

~□

�
nþ1

ðΠ1=2 þ λnþ1Π0Þδ8ðξ1 − ξ2Þ

¼ −
�

1

~□þ g2Φ̄Φ
Π1=2 þ

λ
~□þ λg2Φ̄Φ

Π0

�
δ8ðξ1 − ξ2Þ:

ð45Þ

Now, if we insert the dressed propagator in the one-loop
diagrams involving also Φ-propagators, we have the series
shown in Fig. 3, which gives

iKb ¼
Z

d8ξ1
X∞
n¼1

1

2n
ðg2Φ̄ΦΠ0hVViDÞnδ8ðξ1 − ξ2Þjθ1¼θ2

;

ð46Þ

where hVViD is the dressed propagator excluding the δ
factor. By using properties of the projection operators, after
performing a Fourier transformation and Wick rotation, we
arrive at

Kb ¼
Z

d8ξ
Z

d4kE
ð2πÞ4

1

~k2E
ln

�
1þ λg2Φ̄Φ

~k2E þ λg2Φ̄Φ

�
: ð47Þ

The total Kähler potential is the sum of both contribu-
tions, Kone-loopðz; λÞ ¼ Kone-loop

a þKone-loop
b . For the sake of

simplicity, we will work in the Landau gauge, λ ¼ 0, where
the potential results in

FIG. 1. One-loop gauge field contribution: Ka.
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K ¼
Z

d8ξ
Z

d4kE
ð2πÞ4

1

~k2E
ln

�
1þ μ2

~k2E

�
; ð48Þ

where we defined μ2 ¼ g2Φ̄Φ. Up to a μ independent
constant, by carrying out the integrations on the angles and
in k0, we arrive at

K ¼
Z

d8ξ

"
1

2π2

Z
∞

0

dk
k2

Δ
ln

�
1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2

Δ2

r �#
; ð49Þ

where Δ ¼ ckþ ηkz. Unless for z ¼ 1, the k integral does
not have a simple analytic expression. However, by
straightforward power counting it is easy to see that it is
convergent if z > 1 but logarithmically divergent if z ¼ 1.
Actually, for z ¼ 1, using dimensional regularization, we
get

Kðz ¼ 1; λ ¼ 0Þ ¼ −
1

16π2ðcþ ηÞ3
Z

d8ξ

�
2g2ΦΦ̄
d − 3

þ g2Φ̄Φ log

�
g2ΦΦ̄

4πðcþ ηÞ2e2−γ
��

; ð50Þ

where, as usual, the divergence manifests itself as a pole in
d ¼ 3. A mass renormalization is necessary to eliminate the
pole 1=ðd − 3Þ and define the potential.

A. Adding more interactions

Despite the fact that this anisotropic SUSY does not
allow for chiral interactions, i.e. terms of the formR
d2θPðΦÞ þ H:c: (P being a polynomial of degree greater

than 2), it is possible to introduce derivative interactions as
D-terms by integrating over the whole Grassmann space.
We may add for example a quartic interaction of the formR
d2θd2θ̄DαΦDαΦD̄_βΦ̄D̄

_βΦ̄ or
R
d2θd2θ̄ Φ̄ ΦΦ̄Φ. These

kind of terms were introduced in [23–26] in the context
of supersymmetric galileons, SUSY ghost condensates,
higher derivative supergravity, and SUSY Skyrme models,
respectively. Of course, they are derivative interactions of at

least fourth order, since the integration over the full
Grassmann space always generates derivatives. To deter-
mine the effective Kähler potential for the quartic self-
interaction, we need to add to the effective Kähler potential
calculated before one extra family of diagrams consisting
of one loop on Φ and n Φ̄Φ external legs, corresponding
to Fig. 4.
These graphs contribute with

i
Z

d8ξ
Z

ddkE
ð2πÞd

1

~k2E
lnð1þ λΦ̄ΦÞ; ð51Þ

which gives zero in the context of dimensional regulari-
zation. To determine the contribution corresponding to the
remaining diagrams, Eqs. (44) and (46), we introduce the
dressed ΦΦ̄-propagator (see Fig. 5),

hΦðξ1ÞΦ̄ðξ2ÞiD ¼ 1

1 − λΦ̄Φ
Π0δ

8ðξ1 − ξ2Þ: ð52Þ

By repeating a calculation similar to the one we did
before we find finally

Ka ¼
Z

d8ξ
Z

d4kE
ð2πÞ4

1

~k2E

�
ln

�
1þ g2Φ̄Φ

~k2E

�

− ln

�
1þ λg2Φ̄Φ

~k2E

��
; ð53Þ

Kb ¼
Z

d8ξ
Z

d4kE
ð2πÞ4

1

~k2E
ln

�
1þ λg2Φ̄Φ

ð1− λΦ̄ΦÞð~k2Eþ λg2Φ̄ΦÞ

�
:

ð54Þ
In this case, the effective potential is deformed by the

factor 1
1−λΦ̄Φ, but in the gauge where λ → 0, the extra

interaction
R
d2θd2θ̄ Φ̄ ΦΦ̄Φ does not affect the one-loop

FIG. 2. Dressed gauge propagator.

FIG. 3. One-loop gauge-boson contribution: Kb. FIG. 4. One-loop self-interacting contribution.
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Kähler potential. The analysis of this situation is
completely analog to the model we studied before.

B. Two-point functions: Resaturation of the
Lorentz symmetry at low energy and improvement

of the UV behavior

In this section we study the one-loop two-point functions
of the scalar and vector superfields. We will see that at low
energy, the standard Lorentz invariant SUSY Maxwell
action is restored. For z > 1 the two-point function of
the superfields are finite, improving the behavior of the
Lorentz invariant case. For simplicity, we will work in
the super-Fermi-Feynman gauge, λ ¼ 1. In this gauge the
propagator of the vector superfield can be written as

hVðξ1ÞVðξ2Þi ¼
1

~□
δ8ðξ1 − ξ2Þ: ð55Þ

(Remember that the tilde notation refers to the deformed
quantities.) We start with the one-loop correction to the
two-point function of the scalar superfield Φ shown
in Fig. 6.
The contribution of the tadpole diagram can be written as

follows:

Σtadpole
2 ðpÞ

¼ −g2
Z

d4θ1d4θ2

Z
d4k
ð2πÞ4Φð− ~p;θ1ÞΦ̄ð ~p;θ2Þ

1

~k2
δ12δ12;

ð56Þ

which is zero since δ12δ12 ¼ 0, while for the “fish” graph
we have

Σfish
2 ðpÞ ¼ −g2

Z
d4θ

Z
d4k
ð2πÞ4Φð− ~p; θÞΦ̄ð ~p; θÞAð ~p; ~kÞ;

ð57Þ

where Að ~p; ~kÞ ¼ 1
~k2

1

ð~kþ ~pÞ2. The superfields in the expres-

sions above were defined in Eqs. (10), and therefore we can
expand them in momentum and truncate the expansion at
second order. This means that we are disregarding high

momentum contributions, and hence the product or super-
field Φ̄ð−pÞΦðpÞ becomes Lorentz invariant. Let us call the
truncated Lorentz invariant superfield Φl:i:ðpÞ, and then

Φ̄ð− ~pÞΦð ~pÞ ¼ Φ̄l:i:ð−pÞΦl:i:ðpÞ þOðpzÞ: ð58Þ
We will show that the function Að ~p; ~kÞ is also Lorentz

invariant for low p. First of all, we use the Feynman
parametrization to write the integral in the following way:

Z
d4k
ð2πÞ4

1

~k2
1

ð~kþ ~pÞ2

¼
Z

1

0

dx
Z

d4k
ð2πÞ4

1

ðð~kþ x ~pÞ2 − x2 ~p2 þ x ~p2Þ2
: ð59Þ

We then shift the momentum ~k as follows:

k0 → k0 − x ~p0 ð60Þ

ki

2
4cþ η

�X3
j¼1

k2i

�z−1
2

3
5 → ki − x ~pi: ð61Þ

Note that ~ki ¼ ki½cþ ηðP3
j¼1 k

2
i Þ

z−1
2 �. We arrive finally at

Z
d4k
ð2πÞ4Að ~p;

~kÞ¼
Z

1

0

dx
Z

d4k
ð2πÞ4 jJ

−1j 1

ðk2−x2 ~p2þx ~p2Þ2 ;

ð62Þ
where jJ−1j is the inverse Jacobian

jJj ¼ c3þ c2ð2þ zÞηjk̄2jz−12 þ cð1þ 2zÞjk̄2jz−12 þ zη3jk̄2j3ðz−1Þ2 :

ð63Þ

Now, at low external momentum, after disregarding
higher powers in p, we have ~p2 ¼ p2 þOðpzÞ, being
p2 a Lorentz scalar. We arrive finally at

Σ2ðpÞ ¼ −g2
Z

d4θΦ̄ð−p; θÞl:i:Φðp; θÞl:i:

×
Z

1

0

dx
Z

d4k
ð2πÞ4 jJ

−1j 1

ðk2 − x2p2 þ xp2Þ2
þ ðhigh momentumÞ: ð64Þ

We observe that the two-point function for Φ is Lorentz
invariant at one-loop order and therefore, in the low energy
limit the usual quadratic Lorentz invariant action for the
chiral superfield is generated. Moreover, for z > 1 the

FIG. 5. Dressed boson propagator.

FIG. 6. One-loop two-point function, Φ̄ð−pÞΦðpÞ.
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integral in k is convergent and the one-loop two-point
function is finite. We can follow the same procedure to
obtain the two-point function of the vector superfield V.
The diagrams which contribute at one-loop order are

shown in Fig. 7.
The contribution of the tadpole diagram can be written as

follows:

Ωtadpole
2 ðpÞ ¼ g2

Z
d4θ1d4θ2

d4k
ð2πÞ4 Vð−p; θ1Þδ12

×
D2D̄2

16~k2
δ12Vðp; θ2Þ; ð65Þ

and for the fish diagram,

Ωfish
2 ðpÞ ¼ g2

2

Z
d4θ1d4θ2

d4kE
ð2πÞ4 Vð−p; θ1Þ

×
D̄2D2

16~k2
δ12

D2D̄2

16ð~kþ ~pÞ2 δ12Vðp; θ2Þ: ð66Þ

Again we expand the vector superfield in powers of the
momentum p and disregard terms with powers greater than
two. After that, the expansion of the term Vð−p; θÞVðp; θÞ
becomes the Lorentz invariant one (we call the truncated
superfield V l:i:). After integration by parts (see for example
[21]) the tadpole contribution is compensated by part of
(66). The remaining contribution can be written as follows:

Ω2ðpÞ ¼
g2

2

Z
d4θV l:i:ð−p; θÞDαD̄2DαV l:i:ðp; θÞ

×
Z

1

0

dx
Z

d4k
ð2πÞ4 jJ

−1j 1

ðk2 − x2p2 þ xp2Þ2
þ ðhigh momentumÞ; ð67Þ

and it is, of course, Lorentz invariant. Therefore we have
shown that in the low energy limit the Lorentz invariance is
restored and the usual supersymmetric Maxwell action is
generated.

C. Higher anisotropic space

There is another interesting situation depending on the
value of the critical exponent z. Let us analyze the behavior
of the effective Kähler potential as z increases. The
intermediate cutoff tends to c, and therefore the low energy
contribution to the potential is always convergent, while the
high energy contribution goes to 0 [this can be deduced
directly from expression (48)]. In the limit z → ∞ we get

lim
z→∞

Kðz; 0Þ ¼
ð2c2 þ μ2Þ log

� ffiffiffiffiffiffiffiffiffiffiffiffi
c2

μ2
þ 1

q
þ c

μÞ þ cðc logðμ2Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ μ2

p �
8π2c3

; ð68Þ

and hence in this limiting case, the Kähler potential can be
calculated exactly and behaves as the low energy Lorentz
invariant one. Moreover, we find a similar behavior for the
two-point functions of scalar and vector superfields. In this
case, the integration over the internal momenta in the loop
is performed over the compact region ½0; c�, the propagators
are the Lorentz invariant ones (out of this region the
contribution to the two-point function is zero), and as a
consequence all divergences disappear. In general all
n-amplitudes or the z ¼ ∞ theory is determined by the
usual Lorentz invariant propagators, such that every
integration over internal momenta must be performed in
the region ½0; c�.

V. SUMMARY

In this work we studied a Lorentz-violating superalgebra
constructed with higher spatial derivative operators. With

this modified structure, we supersymmetrized a Lorentz-
violating SUSY scalar QED theory. After the modification
of the SUSYalgebra we were able to construct terms of the
form F0iF0i − FijOFij (being O some function of the
Laplacian operator), although the superderivatives and
supercharges do not verify the Leibniz rule. We showed
how the UV behavior is improved, and we analyzed it with
the explicit calculation of the superficial degree of
divergence.
We also obtained the one-loop Kähler potential for

arbitrary critical exponent z. We analyzed the UV behavior
of the theory as well as the renormalization improvement
and proved that for z > 1 the effective Kähler potential is
free of divergences. We studied different limits and showed
how the theory naturally flows to the Lorentz invariant
situation as z approaches one. We furthermore explore the
possibility of more general interactions despite the fact that
self-interactions of chiral and antichiral fields must be

FIG. 7. One-loop two-point function, Vð−pÞVðpÞ.
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integrated in the whole Grassmann space and therefore
contains derivative interactions in the component fields.
We analyzed the two-point functions of the chiral and

vector superfields and showed that, in the low energy limit,
a Lorentz invariant supersymmetric QED is generated, for
z > 1 the two-point functions of chiral and vector super-
fields being free of divergences.
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APPENDIX: TWO-POINT SUPERFIELD
GREEN’S FUNCTIONS

The quadratic action involving chiral superfields and
chiral sources has the following form:

SJ;chiral½ ~Φ; ~̄Φ; J; J̄� ¼
Z

d8ξ ~Φ ~̄Φþ
�Z

d6ξ ~ΦJ þ H:c:

�
;

ðA1Þ
where all quantities are understood to be the tilde ones with
derivatives and superfields defined in Sec. II. We can write
the previous action in terms of the measure d6ξ by using the
identity

Z
d8ξ ~Φ ~̄Φ ¼

�Z
d6ξ

1

2
~Φ

�
−

~̄D
2

4

�
~̄Φþ H:c:

�
; ðA2Þ

which also holds for the usual Lorentz invariant SUSY.
Therefore,

SJ;chiral½ ~Φ; ~̄Φ;J;J̄�¼
Z

d6ξ1d6ξ2

�
~Φðξ1Þ ~̄Φðξ1Þ

�
Δδ
�
~Φðξ2Þ
~̄Φðξ2Þ

�
;

ðA3Þ

where

Δ ¼
 

0 − 1
4
~̄D
2

− 1
4
~D2 0

!
ðA4Þ

and

δ ¼
 
− 1

4
~D2δ8ðξ1 − ξ2Þ 0

0 − 1
4
~̄D
2
δ8ðξ1 − ξ2Þ

!
: ðA5Þ

Notice that everywhere appear the modified superder-
ivatives. After integration over the chiral superfields we
obtain the following partition function:

Z½J; J̄� ¼ det−1=2Δ exp

�
−
i
2

Z
d6ξ1d6ξ2

×

�
Jðξ1Þ J̄ðξ1Þ

�
Δ−1δ

�
Jðξ2Þ
J̄ðξ2Þ

��
; ðA6Þ

which allow us to determine the two-point Green function,

Gðξ1; ξ2Þ ¼
1

i2
δ2Z½J; J̄�

δJðξ1ÞδJ̄ðξ2Þ

¼ −i
�
−
1

4

�
2 ~̄D

2
1
~̄D
2
2

~□
δ8ðξ1 − ξ2Þ: ðA7Þ

By replacing the tilde quantities by the usual one, this
expression coincides with the known Lorentz invariant
expression. Similarly, we may obtain the vector propaga-
tors corresponding to (33).
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