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In the literature, the interference phenomenon in the particle creation via the dynamical Casimir effect is
investigated for cavities with two moving mirrors. Here, considering the Robin boundary condition (BC),
we investigate the interference phenomenon produced by just a single moving mirror. Specifically, we
consider a real massless scalar field in 1þ 1 dimensions submitted to a Robin BC with a time-dependent
Robin parameter at the instantaneous position of a moving mirror, and compute the expressions for the
spectral distribution and the rate of created particles. These expressions, which include interference terms,
generalize those found in the literature related to the isolated effects of a Robin BC with a time-dependent
Robin parameter for a fixed mirror, or a Robin BC with a time-independent Robin parameter for a moving
mirror. Differently from models where the problem of interference in the dynamical Casimir effect is
considered for cavities with two Dirichlet moving mirrors, in the present model the spectrum is a
continuum, and the interference pattern exhibits new features, in the sense that different regions of the
spectrum can be affected in different manners by constructive or destructive effects. Furthermore, we also
investigate interference in the context of superconducting circuits.

DOI: 10.1103/PhysRevD.92.025040 PACS numbers: 03.70.+k, 11.10.-z, 42.50.Lc

I. INTRODUCTION

The particle creation from a vacuum induced by the
interaction of uncharged mirrors, whose position or
material properties vary in time, with quantized fields is
frequently called the dynamical Casimir effect (DCE), a
denomination introduced by Yablonovitch [1] and rein-
forced by Schwinger [2]. This phenomenon was first
investigated in the pioneering works of Moore [3],
DeWitt [4], Fulling and Davies [5]. A large number of
DCE theoretical predictions have been presented in the last
45 years (see Ref. [6] for more details). The first obser-
vation of the DCE was performed by Wilson and collab-
orators [7,8]. They considered a time-dependent magnetic
flux applied in a superconducting circuit, which consists in
a coplanar waveguide (transmission line) with a super-
conducting quantum interference device (SQUID) at one of
the extremities, changing the inductance of the SQUID.
This configuration simulates a moving mirror whose
effective velocity is a non-neglected fraction of the speed
of light, leading to a measurable particle creation rate. The
second observation of the DCE was announced by
Lähteenmäki et al. [9], and other experimental proposals
for the observation of the DCE can be found in
Refs. [10–13].

In the theoretical model of the first observation of the
DCE [8], the Robin boundary condition (BC) appears
naturally. In such model, the electromagnetic field in the
coplanar waveguide is described by a phase field operator
represented by a scalar field ϕðt; xÞ which obeys the wave
equation in 1þ 1 dimensions [8]. Appropriate Kirchhoff
laws applied to the superconducting circuit leads to the BC

ϕðt; 0Þ ¼ γðtÞð∂xϕÞðt; 0Þ; ð1Þ

which corresponds to the Robin BC with a time-dependent
Robin parameter γðtÞ, for a fixed mirror. This BC was also
considered in the context of the DCE in Refs. [14–17].
The DCE in the context of a Robin BC was first

investigated in Refs. [18,19], where the authors considered
a massless scalar field ϕðt; xÞ submitted to a Robin BC with
a time-independent Robin parameter γ0 at the instantaneous
position of a moving mirror, observed from the point of
view of an inertial frame where the mirror is instanta-
neously at rest (called tangential frame), namely,

ϕ0ðt0; 0Þ ¼ γ0ð∂x0ϕ
0Þðt0; 0Þ; ð2Þ

where the prime superscripts means that the BC is taken in
the tangential frame. For particular values of γ0 it has been
shown the occurrence of a drastic reduction in the particle
creation rate, if compared to the similar problem with
Dirichlet or Neumann BC, indicates a strong decoupling
between mirror and field [18,19]. This inhibition of the
DCE with Robin BC also occurs in 3þ 1 dimensions [20].
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Here, we investigate the DCE in the context of a single
moving mirror, but with two sources of particle creation.
Specifically, we consider a real massless scalar field in
1þ 1 dimensions submitted to a Robin BC with a time-
dependent Robin parameter at the instantaneous position of
a moving mirror, and compute the spectral distribution and
the rate of created particles. This situation is described by
the following Robin BC,

ϕ0ðt0; 0Þ ¼ γ0ðt0Þð∂x0ϕ
0Þðt0; 0Þ: ð3Þ

This Robin BC (3) is more general than those shown in
Eqs. (1) and (2), in the sense that a moving mirror with
properties varying in time acts as two simultaneous and
distinct sources of particle creation, which can produce
interference effects, generalizing the models considered in
Refs. [14,19].
In the literature, interference phenomena in the DCE

have been investigated for oscillating cavities with two
moving mirrors [21–24]. In these articles, constructive and
destructive interference in the spectral distribution of
created particles are exhibited, depending on the relations
among amplitude, oscillation frequency, and phase differ-
ence. Specifically, in Ref. [21], the authors considered a
cavity with two oscillating Dirichlet mirrors, showing that
the discrete spectrum Nk of created particles for the kth
mode in an oscillating cavity is given by

Nk ¼ NL
k þ NR

k þ ð−1Þsþ12

ffiffiffiffiffiffiffiffiffiffiffiffiffi

NL
kN

R
k

q

cos β; ð4Þ

where NL
k and NR

k are, respectively, the spectrum generated
by the left and the right mirror individually, s is an integer
number (defined by the ratio between the oscillation
frequency of the mirrors and the fundamental mode-
frequency of the field within the cavity [21]), and β is
the phase difference. We remark that, according to Eq. (4),
the interference effect does not depend on k, thus the
interference effect for a given created mode will be the
same for any other created mode.
As mentioned in Ref. [21], except for the factor ð−1Þsþ1,

the Eq. (4) for the created particles resembles the well-
known formula for the wave intensity I in the case of the
double-slit interference experiment, given by

I ¼ I1 þ I2 þ 2
ffiffiffiffiffiffiffiffi

I1I2
p

cos δ; ð5Þ

where I1 and I2 are the intensities of the waves from each
slit, and δ is the phase difference between the amplitudes.
We can see this resemblance as a manifestation of the wave-
particle duality.
In the present paper, we obtain the formula correspond-

ent to Eq. (4) but for the case of a real massless scalar field
submitted to the BC (3) at a single moving mirror.
Differently from Eq. (4), in the model discussed here the
spectrum is a continuum, and the interference pattern

exhibits new features, in the sense that different regions
of the created spectrum can be affected in different manners
by constructive or destructive effects. We also discuss the
problem of the interference in the context of the SQUID
experiment [7,8], specifically considering the Eq. (1), but
with γðtÞ associated with the presence of two sources of
magnetic flux, different in phase and frequency.
The paper is organized as follows. In Sec. II, we use the

scattering approach [25–27] in order to obtain the scattering
matrix for the problem, which is used in the computation
of the spectrum of the created particles. In Sec. III, we
compute this spectrum considering typical functions for the
moving mirror and time variation of the Robin parameter,
and we also discuss the presence of constructive and
destructive interference, comparing our results with those
found in the literature. In Sec. IV, we investigate the
problem of the interference in the context of the SQUID
experiment. Final remarks are presented in Sec. V.
Throughout this paper we consider c ¼ ℏ ¼ 1.

II. THE SCATTERING MATRIX

We start by considering a real and massless scalar field
obeying the Klein-Gordon equation in 1þ 1 dimensions,

ð∂2
t − ∂2

xÞϕðt; xÞ ¼ 0: ð6Þ
This field corresponds to the sum of two counterpropagat-
ing fields, namely,

ϕðt; xÞ ¼ ~φðt − xÞ þ ~ψðtþ xÞ: ð7Þ
Conveniently, these components of the field can be grouped
in a column matrix

~Φðt; xÞ ¼
�

~φðt − xÞ
~ψðtþ xÞ

�

: ð8Þ

For the case of a free field, the solution of Eq. (6) is
given by

ϕðt; xÞ ¼
Z

dω
ffiffiffiffiffiffiffiffiffiffiffi

4πjωjp ½aðωÞe−ijωjteiωx þ H:c:�; ð9Þ

where H:c: represents the Hermitian conjugate of the
previous term, and aðωÞ is the annihilation operator
which obeys the relation ½aðωÞ; a†ðω0Þ� ¼ δðω − ω0Þ.
It is convenient to rewrite Eq. (9) as

ϕðt; xÞ ¼
Z

dω
ffiffiffiffiffiffi

2π
p ½φðωÞe−iωðt−xÞ þ ψðωÞe−iωðtþxÞ�; ð10Þ

where the operators φðωÞ and ψðωÞ are given by

φðωÞ ¼ 1
ffiffiffiffiffiffiffiffiffi

2jωjp ½ΘðωÞaðωÞ þ Θð−ωÞa†ð−ωÞ�; ð11Þ
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ψðωÞ ¼ 1
ffiffiffiffiffiffiffiffiffi

2jωjp ½ΘðωÞað−ωÞ þ Θð−ωÞa†ðωÞ�; ð12Þ

and ΘðωÞ is the Heaviside step function. In the presence of
a static mirror fixed at x ¼ 0, the field can be rewritten as

ϕðt; xÞ ¼ ΘðxÞϕRðt; xÞ þ Θð−xÞϕLðt; xÞ; ð13Þ
where ϕR (ϕL) is the field in the right (left) side of the
mirror. Both ϕR and ϕL obey Klein-Gordon equation and
can be written as

ϕRðt; xÞ ¼
Z

dω
ffiffiffiffiffiffi

2π
p ½φoutðωÞeiωx þ ψ inðωÞe−iωx�e−iωt;

ð14Þ

ϕLðt; xÞ ¼
Z

dω
ffiffiffiffiffiffi

2π
p ½φinðωÞeiωx þ ψoutðωÞe−iωx�e−iωt;

ð15Þ

where the subscripts in and out represent the incoming and
the outgoing fields, respectively.
As required by causality, the incoming fields are the free

fields described by Eqs. (11) and (12). The outgoing fields
correspond to the incoming ones modified by the inter-
action with the mirror. In order to obtain the outgoing
fields, following the Refs. [25–27], we consider the linear
relation

ΦoutðωÞ ¼ SðωÞΦinðωÞ; ð16Þ
where

ΦoutðωÞ ¼
�

φoutðωÞ
ψoutðωÞ

�

; ΦinðωÞ ¼
�

φinðωÞ
ψ inðωÞ

�

; ð17Þ

and SðωÞ is a 2 × 2 unitary matrix denominated scattering
matrix (or S-matrix). In this sense, the outgoing fields are
completely described if the S-matrix is known. For a static
and perfect reflecting mirror, the outgoing fields coincide
with the incoming ones except for a phase factor, namely,

φoutðωÞ ¼ eiθðωÞψ inðωÞ; ψoutðωÞ ¼ e−iθðωÞφinðωÞ:
ð18Þ

For this case the S-matrix is given by

SðωÞ ¼
�

0 eiθðωÞ

e−iθðωÞ 0

�

: ð19Þ

The elements in the secondary diagonal of the S-matrix are
the reflection coefficients of the mirror, which are unitary in
modulus since the mirror is perfect reflecting. The main
diagonal is null for the same reason.

Heretofore, the BC has not been specified and the
reflecting coefficients [Eq. (19)] represent a generic perfect
mirror. As a particular application, let us consider the Robin
BC with a time-independent Robin parameter,

ϕðt; 0Þ ¼ γ0ð∂xϕÞðt; 0Þ: ð20Þ

In this case, it is straightforward to show that

eiθðωÞ ¼ − 1þ iγ0ω
1 − iγ0ω

: ð21Þ

As expected from the Robin BC, when γ0 → 0 the
reflection coefficients equivalent to the Dirichlet BC are
recovered [θðωÞ ¼ π], and when γ0 → ∞ the recovered
reflection coefficients are those equivalent to the Neumann
BC [θðωÞ ¼ 0].
From this point, we shall apply the same scattering

procedure for the DCE. First, let us derive the S-matrix for
the case of a mirror fixed at x ¼ 0 imposing to the field the
Robin BC with a time-dependent Robin parameter, namely,

ϕðt; 0Þ ¼ γðtÞð∂xϕÞðt; 0Þ: ð22Þ

For the sake of simplicity, we assume that γðtÞ slightly
oscillates around a constant value γ0 with a small amplitude
ϵ~γ0, thus

γðtÞ ¼ γ0 þ ϵ~γ0fðtÞ; ð23Þ

with jfðtÞj ≤ 1 and 0 < ϵ < 1. Applying Eq. (22) in
Eqs. (14) and (15) and neglecting terms Oðϵ2Þ we obtain
the following expression in the Fourier domain,

ΦoutðωÞ ¼ SðωÞΦinðωÞ þ
Z

dΩ
2π

δSΓðω;ΩÞΦinðΩÞ;

ð24Þ

where

δSΓðω;ΩÞ ¼ −iϵ~γ0ΩFðω −ΩÞ½SðωÞηω − ηωSðΩÞ�;
ð25Þ

ηω ¼ η0 þ iγ0ω
1þ γ20ω

2
; η0 ¼

�

1 0

0 −1
�

; ð26Þ

and FðωÞ is the Fourier transform of fðtÞ.
We have calculated in Eq. (24) a first-order correction for

the S-matrix due to the time-dependent Robin parameter,
for a fixed mirror. Now, let us proceed to the case of a
time-dependent Robin parameter, but for a moving mirror.
This situation is described by the BC shown in Eq. (3).
The movement of the mirror, represented by qðtÞ, is set as
nonrelativistic (j _qðtÞj ≪ 1) and oscillatory with small
amplitude ϵ ~q0, thus
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qðtÞ ¼ ϵ ~q0gðtÞ; ð27Þ
with jgðtÞj ≤ 1. In this approximation, we consider that the
Lorentz transformation does not affect the Robin param-
eter, then γ0ðt0Þ ¼ γðtÞ. We assume that the relation between
output and input fields in the tangential frame is also
described by the Eq. (24), namely,

Φ0
outðωÞ ¼ S0ðωÞΦ0

inðωÞ þ
Z

dΩ
2π

δSΓðω;ΩÞΦ0
inðΩÞ:

ð28Þ

Let us seek for the expression of Φ0
out and Φ0

in in the
laboratory frame. In order to calculate the needed Lorentz
transformation, we start from the relation

~Φ0ðt0; 0Þ ¼ ~Φðt; ϵ ~q0gðtÞÞ; ð29Þ
which can be rewritten as

~Φ0ðt0; 0Þ ¼ ½1 − ϵ ~q0gðtÞη0∂t� ~Φðt; 0Þ þOðϵ2Þ; ð30Þ
and likewise

dt0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ϵ2 ~q20 _g
2ðtÞ

q

dt ¼ dtþOðϵ2Þ: ð31Þ

Since the movement is nonrelativistic, the terms Oðϵ2Þ are
negligible and, consequently, the time in laboratory frame
coincides with the time in tangential frame. Thus, we shall
rewrite the Eq. (30) replacing t0 by t:

~Φ0ðt; 0Þ ¼ ½1 − ϵ ~q0gðtÞη0∂t� ~Φðt; 0Þ: ð32Þ
In the Fourier domain the previous equation becomes

Φ0ðωÞ ¼ ΦðωÞ þ ϵ

Z

dΩ
2π

iη0Ω ~q0Gðω −ΩÞΦðΩÞ; ð33Þ

where GðωÞ is the Fourier transform of gðtÞ, ΦðωÞ, and
Φ0ðωÞ are short notations for Φðω; 0Þ and Φ0ðω; 0Þ
Applying Eq. (33), properly indexed with “out” or

“in,” in Eq. (28) and neglecting terms Oðϵ2Þ we obtain

ΦoutðωÞ ¼ SðωÞΦinðωÞ þ
Z

dΩ
2π

δSΓðω;ΩÞΦinðΩÞ

þ
Z

dΩ
2π

δSQðω;ΩÞΦinðΩÞq; ð34Þ

where δSΓðω;ΩÞ is given by Eq. (25) and

δSQðω;ΩÞ ¼ iϵ ~q0ΩGðω −ΩÞ½SðωÞη0 − η0SðΩÞ�: ð35Þ

The Eq. (34) contains two first-order corrections for the
S-matrix, one due to the time-dependent properties of the
mirror, other due to the movement. With the aid of this

expression, we shall compute the spectrum of particles
creation in next section.

III. INTERFERENCE FOR A MOVING MIRROR
WITH A TIME-DEPENDENT

ROBIN PARAMETER

The total number of created particles for the problem
under investigation is

N ¼
Z

∞

0

dω
2π

NðωÞ; ð36Þ

where NðωÞ is the spectral distribution of created particles,
given by [25–27]

NðωÞ ¼ 2ωTr½h0injΦoutð−ωÞΦT
outðωÞj0ini�; ð37Þ

and the input field is assumed to be in the vacuum state.
Inserting Eq. (34) in Eq. (37) and considering the formula

h0injΦinðωÞΦT
inðω0Þj0ini ¼

π

ω
δðωþ ω0ÞΘðωÞ; ð38Þ

obtained from Eqs. (11) and (12), it is straightforward to
show that [27],

NðωÞ ¼
Z

∞

0

dω0

2π

ω

ω0 Tr½δSðω;−ω0ÞδS†ðω;−ω0Þ�; ð39Þ

where δS ¼ δSΓ þ δSQ.
The last equation leads to an expression for the particle

creation spectrum composed by the sum of three different
terms, namely,

NðωÞ ¼ NγðωÞ þ NqðωÞ þ NintðωÞ: ð40Þ

The first one is given by

NγðωÞ ¼
8ωϵ2 ~γ20
1þ γ20ω

2

Z

∞

0

dΩ
2π

Ω
1þ γ20Ω2

jFðωþΩÞj2; ð41Þ

which is equivalent to the spectrum of particles created by a
fixed mirror with time-dependent properties that imposes
the BC given by Eq. (1) to the field. It is in concordance
with Ref. [14]. The second one,

NqðωÞ ¼
8ωϵ2 ~q20
1þ γ20ω

2

Z

∞

0

dΩ
2π

Ωð1 − γ20ωΩÞ2
1þ γ20Ω2

jGðωþΩÞj2;

ð42Þ

is equivalent to the spectrum of particles created by a
moving mirror that imposes the BC given by Eq. (2) to the
field. This formula is in agreement with the results of
Ref. [19]. The last term, NintðωÞ, is a new term which
accomplishes the interference effect, given by
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NintðωÞ ¼ − 8ωϵ2 ~γ0 ~q0
1þ γ20ω

2

Z

∞

0

dΩ
2π

Ωð1 − γ20ωΩÞ
1þ γ20Ω2

× 2Re½GðωþΩÞF�ðωþ ΩÞ�: ð43Þ

This term is originated by the fact that a moving mirror with
time-dependent properties works as two distinct sources of
particle creation. Notice that constructive or destructive
interference patterns can be produced, depending on the
movement and on the time-dependent Robin parameter.
In order to investigate the influence of the interference

term in the spectrum of created particles, we shall consider
the typical functions

fðtÞ ¼ cosðω1tÞ expð−jtj=τÞ; ð44Þ

gðtÞ ¼ cosðω2tþ ϑÞ expð−jtj=τÞ; ð45Þ

where τ is the time for which the oscillation occurs
effectively; ω1 and ω2 represent the characteristic frequen-
cies; ϑ is a phase constant. The Fourier transforms of fðtÞ
and gðtÞ are given, respectively, by

FðωÞ ¼ 2τ½1þ τ2ðω2 þ ω2
1Þ�

½1þ ðω − ω1Þ2τ2�½1þ ðωþ ω1Þ2τ2�
; ð46Þ

GðωÞ ¼ 2τ½1þ τ2ðω2 þ ω2
2Þ� cosϑþ 4iωω2τ

3 sin ϑ
½1þ ðω − ω2Þ2τ2�½1þ ðωþ ω2Þ2τ2�

:

ð47Þ

Hereafter, using Eqs. (46) and (47), we analyze the
behavior of NγðωÞ=τ, NqðωÞ=τ and NintðωÞ=τ in the
monochromatic limit, ω1τ ≫ 1 and ω2τ ≫ 1 (see
Appendix). Considering Eqs. (A1) and (A2), one gets

NγðωÞ
τ

¼ ϵ2

π

~γ20ωðω1 − ωÞΘðω1 − ωÞ
ð1þ γ20ω

2Þð1þ ðω1 − ωÞ2γ20Þ
; ð48Þ

which is in agreement with Ref. [14], and

NqðωÞ
τ

¼ ϵ2

π

~q20ωðω2 − ωÞ½1 − ωðω2 − ωÞγ20�2Θðω2 − ωÞ
ð1þ γ20ω

2Þð1þ ðω2 − ωÞ2γ20Þ
;

ð49Þ

which is in accordance with Ref. [19]. The interference
term requires a more careful analysis, because its behavior
depends on the relation between ω1 and ω2. When
ω1 ≠ ω2, the terms involving Re½GðωÞF�ðωÞ�=τ behaves
as shown in Eq. (A3), what leads to

NintðωÞ=τ ¼ 0; ðω1 ≠ ω2Þ: ð50Þ

On the other hand, when ω1 ¼ ω2 ¼ ω0 the terms involv-
ing Re½GðωÞF�ðωÞ�=τ behaves as shown in Eq. (A4),
so that

NintðωÞ
τ

¼ −2ϵ2 ~γ0 ~q0
π

ωðω0 − ωÞ½1 − ωðω0 − ωÞγ20�
ð1þ γ20ω

2Þð1þ ðω0 − ωÞ2γ20Þ
× cosϑΘðω0 − ωÞ; ðω1 ¼ ω2 ¼ ω0Þ: ð51Þ

Notice that the Eq. (51) can be rewritten in terms of NqðωÞ
and NγðωÞ as

NintðωÞ ¼ −sgn½IðωÞ�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NqðωÞNγðωÞ
q

cos ϑ; ð52Þ

where IðωÞ≔ 1 − ωðω0 − ωÞγ20. Next, we will discuss
some features of this interference term.
The presence of the frequency-dependent term IðωÞ

produces an interesting effect: different regions of the
spectrum can be affected in different manners by con-
structive or destructive interference. For γ0ω0 ≤ 2, the
function IðωÞ presents the same sign for any ω and,
therefore, the interference effect presents the same nature
for any frequency: destructive if 0 ≤ ϑ < π=2 and con-
structive if π=2 < ϑ ≤ π (see dotted, asterisk and dash-
dotted lines in Fig. 1). On the other hand, for γ0ω0 > 2 the
term IðωÞ presents two real roots (symmetrical with respect
to ω0=2) given by

ω� ¼ γ20ω0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ40ω
2
0 − 4γ20

p

2γ20
: ð53Þ

If 0 ≤ ϑ < π=2 the interference is destructive for ω < ω−
and ω > ωþ, and constructive for ω− < ω < ωþ (see, for
instance, the long-dashed line in Fig. 1); if π=2 < ϑ ≤ π,
the opposite behavior occurs. The limiting case γ0ω0 ≫ 2
leads to ω− → 0 and ωþ → ω0 (see space-dashed and solid
lines in Fig. 1), so that the nature of the interference effect

FIG. 1 (color online). NintðωÞ=ð2ϵ2τ~γ0 ~q0π−1Þ as a function of ω
for some values of γ0, considering ϑ ¼ 0 and ω0 ¼ 1.
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tends to become the same for any frequency again (con-
structive if 0 ≤ ϑ < π=2 or destructive if π=2 < ϑ ≤ π).
The case of null interference for different frequencies,

shown in Eq. (50), has similarity with the result found in the
problem of a cavity with two oscillating Dirichlet mirrors,
in which different frequencies of oscillation of the mirrors
also leads to a null interference [21].
We see from Eqs. (48), (49), and (51) that there are no

created particles with frequency ω > ω0 due to interfer-
ence, and the interference spectrum is symmetrical with
respect to ω ¼ ω0=2, since it is invariant under the change
ω → ω0 − ω for any value of the parameters ϵ, τ, ϑ, γ0, ~γ0,
and ~q0. These properties are also found in the other terms
Nq and Nγ .
Now, let us investigate how the rate of created particles

(N =τ) is affected by the interference. Inserting Eq. (40) in
(36), we obtain the formula for the total number of created
particles given by N ¼ N q þN γ þN int. The noninter-
ference terms N q and N γ are respectively given by

N qðω0; γ0; ~q0Þ ¼ ðϵ2τ ~q20ω3
0=πÞF ðγ0ω0Þ; ð54Þ

N γðω0; γ0; ~γ0Þ ¼ ðϵ2τ~γ20ω3
0=πÞGðγ0ω0Þ; ð55Þ

where

F ðαÞ ¼ αðα3 þ 4αþ 12 arctan αÞ − 6ð2þ α2Þ lnð1þ α2Þ
6α2ðα2 þ 4Þ ;

ð56Þ

GðαÞ ¼ ðα2 þ 2Þ lnð1þ α2Þ − 2α arctanα
α4ðα2 þ 4Þ : ð57Þ

These equations are in agreement with the results of
Refs. [14,19], respectively. The contribution due to the
interference is given by

N intðω0; γ0; ~γ0; ~q0;ϑÞ ¼ − 2ϵ2τ~γ0 ~q0ω3
0 cosϑ

π
Iðγ0ω0Þ;

ð58Þ

where

IðαÞ ¼ α½lnð1þ α2Þ − 4 − α2� þ 2ð2þ α2Þ arctanα
α2ðα2 þ 4Þ :

ð59Þ

From Eq. (58), one can see that the nature of the
interference effect depends only on the values of γ0ω0

and ϑ. If 0 ≤ ϑ < π=2, the interference is destructive for
0 < γ0ω0 < 2.23 and constructive for γ0ω0 > 2.23 (see the
solid line in Fig. 2). The opposite behavior occurs if
π=2 < ϑ ≤ π. For the specific value γ0ω0 ≈ 2.23, there is
no net interference effect in the total number of created

particles (N int ¼ 0). However this does not mean that the
interference effect is suppressed if γ0ω0 ≈ 2.23: the spectral
distribution of created particles is rearranged (see the long-
dashed line in Fig. 1). For the specific value ϑ ¼ π=2, the
interference effect is completely cancelled.
It is worthwhile to remark that, in the literature, the value

γ0ω0 ≈ 2.23 has already been linked to interesting situa-
tions concerning the DCE with Robin BC. Mintz et al. [18]
reported a drastic inhibition of the particle creation rate
when this value is achieved. In addition, the inhibition of
the DCE with Robin BC in 3þ 1 dimensions is more
expressive for the same particular value [20].

IV. INTERFERENCE IN THE CONTEXT
OF THE SQUID EXPERIMENT

Now, we use some formulas considered in the previous
sections and in Appendix to investigate the interference
phenomenon in the context of the SQUID experiment [7,8].
This experiment uses a superconducting coplanar wave-
guide with capacitance and inductance per unit of length,
respectively, C0 and L0, and a SQUID at one of the
extremities of the waveguide. In this context, a time-
dependent magnetic flux is applied to the SQUID, chang-
ing its effective inductance, resulting in a time-dependent
BC. Due to the presence of Josephson junctions in the
system, a phase field operator ϕðt; xÞ associated to the
electromagnetic field in the waveguide obeys the wave
equation and the Robin BC shown in Eq. (1), where the
parameter γðtÞ is given by

γðtÞ ¼ −Φ2
0½ð2πÞ2EJðtÞL0�−1: ð60Þ

In the previous formula, Φ0 is the magnetic fundamental
quantum flux, L0 is the inductance per unit length of the

FIG. 2 (color online). The rate of created particles (short-
dashed line) and its individual parts as functions of ω0,
considering γ0 ¼ 1, ϑ ¼ 0, and ~q0 ¼ ~γ0 ¼ 1. The dot-dashed
line corresponds to ½π=ðϵ2τÞ�N q. The long-dashed line corre-
sponds to ½π=ðϵ2τÞ�N γ , whereas the solid line corresponds to
½π=ðϵ2τÞ�N int. The value γ0ω0 ≈ 2.23 is the border between
constructive and destructive effects.
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waveguide, and EJðtÞ is the effective Josephson energy.
The time-dependent magnetic flux drives a small-amplitude
harmonic variation in the Josephson energy, namely,
EJðtÞ ¼ E0

J½1þ ϵfðtÞ�, which leads to the following
time-dependent Robin parameter

γðtÞ ≈ γ0½1 − ϵfðtÞ�; ð61Þ

where γ0 ¼ −Φ2
0½ð2πÞ2E0

JL0�−1. The resulting spectral
distribution of this system is given by Eq. (48), with
~γ0 ¼ γ0.
Now, we consider two independent sources of magnetic

flux, which can present different phases and frequencies,
both sources driving harmonic variations in the Josephson
energy of the SQUID, leading to the following time-
dependent Robin parameter,

γðtÞ ≈ γ0½1 − ϵ1f1ðtÞ − ϵ2f2ðtÞ�; ð62Þ

where

f1ðtÞ ¼ cos ðω1tÞe−jtj=τ; ð63Þ

f2ðtÞ ¼ cos ðω2tþ ϑÞe−jtj=τ: ð64Þ

From Eqs. (A1), (A2), and (A3), we have that, if
ω1 ≠ ω2, the spectrum of created particles is the direct
sum of the spectrum generated by each one of the sources
of magnetic flux, with a null interference term:

NγðωÞ ¼ Nð1Þ
γ ðωÞ þ Nð2Þ

γ ðωÞ; ð65Þ

where,

Nð1Þ
γ ðωÞ ¼ ϵ21τ

π

γ20ωðω1 − ωÞΘðω1 − ωÞ
ð1þ γ20ω

2Þð1þ ðω1 − ωÞ2γ20Þ
; ð66Þ

Nð2Þ
γ ðωÞ ¼ ϵ22τ

π

γ20ωðω2 − ωÞΘðω2 − ωÞ
ð1þ γ20ω

2Þð1þ ðω2 − ωÞ2γ20Þ
: ð67Þ

Equation (65) predicts, for different frequencies, a simple
addition of the spectra, what generates asymmetrical final
shapes, as, for instance, that shown in Fig. 3.
As an application of this result, let us consider the

value for γ0 considered in the context of the SQUID
experiment, relabeled conveniently as γ0 exp, given by
γ0 exp ¼ −0.44 × 10−3 m. We also consider the following
values for the other relevant quantities for the SQUID
experiment: ω1 ¼ 2π × 10.30 GHz, ϵ1 ¼ 0.25 and v ¼
1.2 × 108 m=s [7,8], where v ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi

C0L0

p
is the speed

of light in the waveguide. In addition, we also consider the
presence of a second source of magnetic flux, for which
ω2 ¼ σω1 (with 0 < σ < 1) and ϵ2 ¼ ϵ1. In the presence of
both sources, the modified spectrum of created particles can
present one or two maximum points. For σ ≤ 1=3 there is

just one peak at ω ¼ ω1=2. Setting 1=3 < σ < 1=2 one gets
two peaks: one at ω ≈ ω1ðσ þ 1Þ=4 and other at ω ¼ ω1=2.
Specifically, if σ ≈ 0.41, the two peaks have approximately
the same height. If 1=2 ≤ σ < 1 one gets only one peak at
ω ≈ ω1ðσ þ 1Þ=4. For instance, the case for which σ ¼ 1=2
is shown in Fig. 3, where we can see that, in comparison
with the usual spectrum based on a single source (dashed
line), one gets a modified spectrum (continuous line)
presenting a larger number of created particles and also
a maximum point deviated from ω ¼ ω1=2 to ω ≈ 3ω1=8.
In summary: for the modification of the spectrum with the
generation of two peaks, one needs to set up 1=3 <
σ < 1=2; to get only one peak, but displaced, we have
to set up 1=2 ≤ σ < 1, being the case σ ¼ 1=2 that
producing the largest displacement from ω1=2.
For the case ω1 ¼ ω2 ¼ ω0, interference effects appear,

so that

NγðωÞ ¼ Nð1Þ
γ ðωÞ þ Nð2Þ

γ ðωÞ

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nð1Þ
γ ðωÞNð2Þ

γ ðωÞ
q

cosϑ: ð68Þ

In this case, from Eqs. (66), (67), and (68), one can show
that

NγðωÞ ¼
ϵðϑÞ2τ

π

γ20ωðω0 − ωÞΘðω0 − ωÞ
ð1þ γ20ω

2Þð1þ ðω0 − ωÞ2γ20Þ
; ð69Þ

where

ϵðϑÞ2 ¼ ϵ21 þ ϵ22 þ 2ϵ1ϵ2 cosϑ: ð70Þ

The presence of the interference term leads to a final
spectrum enhanced or reduced, if compared to the case of

FIG. 3 (color online). Spectral distribution for the case of one
source of magnetic flux with frequency ω1 (dashed line), for the
case of one source with frequency ω1=2 (dot-dashed line), and
when both sources are considered simultaneously (solid line).
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a single source of magnetic flux, but it does not change the
original shape of the spectrum and, consequently preserv-
ing the symmetry with respect to ω ¼ ω0=2.

V. FINAL REMARKS

Differently from models where the problem of interfer-
ence in the DCE were considered for cavities, in the present
paper we discussed models with just a single mirror
associated with two independent sources of particle crea-
tion. One of these models consisted of a field submitted to a
Robin BC with a time-dependent Robin parameter γðtÞ for
a moving mirror [see Eq. (3)], which generalizes the
previous boundary conditions given by Eqs. (1) [14] and
(2) [18,19]. The other model investigated here considered a
Robin BC with γðtÞ, for a static mirror, but with the
presence of two sources of field perturbation [see Eqs. (62),
(63), and (64)].
For the model with the Robin BC (3), we obtained the

spectrum given by (41) (in agreement with [14]) plus (42)
(in agreement with [19]), added by an interference term
(43). For the typical time-variation of the parameters given
by Eqs. (44) and (45), we got a null value for the
interference term if both sources of field perturbation have
different frequencies, whereas, for equal frequencies, the
interference term is given by Eq. (52), which exhibits an
interesting feature: different regions of the spectrum can be
affected in different manners by constructive or destructive
effects. For the total number of created particles related to
the interference term, another interesting feature occurs:
besides the case for which the sources have different
frequencies, the net interference is also null when both
frequencies (equal to ω0) are so that γ0ω0 ≈ 2.23. This is
the same value that produces a strong decoupling between
field and mirror, minimizing N q in 1þ 1 [18,19] and in
3þ 1 dimensions [20]. Moreover, γ0ω0 ≈ 2.23 is the border
between constructive and destructive effects (see Fig. 2).
Investigating the model with the BC given by (1), (62),

(63), and (64), we showed how the interference effects
could be observed with some small changes in the context
of a SQUID experiment [8]. For instance, considering two
sources of magnetic flux acting on the SQUID, our results
showed that any interference effect just occurs when the
magnetic fluxes oscillate with the same frequency. Magnetic
fluxes with different frequencies will produce a final
spectrum which is the direct sum of that produced inde-
pendently by each source, leading to a final spectrum with
shapes different from the usual predict by just one source,
breaking the symmetry with respect to ω ¼ ω1=2 (see
Fig. 3). Considering experimental parameters, one can get
a deviation of the maximum point ω ¼ ω1=2. These results
indicate new signatures of the DCE that could be detected.
Moreover, the presence of the interference term leads to a
final spectrum enhanced or reduced, if compared to the case
of a single source of magnetic flux, but it does not change the

original shape of the spectrum and, consequently, preserving
the symmetry with respect to ω ¼ ω0=2.
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APPENDIX: THE MONOCHROMATIC LIMIT

Considering the monochromatic limit, ω1τ ≫ 1 and
ω2τ ≫ 1, both jFðωÞj2=τ and jGðωÞj2=τ present very sharp
peaks around the values ω ¼ �ω1 and ω ¼ �ω2, respec-
tively, and the heights of these peaks go to infinity (see
Fig. 4), so that these functions exhibit sifting properties
around ω ¼ �ωi (i ¼ 1; 2), namely,

lim
τ→∞

Z þ∞

−∞
jFðωÞj2

τ
PðωÞdω ¼ π

2
½Pð−ω1Þ þ Pðω1Þ�;

ðA1Þ

FIG. 4 (color online). jFðωÞj2=τ considering ω1 ¼ 0.5 and
some values for τ (jGðωÞj2=τ behaves the same way).

FIG. 5 (color online). Plot of Re½GðωÞF�ðωÞ�=τ considering
ω1 ≠ ω2 with ω1 ¼ 0.5 and ω2 ¼ 1.0 and some values for τ.
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lim
τ→∞

Z þ∞

−∞
jGðωÞj2

τ
PðωÞdω ¼ π

2
½Pð−ω2Þ þ Pðω2Þ�;

ðA2Þ
where PðωÞ is any continuous function at ω ¼ �ωi.
We also have performed an approximation for the cross

term Re½GðωÞF�ðωÞ� in the previous sections in order to
compute the interference spectrum. The mentioned term
must be analyzed in two different situations: the first one
when ω1 ≠ ω2, and the second one for ω1 ¼ ω2. If ω1 ≠ ω2

there are sharp peaks around the values ω ¼ �ω1 and
ω ¼ �ω2, with their heights going to zero in the mono-
chromatic limit (see Fig. 5), so that

lim
τ→∞

Z þ∞

−∞
Re½GðωÞF�ðωÞ�

τ
PðωÞdω ¼ 0: ðA3Þ

However, if ω1 ¼ ω2 ¼ ω0 one can see that the cross term
Re½GðωÞF�ðωÞ� becomes identical to jFðωÞj2 (except by a
factor of cosϑ). Therefore, in the monochromatic limit, this
term is also a representation of the Dirac delta function,
namely,

lim
τ→∞

Z þ∞

−∞
Re½GðωÞF�ðωÞ�

πτ
PðωÞdω

¼ ½Pðω0Þ þ Pð−ω0Þ� ×
cos ϑ
2

: ðA4Þ

Summarizing, jFðωÞj2 and jGðωÞj2 represent Dirac deltas
in the monochromatic limit. The cross term Re½GðωÞF�ðωÞ�
only represents a Dirac delta if ω1 ¼ ω2, vanishing if
ω1 ≠ ω2.
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