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This paper deals with quantum fluctuations near the classical instanton configuration. Feynman
diagrams in the instanton background are used for the calculation of the tunneling amplitude (the instanton
density) at three-loop order for a quartic double well potential. The result for the three-loop contribution
coincides, to five significant figures, with the one given long ago by J. Zinn-Justin. Unlike the two-loop
contribution where all involved Feynman integrals are rational numbers, in the three-loop case Feynman
diagrams can contain irrational contributions.

DOI: 10.1103/PhysRevD.92.025046 PACS numbers: 12.38.Bx, 11.10.Kk

I. INTRODUCTION

There is no question that instantons [1], Euclidean
classical solutions of the field equations, represent one
of the most beautiful phenomena in theoretical physics
[2,3]. Instantons in non-Abelian gauge theories of the QCD
type are important components of the nonperturbative
vacuum structure; in particular, they break chiral sym-
metries and thus significantly contribute to the nucleon
(and our) mass [4]. Instantons in supersymmetric gauge
theories lead to derivation of the exact beta function [5]
and, in the “Seiberg-Witten” N ¼ 2 case, to the derivation
of the superpotential by the exact evaluation of the
instanton contributions to all orders [6]. The instanton
method now has applications in stochastic settings beyond
quantum mechanics or field theories, and even physics—in
chemistry and biology—see e.g., the discussion of its usage
in the problem of protein folding in [7].
Since the work by Polyakov [1], the problem of a double

well potential (DWP) has been considered as the simplest
quantum mechanical setting illustrating the role of instan-
tons in more complicated quantum field theories. In the
case of the DWP, one can perform certain technical tasks—
like we do below—which so far are out of reach in more
complicated or realistic settings.
Tunneling in the quantum mechanical context has been

studied extensively using WKB and other semiclassical
means. The aim of this paper is not to increase the
accuracy on these quantum-mechanical results, but rather
to develop tools—Feynman diagrams on top of an
instanton—which can be used in the context of many
dimensions and especially in quantum field theories

(QFTs). Therefore, we do not use anything stemming
from the Schrödinger equation in this work; in particular,
we do not use series resulting from recurrence relations
or resurgence relations (in general, conjectured) by
several authors.
Another reason to study DWP is the existing deep con-

nections between the quantum mechanical instantons—
via the Schrödinger equation—with wider mathematical
issues, of approximate solutions to differential equations,
defined in terms of certain generalized series. A particular
form of an exact quantization condition was conjectured
by J. Zinn-Justin and collaborators (for a review see [8]
and references therein), which links a series around the
instantons with the usual perturbative series in the
perturbative vacuum. Unfortunately, no rigorous proof
of such a connection exists, and it remains unknown if it
can or cannot be generalized to the field theory cases we
are mainly interested in. Recently, for the quartic double
well and Sine-Gordon potentials, Dunne and Ünsal (see
[9] and also references therein) have presented more
arguments for this connection, which they call the
resurgent relation.
In [10] the method and key elements (a nontrivial

instanton background and new effective vertices) to cal-
culate the two-loop correction to the tunneling amplitude
for the DWP were established. In particular, the anhar-
monic oscillator was considered in order to show how to
apply the Feynman diagrams technique. In [11] the Green
function in the instanton background was corrected, and an
attempt was made to obtain two- and three-loop correc-
tions. Finally, Wöhler and Shuryak [12] corrected some
errors made in [11] and reported the exact result for the
two-loop correction.
The goal of the present paper is to evaluate the three-

loop correction to the tunneling amplitude and compare
it with the results obtained in [8] by a completely different
method, not available in the field theory settings.
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II. THREE-LOOP CORRECTION TO THE
INSTANTON DENSITY

Let us consider the quantum-mechanical problem of a
particle of mass m ¼ 1 in a double well potential

V ¼ λðx2 − η2Þ2: ð1Þ

The well-known instanton solution XinstðtÞ ¼
η tanhð1

2
ωðt − tcÞÞ, with ω2 ¼ 8λη2, describing the barrier

tunneling is the path which possesses the minimal action
S0 ¼ S½XinstðtÞ� ¼ ω3

12λ. Setting ω ¼ 1 and shifting coordi-
nate to the minimum, one gets the anharmonic oscillator
potential in a form Vanh ¼ 1

2
x2 −

ffiffiffiffiffi

2λ
p

x3 þ λx4 with one
(small) dimensionless parameter λ. J. Zinn-Justin et al. [8]
use the same potential with λ ¼ g=2.
The classical action S0 of the instanton solution is

therefore large, and 1
S0
is used in the expansion. The ground

state energy E0 within the zero-instanton sector (pure
perturbation theory) is written in the form

E0 ¼
1

2

X

∞

n¼0

An

Sn0
ðA0 ¼ 1Þ; ð2Þ

Another series to be discussed is the splitting δE ¼
Efirst excited state − Eground state related to the so-called instan-
ton density [13] in the one-instanton approximation as

δE ¼ ΔE
X

∞

n¼0

Bn

Sn0
ðB0 ¼ 1Þ; ð3Þ

where ΔE ¼ 2

ffiffiffiffiffi

6S0
π

q

e−S0 is the well-known one-loop semi-

classical result [2]. Coefficients An in the series (2) can be
calculated using the ordinary perturbation theory (see [16]),
while many coefficients Bn in the expansion (3) were found
by J. Zinn-Justin (see [8] and references therein), obtained
via the so-called exact Bohr-Sommerfeld quantization
condition.
Alternatively, using the Feynman diagrams technique,

Wöhler and Shuryak [12] calculated the two-loop correc-
tion B1 ¼ −71=72 in agreement with the result by
J. Zinn-Justin [8]. Higher order coefficients Bn in (3)
can also be computed in this way. Since we calculate
the energy difference, all Feynman diagrams in the instan-
ton background (with the instanton-based vertices and the
Green’s function) need to be accompanied by subtraction
of the same diagrams for the anharmonic oscillator, without
the instanton (see [10] for details). For 1

ΔE ≫ τ ≫ 1 this
permits us to evaluate the ratio

h−ηje−Hτjηiinst
hηje−Hτjηianh

;

where the matrix elements h−ηje−Hτjηiinst; hηje−Hτjηianh are
calculated using the instanton-based and vacuum diagrams,
respectively.
The instanton-based Green’s function Gðx; yÞ

Gðx;yÞ¼G0ðx;yÞ
�

2−xyþ1

4
jx−yjð11−3xyÞþðx−yÞ2

�

þ3

8
ð1−x2Þð1−y2Þ

�

logG0ðx;yÞ−11

3

�

ð4Þ

is expressed in variables x ¼ tanhðt1
2
Þ; y ¼ tanhðt2

2
Þ, in

which the familiar oscillator Green function e−jt1−t2j of
the harmonic oscillator is

G0ðx; yÞ ¼ 1 − jx − yj − xy
1þ jx − yj − xy

: ð5Þ

In its derivation there were two steps. One was to find a
function which satisfies the Green function equation, used
via two independent solutions and the standard Wronskian
method. The second step is related to a zero mode: one can
add a term ϕ0ðt1Þϕ0ðt2Þwith any coefficient and still satisfy
the equation. The coefficient is then fixed from orthogon-
ality to the zero mode (see [11]).
The two-loop coefficient is given by the two-loop

diagrams (see Fig. 1 and [12])

B1 ¼ aþ b1 þ b2 þ c;

a ¼ −
97

1680
; b1 ¼ −

53

1260
;

b2 ¼ −
39

560
; c ¼ −

49

60
: ð6Þ

The three-loop correction B2 (3) we are interested in is
given by the sum of diagrams, which we group as follows:

B2¼B2loopþa1þb11þb12þb21þb22þb23þb24

þdþeþfþgþhþc1þc2þc3þc4þc5þc6: ð7Þ

All Feynman diagrams in (7) are presented in Figs. 1–3.
The rules of constructing the integrals for each should be
clear from an example, the explicit expression for the
Feynman integral b23 in Fig. 2, which is

b23 ¼
9

8

Z

1

−1
dx

Z

1

−1
dy

Z

1

−1
dz

Z

1

−1
dw

× Jðx; y; z; wÞðxyzwGxxGxyGyzGywG2
zw

−G0
xxG0

xyG0
yzG0

ywðG0
zwÞ2Þ; ð8Þ

while for c4 in Fig. 3 it takes the form
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c4 ¼
3

8

Z

1

−1
dx

Z

1

−1
dy

Z

1

−1
dz

xy
ð1 − y2Þð1 − z2ÞGxyG2

yzGzz:

ð9Þ

Here we introduced notations Gxy ≡Gðx; yÞ; G0
xy ≡

G0ðx; yÞ and J ¼ 1
ð1−x2Þ

1
ð1−y2Þ

1
ð1−z2Þ

1
ð1−w2Þ. Note that c-type

diagrams come from the Jacobian of the zero mode and
have no analogs in the anharmonic oscillator problem.

III. RESULTS

The obtained results are summarized in Table I. All
diagrams are of the form of two-dimensional, three-
dimensional and four-dimensional integrals. In particular,
the diagrams b11 and d (see Fig. 2),

b11 ¼
1

48

Z

1

−1
dx

Z

1

−1
dy

1

ð1 − x2Þð1 − y2Þ ðG
4
xy − ðG0

xyÞ4Þ

d ¼ 1

16

Z

1

−1
dx

Z

1

−1
dy

1

ð1 − x2Þð1 − y2Þ
× ðGxxG2

xyGyy − G0
xxðG0

xyÞ2G0
yyÞ; ð10Þ

given by two-dimensional integrals, are the only ones
which we are able to calculate analytically,

b11 ¼ −
1842223

592704000
−

1

9800
ð367ζð2Þ − 180ζð3Þ

− 486ζð4ÞÞ≡ brat11 þ birrat11

d ¼ 205441

2469600
þ 525

411600
ζð2Þ≡ drat þ dirrat: ð11Þ

Here ζðnÞ denotes the Riemann zeta function of argument n
(for definition see [17]). They contain a rational and an
irrational contribution such that

FIG. 1. Diagrams contributing to the two-loop correction
B1 ¼ aþ b1 þ b2 þ c. They enter into the coefficient B2 via
the term B2 loop. For the instanton field the effective triple and

quartic coupling constants are V3 ¼ −
ffiffi

3
p
2
tanhðt=2ÞS−1=20 and

V4 ¼ 1
2
S−10 , respectively, while for the subtracted anharmonic

oscillator we have V3 ¼ −
ffiffi

3
p
2
S−1=20 and V4 ¼ 1

2
S−10 . The tadpole

in diagram c, which comes from the zero-mode Jacobian rather
than from the action, is effectively represented by the vertex

V tad ¼
ffiffi

3
p
4

tanhðt=2Þ
cosh2ðt=2Þ S

−1=2
0 . The signs of the contributions and

symmetry factors are indicated.

FIG. 2. Diagrams contributing to the coefficient B2. The signs
of the contributions and symmetry factors are indicated.

FIG. 3. Diagrams contributing to the coefficient B2. They come
from the Jacobian of the zero mode and have no analogs in the
anharmonic oscillator problem. The signs of the contributions
and symmetry factors are indicated.
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birrat11

brat11

≈ −4.55;
dirrat

drat
≈ 0.025:

This shows that the irrational contribution to b11 is
dominant with respect to the rational part, while for
diagram d the situation is the opposite. Other diagrams,
see Table I, were evaluated numerically with an absolute
accuracy ∼10−5. Surprisingly, almost all of them are of
order 10−1, while a few of them (diagrams a1; b12; b21) are
of order 10−2.
J. Zinn-Justin (see [8] and references therein) reports a

value of

BZinn-Justin
2 ¼ −

6299

10368
≈ −0.607542; ð12Þ

while the present calculation shows that

Bpresent
2 ≈ −0.607535; ð13Þ

which is in agreement, up to the precision employed in the
numerical integration.
Similarly to the two-loop correction B1, the coefficient

B2 is negative. Note also that for B1 all diagrams are
negative while for B2 there are diagrams of both signs. For
not-so-large barriers (S0 ∼ 1), the two-loop and three-loop
corrections are of the same order of magnitude.
The dominant contribution comes from the sum of the

four-vertex diagrams b12; b21; b23; e; h; c1; c5; c6, while the
three-vertex diagrams a1; b22; b24; f; g; c2; c3; c4 provide a
minor contribution; their sum represents less than 3% of the
total correction B2. It is interesting that for both two- and
three-loop cases, the largest contribution comes from
diagrams stemming from the Jacobian, c for B1 and
c5; c6 for B2. Those diagrams are absent in the perturbative
vacuum series and thus do not have subtractions.
We already noted that individual three-loop diagrams

contain irrational numbers. Since the J. Zinn-Justin’s result
is a rational number, there must be a cancellation of these
irrational contributions in the sum (7). From (11) we note
that the term ðbirrat11 þ dirratÞ gives a contribution of order
10−2 to the mentioned sum (7), and therefore the coinci-
dence 10−5 between the present result (13) and the one of
J. Zinn-Justin (12) is an indication that such a cancellation
occurs. Now, we evaluate the coefficients A1, A2 in (2)
using Feynman diagrams (see [16]). In order to do this let
us consider the anharmonic oscillator potential Vanh ¼
1
2
x2 −

ffiffiffiffiffi

2λ
p

x3 þ λx4 and calculate the transition amplitude
hx¼0je−Hanhτjx¼0i. All involved Feynman integrals can
be evaluated analytically. In the limit τ → ∞ the coeffi-
cients of order S−10 and S−20 in front of τ give us the values of
A1 and A2, respectively. As it was mentioned above the c
diagrams do not exist for the anharmonic oscillator prob-
lem. The Feynman integrals in Fig. 1 give us the value of
A1; explicitly they are equal to

a ¼ 1

16
; b1 ¼ −

1

24
; b2 ¼ −

3

16
:

The diagrams in Fig. 2 determine A2 and the corresponding
values are presented in Table I, b11 ¼ − 1

384
and d ¼ − 1

64
.

A straightforward evaluation gives

A1 ¼ −
1

3
; A2 ¼ −

1

4
;

which is in agreement with the results obtained in standard
multiplicative perturbation theory (see [18]). No irrational
numbers appear in the evaluation of A1 and A2. It is worth
noting that (see Table I) some Feynman integrals give the
same contribution,

f ¼ g ¼ 3

32
; b22 ¼ b24 ¼

1

24
:

TABLE I. Contribution of diagrams in Figs. 2 and 3 for the
three-loop corrections B2 (left) and A2 (right). We write B2 ¼
ðB2 loop þ I2D þ I3D þ I4DÞ where I2D; I3D; I4D denote the sum
of two-dimensional, three-dimensional and four-dimensional
integrals, respectively. Similarly, A2 ¼ I2D þ I3D þ I4D. The
term B2 loop ¼ 39589=259200 ≈ 0.152735 (see text).

Feynman Instanton Vacuum
Diagram B2 A2

a1 −0.0650 5
192

b12 0.0257 − 1
64

b21 0.0496 − 11
384

b22 −0.1323 1
24

b23 0.2807 − 1
8

b24 −0.1271 1
24

e 0.3950 − 9
64

f −0.3524 3
32

g −0.3964 3
32

h 0.3142 − 3
32

c1 −0.3268 � � �
c2 0.6333 � � �
c3 0.1266 � � �
c4 0.2975 � � �
c5 −0.7710 � � �
c6 −0.8082 � � �
I2D 0.0963 − 7

384

I3D −0.0158 19
64

I4D −0.8408 − 155
384
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In the instanton background the corresponding values of
these diagrams do not coincide but are very close.

IV. CONCLUSIONS AND DISCUSSIONS

In conclusion, we have calculated the tunneling
amplitude (level splitting or the instanton density) up to
three loops using Feynman diagrams for quantum pertur-
bations on top of the instanton. Our result for B2 is found
to be in good agreement with the resurgent relation
between the perturbative and instanton series suggested
by J. Zinn-Justin (for a modern reference, see [8]).
Let us note again that this paper is methodical in nature,

and its task was to develop tools to calculate tunneling
phenomena in a multidimensional or QFT context, in which
any results stemming from the Schrödinger equation are not
available. We use a quantum mechanical example as a test
of the tools we use, but the tools themselves are expected to
work in a much wider context.
One comment on the results is that the final three-loop

answer has a rational value. However, unlike the evaluation
of the two-loop coefficient B1 where all Feynman diagrams
turned out to be rational numbers, in our case of B2 at least
two diagrams contain irrational parts. What is the origin of
these terms and how do they cancel out among themselves?
These are questions left unanswered above since several
diagrams had resisted our efforts to get the analytic answer,
so we used numerical integration methods. Perhaps this can
still be improved.
Another intriguing issue is the conjectured relation

between the instanton and vacuum series: at the moment
we do not understand its origin from the path integral
settings. Some diagrams are similar, but the expressions are
quite different and unrelated. New diagrams originate from

the instanton zero mode Jacobian, and those have no
analogues in the vacuum. Surprisingly, they provide the
dominant contribution to two- and three-loop corrections
B1 and B2: ∼80% and ∼140%, respectively (see Table I).
Finally, we note that, to our knowledge, this is the first

three-loop calculation on a nontrivial background of an
instanton. Similar calculations for gauge theories would
certainly be possible and are of obvious interest. One
technical issue to be solved is the gauge Green function
orthogonal to all (including gauge change) zero modes.
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Note added in proof.—After this paper was submitted, we
obtained a number of new results. We evaluated the
contributions of c; c5-like diagrams, with a maximal
number of integrations, to the next order coefficients.
Those diagrams still contribute a significant fraction of
the total answer, namely, 83%, 127%, 60%, and 20% of
two-, three-, four-, and five-loop B1; B2; B3; B4 contribu-
tions, respectively. At the same time, surprisingly, the
absolute values of all these diagrams are rather close.
An advance in numerical multidimensional integrations
leads to an increase in accuracy; the agreement in B2 is now
improved to six significant digits.
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