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We investigate universal behavior of isolated many-body systems far from equilibrium, which is relevant
for a wide range of applications from ultracold quantum gases to high-energy particle physics. The
universality is based on the existence of nonthermal fixed points, which represent nonequilibrium attractor
solutions with self-similar scaling behavior. The corresponding dynamic universality classes turn out to be
remarkably large, encompassing both relativistic as well as nonrelativistic quantum and classical systems.
For the examples of nonrelativistic (Gross-Pitaevskii) and relativistic scalar field theory with quartic self-
interactions, we demonstrate that infrared scaling exponents as well as scaling functions agree. We perform
two independent nonperturbative calculations, first by using classical-statistical lattice simulation
techniques and second by applying a vertex-resummed kinetic theory. The latter extends kinetic
descriptions to the nonperturbative regime of overoccupied modes. Our results open new perspectives
to learn from experiments with cold atoms aspects about the dynamics during the early stages of our
universe.
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I. INTRODUCTION

A. Universality far from equilibrium

The notion of universality or scaling phenomena far from
equilibrium is to a large extent unexplored, in particular, in
relativistic quantum field theories. Here the strong interest
is mainly driven by advances in our understanding of the
early universe dynamics as well as relativistic collision
experiments of heavy nuclei in the laboratory.
Experimentally, the investigation of quantum systems far
from equilibrium is also boosted by the nonrelativistic
physics of ultracold quantum gases. By using optical or
atom chip traps, they provide a flexible testbed with tunable
interactions, symmetries and dimensionality, with connec-
tions to a wide variety of physical systems. This may
include high-energy physics, in particular, if both relativ-
istic and nonrelativistic systems belong to the same
universality class [1]. It is the aim of this paper to establish
such a connection for bosonic field theories far from
equilibrium.
In recent years, important new universality classes have

been discovered in isolated relativistic systems far from
equilibrium [2–17]. The universality is based on the
existence of nonthermal fixed points [4,18,19], which
represent nonequilibrium attractor solutions with self-
similar scaling behavior. The underlying physical processes
are reminiscent of the stationary transport of conserved

charges in the phenomenon of wave turbulence [20,21].
However, no external sources or sinks are present for
isolated systems. In high-energy physics, collision
experiments of heavy nuclei (where a “fireball” expands
against the surrounding vacuum) and the evolution of the
early universe provide important examples for isolated
quantum systems.
Also experimental setups employing ultracold quantum

gases can be largely isolated, such that their dynamics is
governed by unitary time evolution. Nonthermal fixed
points have been investigated in this context for Bose
gases [19,22–29]. In these nonrelativistic systems, Bose
condensation occurs out of equilibrium as a consequence of
an inverse particle cascade [24,26,30–32]. Similar cascades
with nonthermal Bose condensation are also known for
relativistic scalar field theories in various spatial dimen-
sions [4,6,8,18,24]. The question arises, whether these
similarities between the relativistic and nonrelativistic
systems can be made quantitative. Clearly, there are
important differences and one has to specify which proper-
ties can be universal.
To illustrate this, Fig. 1 shows a typical distribution

function fðt;pÞ near a nonthermal fixed point as a function
of momentum p for two subsequent times t ¼ t1 and
t2 > t1. We distinguish different momentum ranges by
their occupancies fðt;pÞ in terms of a small (interaction or
“diluteness”) parameter λ ≪ 1 as will be explained below.
The inverse particle cascade leading to Bose condensation
occurs in the highly occupied low-momentum regime,
where fðt;pÞ ≳ 1=λ [4]. This particle transport towards
low momenta is part of a dual cascade, in which energy is
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also transferred by weak wave turbulence towards higher
momenta [1=λ ≫ fðt;pÞ ≫ 1]. The latter evolves until a
high-momentum scale is reached, where the characteristic
mode occupancy becomes comparable to the “quantum-
half" [2].
The different cascades exhibit approximate power-law

behavior for mode occupancies fðt;pÞ in characteristic
inertial ranges of momenta. However, in general isolated
systems out of equilibrium cannot realize stationary trans-
port solutions in the absence of external driving forces.
Instead, the transport in isolated systems is described in
terms of the more general notion of a self-similar evolution,
where the distribution function obeys for isotropic systems

fðt;pÞ ¼ tαfSðξ≡ tβjpjÞ ð1Þ

in a given scaling regime. Here, all quantities are consid-
ered to be dimensionless by use of some suitable momen-
tum scale, which is specified below.
The values of the scaling exponents α and β, as well as

the form of the nonthermal fixed point distribution fSðξÞ
are universal. More precisely, all models in the same
universality class can be related by a multiplicative rescal-
ing of t and p. Quantities which are invariant under this
rescaling are universal. Accordingly, all system-dependent
aspects of the distribution are contained in two nonuni-
versal amplitudes, which we denote as A and B. It is
convenient to define them according to fSðξ ¼ BÞ ¼ A
with dfSðξ ¼ BÞ=dξ ¼ −2A=B such that A characterizes
the amplitude of the scaling function at ξ ¼ B, where the
occupation number receives its dominant contribution.
We emphasize that the universal properties can be

different for different inertial ranges. This is indicated in
Fig. 1, where in the direct cascade regime other scaling

exponents α0, β0 and a different scaling function f0S than in
the infrared are found. For instance, two theories can have
the same universal low-momentum properties while they
may differ significantly in another inertial range at higher
scales. This is very similar to the classification of universal
properties in thermal equilibrium, where one distinguishes
for a given theory between infrared and ultraviolet fixed
points and associated scaling properties depending on the
momentum regime.

B. Outline of results

In this work we compute the exponents α, β and the
scaling function fS of the self-similar distribution (1) in the
infrared regime. We present results for nonrelativistic
(Gross-Pitaevskii) as well as (massless) relativistic scalar
field theories with quartic self-interactions, respectively.
While the relativistic theory captures important aspects of
the Higgs sector of particle physics or of inflationary
models for early universe dynamics, the Gross-Pitaevskii
field theory can describe a dilute Bose gas.
A central conclusion of this paper is that the infrared

scaling exponents and scaling functions of these theories
belong to the same universality class, i.e. the results for α, β
and the universal form of the scaling function fS in (1)
agree. This is nontrivial, in particular, since the non-
relativistic system conserves total particle number whereas
in the relativistic theory number-changing processes are
possible. The agreement found in the infrared is also
remarkable in view of the fact that in the inertial range
of the direct energy cascade towards higher momenta the
exponents α0, β0 and the scaling function f0S from the
different theories do not agree [2,3].
Since the large occupancies at low momenta lead to

strongly nonlinear dynamics, one cannot apply standard
perturbative kinetic theory in the infrared. (Perturbative
approaches [2,3,20] are often used to describe the direct
energy cascade at higher momenta.1) We perform two
independent nonperturbative calculations. The first
approach employs classical-statistical lattice simulation
techniques in Secs. II and III [6,35]. The second, analytical
method applies a vertex-resummed kinetic theory in
Secs. IV and V, which is based on an expansion in the
number of field components N to next-to-leading order
[36,37]. The approach extends well-established kinetic
descriptions [3,20,21] to the nonperturbative regime of
overoccupied modes.
This is used to obtain the analytic estimate for the

scaling exponents of the

energy
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FIG. 1 (color online). Schematic illustration of the occupation
number distribution near a nonthermal fixed point, shown as a
function of momentum p for two subsequent times t1 and t2 > t1.
The scaling exponents α and β characterize the self-similar
evolution according to Eq. (1).

1Perturbative kinetic theory has also been employed in the
infrared to describe Bose condensation at low momenta [33,34].
However, it is known to neglect important vertex corrections in
this case [4,24] as is explained in Sec. IV.
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particle transport∶ α ¼ βd; β ¼ 1

2
; ð2Þ

towards low momenta, with spatial dimension d. This is a
central analytic result of this work. In contrast to the
previously known negative values for α and β from
perturbative estimates [2,3], the positive values obtained
from the vertex-resummed kinetic theory describe an
inverse particle transport with growing occupation number
in the infrared. The fixed relation between α and β reflects
the conservation of particle number density n ¼R
ddp=ð2πÞdfðt;pÞ ∼ tα−dβ in this (nonrelativistic) inertial

range by using the self-similarity (1). Most notably, the
emergence of an effectively conserved particle number
plays a crucial role for the nonequilibrium evolution of the
relativistic theory.
The quantitative agreement of the NLO estimates of α ¼

3=2 and β ¼ 1=2 for d ¼ 3 with the full simulation results
for the relativistic (Sec. III B) and for the nonrelativistic
(Sec. II B) theory is remarkable. Though we extend the
analytic estimates to include a possible anomalous scaling
in Sec. V, we find no strong indications for a nonvanishing
anomalous dimension. Furthermore, we analyze the phe-
nomenon of nonthermal Bose condensation from the
inverse particle transport towards the zero mode. Most
importantly, the dynamical generation of a mass gap m for
the (massless) relativistic theory from an intriguing inter-
play of condensation and medium effects explains why the
relativistic theory exhibits nonrelativistic physics at low
momenta jpj≲m, as is shown in Sec. III.
The numerically computed fixed point distribution fS of

Eq. (1) is given in Fig. 2. Shown is the normalized
distribution fS=A as a function of the rescaled variable
ξ=B, using the model specific amplitudes A and B as
defined above. For the relativistic theory, we show results
for N ¼ 2 field components in Fig. 2 but we consider also

other values of N in Sec. III. The lattice data for both
nonrelativistic and relativistic theories turns out to be well
described by the fit (dashed line)

fSðξÞ≃ Aðκ> − κ<Þ
ðκ> − 2Þðξ=BÞκ< þ ð2 − κ<Þðξ=BÞκ>

ð3Þ

for ξ > 0 with approximately κ< ≃ 0.5 and κ> ≃ 4.5 for
the available range of momenta and times. We note that the
value for κ> is rather close to those obtained for stationary
turbulence in nonrelativistic systems [19] as shown in
Appendix A.
The very good agreement of the exponents and non-

thermal fixed point distributions for the different theories in
the infrared scaling regime is a striking manifestation of
universality far from equilibrium. One may use this
universality, for instance, to learn from experiments with
ultracold atoms aspects about the dynamics during the early
stages of our universe [38].

II. NONRELATIVISTIC BOSE GAS

A. Initial conditions

We first consider a nonrelativistic atomic gas of inter-
acting bosons with s-wave scattering length a.2 For a gas of
density n the average interatomic distance is n−1=3.
Together with the scattering length a, this can be used
to define a dimensionless “diluteness parameter”

ζ ¼
ffiffiffiffiffiffiffiffi
na3

p
: ð4Þ

For a typical scattering length of, e.g., a≃ 5 nm and bulk
density n≃ 1014 cm−3 the diluteness parameter ζ ≃ 10−3

is very small, and in the following we will always assume
ζ ≪ 1. The density and scattering length can also be used to
define a characteristic “coherence length,” whose inverse is
described by the momentum scale

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
16πan

p
: ð5Þ

To observe the dynamics near nonthermal fixed points
for the interacting Bose gas, an unusually large occupancy
of modes at the inverse coherence length scale Q has to be
prepared. Such nonequilibrium extreme conditions may be
obtained, for instance, from a quench or nonequilibrium
instabilities [19,22–28]. More precisely, for a weakly
coupled gas of average density n ¼ R

d3p=ð2πÞ3fðjpjÞ
this requires a large characteristic mode occupancy

fðQÞ ∼ 1

ζ
≫ 1: ð6Þ
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FIG. 2 (color online). The scaling function
fSðξ≡ tβjpjÞ ¼ t−αfðt;pÞ, normalized to the amplitudes A
and B, exhibits accurate agreement between the nonrelativistic
(circles) and relativistic (squares) simulation results.

2Here, three spatial dimensions are considered and natural
units will be employed where the reduced Planck constant (ℏ), the
speed of light (c) and Boltzmann’s constant (kB) are set to one.
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This represents an extreme nonequilibrium distribution of
modes. The large typical occupancies lead to essentially
classical dynamics. Most importantly, the system in this
overoccupied regime is strongly correlated.
These properties may be understood from a Gross-

Pitaevskii equation for a nonrelativistic complex Bose
field ψ :

i∂tψðt;xÞ ¼
�
−
∇2

2m
þ gjψðt;xÞj2

�
ψðt;xÞ: ð7Þ

The coupling g is not dimensionless and determined from
the mass m and scattering length as g ¼ 4πa=m. The total
number of particles, given by Ntotal ¼

R
d3xjψðt;xÞj2, is

conserved.
In the mean-field approximation the effect of the

interaction term in the Gross-Pitaevskii equation is a
constant energy shift for each particle,

ΔE ¼ 2ghjψ j2i ¼ 2gn ¼ 2g
Z

d3p
ð2πÞ3 fðjpjÞ; ð8Þ

which can be absorbed in a redefinition of the chemical
potential. However, we note that for the very high occu-
pancy (6) of the typical momentum Q the shift in energy is
not small compared to the relevant kinetic energy, i.e.
2gn ∼Q2=2m. Parametrically, this can be directly verified
using (6):

g
Z

d3pfðjpjÞ ∼ gQ3fðQÞ ∼ g
Q3

ζ
∼ g

Q3

mgQ
∼
Q2

m
: ð9Þ

Here we have used that with a ¼ mg=ð4πÞ Eq. (5) implies
Q ¼ 2

ffiffiffiffiffiffiffiffiffi
mgn

p
and (4) gives ζ ¼ mgQ=ð16π3=2Þ. Most

importantly, the energy shift 2gn is of the order of the
kinetic energy Q2=2m irrespective of the coupling strength
g. This already hints at a strongly correlated system, where
the dependence on the details of the underlying model
parameters is lost.

B. Self-similar dynamics from
classical-statistical simulations

In order to perform simulations beyond the mean-field
approximation, we use the fact that the nonequilibrium
quantum dynamics of the highly occupied system can be
accurately mapped onto a classical-statistical field theory
evolution [35,39–42]. This mapping is valid as long as f ≫
1 for typical momenta, with small enough diluteness
parameter ζ according to (6). In classical-statistical simu-
lations, one samples over initial conditions and evolves
each realization according to the classical equation of
motion (7). This equation is solved on a three-dimensional
grid using a split-step method [23,24]. Then, observables
are obtained by averaging over classical trajectories.

We concentrate on scaling properties of a time-dependent
occupation number distribution fðt;pÞ. More precisely, we
consider the two-point correlation function

Fðt; t0;x − x0Þ ¼ 1

2
hψðt;xÞψ�ðt0;x0Þ þ ψðt0;x0Þψ�ðt;xÞi

ð10Þ

evaluated at equal times t ¼ t0 for spatially homogeneous
ensembles. Brackets h…i indicate sample averages. In
spatial Fourier space we define [42]

fðt;pÞ þ ð2πÞ3δð3ÞðpÞjψ0j2ðtÞ≡
Z

d3xe−ipxFðt; t;xÞ:
ð11Þ

Becauseof spatial isotropy, thedistribution functiondepends
on the modulus of momentum, and we frequently write
fðt; jpjÞ. The term∼jψ0j2ðtÞ coming together with the Dirac
δ-function represents the condensate part of the correlator at
zeromomentum. The time-dependent condensate fraction at
zero momentum is then given by

N0ðtÞ
Ntotal

¼ jψ0j2ðtÞR
d3p=ð2πÞ3fðt;pÞ þ jψ0j2ðtÞ

: ð12Þ

The corresponding expressions for the finite volumes
employed will be discussed in Sec. II C.3

We consider initial conditions with high occupation
numbers as motivated in the previous section.
Specifically, we start with a distribution function of the
form

fð0;pÞ ∼ 1

ζ
ΘðQ − jpjÞ; ð13Þ

which describes overoccupation up to the characteristic
momentumQ. The initial condensate fraction is taken to be
zero, i.e. jψ0j2ðt ¼ 0Þ ¼ 0, with an initial fð0;pÞ ¼
50=ð2mgQÞΘðQ − jpjÞ. For the plots we typically average
over 10 realizations on a lattice with 5123 points and a
lattice spacing as such that Qas ¼ 1, where we checked
insensitivity of our infrared results to cutoff changes. We
always plot dimensionless quantities obtained by the
rescalings fðt;pÞ → fðt;pÞ2mgQ, t → tQ2=ð2mÞ and
p → p=Q. This reflects the classical-statistical nature of

3In the quantum theory (10) denotes the anticommutator
expectation value, which has a well-defined equal-time limit,
and the definition of the distribution function is obtained by the
substitution f → f þ 1=2 in (11). Since our typical occupation
numbers are large, we drop here the ‘quantum-half’. Further-
more, for the class of initial conditions considered, no discon-
nected part of the correlation function arises. This does not
exclude a nonzero condensate contribution that scales propor-
tional to volume, which will be discussed in detail in Sec. II C.

PIÑEIRO ORIOLI, BOGUSLAVSKI, AND BERGES PHYSICAL REVIEW D 92, 025041 (2015)

025041-4



the dynamics in the highly occupied regime, which has the
important consequence that if we measure time in units of
2m=Q2 and momentum in units of Q then the combination
fðt;pÞ2mgQ does not depend on the values of m, g and
Q [28].
The initial mode occupancies (13) get quickly redistrib-

uted at the beginning of the nonequilibrium evolution and
then a slower behavior sets in. The latter reflects the
dynamics near the nonthermal fixed point, where univer-
sality can be observed. We concentrate on the low-
momentum part of the distribution and analyze its infrared
scaling properties. Figure 3 shows the rescaled distribution
ðt=trefÞ−αfðt;pÞ of the nonrelativistic theory as a function
of ðt=trefÞβjpj, where the reference time trefQ2=ð2mÞ ¼ 300
is the earliest time shown. The inset gives the curves at
different times together with the initial distribution without
rescaling for comparison. With the appropriate choice of
the infrared scaling exponents α and β, all the curves at
different times lie remarkably well on top of each other
after rescaling. This is a striking manifestation of the self-
similar dynamics (1) near a nonthermal fixed point. The
scaling exponents obtained are

α ¼ 1.66� 0.12; β ¼ 0.55� 0.03; ð14Þ

where the error bars are due to statistical averaging and
fitting errors, which is further described in Appendix D.
Comparing these values to (2), we find that the numerical

results (14) agree rather well with the NLO approximation
for a vanishing anomalous dimension, which are derived in
Sec. IV. Furthermore, the simulation results confirm that
α ¼ 3β to very good accuracy as expected from number
conservation in the infrared scaling regime (see Sec. I). The
values for α and β determine the rate and direction of the
particle number transport, since according to (1) a given
characteristic momentum scale Kðt0Þ ¼ K0 evolves as

KðtÞ ¼ K0ðt=t0Þ−β with amplitude fðt; KðtÞÞ ∼ tα.
Therefore, the positive values for the exponents in the
infrared scaling regime imply that particle number is being
transported towards low momenta, thus confirming an
inverse particle cascade.

C. Condensate formation

For the initial conditions (13), there is no condensate
present at t ¼ 0. However, the inverse particle cascade
towards the infrared continuously populates the zero-mode,
which leads to the formation of a condensate far from
equilibrium [24,26,28,30–32]. Near the nonthermal fixed
point, the condensation dynamics is expected to exhibit
scaling behavior and in the following we determine the
relevant scaling exponent.
Our starting point is the Fourier transformed equal-time

correlation function (11) with initially vanishing conden-
sate fraction, jψ0j2ðt ¼ 0Þ ¼ 0. To analyze our simulation
results for t > 0, we follow Refs. [24,28] and note that for a
finite volume V the zero-mode contribution in (11) scales
with ð2πÞ3δð3Þð0Þ → V proportional to volume. Therefore,
we can identify the condensate fraction by its scaling
behavior as the volume is changed. Stated differently, if we
divide the correlation function (11) by the volume, only
correlations which scale with the system size are not
suppressed at large volumes and the condensate fraction
is related to the volume-independent part.
Figure 4 shows the evolution of the zero-momentum

correlation V−1Fðt; t;p ¼ 0Þ≡ V−1 R d3xFðt; t;xÞ for dif-
ferent volumes. These are given in units ofQ, ranging from
VQ3 ¼ 323 to the largest volume ∼5123. Correspondingly,
the plotted dimensionless results are rescaled as
V−1Fðt; t;p ¼ 0Þ → V−1Fðt; t;p ¼ 0Þ2mgQ=Q3. One
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FIG. 3 (color online). Rescaled distribution function of the
nonrelativistic theory as a function of the rescaled momentum for
different times. The inset shows the original distribution without
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observes that at early times the evolution depends strongly
on the volume, as expected in the absence of a coherent
zero mode spreading over the entire volume. However, after
a transient regime the zero-momentum correlation becomes
volume independent. The curves corresponding to different
volumes converge towards the same value, thus signaling
the formation of a condensate.
The double logarithmic plot of Fig. 4 clearly indicates

that the growth of the zero-momentum correlation proceeds
as a power law in time. The power-law growth is rather well
described by the scaling exponent α found in (14) from the
self-similar evolution of the distribution function. These
numerical findings are also explained in more detail using
the analytic scaling solution in Sec. V.
Of course, the time needed to fill the entire volumewith a

single condensate increases with volume, which is nicely
observed from the data. Using that the parametrically slow
power-law dynamics dominates the time until condensation
is completed, we can use the scaling exponent α to estimate
this condensation time. Taking the value of the zero-
momentum correlator V−1Fðt; t;p ¼ 0Þ at the initial time
t0 of the self-similar regime as V−1fðt0; 0Þ and its final
value at the time tf as jψ0j2ðtfÞ, we can estimate from
V−1Fðt; t;p ¼ 0Þ ∼ tα the condensation time as

tf ≃ t0

�jψ0j2ðtfÞ
fðt0; 0Þ

�
1=α

V1=α: ð15Þ

Correspondingly, we define the condensate fraction (12) for
the case of finite volumes asN0=Ntotal → V−1Fðt; t;p ¼ 0Þ=
Fðt; t;x ¼ 0Þ, using Ntotal ¼ Fðt; t;x ¼ 0Þ. In Fig. 5 we
show the evolution of the condensate fraction for different
volumes as a function of the rescaled time t=V1=α. Indeed, as
predicted by (15), the different curves are approximately

volume independent. One finds that the condensate fraction
saturates at N0=Ntotal ≃ 0.8.

III. RELATIVISTIC SCALAR FIELD THEORY

A. Initial conditions

Overoccupied relativistic quantum field theories play an
important role in early-universe cosmology and high-
energy collision experiments with heavy nuclei. For a
large class of inflationary models of early-universe dynam-
ics, the accelerated expansion of the universe during
inflation leads to a large coherent field amplitude of the
(scalar) inflaton. A subsequent decay via nonequilibrium
instabilities can lead to highly occupied modes of the scalar
field with a characteristic momentum Q [43]. A similar
overoccupation of modes can also occur in heavy-ion
collisions at ultrarelativistic energies, where a longitudi-
nally expanding plasma of highly occupied gluon fields is
expected to form shortly after the collision [44]. For
expanding systems, there are even striking indications that
the gluon plasma can belong to the same far-from-
equilibrium universality class as a scalar field theory [1].4

To be specific, we consider here N real scalar fields φa
interacting via a weak quartic self-coupling λ ≪ 1 in three
spatial dimensions. The equations of motion for the a ¼
1;…; N massless fields are�

∂2
t −∇2 þ λ

6N
φaðt;xÞφaðt;xÞ

�
φbðt;xÞ ¼ 0; ð16Þ

where a sum over repeated indices is implied. The relevant
two-point correlation function we denote as

Fðt; t0;x − x0Þ ¼ 1

2N
hφaðt;xÞφaðt0;x0Þ

þ φaðt0;x0Þφaðt;xÞi: ð17Þ

At equal times t ¼ t0 this can be used to define a
distribution function fðt;pÞ for the relativistic theory5:

fðt;pÞ
ωðt;pÞ þ ð2πÞ3δð3ÞðpÞϕ2

0ðtÞ≡
Z

d3xe−ipxFðt; t;xÞ: ð18Þ

This is in complete analogy to the definition (11) for the
nonrelativistic system and we will refer to the term ∼ϕ2

0ðtÞ
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FIG. 5 (color online). Evolution of the condensate fraction for
the nonrelativistic Bose gas for different volumes V. The different
curves become approximately volume independent after rescal-
ing of time by V−1=α, in agreement with (15).

4We employ for our analysis a distribution function f in order
to relate it to a resummed kinetic description in Sec. IV. However,
we emphasize that the observed scaling behavior concerns
correlation functions, which are well defined also in the absence
of a suitable choice of an occupation number distribution. This
can be, in particular, important for gauge theories, where suitable
gauge-invariant definitions of an occupation number in the
strongly correlated infrared regime may not be available.

5Similar to the nonrelativistic case, we drop here the
“quantum-half” as explained in footnote 3.
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as the condensate part. The only major difference is the
appearance of the dispersion ωðt;pÞ in the definition for the
relativistic case, which is a consequence of the second-
order differential equation in time for the fields (16).
Similar to the above discussion for the nonrelativistic

system, we first characterize overoccupied initial condi-
tions for the typical momentum Q. In a mean-field or large-
N approximation to leading order, one finds for the
evolution equation of the correlation function (17) in spatial
Fourier space (see e.g. [45]):

�
∂2
t þ p2 þ λ

6

Z
d3q
ð2πÞ3 Fðt; t;qÞ

�
Fðt; t0;pÞ ¼ 0: ð19Þ

If there is no condensate initially, we can estimate para-
metrically the mean-field correction at sufficiently early
times as

λ

Z
d3pFðt; t;pÞ ∼ λ

Z
d3p
ð2πÞ3

fðt;pÞ
ωðpÞ

∼ λ

Z
Q
dpp2

fðt;pÞ
jpj ∼ λfðt; QÞQ2; ð20Þ

where we have taken a relativistic dispersion ω ∼ jpj for
massless particles. One observes that this is of the same
order as the typical kinetic energy term ∼Q2 in (19) if the
occupancy is as large as

fðt; QÞ ∼ 1

λ
≫ 1: ð21Þ

Common scalar inflaton models for early universe dynam-
ics have couplings of order λ ∼ 10−13, such that the typical
occupancies are extremely large in that context. Comparing
to (6), we note that the dimensionless self-coupling λ plays
the role of the diluteness parameter ζ in the nonrelativistic
theory.

B. Self-similar dynamics from
classical-statistical simulations

Since the self-similar dynamics can only be observed
beyond the mean-field approximation, we perform first
classical-statistical lattice simulations similar to what is
done for the nonrelativistic theory in Sec. II B. For this we
solve (16) as classical equations of motion on a three-
dimensional lattice using a leapfrog algorithm [4,14] and
sample over initial conditions. We extract the occupation
number distribution according to (18) by writing for
jpj > 0:

fðt;pÞ
ωðt;pÞ ¼ Fðt; t;pÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðt; t0;pÞ∂t∂t0Fðt; t0;pÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi∂t∂t0Fðt; t0;pÞ=Fðt; t0;pÞ

p ����
t¼t0

:

ð22Þ

The second equality allows us to identify the dimensionless
distribution (see e.g. [45])

fðt;pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðt; t0;pÞ∂t∂t0Fðt; t0;pÞ

p
jt¼t0 : ð23Þ

The corresponding dispersion relation is then given by

ωðt;pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂t∂t0Fðt; t0;pÞ
Fðt; t0;pÞ

s ����
t¼t0

: ð24Þ

We emphasize that the notion of particle number is not a
uniquely defined concept in a relativistic field theory,
where total number changing processes are possible.
However, one may always think in terms of the well-
defined correlation functions appearing in (23). Moreover,
this definition turns out to provide an extremely useful
quasi-particle interpretation even in the strongly correlated
infrared regime [4], which wewill exploit further in Sec. IV.
Similar to (13) for the nonrelativistic theory, we choose

overoccupied initial conditions

fð0;pÞ ∼ 1

λ
ΘðQ − jpjÞ ð25Þ

with ϕ2
0ðt ¼ 0Þ ¼ 0. All quantities shown will be made

dimensionless by appropriate powers of the scale
Qϵ ¼

ffiffiffiffiffiffiffiffiffiffiffi
λϵ=N4

p
, which is obtained from the conserved

energy density average

ϵ ¼
�
1

2
ð∂tφaÞð∂tφaÞ þ

1

2
ð∂iφaÞð∂iφaÞ þ

λ

4!N
ðφaφaÞ2

�
;

ð26Þ

where summation over spatial directions i and scalar
components a is implied. For the initial condition (25),
one has ϵ ∼ NQ4=λ such that Qϵ becomes independent of
the coupling and the number of field components.
For the figures we have chosen the amplitude of (25) as

fð0;pÞ ¼ 125=λΘðQ − jpjÞ with Q ¼ 0.8Qϵ, and we
always plot rescaled functions fðt;pÞ → λfðt;pÞ and
Fðt; t;pÞ → λFðt; t;pÞ such that these combinations also
become independent of the coupling. For the N ¼ 2
component theory, computations were made on a 7683

lattice with lattice spacing Qϵas ¼ 0.9 and we averaged
over five realizations. For N ¼ 4 we employed a 5123

lattice with spacing Qϵas ¼ 1.8 and averaged over 18–50
realizations. We checked that for N ¼ 2 all shown results
are insensitive to the lattice spacing and the volume. For the
relevant infrared quantities this is to good accuracy also the
case for the coarser lattices employed for N ¼ 4.
In Fig. 6 we show the evolution of the occupation number

distribution for the relativisticN ¼ 2 component theory. As
in the nonrelativistic case, we plot ðt=trefÞ−αf against
ðt=trefÞβjpj with Qϵtref ¼ 600 to study self-similarity and
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give the original distribution without rescalings in the inset.
With appropriately chosen exponents, in the infrared all
curves lie on top of each other after rescaling to remarkable
accuracy. The measured exponents are

α ¼ 1.51� 0.13; β ¼ 0.51� 0.04; ð27Þ

and we refer to Appendix D for details on how we estimate
the error bars.
In order to check for a possible dependence of the

infrared scaling properties on the number of field compo-
nents, we also perform lattice simulations for N ¼ 4.
Figure 7 shows ðt=trefÞ−αf as a function of ðt=trefÞβjpj
with Qϵtref ¼ 800. The curves corresponding to different
times lie again on top of each other after the rescalings and
we extract the exponents

α ¼ 1.65� 0.09; β ¼ 0.59� 0.03: ð28Þ

These and the universal scaling form of the distribution
function compare rather well to those for the relativistic
N ¼ 2 component system as well as the nonrelativistic
theory. Within the statistical errors we find no indication for
a dependence of the corresponding universality class on the
number of field components. However, small discrepancies
in α, β and fS are still possible. These could occur in the
presence of nonvanishing anomalous dimension η, which is
discussed further in Sec. V.
In order to estimate systematic errors, we investigate how

the values for the exponents α and β depend on the
reference time tref at which we start our self-similarity
analysis. To this end, we perform our analysis for different
values of tref and use the method of Appendix D with the
distribution function evaluated at several times up to
t=tref ≲ 4 − 5. In Fig. 8, we show the extracted values
for α and β as a function of the reference time for N ¼ 4.
One finds that the mean value of α decreases monotonically
to about α ≈ 1.5 while β gets close to a half for the transient
times at which self-similarity can be accurately observed.
For the relativistic two-component system, the exponents α
and β are found to start from comparably larger values at
early reference times to the ones given in (27). We note that
the nonrelativistic system of Sec. II B also shows decreas-
ing exponents α and β but our runs last not long enough
such that their mean values (14) come as close to the
expected values α ¼ 1.5 and β ¼ 0.5 as for the relativistic
two-component system.

C. Generation of a mass gap

The values (27) or (28) for the exponents of the
relativistic theories agree within errors with the values
(14) obtained for the nonrelativistic Bose gas. Moreover,
they are rather close to the analytic results (2) from the
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large-N expansion to NLO for the nonrelativistic theory,
while they deviate clearly from the corresponding predic-
tion assuming a relativistic dispersion as will be shown
in Sec. IV.
Also the universal form of the nonthermal fixed point

distribution fS accurately agrees for relativistic and non-
relativistic theories in the infrared scaling regime. This is
shown in Fig. 2 by comparing the two-component relativ-
istic and the nonrelativistic theory, where fS=A is given as a
function of tβjpj=B normalized to the nonuniversal ampli-
tudes A and B as described in Sec. I B.
To understand the appearance of nonrelativistic dynam-

ics, we analyze the dispersion relation ωðt;pÞ according to
(24), which is shown in Fig. 9 at three different times.
Although the underlying theory is massless, it can be
clearly observed that for low momenta the system generates
a mass gap, whereas at large momenta we recover a linear
dispersion.
The appearance of an effective mass-like contribution

can already be understood qualitatively from the approxi-
mate evolution Eq. (19) for the correlator modes
Fðt; t0;pÞ. In the mean-field approximation, the term
∼ðλ=6Þ R d3q=ð2πÞ3Fðt; t;qÞ generates a masslike correc-
tion for the overoccupied initial condition (25).
To extract the mass gap beyond the mean-field approxi-

mation using the lattice simulations, we fit a time-dependent
effective mass mðtÞ from a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ðtÞ þ p2

p
fit to the ωðt;pÞ

data. The time evolution of mðtÞ is shown in the inset of
Fig. 9. We find that after a quick initial evolution this
dispersion relation enters a quasistationary regime, which
is typical for a prethermalized quantity whose transient
evolution is governed by an approximately conserved
(particle) number [46].

In addition, we also analyze the oscillation frequency ωc
of the unequal-time correlation function Fðt; 0;pÞ as a
function of time t for jpj ¼ 0. Since the zero-momentum
mode frequency corresponds to the renormalized mass of
the theory, this provides an independent estimate of the
mass gap that does not rely on the definition (24) of a
dispersion. Indeed we find ωc ≃m to very good accuracy
as shown in the inset of Fig. 9.
In the presence of a mass gap m, low momentum modes

with jpj ≲m are expected to behave nonrelativistically.
From Fig. 9 we can estimate the mass to be m≃ 0.55Qϵ ≃
0.69Q for the whole duration of the self-similar evolution.
We find that this mass scale separates rather well the inertial
ranges for the inverse particle cascade towards low
momenta from the direct energy cascade at higher
momenta. This can be observed, for instance, from the
inset of Fig. 6, where the initial scale Q marked by the
distribution at t ¼ 0 can be used as a reference.
The emergence of a mass gap in the relativistic theory

explains why the dynamics in the infrared regime is
governed by nonrelativistic physics. Of course, in general
the presence of a mass gap does not necessarily imply
universal behavior for sufficiently low momentum modes.
However, it may be seen as a prerequisite for relativistic
theories to belong to the same far-from-equilibrium uni-
versality class as the Gross-Pitaevskii field theory.

D. Condensate formation

Since we observe for the relativistic scalar field theory
the same inverse particle cascade with universal exponents
and scaling function as for the nonrelativistic system, one
expects condensation to proceed with the same exponent α
as found in Sec. II C. However, this is not entirely trivial
since scatterings off the condensate play an important role
in the inertial range for the direct energy cascade towards
higher momenta, where both theories do not belong to the
same universality class [2,3].
In order to clarify this, we analyze the growth of the

condensate during the self-similar regime for the N ¼ 4
component theory along the same lines as in Sec. II C. The
results are given in Fig. 10 for different volumes, ranging
from VQ3

ϵ ¼ 583 to the largest volume ∼9223. Shown is the
time evolution of the zero mode of the correlation function
(18) divided by volume. We compare the curves to the
expected power-law behavior ∼tα with the exponent α
obtained before from the self-similarity analysis. As in the
nonrelativistic case, the dynamics is well described by such
a power law until the results become volume independent,
thus signaling the formation of a coherent condensate ϕ2

0

for the entire volume.
We emphasize that the observed power law is restricted

to the formation of the condensate during the transient self-
similar regime, where we find the universal exponent α to
govern the dynamics. In particular, we do not discuss here
the subsequent late-time approach to thermal equilibrium,
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where total particle number changing processes in
the relativistic theory can make important differences as
compared to the number conserving nonrelativistic
system [24].

IV. NONTHERMAL FIXED POINTS FROM
VERTEX-RESUMMED KINETIC THEORY

A. Self-similarity

While many aspects of transport of conserved charges
associated with wave turbulence in kinetic theory have long
reached textbook level, there is still rather little known
about the analytic description of turbulent behavior in
nonperturbative regimes of quantum field theories.
Perturbative kinetic theory has been successfully applied

to the phenomenon of weak wave turbulence [3,20,21]. It
has also been employed in the literature to describe infrared
phenomena such as Bose condensation [33,34]. However,
in this case the approach neglects important vertex correc-
tions since the large occupancies at low momenta lead to
strongly nonlinear dynamics [4,23]. Here we apply a
vertex-resummed kinetic theory, which is based on an
expansion in the number of field components N to next-to-
leading order [19,36,37]. It extends well-known kinetic
descriptions [3,20,21] to the nonperturbative regime of
overoccupied modes. This allows us to gain analytic
understanding of the formation of a dual cascade, in which
particles are also transferred towards low momenta leading
to Bose condensation.
Similar nonperturbative descriptions have been

employed before for the scaling behavior of stationary
transport, which is time-translation invariant [4,18,19].
Since our isolated systems out of equilibrium cannot realize
stationary transport solutions in the absence of external
driving forces, we have to consider here the more general
notion of a self-similar evolution. Though this is not time-
translation invariant, the dynamics in this case is described

by time-independent scaling functions and scaling
exponents.
A self-similar evolution of the distribution function

fðt;pÞ for a spatially homogeneous and isotropic system
is characterized as

fðt;pÞ ¼ sα=βfðs−1=βt; spÞ ð29Þ

with the real scaling parameter s and exponents α and β.
Again, all quantities are considered to be dimensionless by
use of some suitable momentum scale. Choosing s−1=βt ¼
1 we recover (1), where the time-independent scaling
function fSðtβpÞ≡ fð1; tβpÞ denotes the fixed point dis-
tribution. This scaling form represents an enormous reduc-
tion of the possible dependence of the dynamics on
variations in time and momenta, since t−αfðt;pÞ depends
on the product tβjpj instead of separately depending on
time and momenta. Therefore, an essential part of the time
evolution is encoded in the momentum dependence of the
fixed point distribution fSðpÞ.
For the time evolution of the distribution function fðt;pÞ

we write

∂fðt;pÞ
∂t ¼ C½f�ðt;pÞ ð30Þ

with a generic “collision integral” C½f�ðt;pÞ, which
depends on the theory and the approximation employed.
For the self-similar distribution (29), the scaling behavior
of the collision integral is then given by

C½f�ðt;pÞ ¼ s−μC½f�ðs−1=βt; spÞ ¼ t−βμC½fS�ð1; tβpÞ;
ð31Þ

where μ is a function of scaling exponents such as α and β.
Substituting this scaling form into the kinetic equation
leads to the time-independent fixed point equation for
fSðpÞ:

½αþ βp · ∇p�fSðpÞ ¼ C½fS�ð1;pÞ; ð32Þ

and the scaling relation:

α − 1 ¼ −βμ: ð33Þ

This follows from comparing the left-hand side of the
kinetic equation,

∂
∂t ½t

αfSðtβpÞ� ¼ tα−1½αþ βq · ∇q�fSðqÞjq¼tβp; ð34Þ

to its right-hand side given by (31).
Further relations can be obtained by either imposing

energy conservation or particle number conservation if
applicable. For constant
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n ¼
Z

ddp
ð2πÞd fðt;pÞ ¼ tα−βd

Z
ddq
ð2πÞd fSðqÞ ð35Þ

one obtains the relation for

particle conservation∶ α ¼ βd: ð36Þ
Similarly, with

ϵ ¼
Z

ddp
ð2πÞd ωðpÞfðt;pÞ ¼ tα−βðdþzÞ

Z
ddq
ð2πÞd ωðqÞfSðqÞ

ð37Þ
one obtains from

energy conservation∶ α ¼ βðdþ zÞ; ð38Þ

where the dispersion is taken to scale with the dynamic
exponent z as

ωðpÞ ¼ s−zωðspÞ ð39Þ
with z ¼ 1 for the gapless relativistic and z ¼ 2 for the
nonrelativistic theory. One observes that there is no single
scaling solution conserving both energy and particle
number. As outlined already above, in this case a dual
cascade is expected to emerge such that in a given inertial
range of momenta only one conservation law governs the
scaling behavior.

B. Perturbative scaling behavior

We first review some perturbative results for later
comparison. In perturbative kinetic theory, when two
particles scatter into two particles, the collision integral
is of the form

C2↔2½f�ðt;pÞ ¼
Z

dΩ2↔2ðp; l;q; rÞ

× ½ðfp þ 1Þðfl þ 1Þfqfr
− fpflðfq þ 1Þðfr þ 1Þ�; ð40Þ

where we write fðt;pÞ≡ fp suppressing the global time
dependence to ease the notation. The details of the model
enter

R
dΩ2↔2ðp; l;q; rÞ, which for the example of the

relativistic N-component scalar field theory with quartic
λ=ð4!NÞ interaction of Sec. III reads

Z
dΩ2↔2ðp; l; q; rÞ ¼ λ2

N þ 2

6N2

Z
ddl
ð2πÞd

ddq
ð2πÞd

ddr
ð2πÞd

× ð2πÞdþ1δðdÞðp þ l − q − rÞ δðωp þ ωl − ωq − ωrÞ
2ωp2ωl2ωq2ωr

ð41Þ

with ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
.

The expression represents a standard Boltzmann equa-
tion for a gas of relativistic particles, which is not expected
to be valid if the occupation numbers per mode become too
large. Parametrically, for a weak coupling λ a necessary
condition for its validity is fp ≪ 1=λ since otherwise
strongly nonlinear effects become significant as will be
explained in detail in Sec. IV C. On the other hand, scaling
is expected for not too small occupation numbers per mode,
which we discuss now. For the corresponding regime 1 ≪
fp ≪ 1=λ one may use the above Boltzmann equation,
which approximately becomes

∂
∂t fp ≃

Z
dΩ2↔2ðp; l;q; rÞ

× ½ðfp þ flÞfqfr − fpflðfq þ frÞ�: ð42Þ

Apart from the energy density ϵ also the total particle
number density n is conserved by the collision term.
For the relativistic theory, the scaling assumption (29)

should be valid for sufficiently high momenta jpj ≫ m
such that the dispersion is approximately linear with
ωp ∼ jpj. In this case one obtains for the scaling of the
collision integral (41) and (42) of the theory with quartic
self-interaction:

C2↔2½f�ðt;pÞ ¼ s−μ4C2↔2½f�ðs−1=βt; spÞ; ð43Þ

where the scaling is described by

μ4 ¼ ð3d − 4Þ − ðdþ 1Þ − 3α=β ¼ 2d − 5 − 3α=β: ð44Þ

The first term in brackets comes from the scaling of the
integral measure, the second from energy-momentum
conservation for two-to-two scattering and the third from
the three factors of the distribution function appearing
in (42).
Apart from the 4-vertex interaction considered, it will be

relevant to investigate also scattering in the presence of a
coherent field such that an effective 3-vertex appears. To
keep the discussion more general, we may write for the
scaling behavior of a generic collision term for l-vertex
scattering processes

CðlÞ½f�ðt;pÞ ¼ s−μlCðlÞ½f�ðs−1=βt; spÞ; ð45Þ

where the scaling exponent

μl ¼ ðl − 2Þd − ðlþ 1Þ − ðl − 1Þα=β ð46Þ

follows from similar arguments as exemplified for the
4-vertex interaction.
Using the scaling relation (33) and particle conservation

(36) gives the perturbative solution for
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rel particle transport∶ α ¼ −
d

lþ 1
; β ¼ −

1

lþ 1
:

ð47Þ

Similarly, with (38) for relativistic z ¼ 1 one finds the
perturbative solution for

rel energy transport∶ α ¼ −
dþ 1

2l − 1
; β ¼ −

1

2l − 1
:

ð48Þ

For instance, for quartic self-interactions the perturbative
energy transport is characterized by α ¼ −ðdþ 1Þ=7, and
β ¼ −1=7, where the latter is independent of the dimen-
sionality of space d. Likewise, for an effective 3-vertex in
the presence of a coherent field one has for the energy
transport α ¼ −ðdþ 1Þ=5 and β ¼ −1=5. Indeed, the latter
values for the scaling exponents describe well the energy
transport at higher momenta of the relativistic scalar field
theory for d ¼ 3 of Sec. III [3]. In particular, their negative
values indicate the direction of the transport from lower to
higher momenta.
We now turn to the nonrelativistic theory of Sec. II. The

perturbative kinetic equation for 2↔2 scattering is given
again by (42), however, with the nonrelativistic

Z
dΩ2↔2

nr ðp; l;q; rÞ ¼ 2g2
Z

ddl
ð2πÞd

ddq
ð2πÞd

ddr
ð2πÞd

× ð2πÞdþ1δðdÞðpþ l− q− rÞδðωp þωl −ωq −ωrÞ ð49Þ

in the absence of a condensate for ωp ¼ p2=ð2mÞ. The
scaling analysis follows along the same lines as before, but
without the inverse-frequency factors from the relativisti-
cally invariant measure appearing in (41). Accordingly,
generalizing again to l-vertex scatterings, one obtains for
the scaling relation (33) in the nonrelativistic case:
ðl − 2Þα ¼ β½ðl − 2Þd − 2� − 1. This leads with (36) and
(38) to the solutions for

nonrel particle transport∶ α ¼ −
d
2
; β ¼ −

1

2
; ð50Þ

and

nonrel energy transport∶ α¼−
dþ 2

2ðl− 1Þ ; β¼−
1

2ðl− 1Þ :

ð51Þ

For instance, for quartic self-interactions the perturbative
particle transport would be described by α ¼ −d=2,
and β ¼ −1=2.
We emphasize that all the above perturbative estimates

with negative values for α and β cannot account for the
inverse particle transport observed from the simulations for

d ¼ 3 in Secs. II B and III B. Of course, perturbation theory
is not expected to be applicable to the overoccupied
infrared modes and one has to employ an alternative
description, which we consider next.

C. Scaling behavior in the overoccupied regime

Remarkably, the overoccupied regime can still be
described in terms of a generalized kinetic theory by taking
into account vertex corrections. For the N-component field
theory, these corrections can be systematically computed
from an expansion in the number of field components N to
next-to-leading order [6,36,37]. The NLO corrections take
scattering events up to infinite order into account. This
allows us to describe even strongly correlated regimes,
where the typical mode occupancies (6) or (21) are
inversely proportional to the diluteness or coupling param-
eter, respectively.
Effectively, the change to the perturbative kinetic equa-

tions (40) or (42) is the appearance of a time- and
momentum-dependent matrix element squared:

λ2 → λ2eff ½f�ðt;p; l;q; rÞ: ð52Þ

More precisely, one finds at NLO of the expansion in the
number of field components for the relativistic theory a
kinetic equation where (41) is replaced by6

Z
dΩNLO½f�ðt;p; l;q; rÞ ¼ 1

6N

Z
ddl
ð2πÞd

ddq
ð2πÞd

ddr
ð2πÞd

× ð2πÞdþ1δðdÞðpþ l − q − rÞ δðωp þ ωl − ωq − ωrÞ
2ωp2ωl2ωq2ωr

× λ2eff ½f�ðt;p; l;q; rÞ; ð53Þ

with dispersion ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. Here

λ2effðt;p; l;q; rÞ≡ λ2

3

�
1

j1þ ΠRðt;ωp þ ωl;pþ lÞj2

þ 1

j1þ ΠRðt;ωp − ωq;p − qÞj2

þ 1

j1þ ΠRðt;ωp − ωr;p − rÞj2
	

ð54Þ

incorporates thevertexcorrections for thedifferent scattering
channels. They are depicted in Fig. 11 andmay be viewed as
coming from an effective interaction, which involves the
exchange of an intermediate particlewhose four-momentum
equalspþ l, p − q and p − r, respectively. The appearance
of the “one-loop” retarded self-energy,

6We note that the prefactor ðN þ 2Þ=ð6N2Þ in (41) becomes at
NLO in the large N expansion 1=ð6NÞ. A corresponding factor
appears in the nonrelativistic case, when going from (49) to (56).
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ΠRðt;ω;pÞ¼ lim
ϵ→0

λ

12

Z
ddq
ð2πÞd

fðt;p−qÞ
ωqωp−q

×

�
1

ωqþωp−q−ω− iϵ
þ 1

ωq−ωp−q−ω− iϵ

þ 1

ωq−ωp−qþωþ iϵ
þ 1

ωqþωp−qþωþ iϵ

	
;

ð55Þ

in the denominator is the result of a geometric series
summation of the infinite number of NLO processes. It
should be emphasized that ΠR, and thus also λ2eff , is time
dependent because it is expressed in terms of the evolving
distribution function. The above expressions correspond to
the on-shell limit of the evolution equations presented in
Ref. [6] and their relation to the underlying field theory is
further discussed in Appendix B 3.
For sufficiently high momenta, the self-energy (55)

becomes small such that ΠRðt;ω; pÞ ≪ 1 in the squared
matrix element (54) and we recover the perturbative
expression λ2eff → λ2. In this case, the kinetic equation
corresponds to (41) with the prefactor for largeN. Since the
scaling solutions of Sec. IV B do not depend on N, one gets
the same results in the high momentum regime.
For low momenta the case ΠRðt;ω; pÞ ≫ 1 can become

relevant, which changes the situation dramatically. This
becomes even more involved if a mass gap exists, as seen in
the simulations of Sec. III C. An effective mass gap is
typically expected because of medium effects even if the
mass parameter of the underlying microscopic theory is set
to zero. In that case the infrared modes behave effectively
nonrelativistically, which allows one to observe the same
scaling behavior of the relativistic and the nonrelativistic
theory in this regime.
For the purpose of scaling, one may obtain the corre-

sponding kinetic equation for the nonrelativistic theory from
the relativistic case (53), assuming that themass appearing in
the dispersion relation is much larger than the typical
momenta. Expanding ωp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p ≃mþ p2=2m and
inserting this into (53), we have δðωp þ ωl − ωq − ωrÞ →
δððp2 þ l2 − q2 − r2Þ=ð2mÞÞ and 2ωp2ωl2ωq2ωr → 16m4

to lowest nonvanishing order. Then g ∼ λ=m2 leads to the
nonrelativistic form of the equation. Alternatively, one can
obtain the corresponding result from a nonrelativistic
N-component complex scalar field theory [19] by perform-
ing again the 1=N expansion to NLO. This is further
described in Sec. V.
Taking into account proper normalizations, we consider

for the nonrelativistic case a kinetic equation with

Z
dΩNLO

nr ½f�ðt;p; l;q; rÞ ¼
Z

ddl
ð2πÞd

ddq
ð2πÞd

ddr
ð2πÞd

× ð2πÞdþ1δðdÞðpþ l − q − rÞδðωp þ ωl − ωq − ωrÞ
× g2eff ½f�ðt;p;qÞ; ð56Þ

where ωp ¼ p2=ð2mÞ and

g2effðt;p;qÞ≡ g2

j1þ ΠR
nrðt;ωp − ωq;p − qÞj2 ð57Þ

incorporates the vertex corrections. The compact form of
(57) is achieved by using the symmetries of (56) and the
nonrelativistic “one-loop” retarded self-energy reads

ΠR
nrðt;ω;pÞ¼ lim

ϵ→0
g
Z

ddq
ð2πÞdfðt;p−qÞ

×

�
1

ωq−ωp−q−ω− iϵ
þ 1

ωq−ωp−qþωþ iϵ

	
:

ð58Þ

By comparison to its relativistic counterpart, this may also
be obtained up to normalizations directly from (55) if
evaluated as in (57) by expanding the relativistic dispersion
for small momenta and taking the dominant contributions,
where the constant mass term cancels in the respective
frequency sums.
From the self-similar behavior of the distribution (29),

we can deduce the scaling property

ΠR
nrðt;ωp;pÞ ¼ sα=β−dþ2ΠR

nrðs−1=βt;ωsp; spÞ: ð59Þ

Since for the relevant cases (36) and (38) we have α=β ≥ d,
we conclude by keeping sp fixed that ΠR

nr can become large
in the infrared. In this case, we can use ΠR

nrðt;ωp;pÞ ≫ 1 to
find the scaling behavior of

g2effðt;p;q; rÞ ¼ s−2ðα=β−dþ2Þg2effðs−1=βt; sp; sq; srÞ: ð60Þ

Therefore, we expect the effective matrix element squared
to become small in the infrared in accordance with related
studies [4]. In turn, we will see in the following that at the
same time the distribution function fðt;pÞ can grow
significantly, which results in a “Bose enhancement” of

p p p

l l l

q qq

r rr

p+l
p-q p-r

FIG. 11. Illustration of different scattering channels. The vertex
correction at NLO may be viewed as an effective interaction,
which involves the exchange of an intermediate particle. Left:
incoming particles with momenta p and l join into an inter-
mediate particle that eventually splits. Middle and right: incom-
ing particle with momentum p emits the intermediate particle and
becomes the final particle with momentum q or r, respectively.
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scatterings that counteracts the diminished effective
coupling.
We use (56) in the corresponding kinetic Eq. (42) and

find for the scaling of the collision term

CNLO
nr ½f�ðt;pÞ ¼ s−ð2−α=βÞCNLO

nr ½f�ðs−1=βt; spÞ
¼ tα−2βCNLO

nr ½fS�ð1; tβpÞ: ð61Þ

Remarkably, with this the exponent β can be obtained
solely from the scaling relation (33) without using in
addition energy or particle conservation, whereas the
different solutions for α arise from imposing (36) or
(38), respectively. We thus find in the overoccupied infra-
red regime for

nonrel transport∶ β¼1

2
of



particles∶ α¼d=2

energy∶ α¼ðdþ2Þ=2 : ð62Þ

This is a central analytic result of this work. In contrast to
the previously known negative scaling exponents from
perturbative estimates given in Sec. IV B, one observes that
the positive values of α and β obtained here describe an
inverse particle transport with growing occupation number
in the infrared. The quantitative agreement of the NLO
estimates α ¼ 3=2 and β ¼ 1=2 for d ¼ 3 with the full
simulation results of Sec. III B for the relativistic and
Sec. II B for the nonrelativistic theory is remarkable. Both
the approximate analytic and the full simulation results
within their numerical accuracy indicate no strong depend-
ence on N.
For comparison, we finally also analyze the relativistic

kinetic equation with (53) in the absence of any mass gap.
To this end, we use ωp ¼ jpj and proceed as in the
nonrelativistic case to find scaling relations for α and β.
With the scaling analysis of Appendix C and

CNLO½f�ðt;pÞ ¼ tα−βCNLO½fS�ð1; tβpÞ ð63Þ
we find for the

rel transport∶ β ¼ 1 of



particles∶ α ¼ d

energy∶ α ¼ dþ 1
: ð64Þ

These estimates indicate that the simulation results of
Sec. III B for the relativistic theory cannot be interpreted
in terms of massless scaling in the infrared, which is
explained by the presence of a mass gap in Sec. III C.

V. ANOMALOUS SCALING

The kinetic description of Sec. IV assumes canonical
values for the dynamic exponent z, which describes the
scaling of the dispersion (39). For the relativistic theory
without a mass gap, ωp ¼ jpj is employed. For the Gross-
Pitaevskii theory, in the presence of a condensate, the
approximate (Bogoliubov) dispersion is given by [47]

ωðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2m

�
p2

2m
þ 2gjψ0j2

�s
: ð65Þ

At larger momenta, or in the absence of a condensate, one
recovers ωp ¼ p2=ð2mÞ, while for low momenta one has
ωp ¼ cjpj with c≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gjψ0j2=m
p

.
From a field theoretic point of view, these dispersions

with integer-valued z are implemented using a canonical
spectral function, such as the free-field form

~ρ0ðp0;pÞ ¼ 2πsgnðp0Þδððp0Þ2 − ω2
pÞ ð66Þ

for the relativistic theory. In principle, nonperturbative
scaling phenomena may involve an anomalous scaling
exponent for the full spectral function ~ρðp0;pÞ of the
interacting theory. Using spatial isotropy we may write

~ρðp0;pÞ ¼ s2−η ~ρðszp0; spÞ; ð67Þ

with a nonequilibrium “anomalous dimension” η. The
dynamic scaling exponent z appears since only spatial
momenta are related by rotational symmetry and frequen-
cies may scale differently also in the relativistic theory
because of medium effects.
Small discrepancies between the results of our full

numerical simulations and the analytic estimates of pre-
vious sections could possibly be rooted in the canonical
assumption of an integer-valued z and η ¼ 0. This concerns
mainly the infrared regime, where strongly nonlinear
behavior occurs. For instance, corresponding infrared
scaling phenomena in thermal equilibrium near continuous
phase transitions can exhibit nontrivial scaling exponents
with a noncanonical z and a nonzero (but typically small)
value for η, which is also captured by the NLO approxi-
mation employed [48].
Therefore, we consider in this section a field theoretical

calculation of the self-similar behavior near nonthermal
fixed points taking into account the possibility of anoma-
lous scaling. It is again based on the two-particle irreduc-
ible (2PI) generating functional in quantum field theory,
which is expanded up to next-to-leading order in the
number of field components N [36,37]; however, without
using the additional assumption of a canonical form for the
spectral function underlying the kinetic theory of Sec. IV.

A. Nonrelativistic field theory

For the nonrelativistic scalar field theory we consider a
single complex scalar field ψðxÞ with the action

S½ψ ;ψ��¼
Z

ddþ1x



ψ�

�
i∂x0 þ

∇2

2m

�
ψ −

g
2
ðψψ�Þ2

�
: ð68Þ

In the classical approximation this gives rise to the Gross-
Pitaevskii Eq. (7). In the corresponding quantum theory, the
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spectral function is given by the expectation value of the
commutator of two Heisenberg field operators as

~ρabðx; yÞ ¼ h½ψ̂aðxÞ; ψ̂†
aðyÞ�i: ð69Þ

Here the index notation for a; b ¼ 1; 2 employs

ψ̂1 ≡ ψ̂ ; ψ̂2 ≡ ψ̂† ð70Þ

in order to have a compact notation for the four different
two-point functions that can be built from two complex
fields.
The other set of linearly independent two-point functions

can be conveniently expressed in terms of the expectation
value of the anticommutator of two fields as

Fabðx; yÞ ¼
1

2
hfψ̂aðxÞ; ψ̂†

bðyÞgic; ð71Þ

where the subscript c refers to the connected correlator.
While in thermal equilibrium the anticommutator and
commutator expectation values are related by the
fluctuation-dissipation relation, in general they are linearly
independent for systems out of equilibrium.7 The absence
of a fluctuation-dissipation relation is a crucial property of
the scaling behavior near the nonthermal fixed points
discussed.
The evolution equations for Fabðx; yÞ and ~ρabðx; yÞ at

NLO in the 2PI 1=N expansion are known [19,36,37] and
given in Appendix B for completeness, where we also
outline the employed gradient expansion to lowest order. It
is important to notice that, because of the lowest order
gradient expansion, the spectral function is time indepen-
dent according to (B7). For the spatially homogeneous
system, it is convenient to Fourier transform the two-point
functions with respect to their relative coordinates x − y
and to define the “time” variable as t ¼ ðx0 þ y0Þ=2. One
obtains, using ðFpÞab ≡ Fabðt; pÞ and ð~ρpÞab ≡ ~ρabðpÞ as a
compact matrix notation in ða; bÞ-index space:

∂
∂tTr½Fp� ¼ −

1

2ð2πÞ2dþ2

Z
ddþ1qddþ1lddþ1r

× δðdþ1Þðp − qþ l − rÞg2eff ½F�ðt; p − qÞ
× f2Tr½σ3FpFq�Tr½Fl ~ρr�
þ Tr½σ3Fp ~ρq�Tr½FlFr�
− Tr½σ3 ~ρpFq�Tr½FlFr�g; ð72Þ

where Tr½Fp�≡ Faaðt; pÞ and σ3 ¼ diagð1;−1Þ denotes
the third Pauli matrix. The time- and momentum-dependent
effective coupling squared corresponding to (57) reads

g2effðt; pÞ ¼
g2

j1þ ΠR
nrðt; pÞj2

ð73Þ

with the retarded self-energy

ΠRðt; pÞ ¼ g
Z

ddþ1q
ð2πÞdþ1

Fabðt; q − pÞGR
baðqÞ ð74Þ

in terms of the retarded propagator GR
abðpÞ as is further

discussed in Appendix B 3.
To make contact with the definition of the distribution

function in (11), we note that with the notation F≡ Faa=2
thus can be written for p ≠ 0 as

fðt;pÞ þ 1

2
¼ 1

2

Z
dp0

2π
Faaðt; p0;pÞ; ð75Þ

where we write the “quantum-half” for completeness
though we always consider high typical occupancies such
that it can be neglected. With the field theoretical definition
of the distribution function at hand, we can obtain a
corresponding “collision term” for ∂fðt;pÞ=∂t ¼
C½F�ðt;pÞ from the p0 integral of the right-hand side
of (72).
Applying (29) to the distribution function with fðt;pÞ ≫

1 for typical momenta, self-similar behavior for the
correlators is described by

Fabðt; p0;pÞ ¼ sα=βþzFabðs−1=βt; szp0; spÞ ð76Þ

in addition to the scaling behavior (67) for the spectral
function ~ρabðp0;pÞ. This means Fabðt; p0;pÞ ¼
tαþβzFS;abðtzβp0; tβpÞ with FS;abðp0;pÞ≡ Fabð1; p0;pÞ.
In particular, fSðpÞ ¼

R
dp0=ð2πÞFS;aaðp0;pÞ=2 in this

highly occupied scaling regime according to (75). With

g2eff ½F�ðt;p0;pÞ ¼ t−2½αþβð2−η−dÞ�g2eff ½FS�ðtzβp0; tβpÞ ð77Þ

one finds

C½F�ðt;pÞ ¼ tα−βð2−ηÞC½FS�ðtβpÞ: ð78Þ

We can now proceed in complete analogy to the analysis
of Sec. IV from which we find the solution to the scaling
relation:

β ¼ 1

2 − η
; ð79Þ

where the dimensionality d and the exponent α have
dropped out. In addition we have the time-independent
equation for the nonthermal fixed point function:7For an introductory text, see e.g. Ref. [45].
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½αþ βp ·∇p�fSðpÞ ¼ C½FS�ðpÞ ð80Þ

corresponding to (32).
To obtain a second scaling relation for the determination

of α, it is important to note that the particle number density
n ¼ R

ddþ1p=ð2πÞdþ1Faaðt; pÞ=2 and the energy density
ϵ ¼ R

ddþ1p=ð2πÞdþ1p0Faaðt; pÞ=2 are conserved during
the evolution. We find

α ¼ d
2 − η

ðparticle transportÞ; ð81Þ

α ¼ dþ z
2 − η

ðenergy transportÞ: ð82Þ

Of course, taking η ¼ 0 and z ¼ 2 we recover the results of
Sec. IV C. Remarkably, one observes that the scaling
exponent for the nonrelativistic particle cascade is inde-
pendent of the dynamic exponent z. This has the important
special consequence that the same scaling behavior for
particle transport is found no matter whether the low-
momentum dispersion is quadratic, or linear as for the
Bogoliubov dispersion (65) in the presence of a condensate.
Comparing the expressions for particle transport to our

simulation results of Sec. II B, within the numerical errors
we see no strong indication for any deviation from the
canonical value η ¼ 0 employed for the analytical esti-
mates of Sec. IV.
We may also consider the growth of the condensate

during the self-similar evolution, which we investigated
numerically in Secs. II and III. With Fabðt; t;pÞ ∼R
dp0Fabðt; p0;pÞ and using (76) we obtain the scaling

of a characteristic mode of the equal-time correlator ∼tα.
Since α > 0 for not too large η, the condensate zero mode is
expected to grow as a power law in time. The value α≃ 3=2
for d ¼ 3 rather accurately describes our numerical
findings.
For completeness, we indicate how to recover the kinetic

equation of Sec. IV C from the evolution Eq. (72) for the
anticommutator expectation value. First, one inserts the
free-field form of the spectral function [49]

~ρðpÞ ¼ 2π

�
δðp0 − ωpÞ 0

0 −δðp0 þ ωpÞ

�
; ð83Þ

where ωp ¼ p2=2m. Second, one can define an off-shell
distribution function fðt; pÞ as

Fabðt; pÞ ¼
�
fðt; pÞ þ 1

2

�
~ρabðpÞ ð84Þ

with −fðt;−pÞ ¼ fðt; pÞ þ 1 in accordance to (75).
Inserting all this yields for fðt;pÞ ≫ 1 the nonrelativistic
kinetic equation employed in Sec. IV C.

B. Relativistic field theory

We now consider the relativistic quantum field theory for
a N-component real scalar field φaðxÞ with a ∈ f1;…; Ng
in d spatial dimensions. Its classical action is given by

S¼
Z

ddþ1x



1

2
∂μφa∂μφa−

m2

2
φaφa−

λ

4!N
ðφaφaÞ2

�
: ð85Þ

The corresponding classical equation of motion for m ¼ 0
is the Klein-Gordon equation given in (16).
Following the discussion of Sec. IV C we will focus here

on the case without a mass gap, since otherwise the above
nonrelativistic results apply. Along the lines of the previous
section, we introduce spectral and statistical functions as
the commutator and connected anticommutator expectation
values of two Heisenberg field operators. In the following
we will assume that the corresponding Fab ¼ Fδab and
~ρab ¼ ~ρδab. According to (18) and taking into account the
quantum-half, we get the distribution function for suffi-
ciently high occupancies for p ≠ 0 as

fðt;pÞ þ 1

2
¼

Z
∞

0

dp0

2π
2p0Fðt; pÞ: ð86Þ

The derivation of the evolution equation for fðt;pÞ
follows along the same lines as for the nonrelativistic
theory of the previous section. Using the 2PI 1=N expan-
sion to NLO, the lowest-order gradient expansion leads to

∂f
∂t ðt;pÞ ¼

1

6Nð2πÞ2dþ3

Z
∞

0

dp0dl0dq0dr0
Z

ddlddqddr

× δðdþ1Þðpþ l− q− rÞλ2eff ½F�ðt;p; l; q; rÞ
× ½ð~ρpFl þFp ~ρlÞFqFr −FpFlð~ρqFr þFq ~ρrÞ�;

ð87Þ

where Fp ¼ Fðt; pÞ, and λ2eff is defined as

λ2effðt; p; l; q; rÞ ¼
λ2

3
½veffðt; pþ lÞ

þ veffðt; p − qÞ þ veffðt; p − rÞ� ð88Þ

with the vertex function veffðt; pÞ given in (B22).
With the above kinetic equation we now search for self-

similar solutions (29). For this we have to write

Fðt; p0;pÞ ¼ sα=βþ2zFðs−1=βt; szp0; spÞ; ð89Þ

in addition to the scaling behavior (67) for the spectral
function. Inserting the scaling behavior into the evolution
Eq. (87) leads to the solution

β ¼ 1

2 − η − z
; ð90Þ
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and an equation for the universal scaling function corre-
sponding to (80). Imposing particle number and energy
conservation yields

α ¼ d
2 − η − z

ðparticle transportÞ; ð91Þ

α ¼ dþ z
2 − η − z

ðenergy transportÞ: ð92Þ

For η ¼ 0 and z ¼ 1 these values agree with the results in
the absence of a mass gap of Sec. IV C. We finally note that
the relativistic kinetic equation of that section can be
obtained from (87) by using the corresponding definition
(84) with the free spectral function (66).

VI. CONCLUSION

A consistent picture has emerged for the universal self-
similar dynamics of relativistic and nonrelativistic field
theories near nonthermal fixed points. The results of full
numerical simulations are well described by analytic results
based on the vertex-resummed kinetic theory. The latter
extends well-established kinetic descriptions to the non-
perturbative regime of overoccupied modes.
The vertex-resummed kinetic theory links the perturba-

tive phenomenon of weak wave turbulence relevant at
higher momenta to the nonperturbative physics of strong
turbulence and vorticity of the underlying field configura-
tions in the highly nonlinear infrared regime. It is striking
that the range of validity of kinetic descriptions can indeed
be extended to capture these very different regimes.
For the examples of nonrelativistic (Gross-Pitaevskii) and

relativistic scalar field theory with quartic self-interactions,
we have seen that the infrared scaling exponents as well as
scaling functions agree. This becomes possible because of
the emergence of a mass gap in the relativistic theory. In
contrast to the previously known negative values for the
scaling exponents α and β from perturbative estimates, we
find that their positive values α ¼ d=ð2 − ηÞ and β ¼ 1=
ð2 − ηÞ obtained for small anomalous dimension η describe
an inverse particle transport with growing occupation num-
ber in the infrared. The growth exponent α is found to
describe also the far-from-equilibrium formation of theBose
condensate.
Moreover, this nonrelativistic particle transport solution

has the remarkable property to be independent of the
dynamic scaling exponent z. As a consequence, this
solution applies equally well to a dispersion with quadratic
momentum dependence or a possible linear behavior below
the characteristic coherence momentum scale in the pres-
ence of a Bose gas condensate.
The corresponding dynamic universality class turns out

to be remarkably large, encompassing both relativistic as
well as nonrelativistic quantum and classical systems. As a
consequence, the applications can range from tabletop

experiments with ultracold quantum gases to inflationary
dynamics during the very early stages of our universe.
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APPENDIX A: STATIONARY TRANSPORT

For comparison, we summarize in this section the
analysis for stationary transport. This is a time-translation
invariant problem, which can be realized in the presence of
suitable sources and sinks. In contrast, the isolated systems
out of equilibrium considered in the main part of this work
are characterized by a self-similar evolution, which is not
time-translation invariant.
Stationary transport in perturbative kinetic theory has

been intensively studied in the context of weak wave
turbulence [3,20,21]. Similarly, the nonperturbative regime
of strong turbulence has been investigated in detail and the
following discussion is based on the literature [4,18,19],
where we point out the relevant aspects for the comparison
to the case of self-similar evolutions.

1. Perturbative regime: Weak wave turbulence

In perturbative kinetic theory, when two particles scatter
into two particles, the time evolution of the distribution
function fpðtÞ for a spatially homogeneous system is given
for not too small occupation numbers by (42). For the
example of the relativistic N-component scalar field theory
with quartic λ=ð4!NÞ interaction this is further specified by
(41). The phenomenon of weak wave turbulence is
expected for occupation numbers per mode in the regime
1 ≪ fp ≪ 1=λ, where that perturbative description is
expected to be valid. In Appendix A 2 below, we consider
the nonperturbative case of an overoccupied system.
For number conserving 2↔2 scatterings, apart from the

energy density ϵ also the total particle number density n is
conserved, which are given by ϵ ¼ R

p ωpfp and n ¼ R
p fp

with the notation
R
p ≡

R
ddp=ð2πÞd. The fact that they are

conserved may be described by a continuity equation in
momentum space, such as

∂
∂t ðωpfpÞ þ∇p · jp ¼ 0 ðA1Þ
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for energy conservation. Similarly, particle number con-
servation is described by formally replacing ωp → 1 in the
above equation and a corresponding substitution of the flux
density. For the isotropic situation we can consider the
energy flux AðkÞ through a momentum sphere of radius k.
Then only the radial component of the flux density jp is
nonvanishing andZ

k

p
∇p · jp ¼

Z
∂k
jp · dAp ≡ ð2πÞdAðkÞ: ðA2Þ

Since in this approximation ωp is constant in time, we can
write with the help of (A1) and the kinetic equation:

AðkÞ ¼ −
1

2dπd=2Γðd=2þ 1Þ
Z

k
dpjpjd−1ωpC2↔2ðpÞ:

ðA3Þ
Stationary wave turbulence is characterized by a scale-
independent flux AðkÞ, for which the respective integral
does not depend on the integration limit k. To this end, one
considers scaling solutions

fp ¼ sκfsp; ωp ¼ s−1ωsp; ðA4Þ

with occupation number exponent κ and assuming a linear
dispersion relation relevant for momenta jpj ≫ m. Since
the physics is scale invariant, we can choose s ¼ 1=jpj such
that fp ¼ jpj−κf1 and ωp ¼ jpjω1.
Using these scaling properties, one obtains for the

collision integral (41) and (42) of the theory with quartic
self-interaction:

C2↔2ðpÞ ¼ s−~μ4C2↔2ðspÞ; ðA5Þ
where the scaling exponent is given by

~μ4 ¼ ð3d − 4Þ − ðdþ 1Þ − 3κ ¼ 2d − 5 − 3κ: ðA6Þ
The first term in brackets comes from the scaling of the
integral measure, the second from energy-momentum
conservation for two-to-two scattering and the third from
the three factors of the distribution function appearing
in (42).
Similar to the discussion in Sec. IV B, to be more general

we may write for the scaling behavior of a generic collision
term for l-vertex scattering processes

CðpÞ ¼ jpj ~μlCð1Þ ðA7Þ
in terms of the scaling exponent ~μl. One obtains along these
lines

~μl ¼ ðl − 2Þd − ðlþ 1Þ − ðl − 1Þκ: ðA8Þ
For the scaling properties of the energy flux we can then
write

AðkÞ ¼ −
1

2dπd=2Γðd=2þ 1Þ
Z

k
dpjpjdþ~μlω1Cð1Þ: ðA9Þ

If the exponent in the integrand is nonvanishing, the
integral gives

AðkÞ ∼ kdþ1þ~μl

dþ 1þ ~μl
ω1Cð1Þ: ðA10Þ

Thus, scale invariance may be obtained for

dþ 1þ μl ¼ 0: ðA11Þ

This gives the scaling exponent for the perturbative

relativistic energy cascade∶ κ ¼ d −
l

l − 1
: ðA12Þ

One observes that stationary turbulence requires in this case
the existence of the limit

lim
dþ1þ ~μl→0

Cð1Þ
dþ 1þ ~μl

¼ const ≠ 0; ðA13Þ

such that the collision integral must have a corresponding
zero of first degree. Similarly, starting from the continuity
equation for particle number, one can study stationary
turbulence associated with particle number conservation.
This leads to the perturbative

relativistic particle cascade∶ κ ¼ d −
lþ 1

l − 1
: ðA14Þ

Accordingly, for quartic self-interactions we get κ ¼ d −
4=3 for the energy cascade and κ ¼ d − 5=3 for the particle
cascade. In the presence of a coherent field, when a
3-vertex can become relevant, the associated scaling
exponents are κ ¼ d − 3=2 for the energy cascade and κ ¼
d − 2 for the particle cascade. For d ¼ 3 this result from
stationary turbulence compares reasonably well with the
approximate power law observed in Sec. III B for the case
of a self-similar evolution. For the corresponding pertur-
bative nonrelativistic results we refer to the litera-
ture [3,20,21].

2. Nonperturbative regime: Strong turbulence

The above perturbative description is expected to
become invalid at sufficiently low momenta. In particular,
the occupation numbers fp ∼ jpj−κ for κ > 0 would grow
nonperturbatively large in the infrared such that the
approximation (40) becomes questionable. To understand
where the picture of weak wave turbulence breaks down
and to compute the properties of the infrared regime, we
have to consider nonperturbative approximations. For this
purpose, we employ the vertex-resummed theory as in
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Sec. V based on the expansion of the 2PI effective action in
the number of field components to NLO.
For a relativistic theory with dispersion ωp ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, the scaling assumption (A4) should be valid

for sufficiently high momenta jpj ≫ m such that the
dispersion is approximately linear with ωp ∼ jpj.
However, if a mass gap exists the infrared modes behave
effectively nonrelativistic as explained in Sec. IV C. In the
following, we will analyze the two cases of a relativistic
theory without mass gap and a nonrelativistic theory
separately for comparison.
We first look for relativistic scaling solutions in the

absence of a mass gap. To be able to cope with occupancies
of order ∼1=λ, we replace the perturbative collision term by
the vertex-resummed expression according to (87) with

Z
dΩNLOðp; l; q; rÞ≃ 1

6N

Z
∞

0

dp0dl0dq0dr0

ð2πÞ4−ðdþ1Þ

×
Z
lqr

δðpþ l − q − rÞ~ρp ~ρl ~ρq ~ρrλ2effðp; l; q; rÞ; ðA15Þ

where λ2eff is defined in (88). We emphasize that this still
involves integration over frequencies as well as spatial
momenta since no free-field form for the spectral function
~ρp ≡ ~ρðp0;pÞ is used so far, and fp ≡ fðp0;pÞ. A crucial
difference to the perturbative kinetic equation is the
appearance of the vertex function veffðp0;pÞ, which enc-
odes the emergence of a momentum-dependent effective
coupling from the NLO corrections of the 1=N expansion.
We characterize the scaling properties of the spectral

function ~ρðp0;pÞ as in (67), which takes into account a
possible anomalous dimension η. Accordingly, the scaling
behavior of the statistical correlation function

Fðp0;pÞ ¼ s2þκsFðszp0; spÞ ðA16Þ

will be described using a scaling exponent κs. This trans-
lates with the definition for fp ≫ 1 into

fðp0;pÞ ¼ sκsþηfðszp0; spÞ: ðA17Þ

Using these definitions, one can infer the scaling behavior
of veffðp0;pÞ, which is given in terms of the “one-loop”
retarded self-energy ΠRðp0;pÞ as in Sec. V B from which
follows

ΠRðp0;pÞ ¼ sΔΠRðszp0; spÞ ðA18Þ

with

Δ ¼ 4 − d − zþ κs − η: ðA19Þ

If Δ > 0 one finds the infrared scaling behavior

veffðp0;pÞ ¼ s−2Δveffðszp0; spÞ: ðA20Þ

(For Δ ≤ 0 the effective coupling would become trivial
with veff ≃ 1, on which we comment below.) Employing
these scaling properties, (A15) givesZ

dΩNLOðp; l; q; rÞ ¼ s−2κs−z−2η

×
Z

dΩNLOðszp0; szl0; szq0; szr0; sp; sl; sq; srÞ: ðA21Þ

Following the procedure of Appendix A 1, for any
conserved quantity we can compute the flux through a
momentum sphere k. Stationary turbulence solutions then
require that the respective integral does not depend on k.
Similar to (A3), the flux for this effective particle number
reads

AðkÞ ¼ −
1

2dπd=2Γðd=2þ 1Þ
Z

k
dpjpjd−1CNLOðpÞ:

ðA22Þ
The momentum integral can be evaluated along similar
lines as before using the above scaling properties such that

AðkÞ ∼ kd−κsþz−η

d − κs þ z − η
CNLOð1Þ: ðA23Þ

Therefore, scale invariance may be obtained for the [4,18]

particle cascade∶ κs ¼ dþ z − η ðA24Þ
in the nonperturbative low-momentum regime. Similarly,
for the scaling solution associated with energy conservation
one finds, taking into account the additional power of p0 in
the respective integrand, the exponent for the [4,18]

energy cascade∶ κs ¼ dþ 2z − η: ðA25Þ
With these solutions, we can now reconsider the above
assumption that Δ > 0 by plugging (A24) or (A25) into
(A19). Indeed, it is fulfilled under the sufficient condition
that η < 2. Taking into account that the anomalous dimen-
sion for scalar field theory is expected to be small for not
too low dimension, we find κs ≃ dþ 1 for the particle
cascade and κs ≃ dþ 2 for the energy cascade solution.
The scaling of the effective occupation number distri-

bution fðpÞ, which depends only on spatial momentum,
can finally be obtained from

fðpÞ þ 1

2
¼

Z
∞

0

dp0

2π
2p0 ~ρðp0;pÞ

�
fðp0;pÞ þ 1

2

	

¼
Z

∞

0

dp0

2π
2p0Fðp0;pÞ; ðA26Þ

using that
R
∞
0 dp0=ð2πÞp0 ~ρðp0;pÞ ¼ 1=2, which corre-

sponds to the field commutation relation in Fourier space.
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Of course, the scaling behavior (A16) for Fðp0;pÞ may
only be observed in a momentum regime with sufficiently
high occupancies fðpÞ as implied in the above derivation.
Then (A26) yields

fðpÞ ¼ sκsþ2−2zfðspÞ

∼

 jpj−ðdþ2−z−ηÞ rel particle cascade

jpj−ðdþ2−ηÞ rel energy cascade
: ðA27Þ

These estimates show that vertex corrections can lead to a
strongly modified infrared scaling behavior as compared to
the perturbative treatment of Appendix A 1.
We now turn to the nonrelativistic limit, which is

outlined in Sec. IV and we present here the relevant
changes as compared to the relativistic case. To this end,
we consider a nonrelativistic N-component complex scalar
field theory and perform again the 1=N expansion to NLO.
Since already the relativistic scaling exponents (A27)
indicate no explicit dependence on N at NLO—it can only
enter indirectly via η and z—this seems to be a very good
starting point to understanding also the single complex field
case of Gross-Pitaevskii.
Therefore, proceeding in the same way as for the

relativistic theory, with the corresponding scaling ansatz
for the spectral and statistical two-point functions, leads to
the very same solutions (A24) and (A25). A crucial
difference arises when the occupation number distribution
is determined. Using the nonrelativistic definition for the
distribution function, we have with the notation (70) in the
absence of a condensate:

fðpÞ þ 1

2
¼

Z
∞

0

dp0

2π
Faaðp0;pÞ: ðA28Þ

Comparison with the relativistic case shows that a differ-
ence in the scaling behavior is caused by the additional
factor of ∼p0 in the integrand of (A26). Therefore, we find
that

fðpÞ ¼ sκsþ2−zfðspÞ

∼

 jpj−ðdþ2−ηÞ nonrel particle cascade

jpj−ðdþ2þz−ηÞ nonrel energy cascade
ðA29Þ

scales with one “z” difference than the relativistic solution
(A27). This can have important consequences, such as the
fact that the scaling exponent for the nonrelativistic particle
cascade is now independent of the dynamic exponent z
describing the dispersion ωp ∼ jpjz. For d ¼ 3 and η ¼ 0
one has the scaling ∼1=jpj5. This result from stationary
turbulence is not far from the approximate power law
∼1=jpjκ> described in Sec. I B for the case of a self-similar
evolution.

APPENDIX B: TRANSPORT EQUATIONS FROM
QUANTUM FIELD THEORY

In this section, we discuss the most relevant approx-
imations involved in the derivation of the kinetic equations
used in the main text. We refer to Refs. [6,19,37,50,51] for
further details.

1. Nonrelativistic transport equations

We consider the time evolution of the statistical and
spectral propagators F and ρ≡ i~ρ defined in (71) and (69),
which obey

½iσ3ac∂x0 −MacðxÞ�Fcbðx; yÞ ¼
Z

x0

t0

dzΣρ
acðx; zÞFcbðz; yÞ

−
Z

y0

t0

dzΣF
acðx; zÞρcbðz; yÞ;

ðB1Þ

½iσ3ac∂x0 −MacðxÞ�ρcbðx; yÞ ¼
Z

x0

y0
dzΣρ

acðx; zÞρcbðz; yÞ;

ðB2Þ
where

MabðxÞ ¼ δab

�
−
∇2

2m
þ g
2
ðFccðx; xÞ þ ψcðxÞψ�

cðxÞÞ
	

þ gðFabðx; xÞ þ ψaðxÞψ�
bðxÞÞ ðB3Þ

and ψaðxÞ ¼ hψ̂aðxÞi is the macroscopic field, computed
from complex nonrelativistic quantum fields ψ̂1 ¼ ψ̂
and ψ̂2 ¼ ψ̂†.
Without approximating the self-energies, the above

equations would be exact for Gaussian initial conditions.
The approximate expressions for the statistical and spectral
parts of the self-energy Σρ and ΣF used in this paper are
given in Appendix B 3. An equation for the macroscopic
field completes the set of equations of motion in the case of
a nonzero expectation value, which will not be used in the
following. It can be found in Ref. [19].
The derivation of the transport equation for F (for ρ)

follows standard procedures. One starts by switching the
variables x and y in (B1) [in (B2)] and subtracting the new
equation from the original one. We change to Wigner
coordinates Xμ ≡ ðxμ þ yμÞ=2 and sμ ≡ xμ − yμ and
Fourier transform with respect to the relative coordinate
according to

gðX; pÞ ¼
Z

∞

−∞
dsμeipμsμg

�
X þ s

2
; X −

s
2

�
: ðB4Þ

Then one performs a gradient expansion, i.e. an expansion
in orders of ∂Xμ and ∂pμ

, keeping only the first order in this
expansion. In particular, this implies that
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Z
ddþ1sxyeipμs

μ
xy

Z
ddþ1zfðx; zÞgðz; yÞ

≈ fðX; pÞgðX; pÞ ðB5Þ

for any two functions fðx; yÞ and gðx; yÞ. Writing X0 ≡ t
and dropping the X dependence due to spatial homo-
geneity, one arrives at the transport equations to leading
order gradient expansion

∂Fab

∂t ðt;pÞ¼− iσ3ac½Fcdðt;pÞΣρ
dbðt;pÞ−ρcdðt;pÞΣF

dbðt;pÞ�;
ðB6Þ

∂ρab
∂t ðt; pÞ ¼ 0: ðB7Þ

2. Relativistic transport equations

To derive the transport equations for a relativistic scalar
n-component theory, we start with the 2PI evolution
equations for the statistical and spectral propagators

½δac□x þM2
acðxÞ�Fcbðx; yÞ ¼ −

Z
x0

t0

dzΣρ
acðx; zÞFcbðz; yÞ

þ
Z

y0

t0

dzΣF
acðx; zÞρcbðz; yÞ;

ðB8Þ

½δac□x þM2
acðxÞ�ρcbðx; yÞ ¼ −

Z
x0

y0
dzΣρ

acðx; zÞρcbðz; yÞ;

ðB9Þ

where ϕaðxÞ ¼ hφ̂aðxÞi and we define the mass function

M2
abðxÞ ¼ δab

�
m2 þ λ

6N
ðFccðx; xÞ þ ϕcðxÞϕcðxÞÞ

	

þ λ

3N
ðFabðx; xÞ þ ϕaðxÞϕbðxÞÞ: ðB10Þ

The relativistic statistical and spectral functions F and ρ are
defined in analogy to equations (71) and (69) by substitut-
ing the operators ψ̂a by scalar field operators φ̂a.
Performing a gradient expansion to lowest order as
explained in the previous subsection, one obtains the
transport equations

2p0
∂Fab

∂t ðt;pÞ¼−i½Σρ
acðt;pÞFcbðt;pÞ−ΣF

acðt;pÞρcbðt;pÞ�;
ðB11Þ

2p0
∂ρab
∂t ðt; pÞ ¼ 0: ðB12Þ

We note that the spectral function ρ is time independent for
both relativistic and nonrelativistic theories at this order of
the gradient expansion.

3. 2PI 1=N expansion to NLO

We consider here the 2PI 1=N expansion to NLO, where
we consider the case of a vanishing macroscopic field, i.e.
ϕa ¼ 0 [36]. The corresponding equations for a nonzero
field expectation value can be found in [37]. See Ref. [45]
for an introductory presentation.
At NLO the self-energies are given by

ΣF
abðx; yÞ ¼−B

�
IFðx; yÞFabðx; yÞ−

1

4
Iρðx; yÞρabðx; yÞ

�
;

ðB13Þ

Σρ
abðx; yÞ ¼−BðIρðx; yÞFabðx; yÞ þ IFðx; yÞρabðx; yÞÞ;

ðB14Þ
where Bnr ¼ g and Brel ¼ λ=3N are the nonrelativistic and
relativistic values for the prefactor B,

IFðx; yÞ ¼ ΠFðx; yÞ −
Z

x0

t0

dzIρðx; zÞΠFðz; yÞ

þ
Z

y0

t0

dzIFðx; zÞΠρðz; yÞ; ðB15Þ

Iρðx; yÞ ¼ Πρðx; yÞ −
Z

x0

y0
dzIρðx; zÞΠρðz; yÞ; ðB16Þ

and

ΠFðx; yÞ ¼ B
2
Tr

�
Fðx; yÞFðy; xÞ þ 1

4
ρðx; yÞρðy; xÞ

	
;

ðB17Þ

Πρðx; yÞ ¼ BTr½ρðx; yÞFðy; xÞ�: ðB18Þ

Here F and ρ are to be understood as matrices. Next, the
initial time is sent to the remote past t0 → −∞, and we
introduce retarded and advanced quantities as IRðx; yÞ ¼
Θðx0 − y0ÞIρðx; yÞ, IA ¼ −Θðy0 − x0ÞIρðx; yÞ and similar
for ΠR and ΠA. Then (B16) is Fourier transformed with
respect to the relative Wigner coordinate to obtain at lowest
order in the gradient expansion

IRðX; pÞ ¼ ΠRðX;pÞ
1þ ΠRðX; pÞ : ðB19Þ

Using Iρ ¼ IR − IA and proceeding in the same way with
(B15), one obtains

IFðX; pÞ ¼ veffðX; pÞΠFðX; pÞ; ðB20Þ
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IρðX; pÞ ¼ veffðX; pÞΠρðX; pÞ; ðB21Þ

with

veffðX; pÞ ¼
1

j1þ ΠRðX; pÞj2 ; ðB22Þ

and

ΠRðX; pÞ ¼ B
Z
q
FabðX; q − pÞGR

baðX; qÞ: ðB23Þ

Inserting these expressions into the transport Eq. (B6) and
(B11), one obtains the evolution equations (72) and (87),
respectively.
The effective coupling can be further simplified in the

approximation with (84), the identity

GR
baðpÞ ¼ lim

ϵ→0

Z
dω
2π

−iρbaðω;pÞ
ω − p0 − iϵ

; ðB24Þ

and the on-shell spectral functions (83) and (66) for the
nonrelativistic and relativistic theories, respectively. In this
way, one arrives at the quasiparticle expressions (58)
and (55).

APPENDIX C: SELF-ENERGY

In this section, we present a calculation of the relativistic
one-loop self-energy Πρ for d ¼ 3 to analyze its scaling
behavior. The corresponding nonrelativistic analysis

follows along similar lines. We start by writing (B18) in
Fourier space:

~Πρðt; pÞ ¼ λ

3

Z
d4q
ð2πÞ4

Z
d4k
ð2πÞ4 ð2πÞ

4δð4Þðpþ k − qÞ

× Fðt; kÞ~ρðqÞ: ðC1Þ

Here we introduced ~Πρ ≡ −iΠρ, which is real in Fourier
space, and we consider FabðX; pÞ ¼ Fðt; pÞδab and
ρabðX; pÞ ¼ ρðpÞδab. With the notation p̄≡ jpj for
momenta, the angular integrations are done by rewriting
the spatial δ function:

Z
d3q
ð2πÞ3

Z
d3k
ð2πÞ3 ð2πÞ

3δð3Þðpþ k − qÞ ¼
Z

d3q
ð2πÞ3

Z
d3k
ð2πÞ3

Z
d3zeizðpþk−qÞ

¼ 1

ð2πÞ3
Z

∞

0

dk̄k̄2
Z

∞

0

dq̄q̄2
Z

∞

0

dz̄z̄2
Z

−1

1

d cos θk

Z
−1

1

d cos θq

Z
−1

1

d cos θzeiz̄ k̄ cos θke−iz̄ q̄ cos θqeiz̄ p̄ cos θz

¼ 1

π3

Z
∞

0

dk̄
Z

∞

0

dq̄
Z

∞

0

dz̄
k̄ q̄
z̄ p̄

sinðz̄ p̄Þ sinðz̄ k̄Þ sinðz̄ q̄Þ: ðC2Þ

The integration over z̄ constrains the remaining momentum integration to the area Δðp̄Þ as shown in Fig. 12 such that
momentum is conserved. This can be seen by

Z
∞

0

dz̄
1

z̄
sinðz̄ p̄Þ sinðz̄ k̄Þ sinðz̄ q̄Þ ¼ π

8
ðsgnðk̄þ p̄ − q̄Þ þ sgnðk̄ − p̄þ q̄Þ − sgnðk̄ − p̄ − q̄Þ − sgnðk̄þ p̄þ q̄ÞÞ; ðC3Þ

and evaluating the sign-functions, which yield

Z
∞

0

dk̄
Z

∞

0

dq̄ðsgnðk̄þ p̄ − q̄Þ þ sgnðk̄ − p̄þ q̄Þ − sgnðk̄ − p̄ − q̄Þ − sgnðk̄þ p̄þ q̄ÞÞ

¼ 2

�Z
∞

p̄
dq̄

Z
p̄þq̄

0

dk̄þ
Z

p̄

0

dq̄
Z

p̄þq̄

p̄−q̄
dk̄ −

Z
∞

0

dk̄
Z

∞

p̄þk̄
dq̄

�
≡ 2

Z
Δðp̄Þ

dk̄dq̄ ¼
Z

∞

p̄
du

Z
p̄

−p̄
dv: ðC4Þ

For the last equality we introduced the variables u ¼ q̄þ k̄ and v ¼ q̄ − k̄ to conveniently integrate over the region Δðp̄Þ.

FIG. 12 (color online). Integration area Δðp̄Þ as represented by
the shaded region.
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To proceed, we employ the free-field form of the
relativistic spectral function (66), where for the massless
theory with ωp ¼ p̄ we have

~ρðp0;pÞ ¼ π

p̄
ðδðp0 − p̄Þ − δðp0 þ p̄ÞÞ: ðC5Þ

We use a distribution function as defined in (84), which for
the relevant case of fðt; pÞ ≫ 1 gives

Fðt; pÞ ¼ fðt; pÞ~ρðpÞ; ðC6Þ

with fðt;−pÞ ¼ −fðt; pÞ because of the antisymmetry of
~ρðpÞ. We further define

fðt; p̄Þ≡ fðt; p0 ¼ p̄;pÞ ¼ −fðt; p0 ¼ −p̄;pÞ: ðC7Þ

The frequency integrals contained in (C1) can be then
performed using

Z
dq0

2π

Z
dk0

2π
2πδðp0 þ k0 − q0ÞFðt; kÞ~ρðqÞ ¼ π

2q̄ k̄
fðt; k̄Þfδðp0 − q̄ − k̄Þ þ δðp0 − q̄þ k̄Þ

− δðp0 þ q̄þ k̄Þ − δðp0 þ q̄ − k̄Þg; ðC8Þ

and the self-energy (C1) reads with (C2)–(C4) and (C8)

~Πρðt;pÞ ¼ λ

48π

1

p̄

Z
∞

p̄
du

Z
p̄

−p̄
dvf

�
t;
u− v
2

�
fδðp0 − uÞ þ δðp0 − vÞ− δðp0 þ uÞ− δðp0 þ vÞg

¼ λ

48π

1

p̄
sgnðp0Þ



Θðjp0j− p̄Þ

Z
p̄

−p̄
dvf

�
t;
jp0j− v

2

�
þΘðp̄− jp0jÞ

Z
∞

p̄
du

�
f

�
t;
u− jp0j

2

�
− f

�
t;
uþ jp0j

2

���

¼ λ

24π

1

p̄
sgnðp0Þ

Z ðjp0jþp̄Þ=2

jjp0j−p̄j=2
dk̄fðt; k̄Þ: ðC9Þ

From the definition of the retarded ΠRðx; yÞ ¼
Θðx0 − y0ÞΠρðx; yÞ and advanced ΠAðx; yÞ ¼
−Θðy0 − x0ÞΠρðx; yÞ follows

ΠRðt; pÞ ¼ lim
ϵ→0

Z
dk0

2π

~Πρðt; k0;pÞ
k0 − p0 − iϵ

¼ ΠAðt; pÞ�; ðC10Þ

where “*” denotes complex conjugation. From this we
observe that ΠR shows the same scaling behavior as Πρ.
Hence, with (C9) and taking the distribution function to
scale as in (29) one finds

ΠRðt; p0; p̄Þ ¼ sα=βΠRðs−1=βt; sp0; sp̄Þ: ðC11Þ
The same scaling follows also from (55), where the angular
integration has not been performed, with ωp ¼ p̄ for d ¼ 3.

APPENDIX D: EXTRACTING SCALING
EXPONENTS FOR A SELF-SIMILAR

EVOLUTION

In Secs. II and III we observed that the nonrelativistic
and relativistic N ¼ 2 and N ¼ 4 theories evolve in a self-
similar way, characterized by (1). We extract the pair of
scaling exponents ðα; βÞ and estimate their uncertainties

from this self-similar evolution. For our analysis, we use a
similar least-squares method as introduced in Ref. [13]. In
the following, we describe the method used in the
present paper.
At first, we quantify the deviation from the self-similar

evolution of the distribution function. Using the notation
p̄≡ jpj, for each pair ðα; βÞ the spectra at several times are
rescaled according to

frescðt; p̄Þ ¼ ðt=trefÞ−αfðt; ðt=trefÞ−βp̄Þ: ðD1Þ

We use the distribution at the earliest time tref as a reference
and the distributions at the Ncom later times for comparison.
A perfectly self-similar evolution (1) implies Δfðt; p̄Þ≡
frescðt; p̄Þ − fðtref ; p̄Þ ¼ 0 such that the rescaled distribu-
tion function becomes time independent.
However, this equality is in general only true for the

correct set of scaling exponents and is in practice violated
due to statistical uncertainties of the data and systematic
deviations from the perfect scaling behavior. Minimizing
the deviations yields the best fit for the scaling exponents,
and the study of the distribution of the deviations gives an
estimate for the uncertainties of the exponents. We quantify
the deviations by
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χ2ðα; βÞ ¼ 1

Ncom

XNcom

k¼1

R
dðlogðp̄ÞÞðΔfðtk; p̄Þ=fðtref ; p̄ÞÞ2R

dðlogðp̄ÞÞ ;

ðD2Þ

where we sum over all relative deviations for each
comparison spectrum. We use integration over dðlogðp̄ÞÞ
to increase the sensitivity at low momenta. The upper limit
of integration is given by the highest momentum included
in the inverse particle cascade, i.e. the last point of the
approximate 1=p̄κ> power law of the reference distribution
function. Since the spectra are binned in momentum space,
the integrals translate to sums over momentaR
dðlogðp̄ÞÞ → Pnk−1

i¼1 logðp̄iþ1=p̄iÞ, where p̄iþ1 > p̄i are
the discrete momenta of each testing spectrum k with
possibly a different number of bins nk. To compute the
difference Δfðtk; p̄iÞ, we linearly interpolate momenta of
the reference spectrum to coincide with the discrete
momenta of the rescaled spectra.

The deviation χ2ðα; βÞ is minimal for the best fit of the
scaling exponents ᾱ and β̄. In analogy to Ref. [13], we
define the likelihood function of a given set of exponents
ðα; βÞ as

Wðα; βÞ ¼ 1

N
exp

�
−

χ2ðα; βÞ
2χ2ðᾱ; β̄Þ

	
; ðD3Þ

where N is a normalization constant such that the integralR
dαdβW ¼ 1. Integrating Wðα; βÞ over one of the expo-

nents provides a marginal likelihood function for the other
one, e.g. WðαÞ ¼ R

dβWðα; βÞ. Approximating the mar-
ginal likelihood functions with Gaussian distributions, we
obtain an estimate for the standard deviations σα and σβ,
while the means are still given by ᾱ and β̄. Our thus
measured scaling exponents are finally written in the form

α ¼ ᾱ� σα; β ¼ β̄ � σβ: ðD4Þ
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